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Abstract

Examples treated explicitly in the paper are: (1) quasi-ML estimation of a ran-
dom coefficients regression model with some coefficient variances equal to zero, (2)
LS estimation of a regression model with nonlinear equality and/or inequality re-
strictions on the parameters and iid regressors, (3) LS estimation of an augmented
Dickey-Fuller regression with unit root and time trend parameters on the boundary of
the parameter space, (4) method of simulated moments estimation of a multinomial
discrete response model with some random coefficient variances equal to zero, some
random effect variances equal to zero, or some measurement error variances equal
to zero, (5) quasi-ML estimation of a GARCH(1, ¢*) or IGARCH(1, ¢*) model with
some GARCH MA parameters equal to zero, (6) semiparametric LS estimation of
a partially linear regression model with nonlinear equality and/or inequality restric-
tions on the parameters, and (7) LS estimation of a regression model with nonlinear
equality and/or inequality restrictions on the parameters and integrated regressors.
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1. Introduction

To obtain asymptotic distributions of estimators, a standard assumption in the
literature is that the true parameter is in the interior of the parameter space. This
assumption is convenient because it allows one to make use of the fact that first
order conditions hold, at least asymptotically. There are numerous cases of interest,
however, in which the true parameter is on the boundary of the parameter space.
Examples are given below.

In this paper, we provide results that establish the asymptotic distribution of
extremum estimators when the true parameter may be on the boundary of the pa-
rameter space. We allow the boundary to be linear, curved, and/or kinked. The
parameter space may have empty interior, as occurs when there are equality restric-
tions. We provide general high level assumptions under which the results hold and
we verify these assumptions in seven examples.

The approach used here is to approximate the estimator objective function by a
quadratic function rather than to rely on first order conditions. This approach was
used by Chernoff (1954) to establish the asymptotic distribution of the likelihood
ratio test in iid models with smooth likelihoods when the true parameter may be
on a boundary. It has also been used by various authors to obtain the asymptotic
properties of estimators when the true parameter is in the interior of the parameter
space; see LeCam (1960), Jeganathan (1982), Pollard (1985), and Pakes and Pollard
(1989) among others.

Our results are designed to cover a wide variety of estimators and models. The
estimators covered by the results include least squares (LS), quasi-maximum likeli-
hood (QML), generalized method of moments (GMM), minimum distance, two-step,
and semi-parametric estimators among others. The estimator objective function can
be smooth or non-smooth, so that simulated method of moment (MSM) and least
absolute deviation estimators are covered. This feature is obtained by using stochas-
tic equicontinuity conditions, as in Pollard (1985), Pakes and Pollard (1989), and
Andrews (1994a, b).

The results apply when the estimator objective function is not necessarily defined
in a neighborhood of the true parameter. In consequence, the results cover random
coefficient models in which some coefficient variances are zero. This contrasts with
many testing papers that consider tests when the true parameter is on the boundary
of the maintained hypothesis, but the estimator objective function is assumed to be
well-defined in a neighborhood of the true boundary point, such as Chernoff (1954),
Gourieroux and Monfort (1989), Wolak (1989), and Andrews (1996, 1997b), among
others. To obtain these results we use a generalization of Taylor’s Theorem that does
not require the function to be defined in a neighborhood of the point of expansion.

The models covered by the results include cross-sectional, panel, and time se-
ries models. The results allow for deterministic and stochastic trends in linear time
series models. In consequence, the results can be applied to obtain the asymptotic
distributions of estimators of unit root and cointegration models when there are bind-
ing equality and/or inequality restrictions on the parameters. Given our treatment
of models with trends, our results are derived using a deterministic normalization



matrix By rather than the more common scalar normalization of T/2.

We note that the assumptions employed here are such that one often can use ex-
isting results in the literature (that are designed for the case where the true parameter
is an interior point) to help verify the assumptions. This is particularly useful for
semiparametric estimators. One does not need to re-prove results regarding the effect
of preliminary nonparametric estimators on the properties of the estimator objective
function.

The estimator asymptotic distributions that are determined here are functions of
multivariate normal distributions, in the case of models with no stochastic trends,
and of multivariate Brownian motions, in the case of models with stochastic trends.
The particular function depends on the shape of the parameter space. The parameter
space is approximated locally to the true parameter by a convex cone A and it is this
set that determines the function of the multivariate normal (or Brownian motion)
that gives the asymptotic distribution of the estimator. For example, in a simple
case where the parameter is restricted by a single nonlinear inequality restriction and
the model does not contain stochastic trends, the asymptotic distribution is a half
normal distribution.

More generally, the asymptotic distribution is given by the distribution of the
vector that minimizes a certain quadratic function over the set A, where the coef-
ficients of the quadratic function have a multivariate normal distribution (or are a
function of a multivariate Brownian motion). We provide a closed form solution to
this minimization problem for the fairly general case where the boundary of the pa-
rameter space is determined by linear and/or nonlinear equality and/or inequality
restrictions. The asymptotic distributions can be simulated quite easily and quickly.

The asymptotic results derived here are useful for several purposes. First and
foremost, they provide insight into the finite sample behavior of estimators when the
true parameter is on the boundary of the parameter space. Second, they establish
conditions under which the asymptotic distribution of the estimator of a sub-vector
of the parameter is not affected by the true values of another subvector being on a
boundary of the parameter space; see Section 6.1. Third, they provide conditions
under which the usual formulae for the asymptotic standard errors of extremum es-
timators are conservative when the true parameter is on a boundary; see Section 6.3.
Fourth, the results can be used to formulate several methods of generating consistent
estimators of the asymptotic standard errors and/or the whole asymptotic distribu-
tion of extremum estimators that apply whether or not the true parameter is on a
boundary; see Section 6.4. Fifth, the results can be used to show that the standard
bootstrap does not generate consistent estimators of the asymptotic standard errors
of extremum estimators when the true parameter is on a boundary; see Andrews
(1997a).

Sixth, the estimation results of this paper are useful for constructing Wald-type
tests when the null and alternative hypotheses are more complicated than just non-
linear equality restrictions and unrestricted parameters, respectively; see Andrews
(1997¢). Seventh, a by-product of the estimation results is the determination of the
asymptotic distribution of the estimator objective function. This can be used to



determine the asymptotic distributions of likelihood ratio-like test statistics for non-
standard testing problems; see Andrews (1997c). Eighth, the results can be used to
analyze the properties of model selection procedures for general extremum estimators
including cases where smaller models result from the specification of the parameter
as a point on the boundary of the parameter space of a larger model. Ninth, the re-
sults can be used to determine the asymptotic behaviour of items that are of interest
from a Bayesian perspective, including the (nonstandard) asymptotic distribution of
the posterior distribution in likelihood contexts when a parameter is on a boundary.
Research on several of the topics above is in progress.

Several papers in the literature consider the asymptotic properties of estimators
when the true parameter lies on the boundary of the parameter space. Aitchison and
Silvey (1958) consider ML estimators for iid models with smooth likelihoods when
the parameter is subject to smooth equality constraints. Moran (1971) considers
ML estimators for iid models with smooth likelihoods with one or two parameters
restricted to be non-negative when the true values of these parameter(s) are zero.
Chant (1974) generalizes Moran’s results for the same model to cover more than two
non-negativity restrictions. Self and Liang (1987) generalize Chant’s results for the
same model, but there are problems with their results. Gourieroux and Monfort
(1989, Ch. 21) consider an extremum estimator based on a smooth objective function
when the true parameter is on a boundary defined by smooth inequality constraints.
They provide the asymptotic distribution of some functions of this estimator, but
not the asymptotic distribution of the entire estimator. Judge and Takayama (1966),
Lovell and Prescott (1970), Rothenberg (1973, Ch. 3), and Liew (1976) consider the
finite sample behavior of the LS estimator of the linear regression model when it
is subject to linear equality and inequality restrictions. Rothenberg (1973, Ch. 3)
also provides some finite sample efficiency results that apply to a general class of
inequality restricted estimators.

We now discuss the examples considered in this paper. For each of the seven
examples, primitive sufficient conditions are given under which the high level as-
sumptions of the paper are satisfied. The examples are chosen for their own intrinsic
interest and to illustrate the various novel features of the general results.

The first example is a random coefficient regression model in which some random
coeflicient variances are zero. We consider the QML estimator. This example is one
in which the estimator objective function cannot be defined in a neighborhood of
the true parameter independently of sample size given that the regressors may be
unbounded.

The second example is a regression model with nonlinear equality and/or in-
equality restrictions on the regression parameters. The errors and regressors are
assumed to be iid. We consider the LS estimator. This example exhibits curved
and kinked boundaries. We note that nonlinear inequality restrictions arise in utility,
cost, and profit function estimation when convexity, quasi-convexity, concavity, or
quasi-concavity is imposed at some point(s) in the sample; see Gallant and Golub
(1984).

The third example is an augmented Dickey—Fuller regression model with the



largest root restricted to be less than or equal to one and the time trend para-
meter restricted to be positive. The true parameter is taken to be a parameter with
a unit root and a zero time trend parameter. (A Dickey—Fuller regression model is a
univariate autoregressive model with at most one unit root that is written in terms
of the level of the first lag of the time series and the differences of higher order lags of
the time series.) This example illustrates the case of a model with deterministic and
stochastic trends that is not a locally asymptotically mixed normal (LAMN) model.

The fourth example is a multinomial discrete response model estimated via a MSM
estimator as in McFadden (1989) and Pakes and Pollard (1989). We consider the
case where the model includes random coefficients, as in Hausman and Wise (1978),
random effects, as in McFadden (1989), or measurement error, as in McFadden (1989),
and the variances of some of these random terms are zero. This example illustrates
the case of an estimator objective function that is discontinuous. A related class of
GMM estimators of discrete response models with random coefficients that is used in
the industrial organization literature is that of Berry (1994) and Berry, Levinsohn,
and Pakes (1995). The results given in this paper also could be applied to determine
the asymptotic distribution of these estimators when some of the random coefficient
variances are zero.

The fifth example is a GARCH(1,¢*) or IGARCH(1, ¢*) model in which the
GARCH MA parameters are restricted to be non-negative and some of the true
GARCH MA parameters equal zero. We consider the QML estimator. We note that
asymptotic results for the QML estimator are not available in the literature for this
model even when the true parameter is not on a boundary. (The results given below
cover this case as well.) Verification of the assumptions for this model requires one to
establish moment bounds for the quasi-log likelihood, quasi-score, and quasi-Hessian
function, as in the GARCH(1,1) model. We do so along the lines of Lumsdaine
(1996). More specifically, we generalize results given in Lee and Hansen (1994).

The sixth example is a partially linear model estimated by the semiparametric
LS estimator of Robinson (1988), but subject to nonlinear equality and/or inequality
constraints. This example illustrates the application of the general results to a semi-
parametric estimator and to an estimator that depends on a preliminary estimator.
The example shows that one can derive the limit distribution for the estimator when
the parameter is on the boundary with very little additional work beyond that which
is needed to establish its distribution when the true parameter is in the interior of the
parameter space. In particular, the hard parts of the verification of the assumptions
follow directly from the results of Robinson (1988) with no additional work.

The seventh example is a regression model with nonlinear equality and/or in-
equality restrictions and regressors that are integrated of order one. We consider
the LS estimator. This example illustrates the application of the general results to
a LAMN model with stochastic trends. Note that Moon (1997) considers minimum
distance estimators of a linear regression model with nonlinear equality constraints.

We note that the results of the paper apply to parametric two-step estimators,
although none of our examples are of this form. For example, consider the Heckman
two-step estimator of a sample selection model. If the correlation between the errors



in the two equations of the model is generated by a common random effect, then the
coefficient on the selection bias correction term in the main equation is necessarily
non-negative. In this case, the regression parameter of the main equation is on the
boundary of the parameter space when true random effect variance is zero, which
corresponds to the case where there is no selectivity bias. Our results apply to this
case.

The remainder of the paper is organized as follows. Section 2 introduces the seven
examples. Section 3 considers the quadratic approximation of the estimator objective
function, the Bp-consistency of the extremum estimator, and the application of the
results of the section to the first three examples. Section 4 provides conditions under
which the parameter space, suitably shifted and rescaled, can be locally approximated
by a convex cone, provides an asymptotic representation of the extremum estimator,
and discusses the first three examples. Section 5 establishes the asymptotic distribu-
tion of the extremum estimator. Section 6 introduces a partitioning of the parameter
vector 6 that yields a simplification of the asymptotic distribution of the extremum
estimator and applies the results to the first three examples.

Section 7 provides several alternative sufficient conditions for the assumption of
Section 3 that guarantees that the estimator objective function is approximately
quadratic. It also verifies this assumption for the first three examples. Section 8
provides proofs of consistency for the first three examples.

Section 9 treats GMM and minimum distance estimators as special cases of ex-
tremum estimators and provides sufficient conditions for the quadratic approximation
of the estimator objective function for these cases. It also applies these results to the
Multinomial Discrete Response Model Example.

Section 10 applies the results of the paper to the GARCH(1, ¢*) Example. Section
11 applies the general results to the Partially Linear Regression Model Example.
Section 12 applies the general results to the Regression with Restricted Parameters
and Integrated Regressors Example. Section 13 provides proofs for the GARCH(1, ¢*)
example that are omitted from Section 10 because of their length.

All limits below are taken “as T' — oo” unless stated otherwise. Let “wp — 17
abbreviate “with probability that goes to one as T' — o00.” Let “for all v — 07
abbreviate “for all sequences of positive scalar constants {y, : T > 1} for which y; —

0.” Let % and % denote convergence in probability and distribution respectively. Let
Amin(A) and Apax(A) denote the smallest and largest eigenvalues, respectively, of a
matrix A. Let JA denote the boundary and cl(A) denote the closure of a set A. Let
a ® b denote the Hadamard product (i.e., the element by element product) of two
vectors a and b. Let S(6,¢) denote an open sphere centered at 6 with radius . Let
C(0,¢) denote an open cube centered at 6 with sides of length 2¢. Let := denote
“equals by definition.”

2. Examples

In this section we introduce several examples that are used to illustrate the gen-
eral results given below. The examples cover models with iid, deterministically trend-



ing, and stochastically trending data. They cover parameter spaces with linear and
nonlinear boundaries. The examples cover estimators that are ML, QML, LS, and
GMM estimators. They cover objective functions that are smooth functions of the
parameter as well as non-smooth functions.

2.1. Random Coefficient Regression

Example 1 is a random coefficient regression model. The variances of the ran-
dom coefficients are necessarily greater than or equal to zero. We determine the
asymptotic distribution of the Gaussian QML estimator when one or more of the
random coefficient variances is equal to zero and, hence, the true parameter is on the
boundary.

The model is

Y, = 05+ X}y, + Qé/Qet
= 05 + X[04 + (03¢, + X DY2(61,05)n,), where
(2.1) vy = 04+ DY2(6,,0:)n,.

The vector 7, € RP is the random coefficient vector. The observed variables are
{(Y;,X;) : t < T}. The regressors are X; := (X/,, X5,) € R®, where X1; € RP and
Xop € Rb2. D(61,0-) is a diagonal matrix with the random coefficient variance pa-
rameters (6}, 05)" on the diagonal. The vector 6 := (67,65, 03,0),05)" is the unknown
parameter to be estimated. The random variables 7, € R® and &; € R are unobserved,
mean zero, variance one, uncorrelated errors (i.e., En, = 0, Enmn; = I, Fex = 0,
Ee? =1, and En,e; = 0). The random variables { (Y, X¢,er,m;) : t < T} are iid.

The parameter 1 € RP includes the random coefficient variances that are on the
boundary (i.e., the true value of 01, 619, is 0). The parameter 85 € R includes the
random coefficient variances that are not on the boundary (i.e., each element of the
true value of 6a, s, is positive). The parameter 03 is the idiosyncratic error variance.
It is positive (i.e., f3¢ is positive). The parameter §; € R’ is the deterministic part
of the regression coefficients. It is not on a boundary. The parameter 85 € R is the
intercept. It is not on a boundary.

2.2. Regression with Restricted Parameters

Example 2 is a linear regression model with equality and/or inequality restrictions
on the regression parameters. We consider both linear and nonlinear restrictions. We
determine the asymptotic distribution of the least squares (LS) estimator (subject to
the restrictions) when some of the inequality restrictions are satisfied as equalities.
In this case, the true regression parameter is on a linear or nonlinear boundary of the
parameter space.

The model is

(2'2) Y, = the + &¢,



where {(Y;, Xt) : t < T} are observed dependent and regressor variables, respectively,
{et : t < T} are iid unobserved errors, X; € R*, 0 € R*, Y; € R, and ¢; € R. The
regressors are iid.

The parameter 6 is assumed to satisfy the restrictions:

(2.3) 9a(#) =0, gy(f) <0, and h(f) <0,

where g;(-) € R% for j = a,b and h(-) is vector-valued.
We suppose that the true parameter 6y satisfies the restrictions of (2.3) with

(2.4) ga(eo) =0, gb(éo) =0, and h(@o) < 0.

Thus, 6g is on the part of the boundary of the parameter space, ©, that is determined
by ga(-) and gs(-).

2.3. Dickey—Fuller Regression Model

Example 3 is a Dickey—Fuller time series regression model with estimated constant
and time trend. This is an autoregressive model of order b 4 1 that has at most one
unit root and all other roots in the stationary region. We consider the case where the
parameter space restricts the coefficient on the first lag of the time series (i.e., the
potential unit root) to be less than or equal to one and the coefficient on the time
trend to be greater than or equal to zero. Thus, the model precludes the possibility
of an explosive series and/or of a series with negative growth.

We determine the asymptotic distribution of the LS estimator when the time
series has a unit root and a zero coefficient on the time trend. In this case, two
parameters are on the boundary of the parameter space. The true process is the
process that defines the null hypothesis of most unit root tests. Most unit root tests,
however, impose at most one of the two restrictions on the parameters.

The model is

Y, =01Y;_1 + 05t + 03 + AY;’,194 + &¢, where
AY; 1 = (AY;1,AY; g, .., AY; ), AY; =Y — Yy,
(2.5) E(et|Fi-1) =0 aus., E(s%\]-}_l) =02 as., F = (€1, ., E),

Yy, €1, 01, 02, 03 € R, and AY;_1, 6, € R®. The observed time series is {Y; : —b <
t < T}. The parameter vector to be estimated is 6 = (01, 605,03,6))".

2.4. Multinomial Response Model

This example is a multinomial response model estimated by the method of simu-
lated models (MSM). We use the same notation as McFadden (1989) and Pakes and
Pollard (1989). The ¢-th individual has m alternatives to choose between. The ¢-th
choice is associated with a utility (or profit) of Z},h(n,,60) for £ = 1,...,m, where Z;
is a b-vector of covariates for the ¢-th choice and the ¢-th individual, 6y € R® is an
unknown parameter, 7, € R" is a vector of errors with known distribution, and A(-, -)



is a known RP-valued function. The t-th individual chooses the alternative with the
greatest utility. Thus, the response vector d; € {0,1}"™ can be written as

(2.6) di == D(Zih(n,,60)), where Z; := [Zy1 -+ Zi) € R™*®

and D(:) : R™ — {0,1}™ puts a one in the position of the largest component and
a zero elsewhere. The choice is indicated by the component with a one. We assume
that there is zero probability of a tie.

The random variables {(Z;,n,) : t = 1,...,T} are assumed to be iid.

By specifying different covariate vectors Zy, error vectors 7,, parameter vectors 6,
and functional forms A(-,-), one obtains a variety of different models. For example, if
71, has a standard multivariate normal distribution, then the model is in the family of
probit models. We consider several such models. The first is a random coefficient pro-
bit model considered by Hausman and Wise (1978), and more recently, by Horowitz
(1993) among others. In this case, the element of h(n,,#) that corresponds to a co-

variate in Z;y whose coefficient is random is of the form 6; + 9;/ 277t ~ N(0;,0;). We
consider the case where p (> 1) random coefficient variances are zero and, hence, the
parameter 6 is on the boundary of the parameter space. For notational convenience,
we order the parameters such that the first p elements of 6 are these parameters.

Second, we consider a binary probit panel data model with autocorrelated errors
and random effects, see McFadden (1989, Sec. 5). Let the first element of 6 be the
proportion of the total error variance due to the random effect. We consider the case
where the true proportion is zero and, hence, the parameter 8y is on the boundary
of the parameter space.

Third, we consider a probit model with measurement error on some covariates,
see McFadden (1989, Sec. 6). In this case, some of the elements of 6 correspond to
the variance parameters of the measurement errors. We analyze the case where p
(> 1) of these variance parameters equal zero and 6 is on a boundary. As above, we
order the elements of # such that these are the first p elements of 6.

All of the above cases can be treated simultaneously by analyzing the general
multinomial response model introduced above with a parameter vector 6 whose first
p or more elements must be non-negative and whose true value 6y has its first p
elements equal to zero.

2.5. GARCH Model

This example is a time series model for conditional heteroskedasticity, viz., the
generalized autoregressive conditional heteroskedasticity GARCH(1,¢*) model. We
consider the case where the GARCH parameters are restricted to be non-negative,
as in Bollerslev (1986). These restrictions guarantee that the conditional variance
process is non-negative. These restrictions are not necessary, however, for the condi-
tional variance process to be non-negative, see Nelson and Cao (1992). But, if they
are true, their use leads to more efficient estimators.

We determine the asymptotic distribution of the Gaussian QML estimator when
the GARCH-AR parameter is in (0, 1), the GARCH-MA parameter on the first lag



is positive, and one or more of the other ¢* — 1 GARCH-MA parameters is zero. In
this case, the true parameter vector 6y is on the boundary. We allow for covariance
stationary GARCH and integrated IGARCH models. (We note, however, that two
drawbacks of the IGARCH results given below are that we only establish consistency
of a “local” QML estimator and we impose a p*-th order moment condition on the
conditional variance process for some 0 < p* < 1. The former is analogous to the
consistency results that are available in the literature for the IGARCH(1,1) model,
see Lumsdaine (1996) and Lee and Hansen (1994). The latter has been shown to
hold in the IGARCH(1, 1) model by Nelson (1990), but it has not been verified for
IGARCH(1, ¢*) models with ¢* > 1.)

Our results can be applied when none of the GARCH parameters is zero. In
this case too our results are novel. The only consistency and asymptotic normality
results in the literature for the QML estimator of GARCH and IGARCH models are
for GARCH(1,1) and IGARCH (1,1) models with intercept but no regression function,
see Lumsdaine (1996) and Lee and Hansen (1994). Our results allow for a regression
function and more than one GARCH-MA parameter. We use the same methods as in
the above papers to bound the requisite moments to obtain the laws of large numbers
and central limit theorem needed for the asymptotic theory. More specifically, we
extend various results in Lee and Hansen (1994) to cover the GARCH(1, ¢*) model
with regression function.

2.6. Partially Linear Regression Model

This example is a partially linear regression model with nonlinear equality and/or
inequality restrictions on the parameter vector. The partially linear model is a semi-
parametric model. We consider estimation of the finite dimensional parameter of
the model using a semiparametric LS method introduced by Robinson (1988), who
considers the partially linear regression model without any restrictions. We define
the model and use the same assumptions as in Robinson (1988). In fact, we are
able to use Robinson’s results to establish the only difficult parts of the proof of the
asymptotic distribution of the semiparametric LS estimator under nonlinear equality
and/or inequality restrictions.

The model is

(2.7) Y, = X[6 + u(Z) + e,

where {(Y;, X Z;) : t = 1,2, ..., T} are the observed random variables, 6 is the
unknown parameter to be estimated, p(-) is an unknown function, and &; is an un-
observed error. As in Robinson (1988), we assume that (Y; X, Z;) are iid across ¢,
Ee; =0 and ¢ is independent of (X, Z).

The parameter € is assumed to satisfy the same nonlinear restrictions as in (2.3)
of Example 2. In addition, the true parameter 6y is assumed to satisfy (2.4). In this
case, the parameter 6y is on the boundary of the parameter space.



2.7. Regression with Restricted Parameters and Integrated
Regressors

This example is the same as the Regression with Restricted Parameters Example
2 except that the regressors are integrated of order one rather than iid.

3. Quadratic Approximation of the Objective Function
and Br-Consistency of the Extremum Estimator

3.1. Quadratic Approximation of the Objective Function

Let Y1 denote the data matrix when the sample size is T for T' = 1,2,.... We
consider an estimator objective function ¢1(0) that depends on Y. Maximization
of ¢7(0) over a parameter space © C R® yields the estimator # that we analyze in
this paper. The estimator objective function ¢7(f) can be a log-likelihood function,
a quasi-log likelihood function, a least squares criterion function, a GMM objective
function, a minimum distance objective function, an objective function that depends
on finite or infinite dimensional preliminary estimators, or some other objective func-
tion.

Let 6y denote the true value of the parameter §. (Or, if model misspecification
renders a “true value” to be meaningless, then 6y can be defined to be the probability
limit of 6.) By assumption, 6y € cl(O).

We consider the case where the estimator objective function ¢7(6) has a quadratic
expansion in 6 about 6y:

(3.1) L2(6) := £1(80) + Dlr(6o)' (6 — 60) + 1(8 — 60)' D01 (60)(6 — 6o) + R (6).

The remainder term Ry () specifies the sense in which the expansion holds. When
07(0) is twice partially differentiable in 6, D7 (6y) and D%07(6p) typically are the
s-vector and s X s matrix of first and second partial derivatives, respectively, of ¢7(0)
with respect to 0 evaluated at 3. We do not require ¢7(6) to be twice partially differ-
entiable in 0, however, for two reasons. First, £7(0) is not defined on a neighborhood
of 0y for some of our applications of interest. Thus, at best, D¢p(0y) will consist
of left or right partial derivatives for some of its elements. Second, ¢7(6) involves
absolute value or sign functions in some applications of interest, so pointwise partial
derivatives (or even left or right pointwise partial derivatives) do not exist in some
cases. Nevertheless, ¢7(0) is often differentiable in a stochastic sense, which is the
case considered here.

We note that by a theorem of Lebesgue (e.g., see Royden (1968, Cor. 5.2.5, p. 100))
a real function that has bounded variation on a closed interval is differentiable almost
everywhere Lebesgue on that interval. Thus, there are often obvious candidates for
Dlp(6p) and D*¢p(6y) even when ¢7(8) is not pointwise twice differentiable on ©.

We introduce a norming matrix By for Dép () and D?1(6p) so that each is Op(1)
but not o,(1) (as indicated in Assumptions 2 and 3 below). Br is a deterministic
s X s matrix. In most cases with nontrending data, Br = T/ 2I,. In some cases

10



with nontrending data, however, it is useful to take By = TY/2M, where M is a
nonsingular non-diagonal matrix. By appropriate choice of M, one may be able to
obtain a block diagonal normalized “quasi-information” matrix Jr, defined below.
This yields a simplified expression for the asymptotic distribution of the extremum
estimator. The GARCH(1,¢*) Example is one in which we take By = T/2M for
M # I.

