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Abstract

This paper proposes an ADF coefficient test for detecting the presence of a
unit root in ARMA models of unknown order. Our approach is fully paramet-
ric. When the time series has an unknown deterministic trend, we propose a
modified version of the ADF coefficient test based on quasi-differencing in the
construction of the detrending regression as in Elliot, Rothenberg and Stock
(1996). The limit distributions of these test statistics are derived. Empirical
applications of these tests for common macroeconomic time series in the US
economy are reported and compared with the usual ADF t-test.
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1 Introduction

Tests for a unit root have attracted a considerable amount of work in the last ten
years. One important reason is that these tests can help to evaluate the nature of the
nonstationarity that many macroeconomic data exhibit. In particular, they help in
determining whether the trend is stochastic, deterministic or a combination of both.
Following Nelson and Plosser (1982), much empirical research has been done and
evidence has accumulated that many macroeconomic variables have structures with
a unit root. The literature on testing for a unit root is immense. The most commonly
used tests for a unit root are the Dickey-Fuller test and the Phillips Z-tests. The
Dickey—Fuller test (1979) is based on the regression of the observed variable on
its one-period lagged value, sometimes including an intercept and time trend. In
an important extension of Dickey and Fuller (1979), Said and Dickey (1984) show
that the Dickey—Fuller ¢-test for a unit root, which was originally developed for AR
representations of known order, remains asymptotically valid for a general ARMA
process of unknown order. This ¢-test is usually called the Augmented Dickey—Fuller
(ADF) test. An alternative semiparametric approach to detecting the presence of a
unit root in general time series setting was proposed by Phillips (1987) and extended
in Phillips and Perron (1988). These tests are known as Phillips Z, and Z; tests.
The Z-tests allow for a wide class of time series with heterogeneously and serially
correlated errors.

The ADF test is a t-test in a long autoregression. Said and Dickey (1984) prove
the validity of this test in general time series models provided the lag length in the
autoregression increases with the sample size at a rate less than n!/3, where n =
sample size. No such extension of the Dickey—Fuller coefficient test is recommended
in their work, since even as the lag length goes to infinity, the coefficient estimate
has a limit distribution that is dependent on nuisance parameters. However, the
Z, test is a coefficient based test with a nonparametric correction which success-
fully eliminates nuisance parameters. A similar idea can be applied to construct an
ADF coefficient based test. In particular, the nuisance parameters can be consis-
tently estimated and the coefficient estimate transformed to eliminate the nuisance
parameters asymptotically, providing an ADF coefficient test with the same limit
distribution as the original Dickey—Fuller coefficient test and the Z, test.

A natural way to compare tests is to examine their power in large samples. Monte
Carlo studies (see Phillips and Perron, 1988; Schwert, 1989; DeJong, et al. 1988,
1992) indicate that unit root tests often have low power against plausible trend
stationary alternatives. Generalized least square detrending using quasi-differenced
(QD) data was suggested in Elliot, Rothenberg and Stock (1996) to increase the
power of unit root tests for models with deterministic trends. An analysis of the
efficiency gain from this detrending procedure (which we call QD detrending) and
its effects on test efficiency is given in Phillips and Lee (1996). As yet, few empirical
applications of QD detrended unit root tests have appeared in the literature.



This paper develops an ADF-type coefficient based unit root test (called ADF,)
for ARMA models of unknown order, with a parametric correction that frees the
limit distribution of the test statistic of nuisance parameters. A modified ADF
coefficient test based on QD detrending is also developed. The limit distributions of
the ADF coefficient test and its QD detrended version are the same as those of the
Zq, test and QD detrended Z,, test. Empirical applications of these tests to the post
war quarterly U.S. data, the extended Nelson—Plosser data, and stock price data are
also reported. We compare the OLS detrended ADFy, test with the QD detrended
ADF, test, and examine the QD detrended ADF, tests for different choices of ¢
(the quasi-differencing parameter).

The outline of the paper is as follows. Section 2 develops the theory for the
ADF coefficient test. The QD detrended ADF coefficient test and its limit theory
are given in Section 3. Section 4 reports some empirical applications to a variety
of macroeconomic and financial data. Proofs of theorems are given in Section 5.
Concerning notation, we use the symbol “=" to signify weak convergence of the as-
sociated probability measures. Continuous stochastic process such as the Brownian
motion B(r) on [0,1] are usually written simply as B and integrals [ are understood
to be taken over the interval [0,1].