With trending data, By is always more complicated than T%/2I,. For example,
it is diagonal with diagonal elements T2 and T in a linear model with stationary
regressors and integrated exogenous regressors of order one. In a dynamic regression
model with stationary regressors, integrated regressors, and a time trend, By is an
asymmetric matrix of the form By = Y7 M, where T is diagonal, Apin(Y7) — 00,
and M is nonsingular. Such cases are permitted here.

Let

(3.2) Jr := —B3Y D*0r(00) B3 and Zp := J7 ' BrY Dir(6y),

where B, 1 denotes (B7')'. The quadratic expansion of (3.1) can be rewritten as

r(0) = Lr(00) + 3 27 Tr Zr — 5qr(Br(0 — 60)) + Rr(6), where
(33) qT(/\) = ()\ — ZT)IJT()\ — ZT) for A € R®.

The terms in the quadratic expansion of ¢7(6) are assumed to satisfy:

Assumption 1. For all yr — 0, supgee.|jo—o,||<yr |R7(0)|/(1 + ||Br(0 — 60)|])? =
op(1).

Assumption 2. B;IIDZT(QO) = 0p(1).

Assumption 3. Jp is symmetric Wp — 1, Amax(Jr) = Op(1), and A} (Jr) =
Op(1).

In Section 7 we give two sets of sufficient conditions for Assumption 1. The first
relies on the existence of left and/or right partial derivatives of ¢7(6) and the second
relies on a stochastic differentiability condition that generalizes that of Pollard (1985).
The first verifies Assumption 1 with the term 1/(1 + ||Br(8 — 00)||)? replaced by
1/]|Br(0—6p)||?> and the second with it replaced by 1/||By(6—6y)||. Neither condition
requires the parameter space © or the domain of ¢7(6) to include a neighborhood of
fo.

In addition, in Section 9 we provide a sufficient condition for Assumption 1 for the
special case where ¢7(0) is of the GMM or minimum distance form. This condition
generalizes that of Pakes and Pollard (1989).

The idea of incorporating a term like the 1/(1+||Br(0—60)||)? term in Assumption
1 was introduced by Huber (1967).

For the time being, we illustrate the plausibility of Assumption 1 by considering
the standard case in which ¢7(9) is twice differentiable in a neighborhood of 6y with
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first and second derivatives given by D7 (6) and D?¢7(8) respectively. By a two term
Taylor expansion, (3.1) holds with

|Ry(6)]
(3.4) < |IBr(6—00)|1* - ||BF " (D*er(61) — D201(60)) B3,

1(Br(0—00))' [B;" (D*x(6) — D1 (60)) B | Br(6—6o)

where 07 lies between 6 and 6y. Hence, Assumption 1 holds in this case if

(3.5) sup || B" (D*¢r(8) — D*0r(60)) B[ = op(1)
6€0:(|0—00||<vr

for all yp — 0. Note that in verifying Assumption 1 in this case we have used the
“||B1(6 —00)||” term rather than the “1” term in the “1/(1+||Br(0 —00)|[)*” multi-
plicand of Assumption 1. Condition (3.5) holds by a uniform law of large numbers for
B;IIDQZT((‘))BE 1 over some neighborhood of g plus continuity of the limit function
at p or by the existence of third derivatives of ¢7(#) that are Op(1) uniformly over
a neighborhood of 6.

Next, we note that the form of Assumption 1 is designed to allow one to easily
replace the objective function ¢7(#) by a more tractable function, say L£1(6), that is
a close approximation to ¢7(#). For example, in the GARCH(1, ¢*) Example, ¢7(6)
is a sum of quasi-log likelihood contributions that depends on initial conditions and,
hence, is not stationary and ergodic. We can define a more tractable function L7 (6)
to be the stationary and ergodic analogue of ¢7(#) that replaces the initial conditions
by terms that depend on the infinite history of the process. Now, suppose

(3.6) sup |01 (6) — br(80) — L7(0) + L7(00)| = 0p(1)
0€61]10—00|<77

for all v, — 0. Also, suppose Lr(6) has an expansion of the form
(3.7) Lp(0) = L7(00) + DLr(0) (6—00) + 3(0—00)' DLy (00)(0—00) + Ry(0),

where R’.(6) satisfies Assumption 1 with Rp(@) replaced by R%.(6). Then, ¢7(0)
satisfies (3.1) with

DET(Q()) = DﬁT(eo), DQET(Q()) = D2£T(90), and
(3.8) Ry (0) = Rp(0) + (€r(0) — tr(00) — L1(0) + L1 (60))-

Assumption 1 holds for ¢7() in this case by (3.6) and (3.7). Note that, in this case, we
use the “1” term rather than the “||Bz(6—0p)||” term in the “1/(1+4||Bz(8—0¢)||)*”
multiplicand of Assumption 1 to bound the term in parentheses in (3.8).
Assumption 2 is implied by the convergence in distribution of the normalized score
function in quasi-log likelihood cases. In such cases, Assumption 2 usually follows
from a central limit theorem (CLT) in models without stochastic trends and from an
invariance principle in models with stochastic trends. In GMM cases, Assumption
2 usually follows from a CLT and one or more convergence in probability results.
In other cases, such as with Han’s (1987) maximum rank correlation estimator (see
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Sherman (1993)), Assumption 2 follows from a CLT for U-statistics. In minimum
distance and other cases that rely on preliminary estimators, verification of Assump-
tion 2 requires asymptotic results for the preliminary estimators. Results already in
the literature often can be used in such cases.

Assumption 3 allows the normalized “information” matrix Jr to be random even
in the limit as T" — oo. This is necessary to cover models with stochastic trends,
such as unit root and cointegration models. In models with no stochastic trends (but
possibly with deterministic trends), Jr converges to a non-stochastic limit 7. In this
case, one can take Jr to be the non-stochastic limit J in the quadratic expansion
of (3.3) and the remainder term Rp(f) can absorb the difference without requiring
any adjustment in Assumption 1 (due to the “||Bp(6 — 6p)||” term that appears in
Assumption 1). Thus, a sufficient condition for Assumption 3, that is applicable in
models with no trends or with deterministic trends, is the following:

Assumption 3*. Jr is non-random and does not depend on T. J (= Jr) is
symmetric and Apin(J) > 0.

Note that here and below a superscript *, 2%, or 3% on an assumption denotes that
the assumption is sufficient (sometimes only in the presence of other specified as-
sumptions) for the un-superscripted assumption.

3.2. Br-Consistency of the Extremum Estimator

Next, we define the extremum estimator 9 of 6. To ease the computational burden,
to circumvent the question of existence, and to ease the verification of assumptions,

we only require that () is within o, (1) of the global maximum of ¢7(6) over 6 € ©,
rather than the exact global maximum. By definition, § € © and

(3.9) tr(9) = zggﬂT(H) + 0p(1).

We assume consistency of 9 for the true value Oo:
Assumption 4. 0 =0, + op(1).

A sufficient condition for Assumption 4 that often holds when the data does not
involve trending variables is the following:

Assumption 4*. (a) For some function €() : © — R, suppeg | T~ 07 (8)—£(0)] 2 0.
(b) For all & >0, supgce/s(g,,e) L(0) < €(00), where ©/S(0o,¢) denotes all vectors ¢
in © but not in S(0y,e).

Assumption 4*(a) is a uniform convergence condition that can be verified by

using a uniform law of large numbers; see Andrews (1992) and references therein.
Assumption 4*(b) is an asymptotic identification condition. Sufficient conditions
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for Assumption 4*(b), which we call Assumption 4*(b*), are (i) ¢(#) is uniquely
maximized over © at 6g, (ii) £(f) is continuous on ©, and (iii) © is compact.

The sufficiency of Assumption 4* for Assumption 4 is well-known.?

When the data involve trending variables no generally applicable proof of consis-
tency is available. Usually, one has to establish consistency on a case by case basis.
For linear models this is often straightforward, but for nonlinear models it can be
difficult. See Andrews and McDermott (1995) and Saikkonen (1995) for some results
regarding the latter models.

Let ﬁq denote an (approximate) maximizer of the quadratic approximation to
Lr(0) or, equivalently, an (approximate) minimizer of gr(Br(0 — 6p)). By definition,
6, satisfies 6, € cl(©) and

(3.10) 4r(Br(B, — 60)) = inf qr(Br(6 —60)) + 0,(1).
Note that
inf qr(Br(0 - 60)) = AeBTH(l(g—eo)QT</\)’ where
(3.11) Br(© —60g) := {\ € R°: A\ = Bp(0 — 0p) for some § € ©}.

Our first result shows that 6 and gq are Br-consistent and the objective function
evaluated at 6 is a simple shift of the quadratic function —£gr(Br (6 —6p)) evaluated
at 5(1.

Theorem 1. Suppose Assumptions 1-4 hold. Then,
(a) Br(f —bo) = Op(1),

(b) BT/(\eq —60) = Op(1), R

(c) Lr(0) = br(60) + 327.TrZr — 5q1(Br(0 — 00)) + 0p(1),
(d) £r(0g) = Lr(00) + 3 2pTr Zr — 3q1(Br(04 — 00)) + 0p(1),
(€) £r(0) = br(0y) +0p(1),

(f) ar(Br(0 — 60)) = qr(Br(0g — 60)) + 0p(1), and

() tr(9) = lr(00) + 527TrZr — 3ar(Br(0, — 0o)) + op(1).

Comments. 1. Parts (a) and (b) hold even if 0,(1) is replaced by Op(1) in (3.9)
and (3.10).

2. Part (b) only requires Assumptions 2 and 3 and that 0y is in the closure of ©
(which is implied by Assumption 4).

3. The proof of Theorem 1(a) is similar to numerous proofs in the literature, e.g.,
see the proof of Lemma 1 of Chernoff (1954).
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3.3. Examples (Continued)

In this section, we introduce the objective function ¢7(#) and the parameter space
O for the first three of the examples of Section 2. We also specify assumptions that
are sufficient for Assumptions 1-4 and verify Assumptions 2 and 3 for each of these
examples. For ease of reading, the verification of Assumptions 1 and 4 for each
example is relegated to Sections 7 and 8 below respectively.

3.3.1. Random Coefficient Regression
In Example 1, we consider the Gaussian QML estimator. The Gaussian quasi-log
likelihood function is

T
tr() == — 1) In(63 + X/D(61,65)X;)
t=1

T
(3.12) — 3> (% — 05 — X{04)* /(05 + X{D(61,02) Xz).
t=1

The true parameter vector 6 is

(313) 90 = (9/1079/2079307 i107 950)I = (017 /207‘9307 92107 950)17

where 09 > 0 (element by element) and #3yp > 0. The parameter space © is a
bounded subset of R® that restricts all elements of 61 and 62 to be non-negative and
that bounds 03 away from zero:

@::{QERS:OZ( /17 127937 i17‘95)17 91 207 ‘92207 ‘93207
(3.14) 165]] < M; V5 <5}
for some ¢ > 0 and 0 < M; < oo Vj <5.

The components of the quadratic approximation of ¢r(0) at 6y are defined as
follows. Let

X = (th, ...,th),, XtQ = (Xt217 ”'7Xt2b),7
Wt = (Xt/7 1)/7 I/VtQ = (XtQ’a 1)/7

(3.15) resy(0) :=Y; — 05 — X{04, and vary(0) := 05 + X;D(01,02) X;.
Define
res?(0g) — vary(6p) W2
T 2var? () ¢ 5
Der(fo) ==Y , D*01(00) :== —TJ,
P rest(6o)
vary(6)
LEWAWE [var?(6) 0
. — |2 t 'Vt t\Y0 — 1/2
T =T [ . EW,W fvany(d) | BT = T amd

(3.16) Zp :=J 'TV2Der(00).
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With these definitions, the quadratic approximations of (3.1) and (3.3) hold with a

remainder term Ry () that satisfies Assumption 1 under the assumptions given above

and the moment conditions given below. The latter is shown in Section 7.
Assumption 2 holds for Example 1 by the CLT provided

(3.17) Eep < 00, E|n,|[* < 0o, and E||X¢||® < oo.
Assumption 3 holds for Example 1 provided
(3.18) EW2W?Z JvarZ(8y) > 0 and EW, W/ /var(6o) > 0,
where “> (0” denotes “is positive definite.”
Assumption 4 is verified in Section 8.
3.3.2. Regression with Restricted Parameters

In Example 2, we consider the LS estimator. The estimator objective function is
T
(3.19) =3 (v
=1
The parameter space O is given by
(3.20) ©:={0c R°:¢9q(0) =0, g(0) <0, h(d) <0}.
The quadratic approximation of (3.1) and (3.3) holds with

(3.21) ACHE thXt,DéT(eo ZXtXt, and Ry () = 0.
t=1 t=1

Assumption 1 holds because Ry () = 0.
The errors and regressors {(e¢, X¢) : ¢t < T} are iid with

(3.22) EeyX; =0, E|legXy||* < 00, and EX,X] > 0.
In this case,

T
(3.23) Br=T"*I,and Jr =T7'Y_ X, X].

Assumption 2 holds by the CLT for iid mean zero finite variance random variables
using (3.22). Assumption 3 holds by the LLN for iid random variables with finite
mean using (3.22).

Assumption 4 is verified under the assumptions above in Section 8 below.
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3.3.3. Dickey—Fuller Regression

In example 3, we consider the LS estimator. The objective function is

T
(3.24) =-1) (v, %, where X; := (Y;1,¢,1,AY]_;)".
t=1

The parameter space O is given by

C"‘):: {HERS -1 <091 S 1, 92 ZO, g(Z) ::1—9412—---—94bzb
(3.25) has roots outside the unit circle, where 04 := (041, ..., 04)'}.

The true parameter vector #y corresponds to a unit root model with non-negative
drift:

(3.26) 0o := (610,020, 030,00) = (1,0, 030,04,

where 035 > 0 and 04p has characteristic equation with roots outside the unit circle.
Note that the latter implies that 1 — 1’84 > 0, where 1 := (1,...,1)’ € R*. We could
consider the case of negative drift (i.e., f39 < 0) with little extra work. But, this case
is not of great practical importance. We assume that o2 > 0. Given the definitions
of 8y and O, the parameters 61y and o are on the boundary of the parameter space
and A9 and 049 are not on the boundary.

The quadratic approximation of (3.1) and (3.3) holds with

Der(6p) ZstXt, D201(0p) : ZXtXt, Ry(0) :=0, By := Tr M,
1 O 0 0/ 1 — o o OI
ol 10O TR [ 0o o
M: —g 0 1 pl’ Li=M 0 0 1 o)
0 00 I 0 0 —pgl I

fo := 030/(1 — 1'049), Y7 := Diag(T, T2, T2 .. TY?) and

T
(3.27) Jr:=—By' D*p(00)By' = Y11y " LX(LX;) Y7t
t=1

To verify Assumptions 2 and 3, we impose the following mild tail condition on
the errors: For some random variable ¢, some 0 < ¢ < 0o, and some n > 0,

(3.28) P(lee] > ) < cP(le] > ) Va >0 and Ele[*™ < oco.

Under the assumptions given, we have

T
(B 'Der(60), T ):— ZetLXt, leLXt(LXt)'Taﬂ(G,j),where
t=1
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ToAW3(1) - 1)

a(W(1) — fy W(r)dr)
= - ~ N(0
G ) LG~ N(O,V),
Gy
P fol W2(r)dr )\fol rW(r)dr /\_fo1 W(r)dr 0
7. A [ W (r)dr 1/3 1/2 0’
X Jo W(r)dr 1/2 1 ol
0 0 0 Vv
A= O'/(l - 1/940), ’yj = COV(AY}/, Ayz_j) Vj = 0, ,b - 1,
Yo 71 Y2 o Ye—1
(3.20) V = ’Y'1 Yo 7_1 be'—Q ’
Yo—-1 To—2 YTo—3 " Vo

and W(-) is a standard scalar Brownian motion on [0,1] that is independent of Gy.
Note that v, is the j-th order autocovariance of a b-th order autoregressive process
with autoregressive parameter 649 and error variance o?. Thus, 7, depends only on
040 and 0. The matrix V is nonsingular and 7 is nonsingular with probability one.
Thus, Assumptions 2 and 3 hold.

The proof of (3.29) is given in Exercise 17.6 of Hamilton (1994, p. 540) extended
to allow for errors {&; : t > 1} that form a martingale difference sequence, rather than
an iid sequence, using the invariance principle for linear processes given in Theorem
3.15 of Phillips and Solo (1992, p. 983) in place of the invariance principle utilized
by Hamilton.

Assumption 4 is verified in Section 8.

3.4. Proofs

Proof of Theorem 1. Let sy := j%/QBT(g — 6p). Bg is in the closure of © (by
Assumption 4). Thus, by (3.1), (3.2), (3.9), and Assumptions 1-4,

op(1) < £r(0) — £r(60)
= Wy T3 Zr — Y|kl + Rr(0)
_ 2
= Op(llmr) = Izl + (1 + 177 *krll)”0p(1)

(3.30) = Op(ll57ll) = 3llE7* + op(llsz[]) + op(llaz|[*) + 0p(1).

Rearranging this equation gives ||kp||? < 2||k7||Op(1) + 0,(1). Let & denote the
Op(1) term. Then,

(3.31) (6]l = €r)* < €1 + 0p(1) = Op(1).
Taking square roots gives ||kr|| < Op(1). Given Assumption 3, this establishes part

(a).
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Let kqp = jTl/ 2BT@q —0p). By (3.10) and Assumptions 2 and 3, we have

lkqr — T2 Zr |12 = ar(Br(8, — 60)) < qr(0) + 0p(1)
(3.32) = 2T Zr + 0p(1) = O,(1).

Thus, ker = j%/ 2Zp + Op(1) = Op(1). By Assumption 3, this establishes part (b).
Parts (c) and (d) hold by (3.3), Assumption 1, and parts (a) and (b).
Parts (e) and (f) hold by parts (c) and (d), (3.9), and (3.10):

op(1) < £1(8) — (0,)
(3.33) = 3qr(Br(0, — 00)) — $ar(Br(0 — 60)) + 0p(1) < 0p(1).

Part (g) holds by parts (c¢) and (f). O

4. The Parameter Space

This section provides conditions on the parameter space under which we can
derive the asymptotic distribution of the extremum estimator 6.

4.1. Local Approximation to the Shifted and Rescaled
Parameter Space

It is apparent from Theorem 1(a) that the asymptotic distribution of [ depends
on the features of the parameter space © only near 6y. In particular, we find that
the asymptotic distribution of [ depends on a local approximation to the shifted and
rescaled parameter space Bp(© — 60g)/bp, where {br : T > 1} is some sequence of
scalar constants for which by — oo.

If © includes a neighborhood of 6y, then

(4.1) AGBTir(g_eo) gr(A) = inf ¢r(A) +op(1),
where A = R®. This follows because Br(© — 0y) — R® as T — oo (provided
)\min(BT) — OO)

Our interest lies in the case where © does not include a neighborhood of 8y. Thus,
we do not require (4.1) to hold with A = R®*. Rather, we find sufficient conditions
for (4.1) to hold with A given by some cone. By definition, a set A C R® is a cone
if A € A implies aXA € A Va € R with a > 0. Examples of cones include R?, linear
subspaces, orthants, unions of orthants, and sets defined by linear equalities and/or
inequalities of the form I';A = 0 and I'y A < 0, where I'; is a k; X s matrix for j = a, .

To provide sufficient conditions for (4.1) when A is a cone, we need to introduce
some definitions. Define the distance between a point y € R® and a set A C R® by

(4.2) dist(y, A) := inf [y = Al
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We say that a sequence of sets {&p C R®: T > 1} is locally approximated (at the
origin) by a cone A C R® if

dist(¢pg, A) = o(||¢r|) V{¢p € @r: T > 1} such that ||¢pp|| — 0 and
(4.3) dist(Ar, @7) = o(||Ar]]) V{Ar € A:T > 1} such that ||[\r|| — 0.

This definition extends a definition of Chernoff (1954), who considers the local ap-
proximation of a single set by a cone. The extension is necessary to cover cases where
the normalization matrix By is not of the form wrM for wr € R. Thus, the ex-
tension is necessary to cover cases where some variables possess deterministic and/or
stochastic trends. We note that condition (4.3) is the same as requiring that the
Hausdorff distance between ®7 N S(0,er) and A N S(0,er) goes to zero at a faster
rate than ep, where e — 0 as T' — oo.

If the sets {®7 : T' > 1} do not depend on T in the definition above, then we say
that the set ® (:= ®p) is locally approximated (at the origin) by a cone A C R?® if
(4.3) holds.

Assumption 5. For some sequence of scalar constants {by : T > 1} for which
by — o0 and by < cApin(Br) for some 0 < ¢ < oo, {Bp(© — 0y)/bp : T > 1} is
locally approximated by a cone A.

Sufficient conditions for Assumption 5 are given below. Assumption 5 allows for
linear, kinked, and curved boundaries.

Note that Assumption 5 holds with A = R* if © contains a neighborhood of 6,
which is the standard case considered in the literature, provided Apn(Br) — oo.
This follows because (Br(© — 0p)/Amin(Br)) N S(0,e) = S(0,6) = AN S(0,¢) for
some € > 0.

Lemma 1. Suppose Assumptions 2, 3, and 5 hold. Then, infocp, ©—0y) qr(N)
= inf}\eA qT()\) + Op(l).

Comment. The requirement in Assumption 5 that by < cApin(Br) for some 0 <
¢ < o0 is not actually needed for Lemma 1 to hold. It is imposed because it is needed
for Lemma 3 below, which yields a convenient method of verifying Assumption 5
when © — 6 is a product set, and because it sacrifices little or no generality of the
results.

Theorem 1(g) and Lemma 1 give

(4.4) tr(8) = tr(60) + 3 ZpTrZr — § inf qr(N) + op(1).

The two quadratic forms on the right-hand side of (4.4) can be re-expressed as a
single quadratic form as follows. R
Let Az be a minimizer of gr(\) over cl(A). By definition, Ay € cl(A) and

(4.5) ar(r) = ifelf\ qr(A).
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The random variable XT is a version of the projection of Zp onto the cone A with
respect to the norm [[A|[r = (N JrA)1/2; see Perlman (1969, Sec. 4). If A is convex,
A7 is uniquely defined.

For example, if A is a linear subspace of R*, as occurs with linear or nonlinear
equality constraints, then Ay is a linear function of Zy : A\p = PppZp, where Ppy is
the projection matrix onto A with respect to the norm || - ||7. For instance, if A :=
{\ € R* : T\ = 0}, where I is full row rank, then Pry := I, — J; 'T'(T J; 'T')~'T
(We note that for most of our examples, A is not a linear subspace.)

Whether or not A is convex, the following orthogonality property holds

(4.6) N Tr O — Zr) = 0;

see Perlman (1969, Lem. 4.1). Some algebra then gives
(4.7) ZypJrZp — ;\Ieli ar(N) = ApJrr

is uniquely defined whether or not XT is.)

(The right-hand side of (4.7) i
(4.7) shows that under Assumptions 1-5,

Combining (4.4) and
(4.8) r(8) = r(60) + 3N TrAr + 0p(1).

4.2. An Asymptotic Representation of the Extremum Estimator

We now show that BT(E — ) is asymptotically equivalent to XT, where g is
defined in (4.5), provided A is convex. If A is convex, then Ar is uniquely defined. If
A is not convex, e.g., if A consists of the union of the positive and negative orthants,
then Az could take on multiple values that are not of distance 0p(1) from each other.
In this case, we do not have asymptotic equivalence of BT((‘) fo) and .

We assume:

Assumption 6. A is convez.

Assumption 6 holds for all the examples of Section 2.

We note two characterizations of convex cone. A set A is a convex cone iff A
is closed under addition and positive scalar multiplication iff A contains all finite
linear combinations with positive coefficients of its elements; see Rockafellar (1970,
Thm. 2.6 and Cor. 2.6.1, p. 14).

Theorem 2. Suppose Assumptions 1-6 hold. Then, BT(E— 0o) = A+ op(1).

Comments. 1. Theorem 2 is used to determine the asymptotic distribution of
9 because it is straightforward to obtain the asymptotic distribution of /\T by the
continuous mapping theorem provided (Zr,Jr) converges in distribution to some
limit.

2. The proof of Theorem 2 is easy if A = R*, which is the standard case considered
in the literature and which corresponds to the case where 6 is not on a boundary. The
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proof is as follows. By Theorem 1(f) and Lemma 1, qT(BT(g —00)) = infrepr qgr(A)
+ Op(l). If A= R*, then Ay = Z7, infcp qT()\) =0, and

(4.9)  qr(Br(0 —00)) = (Br(6 — 60) — ) T (Br(0 — 6) — Ar) = op(1).

In view of Assumption 3, this gives the result of Theorem 2. When A # R?, the proof
of Theorem 2 is more difficult.

4.3. Sufficient Conditions for Assumption 5

We now give several easily verifiable sufficient conditions for Assumption 5. We
specify the conditions in terms of the parameter space © shifted to be centered at
the origin rather than at 6y, i.e., in terms of ©® — 3. We say that a set I' C R® is
locally equal to aset A C R®*if I'NC(0,e) = ANC(0,¢).

Assumption 5*. (a) © — 0q is locally equal to a cone A C R®.
(b) By = brlI, for some scalar constants {by : T > 1} for which by — co.

Assumption 5*(a) covers many cases of interest. For example, it covers the com-
mon case where for some ¢ > 0

ONC(fy,e) ={0€ R :0—0ye X I, 0 €C(6,¢)} and
j=1

(4.10) A= '>5<1 I;, where I; = {0}, R, R™, or R~ for j < s.
]:

Assumption 5* also allows for parameter spaces ©—60g that are defined by multivariate
equality and/or inequality constraints. For example, one could have

(4.11) ©:={0 € R°:T,0=ry, T <ry, ||0]] <c< oo},

Fqfp = 71, and T'y0p < ry with equality for zero or more elements of ra, where I'; is
an {; x s matrix, r; is an £;-vector, and 0 < ¢; < s for j = a,b. In this example,

(4.12) A:={XNeR:T,A=0, T\ <0},

where I'p; denotes the submatrix of I'y that consists of the rows of I'y for which
I'y09 < 72 holds as an equality. In most cases where Assumption 5* is applicable,
Br = TY2],. The Regression with Restricted Parameters and Integrated Regressors
Example provides one example, however, where it may hold with By = T'I;.