2 An ADF Coefficient Test for a Unit Root
Consider a time series
Yt = ayt—1 + (1)

satisfying the following conditions:

Assumption Al: y; is initialized at t = 0 by yo, an Op(1) random variable with
finite variance.

Assumption A2: w; satisfies the stationary and invertible ARMA(p,q) process,
a(L)u; = b(L)e, where ¢ = iid(0,02), a(L) = Z;'):o a; L7, b(L) = Zgzo b;L’, and
L is the lag operator.

Assumption A3: n~1/2 ZET:l] w = B(r) = BM(w?) = wW(r) , n~1/2 zﬁ’:} g =
B.(r) = BM(0?) = cW(r), where w? = BE(u)+2 T2, E(uwiug) = 02[b(1)/a(1))? =
long run variance of wu:, and W (r) is a standard Brownian motion.

From A2, we get the AR representation of u; (e.g., Fuller, 1976, Theorem 2.7.2)

&t = d(L)ut = Zdjut_j, do =1.
j=0



Define B(L) = 1 —d(L) = B,L+ B,L?+ -, and then
Ay: = ays—1 + Brus—1 + Bour—2 + - + &1

The null hypothesis of interest in (1) is Hp : @ = 1, or equivalently Hy : a = a—1 = 0.
Under Hy, u; = Ay, and applying the operator d(L) = 1 — B(L) to both sides of
this equation we have the null model

Ay = ﬂ(L)Ayt + &,

or
Ay: = ayi—1 + B1AY—1 + BoAyi—o + - - - + &4 (2)

In place of the infinite AR regression (2), we consider the ADF regression model
Ay = ayi—1 + B1Ayt—1 + - + BpAYi_k + e, (3)

where e is defined as Ay; — ayi—1 — (1Ayi—1 — - — BplDys—r . We use Z to

denote the matrix of explanatory variables and partition it in the following way:
Z = (y—_1, Zk), where y_; is the vector of lagged variables, and Zj is the matrix of
observations of the k lagged difference variables (Ay;—1, ..., Ay;_x). Thus we have
the following matrix representation

Ay = Z 3 + e,

where 8= (a,B,..., 3c), ex = (.-, €k, ...)' -
We shall be concerned with the limit behavior of the conventional least square
regression coefficient @ for a in (3) given by

a=(y ,Py—1) "y P, Ay,

where P, = I — Z(Z]Z)~'Z]. The limit distribution of @ is given by the following
theorem.

Theorem 1: If k — o0 asn— 00, and k = o(n1/3), then, under Hy,

na:"deW
wf[W?’

Remark 1: The limit distribution of the regression coefficient @ depends on un-
known scale parameters w and o, and thus the statistic na can not be used directly
for unit root testing. However, w and o can be consistently estimated, and there
exists a simple transformation of the statistic n@ which eliminates the nuisance
parameters asymptotically. In particular, 5% = S €% /n is a consistent estimator
of 2 | and w? can be consistently estimated by the AR estimator (Berk, 1974)
o?=56%/(1- Z@)? Thus, we define

ADF, = (&/8)nd.



Under the null hypothesis that a = 1, it is apparent that the modified coefficient
test statistic
J Wdw

Jwz
the same limit distribution as that of the Phillips Z, test and that of the original
Dickey—Fuller coefficient test.

It is necessary that a statistical test be able to discriminate between the null and
alternative in large samples. The next theorem guarantees this property.

ADFQ >

Theorem 2: If y: is generated by (1) with o <1, and fyy(0) > 0, where fy,(-) is
the spectral density of y:, then

ADF, = Op(n).

Remark 2: As the sample size n increases, the test statistic ADF, diverges faster
under H; than does the ADF t-ratio statistic. This suggests that the coefficient
based statistic is likely to have higher power than the t-ratio statistic in large sam-
ples.

3 An Efficiently Detrended ADF Coefficient Test

If we allow for a deterministic trend in the time series y; , we have the following
representation

ye = v T +y; (4)
Ui = ayp_y +u (5)

where z; is the deterministic trend, and u; is defined as in A2. The traditional
way of removing this deterministic component in unit root tests is to run an OLS
regression on an augmented equation. In the present case, this is

Ayt ='x + aye—1 + B1AYi—1 + - - + BrAYs—k + etk

and we can construct the test statistic ADF, based on the above regression. In
most cases of interest, there exists a scaling matrix D, and a limit trend function
X(r) for which DpZTjn;) — X(r), in which case the limit distribution for ADF, is
given by the ratio [ WxdW/ [ W2 | if k increases with n at a rate of o(n1/3), where
Wy is the detrended Brownian motion

Wx(r) = W(r) — U WX’] [/XX’} X,

and depends on the limit trend function X (r).



However, the power of unit root tests in the case of deterministic trends can be
improved if we perform the detrending regression in a way that is efficient under
the alternative (Elliot, et al. 1996). For alternatives that are distant from unit
root, the Grenander-Rosenblatt theorem implies that OLS detrending as in (4)
will be asymptotically efficient, so the gain from efficient detrending occur for local
alternatives of the form

H|:a=1+c¢/n,
where c is a fixed constant in such cases. We can estimate the trend coefficient by
taking quasi-difference on (4), and running a least square regression of

Acyr = 7,Ac$t + Acy::

where A, is the quasi-difference operator 1 —L—(c/n)L. If the fitted trend parameter
vector is 7, we compute the QD detrended series

Yr =y — 7' 2,

which can now be used in the construction of unit root test just as in the case where
there are no deterministic trends to eliminate.

This detrending procedure is sometimes called GLS detrending in the literature
(e.g., Elliot, Rothenberg and Stock, 1996). It is perhaps more accurate to describe
the procedure as detrending after quasi-differencing (see Phillips and Lee, 1996, and
Canjels and Watson, 1997, for recent implementations) since full GLS is not used
in the detrending regression, but only quasi-differencing. We therefore refer to the
procedure as QD detrending.

To derive the asymptotics for the efficiently detrended ADF,, test, it is conve-
nient to employ the following matrix notation,

X' = (@1, .00y Tty orey Tn),

y' = (y1,---,yt; --~,yn)a
ACX, = (Acxl,...,Acxt,---yAcxn)y

Acy, = (Acy17 ---7Acyt7 7Acyn)
Then 7 = (A X'AX) 1A X'Ayy. Let A=TI—(1+c/n)H, where

0 O
we[00]

Then Acy = Ay, and A X = AX. In matrix form, we have
YV =y—X7=y-X(AX' AX)TAX Ay = [[-X(AX'AX)TAX Aly = Qey
where Q. = I — X (A X'AX) 1A X'A. Since y = Xv +y°® and

QX =[I - X(AX'AX)IAX'A]X =0



thus y* = Qcy = Qcy® = y°.
Assume that the scaling matrix Dy, is such that DpZp,) — X (r), and nDp Az,
— g(r). Let X (r) = g(r) — ¢X(r). Then we have the following asymptotic result

for the QD detrended series y;.

Lemma 1: Under the null a =1,
n~V2yr =02y = Bo(r) = W (r)

where

B.(r) = B(r) — X(r)’ [ / Xc(r)XC(r)’dr] - [ / X.(r)dB(r) — ¢ / Xc(r)B(r)dr}

w{W(r) - X(r) [/Xc(r)Xc(r)’dr] - [/Xc(r)dW(r) - c/Xc(r)W(r)dr]}
=wW,(r)

For exzample, in the case where x; is the polynomial time trend (t,...,tP)', X(r) =
(ry...,vP)’, and g(r) = (1,2r,...,prP~1)".

The detrended data y; can be used to construct an ADF, test for a unit root
by running the following regression

Ayf = ayf_y + 1Ay + -+ BrAy;_k + € (6)

Let @ be the estimated coefficient of a in this regression. Then the QD detrended
ADF, statistic is

ADF = (3/3)na.
Theorem 3: Under the null of a unit root, if k — 00, as n — oo and k = o(n!/3),
then

JW(r)dW(r)

JW(r)?
Remark 3: The limit distribution of the modified ADF,, test depends on both the
trend function and the value of c that is used in the quasi-differencing filter. This

limit distribution has the same form as that of a modified semiparametric Z, test
when we use the efficiently detrended y in the construction of Z,, .

ADF} =

Remark 4: We can construct a modified ADF t-ratio test in exactly the same way
and the limit distribution for this modified ADF; statistic is

o] ™" [wmawe.