Assumption 5* is not applicable in dynamic models with deterministic and/or
stochastic trends, such as in the Dickey—Fuller Regression Example 3, because By #
brls in these models. Assumption 5* also is not applicable in the GARCH(1, ¢*)
Example for which By = T%/2M with M non-diagonal. For such cases, we introduce
a more general sufficient condition for Assumption 5 that allows for a non-diagonal
B matrix.
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The next condition uses a definition of the (maximal) distance between two cones,
which we now define. A cone is uniquely determined by the elements of the unit sphere
that it contains. The (maximal) distance between two cones can be defined as the
(maximal) distance between the subsets of the unit sphere that correspond to the
two cones. That is, for two cones A; and As, we define

(4.13) diste(A1,A2) := sup inf [|Ar/||AL]] = A2/ A2]|]]-
M EAL Ao€Ao

Note that distc(A1, Ag) is the Hausdorf distance between the subsets of the unit sphere
contained in Ajand As.

Assumption 52*. (a) © — 6 is locally equal to a cone A* C R®.
(b) By = Y7 M, where Y is diagonal, Apmin(Y7) — 00, and M is nonsingular.
(c) For some cone A C R?, diste(YrMA*,A) — 0.

For example, Assumption 5%*(a) holds with © defined via equality and/or in-
equality constraints, as in (4.11).

The verification of part (c) of Assumption 5%* is typically straightforward, though
it can be somewhat tedious. To illustrate its verification, suppose s = 2, A* = (RT)?,
Br = Diag(T"/?,T), and M has elements M;; for 4,j = 1,2 with Mj; > 0 and
Mo > 0. Then,

YrMA* = {)\ A= ()\1,)\2),, Al = 1—‘1/2]\/[11)\1< + TI/QJ\/[H)\;,
No = TMar X: + TMag )y, No >0, X > 0}
= {)\ A= ]\/[11)\1< + ]\/[12)\3, Ao = 1—'1/2]\/[21)\1< + T1/2]\/[22)\;,

(4.14) X>0, AF > 0}

If Myp > 0, then Yo MA* = {X: Ay >0, Ay > TY2My M }. Hence, if My > 0 and
Ms; = 0, then TpMA* = (RT)? and A := (RT)% If Mys > 0 and My > 0, then
distc (Yo MA*,A) — 0, where A :={\: A1 =0, Aa > 0}. If My2 > 0 and Mo < 0,
then distc(YrMA*,A) — 0, where A := {\: Ay >0, A2 € R}. If M2 < 0, then
YrMA* = {)\ 2 A1 € Ry Ao = Mo AT + Mo A3, AT >0, A5 > 0}. Hence, if Mis <0
and My < 0, then YpMA* = R? and A := R?. If M3 < 0 and Mo, > 0, then
YrMA*=Rx R" and A := R x R".

Assumptions 5* and 5%* do not allow for any curvature in the boundary of © near
0. Such curvature arises in some examples, such as cases where O is a sphere, ellipse,
cylinder, or a set defined by smooth nonlinear equality and/or inequality constraints,
and 0y is on its boundary. Assumption 5 can be verified in these cases using the
following conditions.

First we state a condition that is the same as that of Chernoff (1954) (except that
Chernoff requires by = 1/2). It is a straightforward simplification of Assumption 5
that holds when Br is proportional to Is.
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Assumption 53*. (a) © — 0 is locally approzimated by a cone A C R®.
(b) By = byl for some scalar constants {bp : T > 1} for which by — oo.

The following sufficient condition for Assumption 53* considers the case where
0o is on the boundary of ©® and some smooth nonlinear equality and/or inequality
constraints are binding at 6g.

Assumption 5%. (a) For some ¢ >0, ©NS(0g,e) = {0 € R* : g,(0) = 0, g,(9) <0,
1|0 —6o|| < e}, where g;(8) € R% for 0 < ¢; < oo for j =a,b, g;(6p) =0 for j =a,b,
and g(+) = (ga(-)', g6(+)") is continuously differentiable on some neighborhood of 6o
with % 9(0o) of full row rank.

(b) By = brl, for some scalar constants {by : T > 1} for which by — co.

Note that if the true parameter vector 6y changes then the inequality constraints that
are binding at 6o, g(-), typically change too.

Lemma 2. FEach of Assumptions 5%, 5%, 53*, and 5% is sufficient for Assumption
5. Under Assumption 5%, Assumption 5 holds with
A={re R : Zrga(60)A =0, Fgs(60)A < 0},

Next, we show that if © is a product set (at least locally to 6g) and By is corre-
spondingly block diagonal, then Assumption 5 can be verified by separately verifying
it for each of the component sets. Thus, a different sufficient condition, Assumption
5%, ..., 5**, can be used for each component set. This is convenient and it provides
for a wider variety of sufficient conditions for Assumption 5.

Lemma 3. Assume the following conditions hold:

(a) © — 6y is locally equal to a product set. That is, (© —60y) NS(0,¢) = (X}-Izl(@j -
0,0)) N S(0,¢) for some e > 0, for some ©; C R% Yj < J, where Z‘]-le d; = s and
0o = (019, - 0'50)"-

(b) By is block diagonal with diagonal blocks By C R%>*% Vj < J.

(c) For some positive scalar constants {bjr : T > 1} for which bjr — oo and bjp <
¢ Amin(BjT) for some 0 < ¢; < 0o, {Bjr(0©; —0j0)/bjr : T > 1} satisfies Assumption
5 for some cone Aj Vj < J.

Then, Assumption 5 holds for {Bp(© — 0y)/bp : T > 1} with A = X‘jjzlAj and
bT = minjgj bjT-

Comment. The proof of Lemma 3 shows that if Assumption 5 holds for some
sequence {by : T > 1}, then it holds for any sequence {dp : T > 1} for which
dr — oo and dp < by for T sufficiently large.

4.4. Examples (Continued)

4.4.1. Random Coefficient Regression

Assumptions 5* and 6 hold in Example 1 with
(4.15) A= (R")P x R*P,
where R™ :={x € R: x> 0}.
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4.4.2. Regression with Restricted Parameters

Assumption 5* holds in Example 2 provided g,(f) and g(6) are continuously
differentiable on some neighborhood of 6y and % 9(0p) is full row rank, where g(0) =
(9a(0),95(0)"). In consequence, by Lemma 2, Assumption 5 holds with

0 0
(4.16) A= {)\ ER: wga((‘)o))\ =0, ng((‘)o))\ < 0} .

For A as such, Assumption 6 holds.
For example, suppose

(4.17) g;(0) = v;6 — d;
for some given v; € R® and d; € R for j = a,b. Then,
(4.18) A:={ e R :v,A=0, y;A <0}.
Alternatively, suppose
g;(0) == U}@Q — d;, where
(4.19) 0= (01,...,05) and 6% = (63, ...,62)
for v; and ¢; as above for j = a,b. Then, the boundary of © at 6 is elliptical and

(4.20) A={NeR: (va®0)A=0, (v ® )\ <0}

4.4.3. Dickey—Fuller Regression

We verify Assumption 5 in this example using Assumption 5%*. Assumption 5%*
holds because © — 6y is locally equal to the cone

(4.21) A* = [\ € R X = (N5 AL ALY, XY <0, 08 >0, M € R, AL € RY).

Assumption 5%(b) holds because By = YTpM. Assumption 52*(c) requires
diste(Y7MA*, A) — 0 for some cone A. In the present case, we have

T 0 0 o’
TS/QIMO T3/2 0 0/
By :=TrM := _TWV2, 0 TY? TV2u1 and
0 0 0 TY2],

TrMA* = {/\ € R®: \; =T, Ag = T3 2 g \s +T3/2 )3,
A3 = =T 2pg\; + TY2N5 + T2 151\, and
A = TV2)S for \* € A*}

(4.22) - {A ER A <0, Mo > T2\, Ag € R, M € Rb} :
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From (4.22), A depends on pq = 030/(1 — 1'049). That is, it depends on the value of
the drift parameter 835 of the unit root process. If 639 = 0, then

(4.23) A:=BrA*={N€R°: )\ <0, 22 >0, \3 €R, \s €R°}.
If O30 > 0, then diste(YrMA*, A) — 0 for
(4.24) A:={N€R :\ <0, s €R, \3ER, \s €R}.

In consequence, when the true unit root process has positive drift, the limit distribu-
tion of BT(g —0p) is the same whether or not the time trend parameter is restricted
by © to be non-negative or not.

Assumption 6 holds for all values of 3.

4.5. Proofs

Proof of Lemma 1. Let Zry, = Z7/by. By Assumptions 2 and 3, || Z7v|| = O,(b7').
For any set I' C R® and z € R?, let
(4.25) distr(z,T) := inf (A - 2)'Tr(A - 2))1/2,

€

Note that distp(Zp, A) = infyecp q;/Q(/\). Because A is a cone, distp(Z7p, A) =

bt infrea qilp/Q(/\). Also,
dist(Zgy, Br(© — 00)/by) = inf X — Zp /bp) Tr(\ — Zp Jbp)V/?
ist7(Zrp, Br( 0)/br) /\GBT(glfQO)/bT( /b)) Ir( 7/b1)

= bt inf b\ — Z7) Fr(bp\ — Zp) /2
- AEBT(IGH—GO)/bT( T 1) Jr(br T)

I R 1/2 .
(4.26) = bp 912(% qr "~ (Br(0 — 6o)).
Let
(4.27) OT = diStT(ZTb, A) - diStT(ZTb, BT(@ - (90)/bT)

By the results above, Cr = b;l(inf,\eA q;/Q()\) —infre B, (0—6,) q;/Q()\)) and it suffices

to show that Cp = o, (b71).

Let Z@Tb S BT(@ - (90)/bT be such that diStT(ZTb,BT(@ - (90)/bT) =
diSt(ZTb, {Z@Tb}) + Op(b;l). Define Zypp € A analogously with By (© — 90)/bT re-
placed by A. By Assumption 5, dist(Zogs, A) = o(||Zers||). This and Assumption
3 give diStT(Z@Tb,A) = Op(HZ@TbH)- Analogously, diStT(ZATb,BT(@ — 90)/bT) =
op(||Za1s|])- (To make the above argument utilizing Assumption 5 really precise,
we need to use an almost sure representation argument based on the fact that
Zore = 0p(1), as proved below. For brevity, we do not give the details.)

By the triangle inequality,

Cr < distr(Zry, {Zers}) + distr(Zers, A) — dist(Zr, Br(© — 6o)/br)
= disty(Zors, A) + 0p(b7")
(4.28) = op(||Zemrs|l) + 0p(b7").
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Analogously, C7 > op(||Zarsl|) + 0p(b71).
By assumption, 0 belongs to the closure of © — 6y and, hence, to the closure of
Br(© — 6y)/bp. This gives

diStT(ZTb, {Z@Tb}) = diStT(ZTb, BT(@ — 90)/bT) + Op(b;«l)
(4.29) < 177 Zo| + 0p(b7).

Using Assumptions 2 and 3, we then obtain

| Zors — Zr|| < distp(Zr, {ZeTb})//\min(quw/z)

< (195" Zrall + 0507 Auin( T )
(4.30) < 1 Z20 Manax (T ) [ Amin(T2%) + 0p (071) = O, (071).
Thus,
(4.31) | ZoTsl| < ||ZeTs — Zro|| + || Z7s|| = Op(b;l)'

Analogously, || Zazs|| = Op(b7'). Combining these results gives Cp = 0,(b7'). O

Proof of Theorem 2. Let A} € cl(A) be such that ||BT(§—90) A7 = dist(BT(g—
0o),A). A} is unique because A is a convex cone; see Perlman (1969, Sec. 4). By
Assumption 5 and Theorem 1(a), ||BT(§—¢90)/bT—)\i}/bT|| = dist(BT(g—Qo)/bT, A) =
o(||Br(6 — 60) /br||) = 0,(b7") and so

(4.32) 1B (6 — 00) — N5|| = op(1).

Thus, it suffices to show that ||\ — XTH = op(1).

Define || - |7 by [|Al|7 := (NJrA)Y2. By Assumption 3, it suffices to show that
I35 = Al = op(1):

By Assumption 3, (4.32) holds with || - || replaced by || - ||7. This, the triangle
inequality, and Lemma 1 give

(4.33) [Ny — Zrllp = HBT@— 8o) — ZT‘ ‘T +op(1) = HXT - ZT‘ )T +0,(1).
In consequence,
er = |\ = Zrlly = |[3r = Zr|| = 0p(1) and

~ 2
(4.34) el = ||\ — Zo|[2 — H/\T—ZTHT:OP(l).

_ First, suppose Zr € cl(A). Then, Ap = Zp, ||No — Arllr = [Ny — Zrllr =
||)\T — ZT||T +erp=¢ep = Op(l).
Alternatively, suppose Zr ¢ cl(A). (We now use a geometric argument that is
most easily followed by drawing a picture.) Ap is on the boundary of A, because
A minimizes |[A — Zg||z over A € cl(A) and Zp ¢ cl(A). Let L(Ap, Zr) denote
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the line through \r and Z. L(/):T, Zr) is perpendicular (with respect to the norm
|| - ll7) to the ray through Ar starting at the origin. Let Pp denote the projection
onto L()\T, Zr) with respect to the norm || - [|7. Because A} € A and A is convex,
Py € A. By definition of Ap, |[Ar — Zp||r < [|PLAS — Zp||l7. In consequence, Ap
lies on the line segment joining Py A} and Zg.

By the orthogonality of projections,

<2 sWils
(4.35) |7 =3[, = I = PRI+ |[Perg = 3o

We claim that (i) [Ny — PLAS|[2 < &b and (i) [|[PLM: — Ap||2 < 2. These two
claims and (4.35) combine to yield ||A5 — Ap||r < ek + &% when Zr ¢ cl(A), which
gives the desired result.

Claim (i) follows from

I = PLpll7 = 1N = Zrll7 = 1PN = Zrll7

‘ ~

(4.36) < er,

2
Ze |, + e = 11PLXG = Z1lf}

because Ar lies on the line segment joining PrA} and Zp.
Claim (ii) is established as follows. The first equality of (4.36) implies that

(4.37) 1PN = Zellg < I = Zalle = ||fe = 2o | +er.
This result and the fact that XT lies on the line segment joining Pr A} and Z7 give

[ o, =3~z

IN

L e
(4.38) =ep. O

Proof of Lemma 2. Assumption 5* implies Assumption 5 because (i) By = byl
implies that By (© —0y)/br = © — 0y, (ii) for ¢ € (0 —0p) NS(0,¢), dist(¢d7,A) =0
for some ¢ > 0 by Assumption 5*(a), and (iii) for Ay € ANS(0,¢), dist(Ar,©—60) =0
for some € > 0 by Assumption 5*(a).

We now show that Assumption 52* implies Assumption 5 with by := A\ (Y7).
Assume Assumption 52* holds. A sequence {¢p € R® : T > 1} with ||¢g|| — 0
satisfies

(4.39) ¢ € Br(© —0g)/br VT large iff ¢ € BrA* VT large.

This holds because Y /by > 1 VT > 1,Vj < s (where Yq := Diag(Yrz1, ..., Y75)) im-
plies that |[bp M~YY 2 op|| < [|[M~Y||-||¢r]| — 0. Suppose ¢ € By(© —6p)/br VT
large, then by M~ YY1 ¢ € (©—05)NS(0,6) = A*NS(0,e) C A* VT large and ¢ €
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BrA* VT large. Conversely, suppose ¢ € BrA* VT large, then bp M~V T;lqﬁT €
A* N S(0,e) = (0 —0p) N S(0,e) C O — 0Oy VT large and ¢ € Br(© — 6)/br VT
large.

Using (4.39), for any sequence {¢p € Bp(© — 0y) /by : T > 1} with ||¢p|| — 0,
we have ¢ € BpA* VT large. For such a sequence,

(4.40)  dist(¢r, A) = [[or|dist(or/|lorll, A) < [l¢r[ldiste(BrA™, A) = of||orl]),

where the first equality holds because A is a cone, the inequality holds by the definition
of distc(+,) and the fact that ¢ € BpA* and BpA* is a cone, and the last equality
holds by Assumption 5% (c).

For any sequence {Ay € A : T' > 1} for which [|Ar|| — 0,

dist(Ar, BrA*) = ||Ar||dist(Ar/|[Ar]], BrA*) < ||Ar||diste(A, BrA®)
(4.41) = o(||xrll)

by the same argument as above. Now, for some ¢ € BpA* VI > 1,
(442) diSt()\T, BTA*) = H)\T — ¢TH + O(H)\TH) Z diSt()\T, BT(@ — 90)/bT)

VT large, where the inequality holds because ||[Ar|| — 0 implies ||¢p|| — 0 implies
¢p € Br(© — 6p)/br using (4.39). Equations (4.40)—(4.42) combine to verify As-
sumption 5.

Assumption 5%* implies Assumption 5 because By = byl implies that Br(© —
00)/br = © — 6.

Lastly, we show that Assumption 5% implies Assumption 5%*. By assumption,
gj(0p) =0 for j =a,b. Let I'; := %gj(eo) € R%*% for j = a,b. Let

Ty 9a(0)
(4.43) [:=|Ty| and g7 (0) := gn(0) ,
I, (60— 6p)
where T, € R(5~¢~%)%s is chosen such that I' is nonsingular. Then, g*(fy) = 0 and
ig+(90) -T
06’ :

Let & := 0 — 6g. Given ¢ € ¥, define
(4.44) N =T"1g" (0 + ¢).

Then, TA* = gt (0p + ¢), TaX* = ga(60 + ¢) = go(6) = 0, and Tpy\* = g,(6p + ¢) =
g(0) <0 for 8 = 0y + ¢ € ©. Hence, \* € A. Element by element mean value
expansions give

* _ _ .0
N=T"1g" (0 +¢) =T "1g"(6y) + T 1@9

(4.45) = 0+T7"To+o(|[¢])) = ¢ + o(|[4]])-

T (00)¢ + o(l[4]))

We conclude that dist(¢, A) < ||¢ — A*|| = o(||¢]]), as required by Assumption 53*.
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Next, the function m(-) := g™ (0g + ) : R®* — R?® is continuously differentiable on
a neighborhood of 0 with nonsingular Jacobian matrix at 0 and m(0) = 0. Hence, by
the inverse function theorem, there exists a function m=1(:) : R®* — R*® that satisfies
m~1(¢) is continuously differentiable and m(m~=1(¢)) = ¢ for all ¢ in a neighborhood
of 0, m1(0) = 0, and ;Zm~1(0) = [ Zm(0)] L=11),

Given A € A with A close to 0, define

(4.46) ¢* == m~HTN).

Then, g* (6o + ¢*) := m(¢") = m(m™(T'A)) = T'A, ga(fh + ¢*) = I'aA = 0, and
(00 + ¢*) = TpA < 0. Hence, ¢* € . Element by element mean value expansions
give
* -1 -1 9
¢*:=m~(TA)=m(0) + 6—¢,m (0)TA + o(||A]])
0

g
Hence, dist(\,© — 0p) < ||X — ¢*|] = o(]|\]]) and Assumption 53* holds. O

-1
(4.47) =0+ { (O)} A+ o(||Al]) = A+ o([|A]])-

Proof of Lemma 3. First, we show that if Assumptions (a) and (b) of the Lemma
hold and (i) {B;7(©; —0,0)/bp : T > 1} satisfies Assumption 5 with cone A; Vj < J,
where by := minj<;bjr and {bjr : T > 1} are as in Assumption (c), then (ii)
{Br(© — 6y)/br : T > 1} satisfies Assumption 5 with cone A := X;’:lAj. Second,
we show that if Assumption 5 holds for a sequence {by : T' > 1}, then it holds for
any sequence {dp : T' > 1} for which dy — oo and dp < by VT' > 1. The latter and
Assumption (c) of the Lemma imply that condition (i) holds. Hence, condition (ii)
holds, which is the desired result.

Assume condition (i) holds. First, note that by — 0 and
(448) bT = Ijllglgl bjT S I],Igf}cj)\min(Bj ) S I?Safcﬁ)\min(BT)-
Thus, {b7 : T' > 1} satisfies the requisite conditions of Assumption 5.

Consider a sequence {¢; € Bp(© — 6y)/bp : T > 1} for which ||¢5|| — 0. We
have
(449)  brBp"or € © =09 and |lbr By orl| < [lbrB"|| - llérll — 0,
where the convergence to zero holds because (4.48) implies that ||bTBJTl’|| = Op(1).
Equation (4.49) implies that bTBflquT € X‘]-le(@j—Hjo), or € X‘]-leBjT(@j—Qjo)/bT,
and ¢;p € Bjr(0; — 0j0)/br ¥j < J, VT large, where ¢ = (d17, ..., ¢ ). Using
these results, we obtain:

1/2
J
. . . _ . 2
dist(¢r,A) = inf [lér ~ A= inf ;II%T Al
; 1/2
(4.50) = | 2_elllelP®)]) = olllorll),
j=1
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where the second equality holds because A is a product space and the second last
equality holds by condition (i).

Next, consider a sequence {A\p € A : T > 1} for which [|Ar|| — 0. We want to
show that dist(Ap, By(© — 09)/br) = o(||Ar||). This will complete the proof that
condition (ii) holds. Let Ap := (Mg, ..., Xjp)', where \jp € R% Vj < J. Let ¢ €
BjT(@ - 90)/bT be such that diSt(/\jT,BjT(@ — 90)/bT) = ||)\jT - ¢jT|| + 0(||/\]T||)
Vj < J. Note that ||¢;p|| — 0 Vj < J because the left-hand side of the last equation
is o(1) and ||Ajr|| — 0. Define ¢ := (¢ p, ..., ¢;1)’. We have ||¢r|| — 0. Hence, for
some € > (0 and all T large,

or < (X Bir(&;=00)/br ) N5(0.9)
(4.51) — (Br(© — 6y) /br) N S(0,) C B(6 — o) /br)

using Assumptions (a) and (b). In consequence,

J 1/2
dist(Ar, Br(© — 00)/br) < [[A\r — ¢7|| = Z I\ — &7l
J " 1/2
= | ) _(dist(\jr, Byr(© — 60) /br) + o(|| Az ]])?
e
(4.52) = Z;O(H)‘JTH)Q = o(|[Ar]]),
=

where the second last equality uses condition (i).

Now we establish the second result stated in the first paragraph of this proof.
Suppose Assumption 5 holds for the sequence of sets &7 := Bp(© —6g) /by for T > 1.
Assume dy < by VT > 1 and dr — co. We want to show that Assumption 5 holds
for the sets bp®p /dp for T > 1. Consider a sequence {brop/dr € bp®r/dp : T > 1}
for which ||by¢p/dr|| — 0. Then, ||¢¢|| < ||bror/dr|| — 0 and we have

(4.53) dist(bror/dr, A) = (br /dr)dist(or, A) = (br/dr)o(||prl]) = ofllbrér/drl)),

where the first equality holds because A is a cone.
Next, let {\p € A : T > 1} be a sequence for which ||Ap|| — 0. We have

diSt()\T,bT(pT/dT) = mf H)\T — de)T/dTH = (bT/dT) 1nf HdT)\T/bT — ¢TH
Pre@r Gre@r

(bT/dT)diSt (dT/\T/bTa @T)
(4.54) = (br/dr)o(||drAr/br||) = o(|[Arll),

where the second last inequality holds by Assumption 5 for the sets {®p : T > 1}
because drop /by € A and ||dpAr/br|| < ||[Ar|] — 0. This concludes the proof that
Assumption 5 holds for the sets {by®y/dp : T > 1}. O
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5. Asymptotic Distribution of the Extremum Estimator

5.1. General Results

In this section, we determine the asymptotic distribution of 9. For this, we
assume:

Assumption 7. (B;IIDZT((‘)O),jT) <, (G, J) for some random variables G € R*
and J € R*® for which J is symmetric and nonsingular with probability one.

For models without stochastic trends, J is typically non-random. In this case,
it suffices to have B;lIDZT(QO) L Gand Jr=J + op(1). Typically, G is a mean
zero Gaussian random variable and the convergence in distribution is established via
the methods described in Section 3 to verify Assumption 2. We describe G and J in
more detail in Section 6.

We note that Assumption 7 implies Assumptions 2 and 3.

__ The asymptotic distribution of Ay and, hence, of Br (0 — 6p) is given by that of
A. By definition, A € cl(A) and

Q(X) = )1\I€1£ q(\), where
(5-1) g = A= 2/ T\ = 2) and Z = T 1G.

As with XT, X is not necessarily uniquely defined. It is unique, however, under
Assumption 6. R
The asymptotic distribution of By (6 — ) is given in the following theorem.

Theorem 3. (a) Suppose Assumptions 1 and 4-7 hold. Then, XT 4N and
Br(0 —6) % X
(b) Suppose Assumptions 1, 4, 5, and 7 hold. Then,

~

0r(8) — 01(80) % 1(Z'TZ — infacy q(N) = LN TN,

Comments. 1. In the classical case in which 6y is not on a boundary, A = R?
and A = J1G. Thus, if G is Gaussian and J is non-random (as typically occurs
in models without stochastic trends), then BT(/(‘) — 6p) has a Gaussian distribution.
Alternatively, if G is Gaussian conditional on J and J is random (as occurs in some
models with cointegration), then BT(/(‘) — 6p) has a mixed Gaussian distribution.

2. The case of primary interest in this paper is when 6y is on a boundary and
A # R?. In this case, the distribution of \ is more complex than in Comment 1. The
following section, Section 6, analyzes its distribution in some detail.

3. In part (b), NI is uniquely defined, even though X need not be (because
Assumption 6 is not imposed).

4. The result of Theorem 3(b) can be used to obtain the asymptotic distribution
of a likelihood ratio-like statistic, as is done in Andrews (1997b). It is a by-product
of the results needed to obtain the asymptotic distribution of BT(E —6p).
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5.2. Examples (Continued)
5.2.1. Random Coefficient Regression

In Example 1, Jr does not depend on 7" and J (= Jr) is symmetric and positive

definite by (3.16) and (3.18). Thus, Assumption 7 holds provided T~ 2D/ (6y) e
for some random variable G. By the definition of Dl (6p) in (3.16) and the moment
assumptions of (3.17), the CLT for iid mean zero finite variance random variables
yields

T=Y2D0r(00) % G ~ N(0,T), where

(res?(0g) — vary(6p))? orera 1 res3 (0o)
WsWz  sE
vary (6) EUE 27 vard (6,)

iE
(5.2) 7 :=

WEW,

1 res;?’(&o)

27 var? (6)

W, W EW,W{ [var;(6o)

By Theorem 3, T/2(6 — o) <, A, where A satisfies (5.1) with (G,J) defined in
(5.2) and (3.16) and A defined in (4.15).