4 Empirical Applications

4.1 The Extended Nelson—Plosser Data

The ADF,, test and efficient detrending QD prefilter were applied to the fourteen
time series of the U.S. economy studied in Nelson and Plosser (1982), and extended
by Schotman—Van Dijk (1991). The starting dates for the series vary from 1860
for industrial production and consumer prices through to 1909 for GNP. All series
terminate in 1970 in the original Nelson-Plosser data. Schotman and Van Dijk
extended all these 14 series to 1988. In their original study, Nelson and Plosser
conducted the ADF; test on these series and could not reject the unit root hypothesis
at the 5% level of significance for all of the series except the unemployment rates.
Perron (1988) arrived at similar conclusions using Z-tests.

We consider the null hypothesis that the variables are difference stationary
ARMA processes versus the trend stationary alternatives. We use three detrending
procedures for the ADF, test:

(T1): OLS detrending
(T2): QD detrending with the choice ¢ = —10
(T3): QD detrending with the choice ¢ = —13.5

Thus, in the first test, we estimate the following ADF regression
Ayt = ayp-1 + B1AYt-1 + - + B Dy—k + Yo + it + €&

In the second and third tests, we run ADF regression (6) for the QD detrended
data yf. The value ¢ = —10 was chosen because the sample sizes of the Nelson—
Plosser series are around 100 (80-129) and estimates of autoregressive coefficients
in economic time series are often around 0.9, corresponding to 1 + ¢/n for n = 100,
¢ = —10. Also the ¢ value for which local asymptotic power is 50% is approximately
—13.5 for the case of a linear trend (Elliot et al., 1996), so this value of ¢ is another
natural choice. To provide a basis for comparison, we also calculated the ADF;
statistics based on these three detrending procedures. We use the BIC criterion of
Schwarz (1978) and Rissanen (1978) in selecting the appropriate lag length of the
autoregression for all three data sets considered in this paper. The critical values
of the ADF, and ADF; tests corresponding to different choices of ¢ values were
calculated from simulations based on 15,000 replications. Table 1 provides the finite
sample critical values in the case of N = 100.

Table 2 reports the values of the ADF tests based on OLS detrending. Table 3
and Table 4 give their values under QD detrending for ¢ = —~10 and ¢ = —13.5. The
estimated autoregressive coefficients are reported in the columns labelled “a”. We
are interested in testing whether or not the AR coeflicient differs from unity. For
most of the time series, we can not reject the null of unit root at the 5% level of



significance. A few series exhibit values of ADF, below the 5% level critical values.
In particular, the unit root hypothesis is rejected for the unemployment series by all
these tests (i.e., all three detrending procedures). For two series, per capita GNP
and industrial production, unit roots were rejected in the OLS detrended test, but
not rejected in the QD detrending procedure. However, the calculated test statistics
are very close to the corresponding critical values. Thus the evidence is marginal for
these two series. The ADF; test gives qualitatively the same results. In conclusion,
our results in Tables 2, 3, 4 are generally in accord with the findings in Nelson and

Plosser (1982).

Table 1: 5% Level Critical Values (N = 100)

ADF, test ADF; test
c=-2.5 -15.79 -2.81
c=-5 -17.15 -2.91
c=-175 -18.05 -2.97
c=-10 -18.71 -3.02
c=-125 -19.25 -3.07
c=-13.5 -19.47 -3.09
c=-15 -19.91 -3.11
OLS detrending -20.7 -3.45

Table 2: ADF, and ADF; Tests with a Linear Trend
(OLS detrending)

Series & ADF, ADEF; | Series ADF, ADF &

CPI 998 -5.23 -1.4 | Employment 0.854 -19.38 -3.28
GNP Def.  0.967 -6.44 -1.63 | GNP/Cap. 0.81 -24.12* -3.59*
Ind. Prod. 0.818 -25.8* -3.68" | Interest rate 0.94 -6.01 -1.69
Money 0.936 -18.5 -2.89 | Real GNP 0.812 -19.68 -3.05
Nom. GNP 0.938 -887 -2.03 | Real wage 0.927 -849 -1.73
Stock price 0916 -12.4 -2.42 | Unemployment 0.772 -43.55* -3.94*
Velocity 0.964 -4.62 -1.44 | Nominal wage 0933 -11.56 -2.43

*Values are smaller than the 5% level critical values.