5.2.2. Regression with Restricted Parameters
In Example 2, Assumption 7 holds with
(5.3) G~ N(0,7), T = E?X; X;, and J = EX, X].
This follows from the CLT for iid mean zero finite variance random variables and the
LLN for iid finite mean random variables using (3.21) and (3.22).

Thus, by Theorem 3, T1/2(8—6,) -5 X, where X satisfies (5.1) with (G, J) defined
in (5.3) and A defined in (4.16).

5.2.3. Dickey—Fuller Regression

Assumption 7 holds in this example by (3.29) with (G, J) defined in (3.29). In

consequence, BT(E —0o) 2 X, where X is defined in (5.1) with A defined in (4.23) or
(4.24) depending on the value of the drift parameter 3.

5.3. Proofs

Proof of Theorem 3. In part (a), XT is uniquely defined because A is a convex cone.
We can write XT = (B, 1/DZT(QO), Jr), where the function A is defined implicitly in
(4.5). The function h is continuous at all points (BEIIDET((‘)O), Jr) for which Jr is
nonsingular. Because J is nonsingular with probability one, the continuous mapping
theorem gives XT = h(B;llDET((‘)O), Jr) 4 MG, J) = . The second result of part
(a) holds by the first result and Theorem 2.

Part (b) holds by (4.4), (4.8), Assumption 7, and the continuous mapping
theorem. O
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6. Asymptotic Distributions of Subvectors of
the Extremum Estimator

6.1. A Partitioning of 8 into (3, 6, ¢)

In this section we simplify the asymptotic distribution of By (5— o) by partition-
ing 0 into three subvectors and providing separate expressions for each of the three
corresponding subvectors of .

We partition 6 as follows:

(6.1) 0= (0.,4") = (6,8,¢") and 0, = (5,8,

where 3 € RP, 6 € R1, ¢y € R", 0 < p,q,r < s,and p+qg+1r = s. Below we
assume that the asymptotic “quasi-information matrix” J is block diagonal between
0. and ¢. We also assume that ¢ is a parameter that is not on a boundary (where
0o = (B5,60,100)"). These features characterize the subvectors 3, §, and 1. The
results given below cover cases where no parameters § and/or 1 appear simply by
setting ¢ and/or r equal to 0.

We partition 0 0o, Br, G, J, Z, )\T, )\ and D?r(0p) conformably with 6. Let

5 3 3
/9\ = (?f = /6\ 5 90 — (9*()) = 6(()) 5
v b Yo (2

Bgr Bgsr Bgyr
Bysr Bysrt Byr

Gg Iz Tss Tpy
G = (g*> = G5) ,J = [\7‘7* ?ﬂ =\|Tsg Ts JTsy|,
¥ . ¥ \71/1/8 \71/16 j@/}
Ao ~ s
7= <§*> - ) T =1 s |, A= /)\\* = | s |, and
P >\1/;T <~ Ay ~
Ao N

Dylr(6o)
_(Dyer(60)\ _ [7PF
02 Dl = (DW@) RRVIATY

The defining feature of the parameter v is the following:

Assumption 8. (a) J is block diagonal between 6, and 1. That is, Jwp = \77//,* =0.
(b) The cone A of Assumption 5 is a product set Ag x As x Ay, where Ag C RP,
As C R4, and Ay C R" are cones.

The defining feature of the parameter ¢ is the following:

Assumption 9. A; = R?.
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Assumptions 8 and 9 require that the asymptotic information matrix is block
diagonal between 6, and 1 and that d¢p is not on a boundary. Any subvector of 0
that does not satisfy one or another of these conditions is lumped in with 3.

Under Assumption 8,

Zy=J; Gy, Zy = T Gy, and
Zsg=HZ.=J;'Gs+ Ty " Tps(Ts — Tsp Ty  Tps)(TspT5 ' Gp — Gs), where

(6.3) H := [I,, : 0] € RP*(PFa),
Define

as(Ng) == (A\g — Zg)/(HT, *H') '(A\s — Z3) and
(6.4) Gy (Ny) = (Mg = Zy) Ty (N — Zyp).

Given Assumptions 8 and 9, we can split the terms of the quadratic approximation
to ZT(Q) and in consequence \, into separate terms involving 3, 8, and 1 :

Theorem 4. Suppose Assumptions 7-9 hold. Then,

(a) gs(As) = infy,en, %(Aﬁ)

(b) Xs = J5 'Gs — Ty ' Tophs,

(c) qw()‘l/)) 1nf/\¢ €Ay qw(&/;)

(d) 2'TZ = Zy(HT, 'H') 1 Zg + G{T5 ' Gs + Zy Ty Zy,

(e) infyep g(A ) infx,en, gs(Ag) +1infa en, qq/,()%) and

(F) 2'T Z—infaca q(\) = Z(HJ; H') 7 Zg—infa,en, as(Ms)+G4Ty ' Gs + Z0, Ty Zy
- mf)\wGAw qq/,()\w) == X;;(Hj*ilH/)ilx\ﬁ + Géj{;lG(S + Xipijq/,.

Comments. 1. If Ag = RP, which holds if §; is not on a boundary, then
1nf/\ﬁ€Aﬁ q3(Ag) = 0 and )\g = Zg. Similarly, if Ay = R", then ianweAw qyp(Ay) =0
and )\1/, =Zy = \77/ Gw These simplifications correspond to the standard case con-
sidered in the literature. Our interest here is in cases where one or other or both of
these simplifications does not hold.

2. If Ag is a linear subspace of RP, which holds in the case of linear or nonlinear

equality constraints as considered by Aitchison and Silvey (1958), then Xg = Pr,Z3,

y

where P, is the projection matrix onto Ag with respect to the norm [[Ag[[5 :=
Ng(HT,'H')"'Ag. For example, if Ag = {A\g € RP : Todg = 0}, then Py, :=
I ~HJH'T (r HJ- H'T)"1T,.

Theorems 3 and 4 combine to give

Corollary 1. (a) Suppose Assumptions 1 and 4-9 hold. Then,

o~ A~ ~ d —~
Bpr(8 — Bo) + Bgsr (6 — d0) + Bayr (¥ — ) = Ag,
where Xg solves qg(/xﬁ) = inf gg(Ng),
)\ﬁEA/@
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Bsar (B — By) + Bsr (6 — 80) + Bsyr (1 — o) = T ' Gs — T Tspha,

o~ A~ o~ d o~
Bygr (¢ — vo) + Byer (6 — 60) + Byr(¥ — 1) = Ay,
where Xq/, solves qq/,(x/,) = inf gy(Ay),
Aw EAw

and the convergence of these three terms holds jointly.
(b) Suppose Assumptions 1 and 4-9 hold. Then,
BHT(B - Bo) 4, Xg provided Bgsy = 0 and Bgyr = 0,
Bor(6 — 60) % Ty 'Gs — Ty ' Jsshg provided Bsgr = 0 and Bsyp = 0,
B¢T@ — 1) 4, Xp provided Bygr = 0 and Bysr = 0,

and the convergence of these three terms holds jointly, where Xg and X/) are as in

part (a).
(c) Suppose Assumptions 1, 4, 5, and 7-9 hold. Then,

0 (0) = br(B0) = 3(Z(HITH) ™ Z5 = inf ga(%s)
+ A%/ngé—lcé +5(ZJpZy — infye -, 40 ()
= SOG(HITH) ™ N + GiTs ' Gs + My Ty hy)-

Comments. 1. All of the three results of Corollary 1(b) are applicable in the
examples of Section 2 except in the Dickey—Fuller Regression Example and the
GARCH(1, ¢*) Example. In these two examples, only the first and third results
of Corollary 1(b) are applicable. R R

2. Corollary 1(b) shows that the asymptotic distributions of $ and 6 do not
depend on whether 1 is on a boundary. Similarly, the asymptotic distribution of
1 does not depend on whether (3, is on a boundary. For example, in the Random
Coefficients Regression Example 1, the Gaussian QML estimator of the regression
slope coefficients does not depend on whether the variances of the random coefficients
are positive or zero. R

3. Corollary 1(b) shows that the asymptotic distribution of 6 depends on whether
By is on a boundary if and only if Jss # 0. For example, in the Regression with
Restricted Parameters Example 2, where some slope coefficients are restricted, the
asymptotic distribution of the LS estimator of slope coefficients that are unrestricted
does not depend on whether the true restricted coefficients are on a boundary if and
only if the asymptotic “information” matrix is block diagonal between the restricted
and unrestricted slope coefficients.

4. Corollary 1 reduces the dimensionality of the minimization problem
infycp ¢(A\) by splitting it up into three separate minimization problems of lower
dimensions, one of which is solved analytically. This facilitates the solution of the
minimization problem whether one uses analytics or simulation.
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6.2. LAN and LAMN Conditions for (3, 6)

We now concentrate on the asymptotic distributions of B and 9. The parameter
¢ is considered to be a nuisance parameter. The following results for [3 and & can be
applied to w by re-labeling ¢ as 0, = (3',8')".

We specify three conditions that imply Assumption 7 and that indicate the form
that the limit random variables (G, Jx), which determine the asymptotic distribu-
tions of ﬁ and 6 take in typical cases. The first condition is applicable in models
in which B} o 'D ET(OO) and J,7 may depend on deterministic and stochastic trends,
but none of the elements of 6. = (3, 8,) are unit roots. This includes the Regres-
sion with Restricted Parameters and Integrated Regressors Example. It excludes the
Dickey—Fuller Regression Example 2. (Note that 1), may contain unit roots.) Mod-
els covered by the first condition are locally asymptotically mized normal (LAMN)
models (with respect to the parameters (3, 0)).

Assumption 7*. (a) Assumption 7 holds.
(b) G« ~ N(u,Z.) conditional on some o-field F, for some non-random (p+q)-vector
w and some (possibly) random (p + q) x (p + q)-matriz I, that is F measurable.

The second condition covers the locally asymptotically normal (LAN) case (again,
with respect to the parameters ((3,9)). It is applicable in cross-sectional contexts and
in time series contexts in which B;:,}ID*ET(HO) and J,r may depend on deterministic
trends but not on stochastic trends.

Assumption 72*. (a) Assumption 7 holds.
(b) G« ~ N(0,Z,) for some nonrandom (p + q) X (p + q)-matriz Z,.
(¢) Jx is nonrandom.

It is apparent that Assumption 7%* = 7* = 7.
Next, we consider the case where Z, of Assumption 7* or Assumption 72* is
proportional to Js.

Assumption 73*. (a) Assumption 7* holds.
(b) Z. = ¢Jx for some scalar constant ¢ > 0.

Clearly, Assumption 73* = 7* = 7.

If ¢7(6) is a correctly specified log-likelihood function and Assumption 7* holds,
then the information matrix equality implies that Assumption 73* holds with ¢ =
1. Assumption 7%* also holds in some likelihood cases where the log-likelihood is
misspecified. (For example, it occurs in a regression model with Gaussian quasi-
log likelihood function when 6, is the regression parameter, the autocorrelation and
heteroskedasticity is correctly specified, and the errors are not actually Gaussian but
have finite variance.)

Assumption 73* holds for LS estimators of regression models with ¢ = o2 provided
Assumption 7* holds and the regression errors are homoskedastic conditional on the

regressors with variance o2.
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Assumption 73* holds for GMM and minimum distance estimators with ¢ = 1
provided an asymptotically optimal weight matrix is employed. (An asymptotically
optimal weight matrix is one that is (asymptotically) block diagonal between the 6,
and 1 parameters and has a consistent estimator of the inverse of the asymptotic co-
variance matrix of the moment conditions or of the unrestricted parameter estimator
as its upper block.)

When Assumption 73* holds, the number of nuisance parameters that appear in
the asymptotic distribution of )\5 is reduced substantially. The distribution of )\5
depends on the nuisance parameters (or nuisance random variables) in the inverse
of the weight matrix of gg(\g), viz., HJ7, 'H', (but only up to scale) and in the
(conditional) covariance matrix of Zz (:= HJ, 'Gg), viz., HJ, 7.7, 1 H'.

Suppose Assumption 73* holds. Then, the matrix H7, 'Z,J; ' H' equals cH 7, ' H'
and knowledge of the former implies knowledge of the H 7, 'H’ up to scale. Thus,
the number of nuisance parameters in the distribution of Xg equals the number of
nonredundant elements of HJ, 'Z,J, 'H', which is p(p + 1)/2. This is the same
number of nuisance parameters as in the standard case considered in the literature
where the true parameter 6 is not on a boundary. These nuisance parameters are
all estimable.

Next, we consider the nuisance parameters that appear in the distribution of
XIIB (HJ 'H' )_1//{5. The latter is the part of the asymptotic distribution of the max-
imized objective function that depends on 3. It is important for testing results.

Let D be a p x p (possibly random) matrix that is symmetric and nonsingular
with probability one. Our leading choice for D is

(6.5) D = Diag"/*(HJ 'H').
Define XﬁD such that XﬁD ecl(Agp) and

QﬁD(X,BD) = )\ﬁg}\fﬁD q,BD()\ﬁ) where AﬁD _lAg,

asp(Ns) == (Mg — Zgp)' (D *HJ, 'H'D ) 1(\s — Zgp) for \g € RF, and
(6.6) Zgp:= D 'Zs.

Lemma 4. For any p X p (] possibly ﬁandom) matriz D that s symmetric and non-
singular with probability one, A\g = DAgp.

Comments. 1. By Lemma 4, Xlﬁ(Hj*”H')AXg equals XIgD (Dlej**lH'Dfl)*ll)\\gD.
The distribution of this term depends on the nuisance parameters (or nuisance
random variables) in D !HJ 'H'D=! (but only up to scale) and in the
(conditional) covariance matrix of Zgp, viz., D'HJ'T,J7'H'D™!, under As-
sumption 7*. Suppose D is as in (6.5) and Assumption 7°* holds. Then, the matrix
D'HJ 'T,J 'H'D™! equals cD™'HJ;'H'D~! and knowledge of the former im-
plies knowledge of D"'H7, 'H'D~! up to scale. In this case, the total number of
nuisance parameters reduces to p(p — 1)/2.

2. The proof of Lemma 4 follows easily from the fact that gz(Ag) = gap(D ™1 \g).
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6.3. A Closed Form Expression for XB

We now consider an assumption on Ag under which we have a simple closed form
expression for Ag and, hence, for \s as well.

Assumption 10. Ag={\g € RP :Tyhg =0, [,\5 <0}, where T':= [, : T} is a
full row rank matriz.

Assumption 10 holds in all of the examples considered in the paper. For Ag as
in the Lemma 5, Ag is the solution to a quadratic programming (QP) problem with

mixed linear equality and inequality constraints. R
The following lemma provides a characterization of Ag when Assumption 10 holds.

Lemma 5. Suppose that Assumptions 7-10 hold. Then, Xg = PrZg for some
linear subspace L of the form L := {{ € RP : Tgl = 0, T'p1¢ = 0}, where Ty
is comprised of some (possibly zero) rows of T'y and Py, is the projection matriz
onto L with respect to the norm ||/\/3||% = Ny(HJ 'H')"'Ng. That is, P, = I, —

HI T HTY(T1HI T H'TY) ™'y, where Ty = [T, & T,

Comments. 1. The number of different linear subspaces of the form L is 2Pt where
Py is the number of inequality constraints in Ag, i.e., the number of rows of I'y.

2. Lemma 5 still holds if T is not full row rank provided one replaces I'; in the
definition of P;, with a matrix that equals I'; but has any redundant rows deleted.

Lemma 5 yields the following closed form expression for Xg.

Theorem 5. Suppose that Assumptions 7-10 hold. Then,
( ) )\g = Pp5yZp; where j minimizes CFj = Zpl(I;HT,- 1HT’) 11,25 over j =

1,..., 2P for which Pr;yZs € Ag. Here, L(j) := {¢ € RP : Tyl = 0, Ty;{ = 0},

= [l 'I"b]]' Py =1Ip ijlHT’ (T ijlHT’)*lf‘j, and {Ty; : j =1,..2P}
conszsts of all the dzﬁerent matrices compmsed of some (possibly zero) rows of Iy.
P,

(b) Ao = X2 PuyZs x 1Py Zs € Ag) x [[oy 1(CF; < OFy or Py Zs ¢ As)
(c) for any px p (possibly random) matriz D that is symmetric and nonsmgular with
probability one, >‘,6’ = DPL (j)ZﬁD, where j is as in part (a), Zgp = D~ Zﬁ, and

PL) = I~ D BT HT(T H, HIT,) T .
As an example of Theorem 5, suppose Ag = R x RP~1. Take
D = Diag!/?(HJ, ' H'). Then,
N, — JPZsp if Zgp1 >0
F~\DPy, Zgp otherwise,

DZgp if Zgp1 >0
= , : where
D(0, Z3p2 — P1248D1s - LB3Dp — pp1ZgD1) otherwise,
Zp == (Zyprs - Zjpp) = D' Zg,
Pij = [D'HJ'H' DY, for i,j = 1,...p, and

(6.7) P, ==1,— D 'HJ 'HT(ThHJ, 'H'T,)"'T\D, T := (1,0,...,0) € R**?,
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When Ag = R~ x RP™!, the inequality in (6.7) is reversed.

Results of Lovell and Prescott (1970, Sec. 4) for the normal linear regression
model imply that the mean squared error of each element of Xg as an estimator of
0 is less than or equal to the mean squared error of each corresponding element of
Zgp when Ag = R x RP~L. This implies that the conventional asymptotic standard
errors that are based on the assumption that no parameters are on a boundary are
conservative estimators (i.e., estimators whose probability limits are greater than or
equal to the true asymptotic standard errors) when one element of (3 is on a boundary
and Assumption 72* holds (or Assumption 7* holds with ;= 0 and EZ, < c0).

Rothenberg (1973, p. 57) conjectures that Lovell and Prescott’s (1970) result for
the normal linear regression model with one parameter on a boundary extends to
the general case where the parameter is on the boundary of a convex set. We agree
that this is probably true, but we do not have a proof. If true, then the conventional
asymptotic standard errors that are based on the assumption that no parameters are
on a boundary are conservative estimators whenever Assumptions 6 and 7%* hold (or
Assumptions 6 and 7* hold with p = 0 and EZ, < o0), which covers the vast majority
of cases in the literature.

As a second example, suppose Ag = (R")? x RP~2. Then,

Xs = DP,_ 5 Zsp, where

PLDG)ZﬁD = ZﬁDI(Zng > 0, ZﬁDQ > 0)
Z3p1 — Pa1ZBD2
0
+ | Zops = PsZsp2 | UZsp1 — pnZpp2 > 0, Zgpa < 0)
ZﬁDp - IOQpZﬁDQ
0
Zsp2 — P1248D1
(6.8) -+ : 1(Zf3D1 <0, ZIBDQ — pngﬁm > 0),

Zspp — P1p4BD1

where D and p;; are as in (6.7). For the case where Ag = R~ x R™ x RP™2 (as occurs
in the Dickey—Fuller Regression Example with p = 2), (6.8) holds but with the first
of the two inequalities reversed in each of the indicator functions in the definition of
P Zsp. Adjustments of (6.8) for the cases where Ag = RT x R~ x RP~2 and

Lp(7)
Ag = (R7)% x RP=2 are analogous.
For the case where Ag is of the form
(6.9) Ag={Xg € R : \g; > 0,Tq\3 = 0},
/)\\[3 is as defined in (6.7), but with Zgp replaced by Pr,pZsp, where

(6.10) Pr,pi=1I,— D 'HJ 'H'T, (T,HJ, "H'T,) ' T,D.
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For the case where Ag is of the form
(6.11) Mg ={A\s € R”: Ag1 >0, Agy > 0,T\g = 0},

\s is as defined in (6.8), but with Zgp replaced by Pr,pZsp.

One can simulate the distribution of Xg when Ag is as in Assumption 10 by
simulating Zg or Zgp and computing /)\\[3 using a standard quadratic programming
algorithm, e.g., see Gill, Murray, and Wright (1981). The programs GAUSS and Mat-
lab have built-in procedures for doing so, called QPROG and QP respectively. The
GAUSS procedure QPROG is very quick. For example, 10,000 simulation repetitions
with p = 15, four equality constraints, and ten inequality constraints takes about 63
seconds using a PC with Pentium 90 processor. The procedure QPROG also appears
to be quite accurate. Its solutions and the closed form solutions provided by Theorem
5 were found to differ by 107 or less across a number of trials.

Alternatively, one can use the formulae of Theorem 5 or the equations above
to compute A\g. These are easy to program because they only involve computing
CFj for j =1,...,27 finding the value 3 that maximizes CF}, and then computing
Xg = PL(})Zﬁ or Xg = DPLD(E)ZﬂD' This method is not to be recommended if py is
large, but for small values of p, it works well. It is easy to program and is quick.

6.4. Consistent Standard Error Estimators

In this section, we describe three different procedures for obtaining standard error
estimators that are consistent whether or not the true parameter is on a boundary of
the parameter space. Each of these methods actually provides a consistent estimator
of the whole asymptotic distribution of the extremum estimator. As mentioned in
the Introduction, the standard bootstrap does not yield consistent standard error
estimators.

The first method is described as follows. Suppose the parameter space © is defined
by equality and/or inequality constraints:

(6.12) O ={0€ R*: g.(6) = 0,m(6) < 0}.

Assume that the function m(-) : © — R’ that defines the inequality constraints is
continuously differentiable at 6y. Let m(6) = (my (), ...,m;(6))".

For j = 1,...,J, let {np; : T > 1} be a sequence of random variables (possibly
constants) that satisfies
(6.13) 175 Amin(Br) 2 0.

~

We specify a rule based on m;(6) and 7,; to determine which (if any) of the inequality
constraints are binding at the true parameter. If

(6.14) m; (@) > —np;,

then we presume that the j—th constraint is binding. (Because this rule is essentially
a one dimensional one-sided Wald test for some significance levels {ap : T > 1} that
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converge to 0 as T' — oo, the 7y, ’s could be chosen to be the critical values for such
tests multiplied by an estimate of the standard error of m; (5) based on the usual
formulae that assume that m; (5) is not on a boundary of the parameter space.)

Let j1, ..., j index the constraints that are presumed to be binding. We construct
vectors gp(f) and h() that correspond to the constraints that are determined to be
binding and not binding, respectively, according to the rule above:

(6'15) gb(e) = (mjl (0)7 "'7mjk(9)), and h(@) = (mjk+1 (9)7 "'7mJ(0))/'

We calculate asymptotic standard errors (or any other feature of interest of the
asymptotic distribution of Brp (ET —0p)) based on the assumption that the constraints
that are presumed to be binding actually are binding. Thus, we presume that the
true parameter is as in (2.4) of the Regression with Restricted Parameters Example
2. Then, the asymptotic distribution of the extremum estimator is as determined
in the sections above and we can obtain standard error estimators by simulating
the asymptotic distribution with any unknown parameters replaced by consistent
estimators.

Consistency of the standard error estimators just described depends on whether
the rule for determining which inequality constraints are binding is correct with
probability that goes to one as T — oo. It is, given (6.13) and Assumptions 1-4,
because

P(m;(0) > —np;) = P(mj(HO) (zm(00) By )Br(8 — 60) + o(|[6 = oll) > —n7;)
_ { (75713(00) By Op(1) Amin (Br) + 0p(1) > =07 Amin(Br)) if m;(6o) = 0
P(m;(bo) + o ( )> —17;) if m;(6o) <0
. {1 if m;(0g) =
if m;(6o) <
(6.16)

The second method is a subsample method introduced by Wu (1990) and extended
by Politis and Romano (1994) to cover cases where the statistic of interest has some
asymptotic distribution, not necessarily normal, such as those considered in this
paper. The method is applicable in iid contexts (see Politis and Romano (1994, Sec.
2)), as well as in stationary time series contexts (see Politis and Romano (1994, Sec.
3; 1996, Sec. 3)). A random subsampling variant of the procedure is also available
(see Politis and Romano (1994, Sec. 2.2)).

The third method is a version of the bootstrap in which bootstrap samples of size
T, (< T), rather than T, are employed. More specifically, one uses the bootstrap
distribution of Bp, (5;1 - ET) to estimate the distribution of BT@T — 6p), where
gT denotes the estimator 6 constructed using 71" observations and 5;1 denotes the

bootstrap estimator of 6 constructed from T, observations. In an iid context, 5;1
is constructed from 77 iid draws from the original sample of T observations. This
version of the bootstrap is consistent when By = TY2M (for any matrix M ) if
T,/T — 0 as T'— oo. Typically, one approximates the distribution of Br, (9T1 - (‘)T)
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by taking a number of simulation draws of it. Consistency of this procedure and the

~

others above rely on the existence of an asymptotic distribution for By (61 — 6p),
which is established in this paper.

6.5. Examples (Continued)
6.5.1. Random Coefficient Regression

In Example 1, we partition 6 as in Section 6.1 with
(617) O = ( /17 12793)17 ¢ = ( ﬁ17‘95)17 6 = ‘917 and ¢ := ( I2793)/'

With this partitioning, Assumptions 8 and 9 hold. In particular, by (3.16), J is block
diagonal between 6, and ?. The set A is a product set Ag x Ag x Ay with

(6.18) Ag = (RT), As := R and A, = RVTL.

Thus, Assumption 10 also holds.
With this partitioning, from (3.16) and (5.2), we have

Tu i= SEWEWE [var}(0o), Ty := EW,W{ [vary(6y),
G = (G}, G)) ~N(0,I), Gy ~ N(0,Z.), Gy ~ N(0,Z,),
(res%(@o) — vaurt(eo))2

1 I, :=1F
(6.19) 4 varg(6)

W2WZ | and T, := EW,W{ /var, (o).

Assumption 7%* holds with Z, as above. Assumption 73* holds if the errors ¢, and 7,
are normally distributed.

By Theorem 3, T1/2(§ — 6o) <, X, where A = (X;;,X;,X:/,)’. By Theorem 4(c),

qq/,(B\\w) = inf)\weAw qq/,()\w), where q/(/)(AQ/)) = ()\1/, — Zw)qu/,()\w — Zw). Because
Ay = RPL this gives

Xy = Zy =T, ' Gy ~ N(0,7, ") and
(6.20) TV2((8,,05) — (040, 050)') 2 Ny ~ N(0, (EW, W] [var,(6p)) 7).

Thus, the QML regression parameter estimators 54 and 55 are asymptotically normal
with covariance matrix [77/71 whether or not some random coefficient variances are
ZEro.

The matrix By = T2, obviously is block diagonal. Hence, by Corollary 1(b),

(6.21) TV2(0; — 010) 5 Ng,
where Xﬁ satisfies

gs(Ng) = inf  qa(Ng),

)\I@E(R+)p
g5(\s) == (\s — Zg) (HT. 'H') ™ (\s — Z5), and
(6.22) Zg:=HJ, 'G. ~ N, HJ 'T.J 'H').
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For example, if p = 1 (i.e., there is one random coefficient with zero variance),
then Assumption 10 holds and by (6.7),

(6.23) s = DZsp1(Zsp > 0) = Zs1(Z5 > 0).