Table 3: ADF, and ADF; tests with a linear trend
(QD detrending, ¢ = —10)

Series & ADF, ADF; | Series & ADF, ADE
CPI 0.99 -3.21 -1.04 | Employment 0.88 -15.5 -2.76
GNP Def. 0.98 -3.62 -1.13 | GNP/Cap. 0.86 -16.74 -2.88
Ind. Prod. 0.87 -17.4 -2.92 | Interest Rate 095 -5.58 -1.61
Money 094 -17.5 -2.87 | Real GNP 087 -16.85 -2.9
Nom. GNP 0.95 -7.56 -1.85 | Real Wage 094 -6.96 -1.73
Stock Price 0.95 —6.89 -1.71 | Unemployment 0.77 -43.6* -3.96*
Velocity 098 -2.43 —0.93 | Nominal wage 0.95 -8.89 -2.04

*Values are smaller than the 5% level critical values.

Table 4: ADF, and ADF; Tests with a Linear Trend

(QD detrending, ¢ = —13.5)
Series & ADF, ADF; Series a ADF, ADF,
CPI 099 -3.52 -1.07 Employment 0.88 -16.5 -2.86
GNP Def. 0978 -4.11 -119 GNP/Cap. 0.85 -186 -3.05
Ind. Prod. 0.863 -19.1 -3.05 Interest Rate 0.94 -57 -1.63
Money 0.937 -17.9 -2.89 Real GNP 0.85 -185 -3.04
Nom. GNP 0944 -799 -1.89 Real Wage 0.94 -756 -1.74
Stock Price 0.946 -7.86 -1.81 UnemployM 0.77 -43.7* -3.95*
Velocity 098 -267 -097 Nom. Wage 094 -96 -2.13
*Values are smaller than the 5% level critical values.

4.2 Stock Price Data

We examined the monthly average stock price data from Standard and Poor’s series.
DeJong et al. (1988) conducted various unit root tests on the annual stock price data
and they could not reject the unit root hypothesis at 5% level for most of the series.
DeJong and Whiteman (1989) revisited the same data set using a flat prior Bayesian
analysis and found that trend stationarity is supported by the data. The series we
studied here include the S&P 500 composite stock prices, consumer goods stock
prices, capital goods stock prices, industrial stock prices, and automobiles stock
prices. The consumer goods stock price is calculated from an average of 164 stocks,
capital goods price from 101 stocks, industrials stock price from 381 stocks, and
automobiles stock price from 3 stocks. We examined the data from January 1980
to December 1988. Each series contains 108 observations. We use the three tests
(T1, T2, T3) in Section 4.1 and so the critical values in Table 1 can be used in this
section. Our empirical analysis of these stock price series is summarized in Tables
5, 6, and 7.

The OLS detrended ADF,, test can not reject the unit root hypothesis at the 5%
level for all of these series except the automobiles stock price. When we examine



these series by the QD detrended ADF, tests, there is no evidence to reject the
hypothesis of a unit root at the 5% level, in both ¢ = —10 and ¢ = —13.5 cases.
The ADF; tests give the same results. Our conclusion from the evidence presented
in this section is that the composite stock price series are nonstationary with a unit
root. The automobile price series outcome is marginally in favor of rejecting the
null hypothesis of a unit root.

Table 5: Tests for the Stock Price Data
(OLS detrending)

Estimated
Series AR Coefficient ADF, ADF;
Composite 0.907 -17.33 -2.95
Capital Goods 0.895 -17.60 -2.94
Consumer Goods 0.903 -17.95 -3.02
Industrials 0.908 -18.05 -3.02
Automobiles 0.846 -30.33* -3.97*

*Values are smaller than the 5% level critical values.

Table 6: Tests for the Stock Price Data
(QD detrending, ¢ = —10)

Estimated
Series AR Coefficient ADF, ADF;
Composite 0.926 -13.75 -2.64
Capital Goods 0.914 -14.27 -2.69
Consumer Goods 0.925 -13.71 -2.61
Industrials 0.927 -14.16 -2.67
Automobiles 0.913 -16.45 -2.81

Table 7: Tests for the Stock Price Data
(QD detrending, ¢ = —13.5)

Estimated
Series AR Coefficient ADF, ADF,
Composite 0.922 -14.54 -2.71
Capital Goods 0.910 -15.00 -2.75
Consumer Goods 0.921 -14.65 -2.69
Industrials 0.922 -15.03 -2.74
Automobiles 0.901 -18.97 -3.02

10



Table 8: 5% Level Finite Sample Critical Values

(N = 200)
ADF,, test ADF; test
c=-10 -17.00 -2.88
c=-13.5 -17.60 -2.92
c=-20 -18.43 -2.99
c=-25 -19.03 -3.05
OLS detrending -21.20 -3.44

Table 9: OLS detrended Tests on Post War Quarterly U.S. Data

Estimated
Series AR Coefficient ADF, ADF,
Real GDP 0.97 -8.5 -1.94
Real Investment 0.928 -37.28* -3.84*
Real Consumption 0.938 -14.77 -3.07
Employment 0.95 -18.58 -3.114

*Values are smaller than the 5% level critical values.

Table 10: QD detrended Tests on Post War
Quarterly U.S. Data, ¢ = —10

Estimated
Series AR Coefficient ADF, ADF,
Real GDP 0.98 -3.88 -1.17
Real Investment 0.969 -14.67 -2.339
Real Consumption 0.98 -4.336 -14
Employment 0.979 -10.11 -2.199

Table 11: QD detrended Tests on Post War
Quarterly U.S. Data, ¢ = —13.5

Estimated
Series AR Coefficient ADF, ADF;
Real GDP 0.98 -443 -1.23
Real Investment 0.96 -17.93 -2.55
Real Consumption 0.977 -5.277 -1.55
Employment 0.976 -11.6 -2.36

11



Table 12: QD detrended Tests on Post War
Quarterly U.S. Data, c= —20

Estimated
Series AR Coefficient ADF, ADF;
Real GDP 0.98 -5.1 -1.33
Real Investment 0.956 -21.58* -2.79
Real Consumption 0.972 —6.528 -1.758
Employment 0.973 -13.26 -2.53

*Values are smaller than the 5% level critical values.

Table 13: QD detrended Tests on Post War
Quarterly U.S. Data, ¢ = —25

Estimated
Series AR Coefficient ADF, ADF,;
Real GDP 0.98 -5.79 -1.44
Real Investment 0.969 -14.67 -2.34
Real Consumption 0.966 -7.926 -1.98
Employment 0.969 -14.8  -2.7

4.3 Post War Quarterly U.S. Data

In this section, we analyzed some post-war quarterly U.S. macroeconomic time series
data. The data set consists of Real GDP, Real Investment, Real Consumption, and
Employment. All these variables are from Citibase, over the period 1947:1-1993:4.
The number of observations for these time series is 188. Table 8 gives the finite
sample critical values for the case of N = 200. These critical values are calculated
from simulation based on 15,000 replications. We tried the following detrending
procedures for both ADF,, and ADF; tests:

(T1): OLS detrending

(T2): QD detrending with the choice ¢ = —~10
(T3): QD detrending with the choice ¢ = —13.5
(T4): QD detrending with the choice ¢ = —20
(T5): QD detrending with the choice ¢ = —25

Tables 9, 10, 11, 12, and 13 give the estimated test statistics and coefficients for
these five detrending procedures. We can not reject the null of a unit root in all these
tests at the 5% level of significance for the consumption series, which, as argued in
Hall (1978), should behave as a martingale. Thus, there is no evidence to reject the
hypothesis that consumption behaves as a unit root process. We also find support

12



for the hypothesis of a unit root in the series of real GDP, and employment in all
these tests. For the series of real investment, the unit root hypothesis is rejected
in the OLS detrended ADF,, and ADF; tests. In QD detrending cases, when we
choose ¢ = —20, the unit root is rejected in the series of real investment by the
ADF, test, but not by ADF; test. For the values ¢ = —10,—13.5, —25, we can
not reject a unit root in any series. These results are generally in agreement with
the conclusion of the extended Nelson-Plosser data that many macroeconomic time
series are characterized by the presence of a unit root.

5 Proofs

5.1 Proof of Theorem 1

The limit distribution of @ can be established in the following steps by using the

BN (Beveridge and Nelson, 1981) decomposition for the operators a(L) and b(L).

Followmg the lines of Berk (1974), we use the standard Euclidean norm, ||z| =

(z'z)1/2, of a column vector and use the matrix norm || B || = sup{||Bx|| : |lz|| < 1}.
Let G, = diag(n™!,n"1/2 ... n=1/2), then

G2 (B = B) = (GaZ'ZGr) ' GnZ'ex.
If k = o(n'/3) and k goes to oo with n, then, under the null hypothesis, we have:

(a) k2||GrZ'ZGrn — Ryl 2 0 and kY/2||(Go2'2Gn)" = R7Y| B 0, as n, k — oo
(Said and Dickey, 1984), where

Ry = diagln™%(b(1)/a(1))*>_ SZ.,,T)
t—1
St—l = Zejv
j=1
I'= [’h‘j]a Yij = vt — 7) = E(uiuy);
(b) |GnZ'ex — GnZ'ell = Op(1/n),€ = (€1, ...,n)" (Said and Dickey, 1984);
(c) ||B — B|| converges in probability to 0 (Said and Dickey, 1984).