Thus, Xﬁ has a half-normal distribution. If p > 1, then /)\\[3 is given in closed form by
(6.8) or Theorem 5.
Also by Corollary 1(b),

TI/Q((@\;7§3), - ( /207 030)/) i) /)‘\67
Xs = T5 'Gs — T; ' Tsphs,
1 X22t X22t / 2 2 2 2/ bo
‘7‘5 = §E 1 1 /va’rt (90)7 X2t = (ti+17 '--7th) ER )
j . lE X22t X2 X2 o X2 X2 /
66— 32 1 1t Xig = (X1, s tp) )

o Gﬁ 1 (res%(@o)—vart(eo))Q X22t X22t /
(6.24) G, = <G6> N(0,Z,), and Gs N<0, 1E varf((‘)o) | ! .

6.5.2. Regression with Restricted Parameters

Typically, the restrictions g,(#) = 0 and g,(#) < 0 of Example 2 only involve some
of the elements of 6. In this case, the vector %g(@o), where ¢(0) := (94(0)’, g5(0)"),
that determines A contains some non-zero columns, say p of them, and some columns
of zeros, say s — p of them. Without loss of generality, assume that the first p
columns of % g(6p) are non-zero vectors and the last s — p columns are zero vectors
for 1 <p<s.

We partition Xy such that

X, = <§t> = | X5 | and
’L/)t X'[pt
B , [7 0] [EXuX), 0
(6.25) J = EX X! .= {0 jvl = [ 0 EXyX0,)

where X,; € RPY9, Xy € R", X € RP, Xgy € R, J, € RPTO*(P+a) and 7 €
R™7. Here p is the number of non-zero columns of (9/90')g(6y) and (q,r) are taken
such that J is block diagonal and p+q+r = s. Such a partitioning is always possible,
because one could have r = 0.

We partition @, 0o, and 6 conformably with X;. That is,

~1 o~

(6.26) 6:= (3,8, 60 := (8, 6,44, and 0 = (8,8,
where 3, 8,3 € RP, 8,60,6 € R, and ¥, 1,1 € R".
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Now, with the above partitioning, Assumptions 8 and 9 hold. The matrix J is
block diagonal by (6.25). The matrix By is diagonal. The set A is a product set
Ag x Ag X Aq/, with

0 0
Aﬁ = {)\g € RP . 6—61ga(90))\g = 0, 8—ﬁlgb(00))\ﬁ S O} y A(S = Rq, and Aq/, =R
(6.27) where 8%%(90) € RY*P for j = a,b.

For example, if g;(¢) = vj) — d; for j = a,b, then

(6.28) where v; = (v5,0')" and vg € RP for j = a,b.

Alternatively, if g;(0) = v}é)Q —d; for j = a,b, then

Ag = {As € R”: (vap © Bo)' Ng = 0, (vp © Bo)'Ag < 0},
(6.29) where v; = (v}5,0")" and v € RF for j = a,b.

With conformable partitioning to that above, we have

7o [T Tw] _ [EeiXuXl EeXuX),
’ I)* Iz/)

T B Xy X!, EeiXyX),|

630)  G= (g) ~ N(0.T). G ~ N(0,Z.), and Gy ~ N(0,Z,),
P

where G, € RP™9 and G € R". In this case, Assumption 72* holds. If the errors are

homoskedastic conditional on X,; with variance o2, i.e., E(¢?|Xx«) = 02 a.s., then

Assumption 7%* holds.
By Corollary 1(b) and the fact that Ay, = R", we have

(6.31) T2 = 4ho) S Xy = Zy 1= Ty Gy ~ N0, T T, T,

Thus, the LS estimator of ¢, is asymptotically normal with covariance matrix
j{;ll}/,jdjl whether or not the restriction g(fg) < 0 is satisfied as an equality.
By Corollary 1(b),

(6.32) TYV2(3 - By) % Ag,

where Ag solves gg(A\g) = infy,en, 3(Ag) With Ag as in (6.27) and gg(A\g) defined
using (6.25) and (6.30). In the simplest case where p = 1, which occurs when ¢(0)
places an upper or lower bound or an equality constraint on a single parameter at
6 = 0y, the closed form expression for A\g given in (6.7) is applicable. If p > 1, a

closed form expression for Xg is given in (6.8) or Theorem 5.
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By Corollary 1(b),
TI/Q(E — o) 4, X& = j5_1G6 - \75_1555X5, where

G, := (gﬁ>7 Gs ~ N(0,Ts), Is = Ee{ X5 X}y,
5

N jﬁé] _ [EXﬁtX’gt EXp X5,

(633) \7* = |: EX(StX[,;t EX&tXét Y

Jsg Ts

Gs € R1, and Js € RI*4.

6.5.3. Dickey—Fuller Regression

In this example, we partition € as in Section 6.1 above with
(634) (9* = (91, 92,93)/, T,D = 94, 6 = (91,92)/, and ¢ := (93.

With this partitioning, Assumptions 8 and 9 hold by (3.29), (4.23), and (4.24). The
set A is a product set Ag x Ag x Ay with

(6.35)

- + —
Aﬁ: {R xR lf930—0 A(s:R, and Aw:Rb.

R~ xR if 930 > 0,
With the above partitioning, from (3.29), we have

N2 [OWR(r)dr A [LrW)dr N [ W (r)dr
Jo= | A[grW(r)dr 1/3 1/2 Ty =V,
X [o W (r)dr 1/2 1
o ToA(W?2(1) - 1)
) G:= 1,Gy = |o — [*w(r)ar) |, and Gy, = G,
(6.36) <Gw>’ (W(l)a W[(ODW( )dr) | , and Gy 4

where Gy, is independent of G, and J,.
By Theorem 3, TTM(/(‘)— o) LA \, where A = (Xg, s, Xip)’ By Theorem 4(c) and
the fact that Ay = R?, we find that

(6.37) Xy = Zy == J; Gy ~ N(0,V 7).

By Theorem 4(a), Xﬁ solves qﬁ@;) = infy,en, gs(Ag), where Ag is defined in (6.35).
Closed form expressions for 3\\[3 are given in (6.8) (with the first inequality reversed
in each indicator function) and (6.23) (with the inequality reversed) for the cases
where 639 = 0 and 639 > 0 respectively. Given \g, Theorem 4(b) gives a closed form

expression for As:

Xs = T 1Gs — T M Tsphg i= oW (1) — (A [L W (r)dr,1/2)As, where
(638) jg = 1, j(sg = ()\]é W(T’)d’/’, 1/2), and G(s = O’W(l).

46



Note that (/)\\[3,/):5) is independent of /Xq/,.

We have
R T(§1 —610) R Eﬁl
R T3/214 (01 — 610) + T5/%(02 — 02) d | A
Y M(0—6) = 500 3 ) N
TY2(0, — 6,0) Ay

(6.39)
where A\g := (Ag1,Ag2)’. Equation (6.39) provides the asymptotic distribution of

the unit root estimator 91 and of the short-run dynamics parameter estimator 94
directly. Note that the latter is asymptotically normal even though the unit root and
time trend parameters, 619 and 099, are on the boundary of the parameter space.

Equation (6.39) also provides the asymptotic distributions of nondegenerate linear
combinations of the estimators 91, . ,54 that include the time trend and intercept
parameter estimators 92 and «93 From these, the asymptotic distributions of 52
and 93 can be determined quite easily. First, the second row of (6.39) implies that
T (51 —010) +T(§2 —02) L, 0 and the first row implies that 7', (51 —010) LA uoxm.
Hence,

(6.40) T(0y — 59) > —HoAs1-

Thus, the asymptotic joint distribution of (T(@l —610), T(/ég —09))" is (/):/31, —uOX51)’,
which is singular. Second, by the first, third, and fourth rows of (6.39),

~

(6.41) TY2(05 — B30) 5 Ns — 191" Ay,

because —T/ 2, (51 —610) = 0p(1). Hence, (6.39) yields the asymptotic distributions
of all of the elements of # and their convergence holds jointly.

6.6. Proofs

Proof of Theorem 4. First, we break up ¢(\) and Z'JZ into terms involving 6,
and . For A\, € Ag x As, define

By Assumption 8§,

g\ = (M) +qp(Ay) for A= (/\'*,)\ip)’,

jnfa(N) = el a, a(A) + ey 9p(Ay), and
(6.43) 2'JZ = 2T Zs + 24T Zop-

Next, we have
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0< Q*(X*) - inf Q*()\*)

A*EA;—}XA&
< > _ . ~ _ .
< g(Ms) N ElAnﬁfX AL qx(Ax) + @y (M) Aigiw @y (Ay)
- q()\) B /\GAﬁanffg XAw q()\)
(6.44) — 0,

where the first equality uses (6.43) and the second holds by the definition of X. In
consequence, we obtain

(6.45) Q*()‘*) = /\*eﬁfog Q*()‘*)-

Part (c) of the Theorem follows from (6.43) and (6.45) .
We now use Assumption 9 to break g.(\:) and Z,J.Z, into terms involving (3
and 6. Let

I
(6.46) A := [ j_pljéﬁ] e Retaxr pL.— Afe RPHO*PHD) and P = I,,, — P-.
VS

Define the norm || - || on RP*? by ||h||, = (W J.h)Y/? for h € RPT9. Let L be the
linear subspace of RP*4 defined by L := {(0/,8') : for some § € R?}. Let L* denote
the orthogonal complement of L with respect to || - ||«. P and P project onto L and
L+, respectively, with respect to || - ||«. Thus, (Phy) J.P+he = 0 Vhy, hy € RPH9. By
some algebra,

(6.47) AJA=HJH) ! and PTG, = [ ,? }
j& G5

(For the second result, note that I, , = [1;{] for F:=[0:1,] € R*P+d HPJ G, =
0 because HA = I,,, and FPJ G, = 56_1G5 because JsFJ; G, = Gs by some
algebra.)

The above results give

2,02 = (P*2,) J.P* Z, + (PZ,) J.PZ,
(6.43) = ZG(HJ H')™ Zs + G Ty ' Gs.

Equations (6.43) and (6.48) establish part (d) of the Theorem.
For M\ = (N3, A5)" € A x Ag, we have

0
6.49 P, = - .
(6.49) <>\5 +Js ljﬁﬁ)‘ﬁ>

For A = (X3, A5)' € Ag x As, define
(6.50) q(S()‘ﬁa As) = ()\6 + jls_lj&ﬁ)\g — j(g_lG&)lj(S()\(S + jé_ljag)\g — jé_ng).
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Then, using (6.47) and (6.49), we have

(M) = (PN, — P2 7.(Pt ), — P+ Z,) + (P)\. — PZ,) J.(P)\. — PZ,)
(6.51) q3(Ag) + qs5(Ag, As)-

Under Assumption 9, for any Ag € RP, we have

(6.52) in

f Ag, Ag) = inf Az, As) = 0.
/\5€A5q6( 8, As) Aigqu‘S( 5,As) =0

Thus, using (6.51) and (6.52), we obtain

(6.53) A*eﬁfx N 4 (M) = Agg’\ﬁ as(Ag)-
Equations (6.43) and (6.53) establish part (e) of the Theorem.
Part (a) of the Theorem follows from

0 < gs(Ag) — A;gf\ﬁ 2s(Ms) < qs(Ag) + qs(Ag, As) — A;gf\ﬁ q5(As)

.54 = ({x A* - inf w(Ax) < )
(6.54) @) = dnf | @) <0
where the equality holds by (6.51) and (6.53) using Assumption 9.
By equation (6.51),

(6.55) a0 = qs(g) + as(Ag, M)

By equations (6.45) and (6.53), g« (X*) = inf) en, gs(Ag)- This, (6.55), and part (a) of
the Theorem give qé(xm /)\\5) = (. The latter and (6.50) yield part (b) of the Theorem.

The first equality of part (f) of the Theorem follows from parts (d) and (e). The
second equality of part (f) holds by applying the argument of (4.6) and (4.7) twice. O

Proof of Lemma 5. For any linear subspace L C RP and any z € RP, ¢, € L is
the projection of z onto L with respect to the norm || - || if and only if £, minimizes
|6 — z||g over £ € LN S(L,,e) for some € > 0. Necessity of the latter holds by the
definition of a projection. To prove sufficiency of the latter, suppose the latter holds
but the former does not. Then, Pz # ¢, and every point on the line segment joining
Prz and /¢, yields a smaller criterion function value than the endpoint ¢,. But this is
a contradiction. R

Now, given Ag € Ag, we can construct two matrices I'y; and I'y such that Iy A\g =
0 and Fbg}\\ﬁ < 0 (element by element), where I'y; and I'yp are comprised of different
rows of I'y, and together they include all the rows of T',. In addition, Faxﬁ = 0.
Let L := {¢ € RP : Tyl = 0, I'u¢ = 0}. For some ¢ > 0, LﬂS(Xﬁ,a) = AgN
S (/)\\[3, g), because the restrictions I'yof < 0 are satisfied for ¢ close to X,B- By definition,
Xg minimizes [|[Ag — Zg|| 5 over Ag € AgN S(Xg,a). Hence, Xg minimizes the same
function over A\g € LN S (Xﬁ, ¢) as well. By the first paragraph of the proof, then, /)\\[3
equals the projection of Zg onto the linear subspace L. [
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7. Sufficient Conditions for the Quadratic
Approximation of the Objective Function

In this section we provide two sufficient conditions for Assumption 1. The first
relies on smoothness of ¢7(0). It uses a Taylor expansion of ¢7(#) about 6y, but does
not require ¢7(6) to be defined in a neighborhood of 6. No such Taylor expansions
are available in the literature, that we are aware of, so our first task is to establish one
for some arbitrary non-stochastic function f. Then, we apply this Taylor expansion
to £7(0) to give the first sufficient condition for Assumption 1.

The second sufficient condition does not require pointwise smoothness of ¢7(0).
Instead, it relies on a stochastic differentiability condition analogous to that of Pollard
(1985) and on the smoothness of the probability limit £(8) of T~ 147(6). For the latter,
we again use the Taylor expansion referred to above that does not require ¢(6) to be
defined on a neighborhood of 6.

7.1. A Taylor Expansion for a Function with Left/Right
Partial Derivatives

Let f be a function whose domain includes X C R®. Let a € X. We want to
derive a Taylor expansion of f(x) about f(a) for points x € X. We suppose X — a
equals the intersection of a union of orthants and an open cube, C(0,¢), centered at
0 with edges of length 2¢ for some £ > 0. (Thus, X — a is locally equal to a union of
orthants.) As defined, X is a cube centered at a with some “orthants” of the cube
removed. We establish a Taylor expansion that only requires f to be defined on X
and whose terms depend on left, right, and/or two-sided partial derivatives of f for
points x in X.

We now introduce some terminology. We say f has left/right (1/r) partial deriv-
atives (of order 1) on X if it has partial derivatives at each interior point of X'; if it
has partial derivatives at each boundary point of X with respect to (wrt) coordinates
that can be perturbed to the left and right; and if it has left (right) partial derivatives
at each boundary point of X wrt coordinates that can be perturbed only to the left
(right). For x € X, let a%jf(m) denote the 1/r partial derivative wrt x; (the j-th
element of x) of f at x.

Note that the shape of X’ is such that Vo € X and for all coordinates x; of x it
is possible to perturb x; to the right or left or both and stay within X'. Thus, it is
possible to define the left, the right, or the two-sided partial derivative of f wrt x; at
xVj < sand Vx € X. This is not the case for some other shapes for X. For example,
if X' is the cone {x € R2:21>0, 21 < x2}, then x9 cannot be perturbed to the left
or right within X at x = 0.

We say f has 1/r partial derivatives of order k on X for k > 2 if f has 1/r partial
derivatives of order k — 1 on X and each of the latter has 1/r partial derivatives on
X. Let (0%/0x;,, ...,0x;,) f(z) denote the k-th order 1/r partial derivative of f at
wrt ;,, ..., T;,, where i, is a positive integer less than s 41 V¢ < k. We say f has
continuous 1/r partial derivatives of order k£ on X if f has 1/r partial derivatives of
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order k on X, each of which is continuous at all points in X', where continuity is
defined in terms of local perturbations only within X.

Theorem 6. Let f be a function whose domain includes X C R°. Let a € X.
Suppose X —a equals the intersection of a union of orthants and an open cube C(0,¢)
for some € > 0. Suppose f has continuous l/r partial derivatives of order n+ 1 on
X for some integer n > 0. Then, for any x € X, there exists a point ¢ on the line
segment joining x and a such that
n
=2

k=0

Dkf —a,..,x—a)+ (n+1 D”Hf( (z—a,...,x—a),

=)

where D°f(a)(x—a,...,x—a) := f(a) and for k =1,...n+1 D¥f(a)(z—a,...,x—a)
denotes the k-linear map DF f(a) applied to the k-tuple (x—a, ...,x—a) defined by

s ak
Df@=amz-a)= 3 5 % T (@ — ) X x (i, — ai,).

Comment. If the 1/r partial derivatives of f of order k are continuous wrt X" at a
(i.e., they are continuous where continuity is defined in terms of local perturbations
only within &), then they are symmetric (i.e., (0?/0x10z2) f(a) = (0%/0x2021) f(a)
for k = 2, etc.). This holds by the same argument as used to prove the symmetry
of mixed (two-sided) partial derivatives, e.g., see Courant (1988, Ch. II, Sec. 3.3,
pp. 55-56).

7.2. A Sufficient Condition Via Smoothness

The first sufficient condition for Assumption 1 is the following:

Assumption 1*. (a) The domain of {1 (0) includes a set O that satisfies (1) OF —0g
equals the intersection of a union of orthants and an open cube C(0,¢) for some
e >0 and (ii)) © N S(0g,e1) C OF for some e1 > 0, where © is the parameter space
of Assumption 1.

(b) £7(0) has continuous l/r partial derivatives of order 2 on ©F VT > 1 with prob-
ability one.

(c) For all vy — 0,

sup
0c6:(|0—00|| <y

= Op(l)a

BV 6_25 (9)_6_25 (60) | B7!
T \ 9000 " 000y TV ) T

where %ET((‘)) and 8969,&[(9) denote the s vector and s X s matriz of /v partial
derivatives of lr(0) of orders one and two respectively.

Assumption 1*(a) specifies a set @ on which ¢7(0) must be defined. Near 6y, it
must be a union of orthants centered at 6. For each § € ©F, £1(0) has a quadratic
approximation via Theorem 6. On the other hand, Assumption 1* does not require
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that near 6y the parameter space © is a union of orthants centered at 3. What
Assumption 1* requires is that © is contained in such a set near 6p. For example,
we could have 6y = 0, ot = {9 ER*:0= (91,92),, 0, > 0, 0o > 0, ||(9|| < bl}
and © = {6 € R? : 0 = (61,02), 61 >0, 61 < 0o, ||0]| < b2} for some constants
0 < b1,by < co. In this case, the parameter space © is not a union of orthants near
o, but Assumption 1*(a) still holds. If © happens to be a union of orthants local to
6o, then one can take ©F =0 or O = © N C(Ay,<) in Assumption 1*.

Assumption 1*(b) is designed to hold in cases in which 6y is on the boundary of
the set where the objective function can be defined, such as in the random coefficient
regression example. Of course, it also holds in cases in which 6y is on the boundary
of the parameter space, but the objective function can be defined on a neighborhood
of §y. In such cases, one can take ©T to be an open cube C(y,<) for some € > 0.

Assumption 1*(c) can be veriﬁed in the case of non-trending data as follows.

Suppose By = TY2M, =2 8989, r(0)/T % 8989,5(9) uniformly over § € ©N S(6y,e2) for
some g3 > 0 and some non-random function 8569,6(9) that is continuous at #y. Then

Assumption 1*(c) holds. The uniform convergence of ==~ 6969, ¢7(0)/T can be established
via a uniform law of large numbers, e.g., see Andrews (1992).

When stochastic or determin1st1c trends enter the objective function in a linear
fashion, then part of the matrix 8989’€T(9) does not depend on 8 and Assumption

1*(c) holds trivially for that part of 8969,6 ().

Lemma 6. (a) Assumption 1* implies Assumption 1 with Dlr(0o) and D*01(00) of
(3.1) given by agéT(Qo) and agagng(QO) (i.e., by the £/r partial derivatives of b1 (6)
at Oy of orders one and two) respectively.

(b) If Assumption 1* holds and BTll ag;QIET(QO)BgFl LT for some non-random
matriz J, then Assumption 1 holds with Dlr(0p) of (3.1) given by 89€T(¢90) and

D%07(60) of (3.1) given by either 698—629,5T(90) or —BL.JBr.

7.3. A Sufficient Condition Via Stochastic Differentiability

Pollard (1985) introduced a concept of stochastic differentiability, showed how
it could be used to obtain the asymptotic normality of extremum estimators, and
gave sufficient conditions for it using a Huber-type bracketing condition, an empiri-
cal process bracketing condition, and a combinatorial Vapnik—Cervonenkis condition.
The stochastic differentiability condition allows one to consider objective functions
that are not pointwise differentiable. These include the objective functions for quan-
tile regression estimators, censored quantile regression estimators, Huber regression
M-estimators, method of simulated moments estimators, etc.

Here we extend Pollard’s stochastic differentiability concept to cover differentia-
bility at a boundary point of the parameter space © and to cover sequences of random
functions that are not necessarily averages of iid functions. We say that a sequence
of random functions {gr(0) : T' > 1} is stochastically differentiable at 6y for © C R*
with random derivative s-vector Dgr(6p) if

gr(0) = gr(00) + Dgr(0o)' (0 — 60) + rr(6) and
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(7.1) sup  Tlre(0)]/(1+ ||TV2(0 = 60)][)* = 0p(1)
0€0:10—00/| <7y

for all v — 0. We apply this definition to random variables gr(6), such as samples
averages, that are Op(1) V8 € O but not o,(1) V8 € O, where O denotes some
neighborhood of 6y, and for which T'/2Dgr () = O,(1).

Note that the stochastic differentiability condition is weaker when 6y is on the
boundary of © than when 6 is in the interior because the supremum is taken over a
smaller set.

Also note that compared to Pollard’s (1985) definition of stochastic differentia-
bility, our definition is slightly more general even in the context that he consid-
ers. Specifically, his definition is obtained by taking gr(f) to be a sample aver-
age of iid random functions and by replacing the term 1/(1 + ||TY2(0 — 6o)||)? by
/(14 ||TY2(0 — 60) ) |T (8 — 6)]|). Our formulation seems simpler. In addition,
it allows one to easily obtain stochastic differentiability of a function gy (6) from the
stochastic differentiability of an approximating function g}.(f) provided ¢7.(6) satisfies

(7.2) T  sup  |gr(0) — gr(6o) — g7(0) + 97(60)] = 0p(1)
6©:19—00!|<vr

for all yp — 0. In this case, both gr() and g¢}.(f) have the same random derivative
s-vector Dg}.(0g). With Pollard’s definition, (7.2) is not sufficient to yield stochastic
differentiability of g7(0) given that of g.(9).

As mentioned above, empirical process results can be used to verify the stochastic
differentiability condition. Pollard (1985) shows this for empirical processes based on
iid random variables. For dependent data, the empirical process results for Doukhan,
Massart, and Rio (1995) and Arcones and Yu (1994) can be used. For other references,
see Andrews (1994b). Also, the Huber-type bracketing condition in Pollard (1985)
applies with dependent random variables.

Our second sufficient condition for Assumption 1 is the following:

Assumption 12*. (a) Br = T2,

(b) For some non-random function £(0), T~ r(0) 2 0(0) V6 € ©NS(0o,e) for some
e > 0.

(c) The domain of €(0) includes a set O that satisfies conditions (i) and (ii) of
Assumption 1*(a).

(d) £(0) has continuous l/r partial derivatives wrt 0 of order two on O with l/r par-
o2

Wﬂ(ﬁ) of orders one and two, respectively, that satisfy

tial derivatives %5(9) and
2.0(80) = 0.
(e) {T Y (0) —£(0) : T > 1} is stochastically differentiable at 0y for © with random
derivative vector denoted T~ DIr (o).

Assumption 1?*(a) implies that Assumption 1%* only applies to models without
deterministically or stochastically trending variables. Assumptions 12*(b)—(d) require
that the normalized objective function has a limit function that is smooth at 6q, at

least in the directions determined by ©. This is a weaker condition than smoothness
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of the objective function itself because the limit function is typically an integral (by
the law of large numbers) and integration is a smoothing operation. The assumption
that %6(90) = 0 in Assumption 12*(d) typically holds because the probability limit
6o of § minimizes the probability limit ¢(8) of T—¢7(6) over ©.

Lemma 7. Assumption 12* implies Assumption 1 with D*(7(0y) = —T'J in (3.1),

where J = —65—29,5(90) is the negative of the s X s matriz of I/r partial derivatives
of £(0) of order two at .

7.4. Examples (Continued)

In this section, we use the results of the previous two subsections to verify As-
sumption 1 for the first three examples.

7.4.1. Random Coefficient Regression

We verify Assumption 1 using Assumption 1* and Lemma 6(b). Let 7 = O N
C(0y, ) for some e < min{M; : j <5} (where the M; are specified in the definition
of ©). Then, ©F — 0y equals the intersection of the orthant A := (RT)? x R¥™P and
the open cube C(0,¢), as required by Assumption 1*(a)(i). Also, © N S(6p,e1) C OF
for 0 < €1 < e, as required by Assumption 1*(a)(ii). The quasi-likelihood function
¢7(0) of (3.12) has continuous 1/r partial derivatives of order two on OV, as required
by Assumption 1*(b).

The matrix of 1/r partial derivatives of order two of ¢7(6) is

; . 2res?(6) 3— var(6) wew? res;(ﬁ) W
0 var; () vars ()
(73)  mlr(0) ==
0000 — res(6) W2 1 WV
var2(f) ! vare(6) e
By a uniform LLN (e.g., see Andrews (1992, Theorem 4) using Assumption TSE-1C),
(7.4) su T‘18—2£ 0 -T7'E s tr(0) 20
' veo| 0000 " 2600 " '
Also, TflEag—gg,ET(H) is continuous at y. In consequence, Assumption 1*(c) holds.
By (7.4), —Tflag—ge,ﬁgp(é)o) L, 7, where J is defined in (3.16). In consequence,

Lemma 6(b) is applicable and Assumption 1 holds with D¢r(0g) and D?¢r(6o) of
(3.1) as defined in (3.16).

7.4.2. Regression with Restricted Parameters

Assumption 1 holds trivially in this example because Rp(8) = 0.