Under Hy, we have

a(L)ye = a(L) Y_u; +Op(1) = (L) Y5+ Op(1)

=1 =1

Use the BN decomposition again, giving

a(l)y, = b(1 Ze, + O,( (7)
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the term Op(1) includes linear combinations of finite numbers of u; and ;. Since
ST e, is the I(1) component in (7), we get

b(1)

Yt = msﬁ +0p(1)

From (a), (b) and (c), the limit distribution of G;1(8 — B) is the same as that
of R;1GnZ'e. Thus the limit of na is the same as that of the first element in
R;1G.Z'e, which is

(n~? Zy?—l)_l(n_l Zyt-m) = %[n—z Z S2 4] n ™t Z Si_1€1]

Notice that n™2Y. 52, = [B2 =02 [W? n"! ¥ 5,164 = [ B.dB. = 0 [WdW,
and w? = 27 fu, (0) = 02 [b(1)/a(1)]?, where fu, is the spectral density of u;, and

thus
~ o [WdW

na:—wm—. 0o

5.2 Proof of Theorem 2

Under the alternative Hy : a < 1,when f,,,(0) > 0, y; has a representation
o0
chyt-j =e,c =1 (8)
=0
where {e;} = orthogonal (0,¢2). Following Fuller (1976), we can write (8) as
Ayr = (61 — Dyt-1 + 028y 1 + 030y, 2+ -+ + &

where §; = 3722, ¢; (i = 2,3,...) and 61 = — 3°52, ¢;. Since y, is stationary, 6;—1 # 0.
In the ADF regression, as k — 0o, we find that

ab6,-1+£0
#?Ls2>0

&% B 27, (0) > 0
Thus, ADF, = n(©/6)a = nOp(1) = Op(n). O

5.3 Proof of Lemma 1

We prove the result for the polynomial time trend case. Let

D, = diag(n™!,...,n7P), F,, = diag(1,n7?, ..., n"P*1)

14



then

—1 2
/ Yinr)

= V2 — 07 ) (AX'AX) T AX Ay
= 0720 ) — (D)) (0T PR X AX ) T R AX (n 72 Ay,

Notice that n=1/ *y¢ .y = B(r) and

I E, A X' AXF,

= nT F,[AX'AX -

nleAX'X_ ) —n7 e X! AX + 072X X )F,

= [lo@)g(r) - eX(r)g(r)’ = calr)X(r) + X (r)X ) ldr

= /Xc(r)Xc(r)’dr

and

FoAX'n V2 Ay
= n"2F[AX Ay® — n"leAX'yS ) — nTleX Ay + 172Xyt )

= / [g(r)dB(r) — cX(r)dB(r) — cg(r) B(r) + X (r) B(r)]

_ / X.(r)dB(r) — / X.(r)B(r)dr

Thus,

n~Y

2y[m.]

= B(r) - X(r) [ Xc(r)Xc(r)'er_l< [y - / Xc(r)B(r)dr)

= B.(r). O

5.4 Proof of Theorem 3

"\ Pry*q) Yy Py Dy*, where Py = I — M(M'M)™*M’', M
is the matrix of the k lagged dlfference variables (Ay;_q, ..., Ay;_). We have

We know that @ = (y*

—2, %/
n Y

PMyil

=

2y (I - M(M'M) My,

=2, %/

n” Tyl

-2, % %

n~!(n

n Yty +0(1)

JEXO

w2/M(r)2.

15

-1 *IIM)( _lMIM)_l(n—lMlyil)



Since Ay; = Ay; — ¥'Az; = wuy, and ug is a stationary ARMA process with AR
representation &; = d(L)u; . When k — oo as n — oo, and k = o(n!/3), e},
converges to €; (as in Said and Dickey, 1984), and thus

n~ly* PyAy* = n~yt e +o(1) = /_Bc(r)dBE(r) = wa/M(r)dW(r).

It follows that
ADF! = / W, (r)dW(r)/ / W (2. O
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