7.4.3. Dickey—Fuller Regression

Assumption 1 holds trivially in this example because Rr(0) = 0.

o4



7.5. Proofs

Proof of Theorem 6. When s = 1, X is either an open interval that contains a or
a half-closed interval with a at the closed end. The Theorem holds in the former case
by the standard one dimensional Taylor’s Theorem. It holds in the latter case because
standard proofs of the one dimensional Taylor’s Theorem (e.g., see Apostol (1961,
p. 366)) go through with x allowed to be an endpoint of X provided the derivative of
order k of f is redefined to be the 1/r derivative of order k of f. The reason is that
Rolle’s Theorem (or the mean value theorem), upon which the proof depends, does
not require f to be differentiable at the endpoints of X.

When s > 1, standard proofs of Taylor’s Theorem (e.g., see Courant (1988, Ch. II,
Sec. 6, pp. 78-82)) apply Taylor’s Theorem for s = 1 to the function F(\) = f(a +
Az —a)) for A € [0,1] and use the chain rule for multi-variable functions to verify
the necessary differentiability conditions on F' and to yield the form of the Taylor
expansion.

The main condition of the chain rule is that the functions involved are differen-

tiable at the appropriate points. In place of the condition of differentiability, we use
the condition of 1/r differentiability. We say that a function f is 1/r differentiable at
x if it can be approximated at x by a linear function and the approximation holds for
all perturbations within X'. That is, f(x + h) = f(x) + A’h + e, and |[ep]| — 0 as
||h|| — 0 Vax+h € X for some vector A that is independent of h. Now, standard proofs
of the chain rule (e.g., see Courant (1988, Ch. II, Sec. 5.1, pp. 69-73)) go through
straightforwardly with partial derivatives and differentiable functions replaced by 1/r
partial derivatives and 1/r differentiable functions.
To show that the functions F()), 5F(X), ..., 5= F()) are 1/r differentiable for
A € [0,1] (which is needed to apply our generalized chain rule), we use a general-
ization of the result that a function with continuous partial derivatives at a point is
differentiable at that point. Standard proofs of this result (e.g., see Courant (1988,
Ch. II, Sec. 4.1, pp. 59-62)) go through straightforwardly to show that a function
with continuous 1/r partial derivatives at a point is 1/r differentiable at that point.
In consequence, under the assumptions of the Theorem, the chain rule for 1/r differ-
entiable functions is applicable and the proof of Taylor’s Theorem for continuous 1/r
partially differentiable functions is the same as that for continuous partially differen-
tiable functions, which is referenced above. O

Proof of Lemma 6. We prove part (a) first. By the Taylor expansion of Theorem
6, ¢7(0) satisfies (3.1) with

(15)  Re(0) =10 6oy (ﬁw*) - %ET(%)) (6 o),

where 07 lies between 6 and 6y, when 6 # 0 and R7(0) = 0 when 6 = 6. Thus,

sup |Ry(0)|/(1+ || Br(6 — 6o)|])?
0€0:||0—00||<vr
1 v, 02 H?
< sup 3|(Br(0 —60)) By tp(67) — —6969’6

7 00)) Bt
T 0e0:0—00]| <y ST 7(60)) By
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x Br(0 = 60)|/||Br(6 — 6o)[|*
’ 82 62
= LB [ ——07(0) — ——07(0y) | BA!
N 96@:\|§E£JH§7T 2 T (898&'€T( ) 8989'€T( 0)> T

(7.6) = Op(l)a

where the equality holds by Assumption 1*(c).

Part (b) follows from part (a) because the difference between the third summand
on the right-hand side of (3.1) defined with D%*(7(6y) = 65—;9,€T(90) and it defined
with D?¢r(0y) = —B}J Br can be absorbed in the Rr(f) term without affecting

Assumption 1, due to the 1/(1 + ||Br(0 — 6p)||)? factor in Assumption 1. O

Proof of Lemma 7. Define r7(6) via
(77) T’lﬁT(é)) - E(Q) = T*1€T(90) - E(é)o) + T*1D€T(90)’(9—90) + T’T(H).

By Assumption 1%*(e), rp(6) satisfies (7.1).
By Theorem 6 and Assumptions 12*(c) and 1%*(d), a Taylor expansion of order
two of £(f) about 6y gives: V8 € © N C(0y,¢),

£00) = £(00) + -250(00)(0 — ) + 30 — o)=L (67)(0  by)
(7.8) = 0(60) — 5(8 — 60)'T (8 — o) + o(]|8 — bo]|*),

where 01 lies on the line segment joining 6 and 6. The second equality holds because

%6(90) =0 and 83—629,5(9) is continuous at g by Assumption 1%*(d).

Combining (7.7) and (7.8) gives

T_IET(Q) = T_IET(Q()) + T_IDET(Q())/(Q — 90) - %(9 — Qo)lj(tg — (90)
(7.9) + 0(]10 = 6ol1) + r1(6).

Combining (7.9) with (3.1) multiplied by 7-! and with D*¢1(6y) = —TJ yields
(7.10) Ry (0) = Tre(0) + o(T10 — 6o]]?).

This and (7.1) yield Assumption 1. O

8. Proof of Consistency for the Examples

In this section we verify Assumption 4 (consistency) for each of the first three
examples.

8.1. Random Coefficient Regression

Consistency of the QML estimator of Example 1 is established by verifying As-
sumptions 4*(a) and 4*(b*). Assumption 4*(a) holds by the uniform LLN of Andrews
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(1992, Theorem 4) using Assumption TSE-1D and the standard pointwise LLN for
iid random variables with finite mean. The function ¢(6) of Assumption 4*(a) is

0(0) := —3In(27) — 1 En(05 + X{D(61,62)X;)
(8.1) — $E(Y: — 05 — X{64)* /(65 + X{D(01,62) Xy).

To verify Assumption 4*(b*), we note that the function ¢(6) is continuous on ©
and O is compact. It remains to show that £(f) has a unique maximum on © at 6.
First we show that for any (01,62,63) in the parameter space the third summand of
£(9) is uniquely maximized by (64,05) = (040, 6050). Note that the third summand of
5(9) can be written as —%E(95 — 050 + X£(94 — 940))2/(93 + X{D(@l,eg)Xt). In
consequence, the third summand is uniquely maximized at (f49,050) if and only
if (iff) E(a'W;)?/(05 + X[D(01,05)X;) > 0 whenever a # 0 iff E(a'W;)?/(030 +
X{D(010,6020)Xt) > 0 whenever a # 0 iff EW;W//vari(6y) > 0, where the second
“Uf” holds because (030 + X;D(010,020)X:)/(03 + X;D(61,02)X;) is positive with
probability one. The last condition holds by (3.18).

Next, we show that, for any parameter 0 = (67,605,603, 8,050)", £(6) is uniquely
maximized when (0], 05,03) = (09,059, 030)". For 6 as above, £(0) can be written as

E930 + X[D(010,020)X;

(8.2) £(0) = —3In(2w) — 3EIn(03 + X;D(61,02)X;) — 5 05 + X/D(01,02) X,
t )

The function Inz 4 y/z is uniquely minimized over € R at x = y. Thus, ¢(6)
is minimized by any vector (6,65,03,0),050) for which P(03 + X[D(01,0)X; =
030 + X{D(610,020)X;) = 1. The latter holds only if (67,65,03)" = (8}0,05,030)",
because EW2WZ /var?(8y) > 0 (by (3.18)) implies that E(a’W2)?/var?(6p) > 0
Va # 0, which implies that P(a/W? = 0) = 1 only if @ = 0, which in turn implies
that P((ell - ,1079/2 - 9,20793 - 930)I/Vt2 = 0) =1 only if (9/17 ,2793), = (9/107 ,207930),7
as desired.

Thus, Assumption 4*(b*) holds and the verification of Assumption 4 is complete.

8.2. Regression with Restricted Parameters

Consistency of the restricted LS estimator 0 (Assumption 4) is established as
follows. Because § maximizes ¢7(f) over © up to o0,(1) and 0y € ©, we have

T T
(83) > (Y= X{0)* < (Y~ X{00)* + 0p(1).
t=1 t=1
Some algebraic manipulations yield
(8.4) (6—60) > XiX[(6—00) <2 e X[(6 — 6o) + 0p(1).
t=1 t=1
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Thus, using the Cauchy—Schwarz inequality, we have
T 1/2 2 T -1/2
(Z X,J(,{) 0 —6y)| <2 (Z XtXt’> D eX:
t=1 t=1 t=1

T 1/2
(8.5) X (ngg) (6 — 60)|| + 0p(1).
t=1

Completing the square yields

“1/2 4

1/2 T
ZXtXt (6 - 6o) ZXQ({) > aX,
= t=1

-1/2
(8.6) < (ZXtXt> ZatXt +0,(1).
t=1
From (8.6), if

T 12
(8.7) (Z XtX,§> » eXi=0
t=1 t=1

1/2
then (Zthl XtXt’> (6 — 6p) = O,(1). The latter, the fact that 713 X, X7 %

EX X/ > 0 implies that 0 2 gy and Assumption 4 holds.
Equation (8.7) holds by the CLT and the LLN because 7~/2 Zle et Xi = 0p(1)

~1/2
and <T*1 ST XtXL{> = (EXX}) /24 0,(1). This complete the verification of

Assumption 4.

8.3. Dickey—Fuller Regression

Consistency of 9 for Example 3 is proved in a manner similar to the proof for
Example 2. By replacing X[(0 —0p) with (X;B3")Br(8—0) in equat1ons (8.4)—(8.7),

7 1 1,
we obtain the following analogue of (8.7). I ( U X X! B, ) B e Xy

’ —1/2 —~
= 0,(1), then (B;l ST XtX,ngl) " Br(@ - 60) = 0,(1). By (3.29), the former

, 1/2
condition holds and <B;1 Zle XtXt’B;l) converges in distribution to J1/2, a

matrix that is nonsingular with probability one. Hence, By (5— 6o) = Op(1). Because
Byr = YpM with M nonsingular and Ay, (Y1) — 00, this yields 0 2, 0 under 6.
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9. Generalized Method of Moments and Minimum
Distance Estimation

9.1. General Results

In this section, we show that the results of Section 3 are applicable to generalized
method of moments (GMM) and minimum distance (MD) objective functions. We
determine the components of the quadratic approximations of (3.1) and (3.3) for
such objective functions and provide sufficient conditions for Assumptions 1-3. These
sufficient conditions do not allow for stochastic or deterministic trends. They do allow
for rescaled deterministic trends, however, as in Andrews and McDermott (1995).

The most general asymptotic results available for GMM/MD estimators are those
of Pakes and Pollard (1989). Their results allow for a nondifferentiable objective
function, as occurs with simulation estimators and with estimators for econometric
models that exhibit kinks or discontinuities. Their asymptotic distributional results
require the true parameter 6y to be an interior point. The results given here generalize
theirs to allow 6y to be on a boundary. The conditions we provide are identical to
those of Pakes and Pollard (1989) when 6 is an interior point. Furthermore, the
stochastic equicontinuity condition that is required is slightly weaker when 6 is on a
boundary than when it is an interior point. In consequence, the sufficient conditions
for stochastic equicontinuity given in Pakes and Pollard (1989) are applicable when
0y is on a boundary. If the objective function is smooth, the stochastic equicontinuity
condition is easy to verify, and primitive sufficient conditions for it are given below.

For the reader’s convenience, we adopt the same notation for GMM/MD estima-
tion as that of Pakes and Pollard (1989) (but with the sample size given by T' rather
than n). The GMM objective function is

(9.1) lr(0) == ~T||Ar(0)Gr(0)]1%/2,

where Gr(0) : © — RF is a vector of sample moment conditions, such as a sample
average, Ap(6) : © — R¥*¥ is a random weight matrix, and ||-|| denotes the Euclidean
norm. (The division by two is strictly for convenience. It eliminates some constants
in the formulae below.) The random variables Gr(#) and Ar(6) are normalized
such that each is O,(1), but not o0,(1) (except Gr(6p), which is O,(T~/2)). The
MD objective function is exactly the same except that Gp(f) is not a vector of
moment conditions, but rather, the difference between an unrestricted estimator ET
of a parameter £, and a vector of restrictions h(6) on &,. That is, Gr(0) = & — h(6),
where &y = h(6p).
In place of Assumptions 1-3, we use the following assumptions:

Assumption GMM1. (a) For some non-random function G(6), Gr(0) 2 G(0)
V0 € ©NS(0y,e) for some e > 0.

(b) G(0) = G(0g) +T(0 — o) + o(]|0 — Oo|) as ||0 —Oo|| — O for 6 € © N S(by,e) for
some € > 0, where T' is a non-random k X s matriz.

(c) G(60) = 0.

(d) For all v — 0,
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supgeero—sol<vr I |G (8) = G(8) = Gr(6o)[|/(L+T"/(|0 —bo|) = 0p(1) under o.
(e) For some non-random nonsingular matriz A and for all v — 0,
SUPgeo:|[9—b,|| <y |[AT(0) — All = 0p(1).

Assumption GMM2. TV2G7(6) = O,(1).
Assumption GMMS3. T is full column rank s (< k).

Assumption GMM1(a) can be verified using a pointwise LLN in the GMM context
or by showing that ET 2, ¢, in the MD context. (Assumption GMM1(a) is employed
because it serves to define the limit function G(#). It is not actually used in any of
the proofs. Any function G(6) that satisfies Assumption GMM1(d) could be used
to define G(6). There is little to be gained by this, however, because it is hard to
imagine a case for which Assumption GMM1(d) holds for a function G(-) that does
not satisfy Assumption GMM1(a).)

Assumption GMM1(b) holds if G(0) is differentiable at y. In this case, I' =
%G (fp). This requires that G(0) is defined on a neighborhood of 6. In Section 9.2
below, we provide sufficient conditions for Assumptions GMM1(b) when G() is not
defined on a neighborhood of g using left /right partial derivatives.

Assumption GMM1(c) holds if the moment conditions are correctly specified in
the GMM context and if the parameter £, satisfies the restrictions £, = h(fp) in the
MD context.

Assumption GMM1(d) is a stochastic equicontinuity condition. It can be verified
using the empirical process results of Pakes and Pollard (1989) or any of the empirical
process results given or referenced in Andrews (1994b). In such cases, the condition
actually is verified with the denominator “1 +T%/2||6 — 6;||” replaced by “1.”

Alternatively, if G () is smooth in 6, then Assumption GMM1(d) can be verified
casily with the denominator “14+7/2||§—6y||” replaced by “T"/2||—6y||.” To see this,
suppose Gr(0) is differentiable at 6y with derivative matrix %GT(Q) that satisfies:
For all vy — 0,

(9.2) sup
0€6:(/0—00]|<vyr

%GT@ —FH = 0,(1).

(This condition can be verified using a uniform LLN and continuity of the probability
limit of %GT(Q) at 0p.) Then, applying the mean-value theorem element by element,
we have

(93) Gr(0) = Gr(00) + s Gr(0")(0 — 00) = G (Bo) + (0 — ) + o, (110 — o]

uniformly over {6 € © : || — 6o|| < v}, where 67 lies between 6 and 6y and may
differ across rows. Combining this result with Assumptions GMM1(b) and GMM1(c)
gives

(9.4) 1G7(0) — Gr(6o) — G(O)]| = 0p(]|6 — bol])
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uniformly over {# € © : ||0 — 0y|| < vp}. This immediately implies Assump-
tion GMM1(d) using the “T/2||@ — g||” part of the denominator in Assumption
GMM1(d).

The above verification of Assumption GMM1(d) using smoothness relies on G (6)
being defined on a neighborhood of 8y (in order to define the derivative of G7(0) at
o). Below we show that Assumption GMM1(d) can be verified using smoothness
even when Gr(0) is not defined on a neighborhood of 8y by using left/right partial
differentiability of G(0).

Assumption GMM1(e) requires that the weight matrix Az(6) is well behaved. It
can be verified using a uniform LLN and continuity of the probability limit of Az (6)
at 90.

The stochastic equicontinuity condition of Assumption GMM]1(d) differs some-
what from that given in Pakes and Pollard (1989). The following result, however,
shows that it is equivalent to that of Pakes and Pollard (1989) given the other as-
sumptions. We state Assumption GMM1(d) as is, because it is in the most convenient
form for verification.

Lemma 8. Under Assumptions GMM1-GMM3 except GMM1(d), Assumption
GMM1(d) is equivalent to each of the following two conditions: For all vy — 0,

(a) suPgeer|io-oofj<yy [|GT(0) = G(0) = Gr(0o)|l/ (T2 + |GO)II) = 0p(1) and
(b) suPgeer|jo- o)<y, [|GT(0) =G (8) = Gr(00)||/ (T~ +||Gu(B)|| +]IG(O)]]) = 0p(1).

Comment. Condition (b) of the Lemma is the same as that of Pakes and Pollard
(1989, condition (iii) of Theorem 3.3).

The following result shows that under Assumptions GMM1-GMMS3 the objective
function ¢7(6) has a quadratic approximation given by

0r(8) == —T||Ar(60)Gr(00)||2/2 — TG (80) A’ AT(6 — ;)
(9.5) + 3(0 — 60) (=TT A'AT)(0 — 6o) + Rr(6),

where Ry (0) satisfies Assumption 1. That is, (3.1) and (3.3) hold with

DUlp(6g) := —TT' A’ AG1(6y), D*p(80) := —TT'A'AT, Jyp := T :=T'A'AT, and
(9.6)  Zp = (T'AAD) T A ATYV2G o (6p).

Theorem 7. (a) Assumptions GMM1 and GMM2 imply that Assumption 1 holds
with Dlr(0o) and D*07(6p) as in (9.6).

(b) Assumption GMM2 implies Assumption 2.

(c) Assumption GMM3 implies Assumption 3.

Assumption 4 (consistency of 5) can be established in the GMM/MD case using
Assumption 4* as in Section 3. Alternatively, it an be established using Theorem 3.1
and Lemma 3.4 of Pakes and Pollard (1989), which is applicable even if 6 is on the
boundary of ©.
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9.2. Sufficient Conditions for Assumption GMM1

Next, we provide simple smoothness conditions that are sufficient for Assumption
GMM1 and that apply even when G(6) and G () are not defined on a neighborhood
of 90.

Assumption GMM1*. (a) Assumptions GMM1(a), GMM1(c), and GMM1(e) hold.
(b) The domain of G(0) includes a set ©F that satisfies conditions (i) and (ii) of
Assumption 1*(a). Each element of the k-vector-valued function G(8) has continuous
l/r partial derivatives of order one on OV.

(c) Each element of the k-vector-valued function Gr(0) has continuous l/r partial
derivatives of order one on O VT > 1 with probability one.

(d) For all sequences of scalar constants {yp : T > 1} for which vy — 0,

0 0

89/ GT(G) 69/G (00)

op(1),

sup
0c6:]|0—0o]| <y

where g 9. Gr() denotes the k x s matriz of l/r partial derivatives of Gr(0).
(e) 89/GT(90) L= ag,G(QO) where -2;G(0y) denotes the k x s matriz of /r

partial derivatives of G(6) at 6.

£

Lemma 9. Assumption GMM1* implies Assumption GMMI1.

9.3. Multinomial Response Model
9.3.1. Method of Simulated Moments Estimator

For the Multinomial Response Model Example, we consider a method of simulated
moments (MSM) estimator. This is a GMM estimator. The moment conditions are
defined as follows. Let m(Z;,0) denote the conditional expectation of D(Z;h(n;,0))
given Z;. Let W (Z;,6) denote an s x m matrix of instruments. See McFadden (1989)
regarding the choice of instruments. The moment conditions, then, are

T
(9.7) + Y W (Z,0)(dy — m(Z,0)).

t=1

These moment conditions have expectation zero when 6 = 6y, as desired. Following
McFadden (1989) and Pakes and Pollard (1989), we take the number of moment
conditions to equal the dimension s of 6. In this case, the choice of weight matrix is
immaterial, so we take Ap(6) = I.

The conditional probability vector 7(Z;, #) is computationally intractable in many
cases because it is a vector of high dimensional integrals. In consequence, we replace
it in the moment conditions by a simulated probability

Mm

(9.8) §(Z,0) =5 >  D(Zih(ny;,0)

j=1
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where 7,1, ..., ;¢ are simulated random variables each with the same distribution as 7,
and &, := (Z¢,my, My1s -y Myg) 18 1id across ¢ = 1,...,T. (With crude frequency simula-
tors, 11, ..., ;g are iid. With variance reduced simulators, they are not independent.)
The same simulated random variables are used for all .

The simulated moment conditions upon which the GMM estimator is based are

T
(9.9) Gr(0) ==+ > WI(Z,0)(d: — 75(Z:,9)).

t=1

The true parameter vector is

(9'10) to ::( ,107 /207 /30)/ = (0/7 ,207 éO)lv

where 019 € RP, 029 > 0 (element by element), (61, 602) are the parameters that must
be non-negative, and #3 contains the remaining parameters. The parameter space ©
is

©:={0eR:0=(0,0,0,), 6, >0, 62 >0,
(911) 93 = (931, ...,93J),, Cej S 93j S Cuj Vj = 1, ceny J}
for some constants —oo < ¢ < ¢y < 0o for j =1,...,J. We assume that the true
subvector f3g of #y is not on a boundary. The parameter space could incorporate

additional restrictions without affecting the results given below, provided none are
binding at 6. Note that © is not necessarily a bounded subset of R?®.

9.3.2. Quadratic Approximation of the GMM Objective Function
The function G(#) and the matrix I" that appear in Assumption GMM1 are

G(8) = EGr(8) = EW (Z,0)((Zy,00) — 71(Zt,0)) and

0
12 I'=—G(0
(9 ) 89,G( 0)7
where %G(@o) denotes the matrix of right partial derivatives of G(6) at 6y, see
Section 7.

The components of the quadratic expansion of the GMM criterion function given
in (3.1) and (3.3) are as follows:

Der(0o) := TT'Gr(6o), D*0r(6p) := —TT'T,
(9.13) Jr =7 =TT, and Zp := (I'T) ' TY2G1(6y).
We verify Assumptions GMM1-GMMS3 and 4 for this example using the approach

of Pakes and Pollard (1989, Sec. 4.2). To do so, we use the assumptions stated above
plus the following:

(i) 1G(8)|| > 0 Ve > 0.

inf
0€O:||0—00]||><
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(ii) G(0) has continuous right partial derivatives with respect to 6 at 6y.
(iii) T is nonsingular.
(iv) Esup|[W(Z,6)]| < .

0co

(v) E sup |W(Z,0)])? < oo for some & > 0.
0c0:||0—0o||<e

(vi) {B(0): 0 € ©} is a VC class of sets, where
B(6) :={(2,m) € R® x R" : 2'h(n,0) > 0}.
(vil) Fyw :={W(-,0) : 0 € ©} is a Euclidean class of functions with
(9.14) envelope F that satisfies EF?(Z;) < oo.

VC and Euclidean classes are defined in Pakes and Pollard (1989, Sec. 2).

A sufficient condition for (i) is that © is bounded, G(¢) is continuous on ©, and
G(6) has a unique zero at p. A sufficient condition for (vi) is that h(n,0) is of the
form

(9.15) h(n,0) = B1(0) + B2(0)n + ' B3(0)n

for some functions 3;(0), j = 1,2,3. This holds for the probit models considered by
McFadden (1989) and those discussed above. Sufficient conditions for (vii) are that
© is bounded, condition (v) holds, and W (-,0) satisfies the Lipschitz condition

IW(Z,0%) —W(Z,0)|| < o(2)||0* — 0|] VZ € R**™ Vh*,0 € © and
(9.16)  E¢*(Z;) < oo.

Sufficiency of the above conditions is shown in Pakes and Pollard (1989, Sec. 4.2).

We now verify Assumptions GMM1-GMM3 and 4. Assumption GMM1(a) holds
by a pointwise LLN for iid random variables with finite mean using (iv). GMM1(b)
holds by the one-term Taylor expansion of Theorem 6 in Section 7 below. GMM1(c)
holds because Edy = En(Z,00) = E7s(Z;,6p) using the assumption of identical
distributions of 7,71, ...,7;5. GMM1(d) holds via empirical process results by the
argument of Pakes and Pollard (1989, Sec. 4.2) using (v)—(vii). GMM1I(e) holds
because Ap(6) = I,. GMM2 holds by the CLT for iid square integrable random vari-
ables using (v). GMM2 holds by (iii). Assumption 4 holds by verifying Assumption
4*. Assumption 4*(a) holds by an empirical process uniform LLN by the argument
of Pakes and Pollard (1989, Sec. 4.2) using (iv), (vi), and (vii). Assumption 4*(b)
holds by (1).

Given that Assumptions GMM1-GMM3 and 4 hold, we obtain T 1/2 (5 —by) =
O,(1) by Theorems 1 and 7, where 6 is the MSM estimator.

9.3.3. Parameter Space

Assumptions 5* and 6 hold in this example with A := (RT)P x R*P.
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9.3.4. Asymptotic Distribution of the MISM Estimator

In this example, J = I'T is non-random and nonsingular. Assumption 7 holds
by the CLT for iid square integrable random variables with

(9.17)G ~ N(0,7) and T := EW (Zy,00)(dy—7s(Z4,00))(de—7s(Zy,00)) W (Zy, 00) .
If 9,141, .-, Mg are independent conditional on Z; a.s., then 7 simplifies to

(9.18) Z = (1+ %) EW(Z,00)(Diag(n(Zy,60)) — w(Z, 00)7(Zt, 00) )W (Zy, 60)'.

By Theorem 3, Tl/Q(E —6y) <, X, where ) satisfies (5.1) with (G,J) defined in
(9.17) and A = (RT)P x R*P.

9.3.5. Asymptotic Distribution of Subvectors of the MSM Estimator

In this example, the matrix J (= I''T") usually is not block diagonal. In conse-
quence, we partition 8 as in Section 6.1 with » = 0, where r is the dimension of ).
Thus, no parameter v appears. In this case, we write

(9.19) 6= (8,8, 3=06,, and § = (6,6})"
The set A is a product set Ag x As with
(920) Aﬁ = (R+)p and Ag := R°*7P.

Assumption 7% holds with G, = G, I, = 7, and J, = J using the fact that
r = 0.

Recall that the parameter 6; (= (3) corresponds to the random coefficient vari-
ances that are zero in the random coefficient probit model, the proportion of the
error variance due to the random effect in the binary probit panel data model, or the
measurement error variances that are zero in the measurement error probit model.
By Corollary 1(b), the MSM estimator of this parameter has asymptotic distribution
given by
(9.21) TV2(0; — 010) 5 Ng,
where Xﬁ is as in (6.23) when p = 1, as in (6.8) when p = 2, and as in Theorem 5 for
p> 2.

Also, by Corollary 1(b), the asymptotic distribution of the remaining parameters
is given by

~ N\ ~
T1/2 <</é/270;) _( /207 gO)I> i} >‘57 where

~ ~ G
s = T5 'Gs — Ty " Tsps, G = <G§) ~ N(0,7),

(9.22) Ts = iG(9 ) /iG(H ), Tsp = iG(9 ) /iG(H )
: 0 = \ g\ ) gy Cl0) Jos = { 5 C00) | 55 G00)-
and a%’G (fo) denotes the matrix of right partial derivatives of G(#) with respect to

ﬁ (: 91) at 90.
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9.4. Proofs

Proof of Lemma 8. Condition (a) and Assumption GMM]1(d) are easily shown to
be equivalent given the assumption that G(0) =T'(0 — 6y) + o(||6 — 6o]])-

Condition (a) obviously implies condition (b). To obtain the converse, we assume
condition (b) holds and write: Uniformly over {6 € © : ||0 — 0p|| < v},

IG7(6) — G(8) = Gr (o)l = 0p(T™/2 + |G (9)]| + lIG(O)I])
(9.23) < 0p(T Y2 +||G1(8) — G(8) — Gr(60)| + |G (80)l| + 2/|G(B)])),

where the first equality uses condition (b) and the second uses Minkowski’s inequality.
Rearranging this equation and using the assumption that ||G7(6o)|| = Op(T1/?)
yields

(9.24) IG(6) — G(6) — Gr(6o)]] = 0p(T~* + ||G(B)]])

uniformly over {6 € © : ||§ —0o|| < yp}. Hence, condition (a) of the Lemma holds. O

Proof of Theorem 7. Parts (b) and (c) of the Theorem are obvious. To prove
part (a), we first consider the case where Az (6) = I,. We define the remainder term
Rr(6) and a close approximation to it, R}.(#), that is obtained by replacing I'(6 —6p)
by G(0):

Ry (6) i= —TG1(0)G(6)/2 + TGr(80) G(60) /2 + TG (60)' T(6 — 6o)
+ (6 — 8o TT'T(0 — 00) /2,
Ry (0) == =TGr(9)' Gr(0)/2 + T(Gr(0o) — G(0)) (Gr(6o) — G(9))/2, and

sup | R (0) = Re(9)]/(1+ T"?]10 — 6o |)?
0€0:||0—bo||<vr

= % sup T|2G1(00)' (G(0) —T(0 — 6y)) + G(0) G(6)
0€0:]|0—0bo||<vy
(0 00T~ B0) /(1 T2
925)  =oy(1),

where the second equality in the last equation holds because TV2(G(6) —T'(0 —6)) =
o(TY2)|6 — 6||) and TY2G(8p) = O,(1). Thus, it suffices to show that Assumption
1 holds with Ry () replaced by R.(0).

Define

TY2||Gr(0) — G(6) — G (6o
9-26 p— Sup A
(%20 " 0€0:||0—0o|| <7 1+ T1/2(10 — 6|

By Assumption GMM1(d), ny = op(1).
Let a, b, and ¢ be k-vectors for which a = b+c. By the Cauchy—Schwarz inequality

(9.27) ld'a —V'b] = |dc+20'c| < e+ 2||b|| - ||c]]-
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Take a = Gr(f) and b = G(0) + G (fy) in the equation above, multiply by
2T /(1 +T"2||6 — 6||)?, and take the supremum over € to obtain

sup 2| R (6)]
6c6:]|0—bo||<yy (1+ T[]0 — 6o])?
TI/QG 0 —I—T1/2G 0
< 77%+2 sup ! ( )1/2 0 QT( o)l T
0co:||0—0o||<yy (L +TV2]|0 —6l])
= 7 + Op(L)ny:
(9.28) = Op(l),

which establishes part (a) for the case where Ay (0) = I.

Next, we establish part (a) for the case where Ar(#) is as in Assumption GMM1(e).
The idea is to use the same proof as above but with Gr(0), G(), and I" replaced by
Ar(0)Gr(6), AG(9), and AT respectively. This method works provided Assumptions
GMM1(b), GMMI1(c), and GMM1(d), which are used in the proof above, hold with
the same changes. Assumptions GMM1(b) and GMM1(c) obviously do. By Lemma
3.5 of Pakes and Pollard (1989), Assumption GMM1(e) and condition (b) of Lemma
8 imply that condition (b) of Lemma 8 holds with G (6) and G(€) replaced by
Ar(0)Gr(6) and AG(0) respectively. In addition, Lemma 8 holds with these changes
made to its conditions (a) and (b) and to Assumption GMM1(d) by the proof given
for the Lemma. The last two results imply that Assumption GMM1(d) holds with
the changes listed above, as desired. O

Proof of Lemma 9. Assumption GMM1*(b) implies Assumption GMM1(b) by
Theorem 6. To establish Assumption GMM1*(d), we write:

Gr(6) ~ (o) — G0) = G (010 — o) — GO
— (G (0u) + 0,(1) (0~00) ~ T(6~60) + of 6~
(9.29 = op(lle —6ol)

uniformly over § € © : ||§ — 6o|| < v, where the first equality holds for some 67
between @ and 6y by Theorem 6 (T may differ across rows of %GT(HT)), the second
equality holds by Assumptions GMM1*(d) and GMM1(b), and the last equality holds
by Assumption GMM1*(e). Multiplying (9.29) by T/2/||TY2(6 — 6y)|| and taking
the supremum over 6 € © : |6 — 0g|| < yp establishes Assumption GMM1(d). O

10. GARCH(1,q*) Example

10.1. Specification of the Model

First we describe the GARCH(1, ¢*) model. For notational convenience, we order
the GARCH-MA parameters such that the first p (> 0) GARCH-MA parameters,
010 € RP, are those whose true values are zeros, rather than those that correspond
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to the first p lags of the conditional variance, and the last b (> 1) GARCH-MA
parameters, fa9 € R?, are those whose true values are non-zeroes.
The true process generating the data is

Y; == 059 + Xt/tgﬁo + &¢,

gy = hét/ta, {z: : t=..,0,1,...} are stationary and ergodic,
E(z|Fi—1) =0 as., E(zf]ft_l) =1as., Fr=0(2z,2-1,...),
hot := 0a0(1 — B30) + 3,010 + £3,020 + Oa0hor—1,

2, = (5f_j1,...,5t2_jp)’ for 2 <j1 <jo<--- <Jp, and
(10.1) €2, = (5f,k1, ...,5,52,,%)' for 1 =Fk) <kg <--- <k,
for t = ...,0,1, ..., where j; # ky, for any ¢ = 1,...,p and m = 1,...,b; 619, ¢}, € RP;
020, €3, € R’ ¢* = max{jp, kp}; O30, 010, 050 € R; and bgp, X; € R". The regressors
{X;:t=..,0,1,...} are stationary and ergodic and independent of the innovations
{2z :t =..,0,1,...}. The GARCH-MA coefficients on &2, are assumed to be zero.

That is, 610 = 0. The GARCH-MA parameters on €3, are assumed to be positive.
That is, 029 > 0 (element by element). The GARCH-AR parameter 03¢ is assumed
to lie in (0,1). The intercept of the conditional variance equation 4 is assumed to
be positive. The only parameters on a boundary are those in #1g.

The random variables {(Y;, X;) : 1 <t < T} are observed. The true parameter
vector is 60 = (9’10, 9’20, 930, 4940, 650, Hgo)l = (OI, 9’20, 4930, 640, 650, ng)l € R°.

An equivalent expression for the conditional variance hoy is ho = 040+ > 5oy «9’§0
X (5%;_k910 + 5%;—1#920) for t = ...,0,1,.... Note that by repeated substitution the true
conditional variance hg; is a weighted sum of the infinite sequence of past squared
innovations {22 : u = t — 1,t — 2,...}; see Bollerslev (1986, equations (A.2) and
(A.3)) for details. The weighted sum is well-defined (though possibly infinite) for any
parameter 0y, because the weights are all non-negative.

The model used to generate a quasi-likelihood function is

Y; =05+ X[06 +e(0) for t =1,...,T,

er(0) = RE ()22 for t =1,...,T, {z : t=1,...,T} are iid N(0,1),

R (0) := 04(1 — 03) + €2,(0)'01 + €3,(0) 02 + 03h; 1(0) for t = ¢* +1,..., T,

e1y(0) = (€] 4, (0), e} ;,(0)), €3,(6) := (€] ,(6), s e} 1, (F))', and
(10.2) 0 := (6},0},03,04,05,05)".

The initial conditions 21 (0), ..., hy. (0) are arbitrary non-negative functions of # and/or
{(Yi, Xy) i t=1,...,¢"}.
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10.2. Quadratic Approximation of the Quasi-log Likelihood
Function

We consider the Gaussian QML estimator of . The Gaussian quasi-log likelihood
function is

(10.3) tr() == — — 1) ki (0) — 1) € (0)/h; (0

t=1 t=1

The parameter space O is a compact subset of R® that bounds the GARCH-AR
parameter, 03, away from zero and one, the GARCH-MA parameter on the first lag,
021, away from zero, and the conditional variance intercept parameter, 64, away from
Zero:

©:={0€ R°:0=1(01,05,05,04,05,05), 050 < 0; <05, ¥j=1,..,0,
where 0, and 60, are finite constants or constant vectors
that satisfy 61y = 0, 0oy := (021¢,0,...,0)', a1 > 0, O3, > 0,
(10.4) 03, < 1, and 040 > 0}.

(The vector inequalities above are element by element inequalities.) We assume that
Ay € © and that each subvector of 8y satisfies the above inequalities strictly except
010, which equals 0 and causes 6y to be on the boundary of ©. (To obtain results
when all of the GARCH-MA parameters are positive, we take p = 0 and the subvector
01 € RP disappears.)

Note that the parameter space need not restrict the GARCH parameters to be
values that generate a stationary process. Such restrictions could be added if desired.
They would have no effect on the asymptotic results given below provided the para-
meter space is compact and none of these restrictions is binding at the true parameter
vector fy. The true parameter vector 8y, however, will be such that the true process
is stationary under the assumptions given below.

Define
he(6) := 04 + i 0% (3, ()01 + €3, 1.(9)62) and
k=0
(10.5) Cu(0) := —11In(27) — L In((0)) — 2e3(0) /().

(The double subscript on £ (0) is used to distinguish ¢y (0) from ¢7(0) when ¢t =T.)
Note that h.(6) is the unobserved conditional variance given the parameter 6 with the
initial conditions h{(), ..., hj. (0) replaced by an infinite weighted sum of lagged values
of €2(). Also, £4(0) is the corresponding unobserved ¢-th contribution to the quasi-
log likelihood. The asymptotic behavior of the actual quasi-log likelihood formed
using Ay (0) is shown to be equivalent to that based on h;(6) using the argument of
(3.6)-(3.8).

We take the normalization matrix By to be of the form TV2M, where M is a
nonsingular non-diagonal matrix that is designed to yield block diagonality of the
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Hessian quasi-information matrix Jr between the regression slope parameters and
the remaining parameters. This block diagonality is achieved without assuming sym-
metry of the true (perhaps non-Gaussian) distribution of z;.

By definition,

Ipipiz O 0O C [Iserz 0O
(106) M:=| O 1 EX)| andL:=M Y =| 0o 1o
0 0 I 0 —EX; I,

When L pre-multiplies a vector that has (1, X})" as its last r + 1 elements, it yields
a vector that is the same except that its last r elements are the mean zero random
variables X; — EXt This is the key feature that yields block diagonality of J7. Note
that M6 = (67,03,03,04,05 + EX{0s,05)". We determine the asymptotic distribution
of BT((‘) 0o) = Tl/ 2(M ¢ — M®y). This directly gives the asymptotic distribution of
T2 (9 — 9]0) for all j # 5. The asymptotic distribution of T1/2(¢95 —050) is given by
T2/ (M6 — M#6y), where v := (0',1, —EX])'.

The components of the quadratic approximation of ¢p(6) at 6y are defined as
follows:

T T
Der(6o) == Ztu(o) =S (%(zf 1) 2 hi(00)/hot — 225 e4(60) /h1/2> |
t=1

= t=1
D20p(6y) :== ~TJ, By :=TY?*M, By" =T V2L,
Zp = J T~ Y2LD0r (), and
J = Jr = —ELg555tu(60)L = %EL%ht(Qo)aef h(00)L' /i,

9000’
(10.7) + ELZe(60) 5 e1(60) L /hoy-
Some calculations yield
0
%et(%) (O/ O/ 0 0 1,—X£k,), and
5§t—k
52t—k9
hoi— — 040
L h (0o) 9 , where
+(60) Z L o
—2eh; 020

—2X5, y(e2t—k © b20)
(108) X;k = Xt - EXt, Eot — (5t—k17 €t_kb), and X;t = [ t**kl ce t**kb]'
Note that 896,5(90) and ht((‘)o) equal Laeet(Qo) and Laeht(e ), respectively, with
X; and X3, replaced by Xy and Xo;_ .
To verify Assumptions 1-4, we use the following additional assumptions:
(a) B(z}|F-1) K < oo as. and P(z2 =1) # 1,
/1y
(b) E is positive definite and E||X,||'® < oo, and
X ) \ Xy

(10.9) (c) Ehg; < oo for some 0 < p* <1 for some t.
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Assumptions (a) and (b) are not very restrictive. Assumption (c) holds with p* =
1 when the true process is not integrated, i.e., when 6sg + Z?’:l 250 < 1, where
020 := (0210, ..., 0280)". This follows by the proof of Theorem 1 in Bollerslev (1986)
extended to cover the case of square integrable stationary innovations {z; : t =
.,0,1,...}. Assumption (c) holds in an IGARCH(1,1) model under our assumptions
on the innovations by Lemma 2(3) of Lee and Hansen (1994), who extend results
of Nelson (1990). We conjecture that Assumption (c) holds for an IGARCH(1, ¢*)
process for ¢* > 1 (i.e., a process with 30 + 22:1 6250 = 1), but we do not yet have
a proof.

Under the assumptions above, {ho : t = ...,0,1,..}, {Y; : t = ...,0,1,...},
and {%Ett(é)o) t=..,0,1, } are strictly stationary and ergodic and Assumption 1
holds. This is proved in Section 13. In addition, %Ett(é)o) is shown to be square
integrable in Section 13. Assumption 2 holds by the central limit theorem for
square integrable, stationary and ergodic, martingale difference sequences applied to
{Z04(0p) : t = ...,0,1,...}; see Billingsley (1968, Thm. 23.1). (Note that E(Z¢y(6o)
|Gi—1) = O a.s., where G, = 0(X¢1, Xy, ooy 28, 2021, ...) for t = ...,0,1,.... Hence,
{%Ett (0p) :t=...,0,1, } is a martingale difference sequence.) Assumption 3 holds
because J is symmetric, positive definite, and independent of 7. Positive definiteness
of J is proved in Section 13.

Assumption 4 is shown to hold in Section 13 when 03¢ —I—Z?Zl 20 < 1. When the
true process is IGARCH(1, ¢*), we only show that a “local” QML estimator satisfies
Assumption 4, see Section 13. The difficulty in proving consistency of the QML
estimator is that F/;(0) may equal minus infinity when the GARCH-AR parameter
03 is small relative to f39. In this case, T~1/7(6) does not converge uniformly to a
function ¢(6), which complicates a proof of consistency. Note that it is the behavior of
T~Y7(0) at points that have small likelihood values (and, hence, points that are not
likely to equal the QML estimator) that complicate the standard method of proof.
In consequence, we conjecture that the QML estimator is in fact consistent in the
IGARCH(1, ¢*) case.

10.3. Parameter Space

Assumptions 5%* and 6 hold in this example with
(10.10) A= (R x R*P.

Assumption 5%* holds because part (a) holds with A* = A, part (b) holds with
Yy =T"Y2I, and M as in (10.6), and part (c) holds because YpMA* = A.

10.4. Asymptotic Distribution of the QML Estimator

In this example, Jpr does not depend on T and J (= Jr) is symmetric and
positive definite. (The latter is proved in Section 13.) Thus, Assumption 7 holds

provided T-1/2L Dty (8o) < @ for some random variable G. By the CLT for square
integrable, stationary and ergodic, martingale difference sequences (see Billingsley
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(1968, Thm. 23.1)), we have

B )
00 E“(HO)ae'

for %étt(ﬁo) defined in (10.7). Square integrability of %éﬁ(eo) is established in
Section 13.

By Theorem 3, Tl/QM(E— o) <, X, where A satisfies (5.1) with (G, J) defined in
(10.7) and (10.11) and A = (R*)? x R*?

(10.11) T-Y2LDep(0y) % G ~ N(0,T), where T := EL— Ces(0o) L

10.5. Asymptotic Distributions of Subvectors of
the QML Estimator

We partition 6 as in Section 6.1 with
(1012) 9* = ( /1, 12,63,94,65)17 w = 96, ﬁ = 91, and 6 := (9’2,93,94,95)/.

With this partitioning, we find that 7 is block diagonal between the regression slope
parameters and the other parameters because

2
0006’

where L;. denotes the rows of L corresponding to §; for j = 1, ..., 6. This holds because
Lﬁ.%et(ﬁo) and L6 ht(Ho) are linear in X} ; fori >0, L;. aeet(eo) and L;. %ht(ﬁo)
do not depend on {Xt 50,1, EXF =0Vt {X/f:t=..,0,1,..} and
{z: : t = ...,0,1,...} are independent, and the expectations are well-defined. (The
latter is established in Section 13.) Thus, Assumption 8 holds.

The set A is a product set Ag x As x Ay, with

(10.13) Lo E———ly(0o)L;. =0 Vj=1,..,5,

(10.14) Ag:= (R")P, As:= R"™3 and Ay := R".

Thus, Assumptions 9 and 10(a) also hold.
With this partitioning, from (10.7), (10.8), and (10.10), we have

T = %Ea%*ht(@O)ae/ he(80) /13, + E(1/hot) (0’ (1))
Ty = 3ELg. %ht(%)ae' ha(B0) L. /Wy + EX; X /o,

Le. 55l (60) = _22930X2t k(€at—k © Oa0)
G := (G, ﬁ/,)’ ~ I;VE)O,I), Gy« ~ N(0,Z,), Gy ~ N(0,7y),
I,:=E (%@3 — 1) 52 hy(6o) /hoy + 21 (9) /hl/Q)
X (%2 = 1) g5-hu(B0) /ot + 2 (] )/h1/2> ,
(22 = 1)Lo. 55he(00) how + 20X /1))

(10.15) x (4(22 = 1) Lo, 2 (00) fhor+ 20X} /h1/2> .
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Thus, in this example, Assumption 72* holds. If the innovation z has third mo-
ment equal to zero conditional on F;_1 a.s., then Z, and Z,, simplify somewhat. In
particular, Z, can be written as

(1016) T = $B(zf — 1)*g5-he(00) 597 he (60) /M, + E(1/har) (g ) -

In consequence, Z, = J, and Assumption 7%* holds with ¢ = 1 if z; has conditional
third moment equal to zero and conditional fourth moment equal to three given F;_4
a.s. The latter is true if {z : ¢t = ...,0,1,...} are iid N(0,1).

By Theorem 3, T1/2(§ — 6o) <, X, where A = (X%,X;,Xi/,)’. By Theorem 4(c),
Corollary 1(a), and the fact that Ay, = R", we have
B\\w = Zw = j{/)—le ~ N(O,jw_l) and
(10.17) TY%(85 — fe0) > Ay ~ N (0,7, 1).
In consequence, the regression slope parameter estimator 56 is asymptotically normal

with covariance matrix \71;1 whether or not some GARCH-MA parameters are zero.
By Theorem 4(a) and Corollary 1(a),

Tl/z(@\l —010) <, /Xg, where Xg minimizes
()\ﬁ — Zg)/ (Hj*ilHl)_l ()\ﬁ — Zg) over )\g c (R+)p and
(10.18) Zg:=HJ, 'G. ~N(O,HT, 'T.J, 'H).
For example, if p = 1 (i.e.,, the GARCH model is over parametrized by one

GARCH-MA parameter), then Assumption 10 holds and Xg is as in (6.23). If p > 1,

Xg is given in closed form by (6.8) or Theorem 5.
By Corollary 1(a),

~

Tl/Q((/éIQ,/Q\g,/éLL,/@\g) + EX[Q\G), — (9’20, 930, 940, 950 + EX£96),) i> /\5, and
TY2(05 — 00) % vi s — EX/ g, where v; = (0, 1Y,

As = jé_lGé - jé_ljéﬁ)‘ﬁa

Js = 5E & (00) g5 (00) /1y + E(1/har) (5 §) € ROFD*CH),

(10.19)  Jsg := $EZhu(00) 22 hu(00) /13y, and G, = (gg) ~ N(0,T,).

11. Partially Linear Regression Example

11.1. Semiparametric Least Squares Objective Function

In this example, the estimator objective function is a semiparametric LS function:

T
(11.1) =—3Y VM- EW: | X0, Z) — (X — E(X; | 24))'0)%,
=1
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where E(Y; | X;,Z;) and E(X; | Z;) are nonparametric bias-reducing kernel estima-
tors of ny (X, Zy) == E(Y: | Xy, Z¢) and 19(Z;) := E(X; | Zi), respectively, as defined
in Robinson (1988).

The parameter space is the same as in (3.20) for Example 2.

The quadratic approximation of (3.1) and (3.3) holds with

T
D0y (6o) == —3 Z E(Yi| X, Zt) — (X¢ — E(X4|Z,)) 00)(Xe — E(X¢| Z4)),
=1
T o~
D?(r(6o) - Z E(Xi|Z))(X: — BE(Xi| 1)),

=1
(11.2) By := TY2I,, I := —2D*1(00), Zr = T *T Y2 Der(6y), and Rp(6) = 0.

Assumption 1 holds because Rr(60) = 0.
Assumptions 2 and 3 hold by the Propositions given in the Appendix of Robinson
(1988) under the following conditions:

(11.3) @ := E(X;—E(X{|Z))(X;— E(X{|Z;)) > 0, Ee? := 0% < 00, E | X;|*

Z; has a density f(-) with respect to Lebesgue measure, the functions u(-), n;(+), and
n5(+) satisfy the smoothness and boundedness conditions of Robinson (1988, Thm. 1),
the bandwidth and trimming parameters and the kernel used in the kernel estimators
EY: | Xt,Z;) and E(Xy | Z;) satisfy the conditions of Robinson (1988, Thm. 1).

Assumption 4 holds under the assumptions given above by the proof of consistency
for Example 2 in Section 8.2 with X replaced by Xy — E(X¢|Z;). Equation (8.7) holds
in the present case by Assumptions 2 and 3, which hold under the given conditions
by the Propositions in the Appendix of Robinson (1988).

11.2. Parameter Space

Assumptions 5** and 6 hold in this example under the same conditions on g (6)
and g2(#) and with the same A matrix as in the Regression with Restricted Parameters
Example 2

11.3. Asymptotic Distribution of the Semiparametric
Least Squares Estimator

The Propositions in the Appendix of Robinson (1988) show that Assumption 7
holds in this example under the assumptions given above with

(11.4) G~ N(0,I),T=0%®, and J = ®.
Thus, by Theorem 3, T1/2(5— o) 4, X, where \ satisfies (5.1) with (G, J) defined in
(11.4) and A defined in (4.16).
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11.4. Asymptotic Distributions of Subvectors of the
Semiparametric Least Squares Estimator

We partition 6 and X in this example in the same way as for Example 2, but with
X, replaced by X; — E(X¢|Z;). Then, the asymptotic distributions of TY2(3 — By),
TV2(6 — &), and TV?(2p — 1)) are the same as given in Example 2 except that X;
is replaced by Xy — E(X¢|Z;) throughout. In addition, the asymptotic distributions
simplify somewhat in the present example because £; is assumed to be independent
of the regressors. In particular, we find that 7 = 02® = 027, I, = 027, I = 02j5,
Is = 0%Js, and Iy = 02\71/). This implies that Assumption 7%* holds and that

TY2( = ) 5 N(0,027;1).

12. Regression with Restricted Parameters and
Integrated Regressors Example

12.1. Specification of the Integrated Regressors

In this example, the estimator, objective function, parameter space, and quadratic
approximation to the objective function are the same as in the Regression with Re-
stricted Parameters Example 2; see(3.19)-(3.21).

In contrast to Example 2, however, the regressors are assumed here to be inte-
grated of order one. We assume the errors and regressors satisfy the conditions of
Park and Phillips (1988, Section 2). In particular,

t T

& _

(121) Xi=)» Us, Wi o= (Ui) Sr:=Y Wi, and Sp(r) :=T 2Sp,,
t=1

s=1

where [T'r] denotes the integer part of Tr. We assume that
Sr(-) = B(),

T
(12.2) TN SW S [ B(r)dB(r) +11,
t=1

and the convergence holds jointly, where “=” denotes weak convergence and B(r)
is a (s 4+ 1)-vector Brownian motion with positive definite covariance matrix 2. By
definition,

T t
My I
T —1 / — 1§ -1 W .= 1 12
(123) Q:= lim T7'ESySy and II:= lim T tz;z;EW]Wt = [Hm HQJ,
= J:

where II1; € R, Ilp; € R®, and Ilse € R**®. Primitive conditions under which (12.2)
holds are referenced in Park and Phillips (1988, Section 2). For example, mean zero
asymptotically weakly dependent processes {W; : t > 1}, such as linear processes
and strong mixing processes, satisfy (12.2) under suitable moment and dependence
assumptions.
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The norming matrix By in this case equals T'I;.

Assumption 1 holds trivially in this example because Ry (0) = 0.

Assumption 2 holds by (12.2) because BEIIDET(HO) equals the first column of
T+ 5°T | S,W/ with the first element eliminated. Assumption 3 holds because (12.2)
implies (see Park and Phillips (1988, Lemma 2.1(c))) that

T
.— T2 14l r ) dr, wher r) = Bi(r)
(124) Jr:=T ;XtXt Jo Ba(r)Ba(r)'dr, where B(r) : <B2(r)>v

Bi(r) € R, Bs(r) € R*, and the limiting integral is positive definite with probability
one. (The convergence in (12.4) is joint with that of (12.2).)

Assumption 4 holds under the assumptions above. The proof is the same as

that given in (8.3)-(8.7) for Example 2. Equation (8.7) holds in the present case
“1/2
by (12.2) and (12.4) because T~' S22 ¢, X; = O,(1) and (T_2 ST XtX{> <,

1 ~1/2 - 1/2
<_]0 BQ(T)BQ(T)’dr) . In consequence, (thl XtX,Q (0—00) = Op(1). The lat-

ter and the fact that 7-2 YL X, X] <, [(1) Bs(r)Ba(r) dr, where [(1) By (r)Ba(r)dr >
0 with probability one, imply that [N 0y and Assumption 4 holds.

12.2. Parameter Space

Assumption 5* holds in this example provided g,(#) and g,(#) are continuously

differentiable on some neighborhood of 6y and % 9(0p) is full row rank, where g(0) =

(9a(0)',g5(0)"). In consequence, by Lemma 2, Assumption 5 holds with

0 0
(12.5) A= {)\ ER: Wga((‘)o))\ =0, wgb((‘)o))\ < 0} .

For A as such, Assumption 6 holds.

12.3. Asymptotic Distribution of the Least Squares Estimator

In this example, Assumption 7 holds with

(12.6) G = [¢ Ba(r)dBi(r) + Ty and J = [ Ba(r)Ba(r)'dr.
This follows from (3.21) and (12.1)—(12.4).
By Theorem 3, T(@—(‘)o) 2 X, where ) satisfies (5.1) with (G, J) defined in (12.6)

and A defined in (4.16).

12.4. Asymptotic Distributions of Subvectors of
the Least Squares Estimator

Typically, the restrictions g,(#) = 0 and g,(f) < 0 in this example only in-

volve some of the elements of . In this case, the vector %g(@o), where ¢(6) =
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(9a(6),95(9)"), that determines A contains some non-zero columns, say p of them,
and some columns of zeros, say s — p of them. Without loss of generality, assume
that the first p columns of 89, g(0p) are non-zero vectors and the last s — p columns
are zero vectors for 1 < p < s.

We partition Xy such that

X
(X ot B.(r) an
A= (th> - ))éz = <Bw( )> ‘
o . . 0 [ ’d?" 0
(12.7) J = [ Ba(r)Ba(r)'dr := [0 jdj " o o By(r)By(r)dr|’

where X,y € RPT?, X, € R, Xg € RP, ..., Bi(r) € RP9, By(r) € R, .... Such a
partitioning is always possible, because one could have r = 0.
We partition 6, 6y, and 6 conformably with X;. That is,

~ ~ N~
(12.8) 0:=(B,0,¢), 0o := (By,0,¥p), and 0 = (8,8, 4"),
where 3, 8,3 € RP, 8,60,6 € R, and ¥, 1,1 € R".

Now, with the above partitioning, Assumptions 8 and 9 hold. The matrix J is
block diagonal by (12.7). The matrix By is diagonal. The set A is a product set
A[g X Ag X A¢ with
,ga(eo)/\ =0

A[g = {)\[3 € RP: (90))\[3 < O} , As = RY, and A,/, =R

o
86 ) aﬁ/gb

(12.9)  where 85'9](90) € R%*P for j = a,b.

With conformable partitioning to that above, we have

G

IL.
(12.10) G¢ = [O B,/, dBl( ) + Hw, and Iy := <H1/)7

where G, I, € RPT? and Gy, 11, € R". Conditional on B,(.), G4 has a normal dis-
tribution and, hence, Assumption 7* holds. If the regressors X,; are (asymptotically)
strictly exogenous, i.e., By(r) and Bi(r) are independent and II, = 0, then

(12.11) G4 ~ N(0,9117,) conditional on B,(.),

where Q7 is the (1,1) element of the covariance matrix €2 of the Brownian motion
B(+). In this case, Assumption 73* holds with ¢ = (3.

By Corollary 1(b) and the fact that Ay, = R", we obtain
(12.12) T@’ — ) o Xa/) =Zy = jw_le/),
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where Jy, and Gy, are defined in (12.7) and (12.10) respectively.
By Corollary 1(b),

(12.13) T(B - By) 5 As,

where Xg solves qg(/)\\g) = infy;en, gs(Ag) With Ag as in (12.10) and g(Ag) is defined
using (12.7) and (12.10).
By Corollary 1(b),

T - 60) % Xs = T Gs — T Tsp ), where

G
G*::< #), Gs = [L Bs(r)dBi(r) + Iy, By (r) :

_ (s _ | T8 Tss| _
(12.14) I, = (Hé), T = [jﬁﬁ ZJ _

<B/3( )>

Bs(r))’

.[(1)35(7' Bg(r)'dr f(l)Bﬁ (r)Bs (r)'dr]
_f(l)B5(r Bg(r) dr f035 r)Bs(r) dr ’

Gs, B(S(T), IIs € R4, and Js € RI*4.

13. Appendix of Proofs for the GARCH(1,q¢*) Model

13.1. Stationarity and Ergodicity

First, we establish strict stationarity and ergodicity (S&E) of {hg; : t = ...,0,1, ...}
From this and the assumed S&E of {X; : t = ...,0, 1, ...}, we obtain directly the S&E
of numerous random variables including ¢, Yt, h(0), e:(6), ( Y, — 05 — X/6g),
Ett( ), 69ht(0)’ 696t( ), aeﬁtt(e), 6969' ht(e), 6969' et(Q), and 6969'€tt(9)' We use S&E
to obtain laws of large numbers (LLNs) for various quantities.

To establish the S&E of hg, we write hos = ¢ Y peg M(t, k), where ¢ := 040(1 —
f30) and M (t, k) is a linear combination of products of the squared innovations 2?2 for
s=t—1,t—2,..., as in Bollerslev (1986, Proof of Theorem 1). Because Ehg; < oo for
some t by Assumption (c) of (10.9), co Y poq M(t, k) < oo a.s. By stationarity of z,
this implies that co Y oo M(t,k) < oo a.s. Vt = ...,0,1,.... That is, co Y oo o M(t, k)
is R-valued a.s. Vt. Furthermore, this sum is clearly a measurable R-valued function
of the S&E sequence {z : t = ...,0,1,...} and, hence, is S&E itself (e.g., by Theorem
3.5.8 of Stout (1974)).

13.2. Verification of Assumption 1

Our approach to verifying Assumptions 1 and 4 for this example is to extend
results in the literature (mainly moment bounds) for a GARCH(1,1) model with in-
tercept (including an IGARCH(1,1) model) to a GARCH(1, ¢*) model with regression
function. This approach dramatically reduces the length of the proof because mo-
ment bounds in GARCH models are complicated to derive, but very similar methods
can be used for GARCH(1, ¢*) models as for GARCH(1,1) models.

Specifically, we extend results of Lee and Hansen (1994), hereafter denoted LH.
To make the extension of LH’s results as simple as possible to understand, we adopt
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the same symbols as LH for the parameters that are common to both models. We
let 5 denote the GARCH-AR parameter 03 (thus, 3 differs here from in Section ), w
denotes the variance intercept parameter 64, and (aq, ..., g+ ) denote the GARCH-
MA parameters on the variables e? (), ...,e%fq*(Q), respectively, i.e., the elements
of #; and 0, arranged in the order specified. LH’s single GARCH-MA parameter is
denoted a. (Our model does not require that all of the lags €7_;(6), ...,e7 . (6) enter
the model. If e?_ j(9) does not enter the model, the corresponding «; is set equal
to zero.) The mean in LH’s model is . In our model, it is 05 + X}0g. For present
purposes, we let § denote (v, ..., g+, 3,w, 05, 65)’.

We need to extend LH’s results to allow for ¢* > 1 and the mean function 65 +
X0, rather than ¢* = 1 and the mean function ~. In other respects, our models are
the same. In particular, the assumptions on the innovations {z; : t = ...,0,1, ...} are
the same. The restrictions on the parameter space are the same if one views our oy
as their & — both are bounded away from zero. Our restrictions on as, ..., ag+ (that
a; € [0, ] for some 0 < ajy, < 00 Vj = 2, ...,¢*) are novel of course, because these
parameters do not appear in LH.

Define

T T
(13.1)  Lr(0) == Lu(6) :=—FIn(2m) — 1) "Inhe(6) — 5> _ef(6)/hu(6).
t=1

t=1 t=1

Note that L£5(6) is comprised of sums of strictly stationary and ergodic random
variables. In consequence, it is more amenable to analysis than is the quasi-likelihood
p(0).

We verify Assumption 1 for ¢7(6) by showing that it holds for £r(6) and that
07(0) is closely approximated by L£7(#) in the sense that (3.6) holds.

To establish (3.6), we write the left-hand side of (3.6) as

T

up (0
0€0:||0—00l|<vr |1—1

k@) M)\ (20 S0 & . &
(132) a(f) = 1“<h:<e>> - 1“(h:<93>> ~3 <h:f<9> TR R htwo)) |

, where

The functions hy(6), hj (0), and e?(#) are continuous in § a.s. Hence, SUPYe:|[9—0o || <y
lat(0)] — 0 a.s. as T — oo Vt > 1. The argument of the proof of Lemma LH3 applies
to our model with minor adjustments and yields Y .2, supycg |a:(f)| < oo a.s. (Note
that the proof uses Lemma LH2(3) which is extended below to cover our model.)
Hence, given ¢ > 0, 377 < oo such that Y . | supgeg |a:(0)] < €/2. And, given
e >0and T < oo, 313 < oo such that VI' > Ty we have suPpce.(j—g,||<y, 1a(0)] <
¢/(211) vt <T). Combining these results gives

T Th fe’s)
(13.3) sup ai(0)] < Z sup las(0)] + Z sup |a; ()] < e.
0€0:|10—00||1<vr | =1 1—1 9€0:(|0—00||<yr =T +1 S

Hence, (3.6) holds.
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We verify Assumption 1 for £7(6) using Assumption 1* and Lemma 6(b). (Note

=201 (0p) H < oo and,

that the latter apphes because it is shown below that E H 5657

hence, —T1 8969,

We verify Assumption 1*(c) for L7(f) by showing that supyce,
Ny i

L7(00) 2 T by the ergodic theorem.
Lr(0)

H — 0, for some set Og C O that contains © N S(fp, ) for some ¢ > 0,

8989’

aeaa' €1t (0

and F 8989’6“(9) is continuous at 6y. Both of these results follow from the uniform
LLN given in Theorem 6 of Andrews (1992) using Assumption TSE-1D provided

32

(13.4) E sup 5060

0cOg

Ztt(e) H < 00,

because 8969, 0+(0) is stationary and ergodic and continuous in 6 a.s. (Note that
the above uniform LLN has simpler conditions to verify than the one used by LH. It
avoids the need to consider third derivatives of 4(6) as is done in LH. It is applicable

because {6969, ly(0) :t=1,2, } are identically distributed.)
We verify (13.4) by strengthening Lemma LH11(1) from “for all § € Oy,
EHagag,étt(e)H < 00,” where O4 is a neighborhood of 6y, to the result of (13.4)

(which takes the supremum before the expectation) and extending Lemma LH11(1)
to our more general model. Lemma LH11(1) relies on Lemmas LH1, LH2, LH4-LH7,
LH8(1), and LH10(1). Hence, we need to strengthen and extend each of these Lem-
mas in the same direction. The strengthening of these results in terms of taking the
supremum over 8 before the expectation turns out to be simple because the bounds
used by LH are always in terms of upper and lower bounds on the parameter space
and these bounds hold uniformly for all points in the parameter space.
To extend LH’s Lemmas to our model, we define the function hf(6) to be

00 q*
(13.5) hE(0) =w+ Y ") el
k=0  j=1

Most of LH’s moment bounds for functions of h(#) are derived using hj(6) (with
a; = 0 for j # 1) in place of hy(#), which is justified by their Lemma LH1, which
states that B71h$ () < hy(0) < Bh;(#) a.s. for a constant 0 < B < co. Lemma LH1
extends to our model with minor adjustments, such as the replacement of terms like
ae? | . (0) by terms like ] Laje? ;x(0), and with the adjustment that B is of the
form

(13.6) B = C(1+ ||X¢|| + ||X¢||*) for some constant 0 < C' < oo.

The latter adjustment occurs because LH’s upper and lower bounds on the intercept,
v, and 1y, must be replaced by upper and lower bounds on the regression function,
which depend on ||X¢||.
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We relate h§(0) for our model to hf(6) for a GARCH(1,1) model using the fol-
lowing simple, but key, bounds:

o) 00 q
w+ o Zﬁ%ikq <w+ Zﬁk Zo‘jsik—j := hi(0)
k=0 k=0 j=1

q o0 q"—2 q"
S DRI PO S SR R E
j=1 k=0 k=0  j=k+2
7" 1\ >
(137)  <w+ Y o> e, .
j=1 k=0

where both inequalities use the fact that ag, ..., ag« are non-negative and the equality
holds by summing the coefficients on all of the lags of €7 of the same lag order.

Note that the lower bound on hf(6) for the GARCH(1, ¢*) model is exactly the
same function of the parameters and lagged ?’s as for a GARCH(1,1) model with
a GARCH-MA parameter of a1 and the upper bound is exactly the same as for a
GARCH(1,1) model with a GARCH-MA parameter of Z?;l ;7. (Of course, the
random variables 5?7 w1 for k= 0,1, ... have different properties in the GARCH(1, ¢*)
case than in the GARCH (1,1) case, but this turns out not to cause any difficulties.)

Given our assumption that the first element of 65 is bounded away from zero, see
(10.4), and that this element is the GARCH-MA parameter on the first lag of 7, see
(10.1), we have that «; is bounded away from zero for € ©. Thus, the lower bound
in (13.7) is not “degenerate.” That is, it does not reduce to just w for any 6 € ©.

Let ajo, aje, and aj, denote the true value of o, the lower bound on «a; given
in ©, and the upper bound on «; given in ©, respectively, for j = 1,...,¢*. By
assumption, agy > 0, ajp = 0Vj = 2,...,¢%, and o, < 00 Vj = 1,...,¢". Define wy,
wy, and w, analogously. Define 7, and 7, as in LH. (They are values that satisfy
0<n<By<m,<Ll)

Now, the conclusions of Lemma LH2(1) and LH2(2) regarding stationarity hold
in our case by the argument given at the beginning of this section. Lemma LH2(3)
holds by the proof in LH using Assumption (c) of (10.9) in place of Theorem 4 of
Nelson (1990), with ag replaced by ayg, and using (13.7).

Parts (1) and (2) of Lemma LH4 hold without change in our GARCH(1,¢*)
model because these parts only involve the innovations z;, which are the same here
as in LH. In the proof of part (3) of Lemma LH4, the first equation on p. 44 holds
for the GARCH(1,¢*) case with the equality replaced by the inequality “<” and
ag replaced by ajg, because 23;2 ajoho,g,jszj > 0. The rest of the proof holds
unchanged. Parts (4) and (5) hold by the argument of LH using equation (13.7).
The bounding constants in this case are Ky 1= w,/wy + Z?;l ajy /o and Hy, :=
wowe + 9 ajo/ae.

Lemma LH5(1) holds for our GARCH(1, ¢*) model by LH’s proof except that the
equality in the third last equation on p. 44 is an inequality (<), « is replaced by aqg,
oy by aqg, ete. Also, the proof of LH contains a small error that needs to be corrected.

81



The first equality in the last equation on p. 44 is not correct. The expectation of
the product does not equal the product of the conditional expectations because the
terms in the product contain overlapping random variables. One needs to replace the
hi_;(8)/hi_;.1(0) terms by the bound given in the third last equation on p. 44 before
switching the order of the expectation and the product. Lemma LH5(2) holds with
H. = wq/we + Zg;l ajo/(c1n). The proof is analogous to that of LH using (13.7).

Lemma LH6(1) holds for our GARCH(1,¢*) model with K. := w,/wp
—l—Z?;l ajo/(a10m,). The proof is analogous to that of LH using (13.7). Lemma
LH6(2) holds with H,, and K, defined as above by the same argument as in LH. We
note that, in the last equation on p. 45 of LH, hgt—g+1 should be hg;—p and Fi_g
should be ﬂ,kfl.

Lemma LH7(1) holds by the proof in LH with B replaced by E'B in the definition
of Hy, with (v,,—7,)? replaced by E||X?||-||06u—06¢||? in the definition of Hy, and with
B and H, defined as above. Thus, H; equals a constant times (1+ E|| X¢||+ E|| X¢|]?).
Lemma LH7(2) holds as in LH.

Lemma LH8(1) holds with B2 replaced by ||B?||, in the definition of Hg, where
B is as in (13.6). Thus, we need E|[|X;||*" < co. By optimizing the split in the
application of Holder’s inequality in the proof of Lemma LH11(1), we find that we
need Lemma LH8(1) to hold for » = 5/2. Hence, we require E||X||!* < oo, as is
assumed in Assumption (b) of (10.9).

Lemma LH10(1) holds as in LH, but with Hg defined with B replaced by || B?||2,.
Thus, we need E||X¢|[®" < co. By optimizing the split in Holder’s inequality in the
proof of Lemma LH11(1), we find that we need Lemma LH10(1) to hold for » = 5/4.
Hence, we require E||X|[!* < oo, as is assumed in (10.9).

Lemma LH11(1) holds for our model by the proof in LH with g (= y—-,) replaced
by 05 — 050 + X{(06 — 660), with the first Hg in the fourth last line of p. 50 defined
as described above in the discussion of Lemma LH8(1) with r = 2, with the second
Hg in the same line defined as described above in the discussion of Lemma LH10(1)
with » = 1, and with the application of Holder’s inequality between the third-last and
second-last lines on p. 50 of LH altered to give a split of [[W1Wa|| < [[Wh]ls - [[Wal[5/4,
where W7 is the first term in parentheses on the third-last line and W5 is the term
in brackets on that line. This completes the proof for the second derivative of £ (6)
with respect to 3. For the second partial and cross-partial derivatives with respect
to the other parameters in 8, bounds can be obtained by similar methods using our
extensions of Lemmas LH5-LH7, LH8(1), and LH10(1). The moment conditions on
|| X¢|| required for these cases are weaker than those required for the second partial
derivative with respect to (.

This completes the proof of (13.4), the proof that Assumption 1 holds for L7(6),
and the proof that Assumption 1 holds for ¢7(6).

13.3. Verification of Assumptions 2 and 7

Next, we establish that E H%Ztt(QO)HQ < 0o. This condition is required to apply
the martingale difference CLT when verifying Assumptions 2 and 7 of Sections 3 and
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5 respectively. This result follows by an extension of Lemma LH9(1) to our model.
Note that we only require the result of Lemma LH9(1) for the case of 8 = 6y, which
simplifies the proofs somewhat. Lemma LH9(1) relies on Lemma LH8(2). We only
need the latter to hold for 8 = 6.

Lemma LH8(2) extends to our model with the proof unchanged for the derivatives
with respect to (wrt) w and . The proof for the derivative wrt 7 (i.e., wrt 85 and 6
in our case) differs from LH because an X; multiplicand appears when considering
0. This requires that Lemma LH7(1) is extended to include an || X;|| multiplicand.
It can be, given that {X;} is independent of {2} and E||X;||> < co. The proof for
the derivative wrt 3 is the same as in LH except that g = 0 because we only need to
consider the case where 8 = 6.

Lemma LH9(1) now holds for our model by the proof given by LH, but with some
simplifications due to the fact that we only require it to hold for 8 = 8y. In particular,
we only require Lemma LH8(1) to hold with » = 2 rather than r = 4. Thus, the
moment conditions on X; given in (10.9) are sufficient.

13.4. Verification of Consistency

Here we establish consistency of the QML estimator in the non-integrated
GARCH(1, ¢*) case (i.e., when (3, + Zg»:l ag; < 1) and “local consistency” of the

QML estimator in the integrated GARCH(1, ¢*) case (i.e., when (3, + Z?;l ag; = 1)
by verifying Assumptions 4*(a) and 4*(b*). By “local consistency” we mean that,
for some set ©; that is a subset of © that contains © N S(0y,e) for some € > 0, the
maximization of ¢7(6) over 6 € © leads to a consistent estimator of 6. The set ©
that we consider is ©1 := {0 € © : 31, < 8 < B4,}, where 3, and (3, are defined
on p. 36 of LH such that 8;, < By < B4,. The difficulty in treating 3 values that
are distant from (3 is that they may yield a value of the likelihood function whose
expectation is negative infinity in the integrated model.

To verify Assumption 4*(a) for T—147(0), it suffices to verify Assumption 4*(a)
for T=1L7(0), where Lp(0) is defined in (13.1), and to show that

(13.8) sup [T~ (0) — T~ L (0)] 5 0.

0O
Equation (13.8) holds by the extension of Lemma LH3 to our model, which requires
only minor adjustments to the proof given in LH.

Now, to verify Assumption 4*(a) for £7(0), we use the same uniform LLN as
in Section 13.2 just above equation (13.4). Because ¢ () is stationary and ergodic
and continuous in 6, it suffices to show that (i) Esupgeg |¢i(f)| < oo in the non-
integrated GARCH case and (ii) Esupycg, [¢«(f)| < oo in the integrated GARCH
case. Result (i) holds by the first part of the proof (that does not involve derivatives)
of Theorem LH2, using (13.7), and adjusted (easily) to take the supremum over 6
before the expectation. Result (ii) holds by the proof of Lemma LH7(2), which has
been extended to our model in Section 13.2.

Next, we verify Assumption 4*(b*). The uniform LLN used above delivers conti-
nuity of the limit function
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on O in the integrated case and on © in the non-integrated case. Both ©; and ©
are compact. Hence, it remains to show that ¢(#) is uniquely minimized at 6y over
O; in the integrated case and over O in the non-integrated case. These two cases
can be treated simultaneously by considering an arbitrary element 6 for which ¢(0) is

well-defined, i.e., 8 € O in the integrated case and 6 € © in the non-integrated case.
We have

0(0) == Ely(0) = —In(27) — LEIn(hy(0)) — LEe2(0)/hy(0) and

Ee2(0)/hy(0) = E<2/hy(0) + (ZZ B ZZE) E();) ()2)(22 - zzg)

(13.10) Ee /hu(0) = Ehoy/hy(0)

v

/
with strict inequality unless 85 = 059 and 85 = Ogp because FE < é) < )}t) is positive
definite (pd). The function In(x)+y/x is uniquely minimized over = at « = y. Hence,
(13.11) 0(0) < —3In(2m) — L EIn(hy) — 5 = £(60)

Wlth equality lﬁ‘ 94 = 940, 95 = 950, and P(ht(é)) = hOt) =1.
It suffices to show that for any 6 with 05 = 059 and g = 69, P(h(0) = hoy) =1
iff & = 6y. For 6 with 05 = 059 and 05 = f¢0, some algebraic manipulations yield

(13.12)  hy(60) = hoe = O3(he—1(0) — hor—1) + (31,251, hor—1,1) (9 — o),
where 0 = (64,05, 03,04(1—603)) and 0y = (0}, 05, 030, 020(1—030))’. By stationarity

of {ht((‘)) — hOt 1t = ...,0,1...}, ht(e) — h()t = 0 a.s. iff ht,l(e) — hotfl = 0 a.s.
Combining this with (13.12), we find that h¢(0) — ho; = 0 a.s. iff
(13.13) W/(6 — ) = 0 a.s., where W; := (3;,2;, hor—1,1).

We now show that WA = 0 a.s. iff A = 0. This implies that § = 6y, which
completes the proof that 6y uniquely minimizes ¢(#). By repeated substitution into
the formula in (10.1) for hq:, we can write

¢
(13.14) WiA=co+ > ¢z j+ XaKho ¢

j=1
for some constants cy, ..., g+, and K, where A = (X}, A5, A3, A1)/, A3 is the coefficient
on hot—1 in W[A, and 0 < 53*—1 < K < o0.

Suppose W)\ = 0 a.s. By Assumption (a) of (10.9), P(2? = 1) # 1. This implies
that P(z2 | = 1|F_2) # 1 with positive probability. Thus, conditional on F;_o, all
the terms on the right-hand side (rhs) of (13.14) are constants except z2 ;. Because
the rhs equals zero by assumption, we must have ¢; = 0. Repeating this argument for
szj with j = 2,...,¢% yields 0 = ¢o = - - - = ¢4=. Next, hg;—g+ is not a constant because
P22 =1) #1Vt, s0 A3 = 0. Given that A\3 = 0, cp must equal \s. Hence, \y = 0.
Given A3 = A\ = 0, ¢; equals the first element of Ay multiplied by wo(1 — 5;) > 0
and, hence, the first element of A2 equals zero. Continuing for cs, ..., c4x, we obtain
A1 = 0 and A\g = 0, as desired. This completes the verification of Assumption 4*(b*).
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13.5. Verification of Assumption 3

We now show that 7, defined in (10.7), is pd, as required by Assumption 3. By
(10.13), J is block diagonal between g and the other parameters. So, it suffices
to show positive definiteness of each block. The block corresponding to 6g equals
EX; X} /hot, which is pd because EX; X" is pd and 0 < wo(1 — By) < hot < 00 a.s.
Note that EX;X; is pd iff E ()}J (;t)/ is pd and the latter is assumed in (10.9).

Next, consider the block that corresponds to the other parameters. For notational
convenience, let 6 denote 6 with 0¢ deleted. Write the upper blocks of the two
summands of 7 in (10.7) as M7 + Ms. Suppose Mj + M is not pd. (We will derive a
contradiction.) Then, there exists a A, # 0 such that X, (M; + Ms)\. = 0. Because
M is positive semi-definite, this implies that X, Mo\, = 0. The matrix My equals
E(0" 1)(0" 1)'/hgt. Hence, the last element of \,, which corresponds to 65 must be
Z€ero.

Let A denote A, with its last element deleted. Let Mj; equal M7; with its last
row and column deleted. By the results above, X, (M + Ma)\, = N M1 ). Note that
My = %E%ht(é)o)%ht(eo)/h%n where  denotes @ with 05 and g deleted. Thus,

XMy = 0 implies that Zhy(69)'A = 0 a.s. We have

0 0
( ) 50 ¢(0o) t+5069 +—1(00)

for W; as in (13.13). Hence, by stationarity of %ht(%), %ht(é)o)')\ = 0 a.s. implies
that W/A = 0 a.s. The latter implies that A = 0 by the argument given in the
paragraphs containing and following (13.14), which is a contradiction. We conclude
that My + Ms and J are pd.
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14. Footnotes

IThe author thanks Arthur Lewbel, David Pollard, and Chris Sims for helpful
comments, Glena Ames for typing the manuscript, and Rosemarie Lewis for proof-
reading the manuscript. The author gratefully acknowledges the research support of
the National Science Foundation via grant number SBR-9410675.

2The sufficiency of Assumption 4* for Assumption 4 holds by the following ar-
gument: Given ¢ > 0, there exists a § > 0 such that 8 ¢ S(fp,c) implies that
0(0p) — £(0) > 6 > 0. Thus,
P(0 ¢ S(Bo,¢)) < P((80) — T 20 (8) + T 01(0) — £(8) > 6)
< P(U(B0) — T *0r(00) + 0p(1) + T () — £(0) > 0)
P
P,

< P(2Sug I T~10r(0) — £(0)] + 0p(1) > &) 5 0.
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