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1 Introduction

The costs of misspecifying econometrics models can be considerable in terms of the biased inferences
that result. This has motivated much work on producing tests of parametric and semiparametric null
hypotheses against general nonparametric alternatives, especially in regression. These tests fall in
two general categories: those based on smoothing methods, for example Gozalo (1993), Fan (1994),
Hong and White (1995), Fan and Li (1996a), Li and Wang (1996), and Zheng (1996); and those
based on ‘non-smoothing’ techniques such as the empirical distribution function, for example Bierens
(1982, 1990), Andrews (1995), Bierens and Ploberger (1996), and Gozalo and Linton (1996). These
two classes of tests have different properties: The smoothing based tests typically have asymptotic
normal distributions under the null hypothesis, while the ‘non-smoothing’ based tests have non-
normal null asymptotic distributions that depend on the nuisance parameters in the null model; the
smoothing based tests are in general more powerful than the non-smoothing based tests against high
frequency alternatives, while the non-smoothing based tests are more powerful against low frequency
alternatives than the smoothing based tests, see for example Rosenblatt (1975), Fan (1994), Ghosh
and Huang (1991), Eubank and LaRiccia (1992), and Fan and Li (1996b).

Smoothing-based tests have the advantage that the null distribution is normal and so it is rel-
atively easy to obtain critical values. The principles involved also extend easily to a large variety
of data-generating processes. The simplest version of the smoothing-based test for regression was
introduced independently in Li and Wang (1996) and Zheng (1996), see also Fan and Li (1996a).
This is simply a kernel-weighted quadratic form in the parametric residuals. It is in the spirit of the
Lagrange Multiplier test, since it involves explicit estimation only under the null hypothesis. This
quadratic form is asymptotically normal with zero mean, i.e. there are no smoothing bias terms
present as in other tests, thus providing a simple to compute test of the parametric model.

Although their null distribution is normal, there has been much concern over the small sample



properties of smoothing-based tests. This is in part due to the fact that they more closely resemble
parametric chi-squared tests than normal tests [in fact, Staniswalis and Severini (1991) use a chi-
squared approximation]. This view is also borne out by monte carlo experiments which have found
large biases and skewnesses and both under and overrejection, see for example Hardle and Mammen
(1993), Fan (1995), Gozalo (1995), and Hjellvik and Tjgstheim (1996).

We investigate analytically the small sample properties of the specification test in Li and Wang
(1996) and Zheng (1996) through Edgeworth expansion. In a related setting, these techniques were
used by the second author to determine bandwidth selection methods in various semiparametric
models, see Linton (1995,1996); also, see Robinson (1995) for related work on Berry-Esseen bounds.
In this paper, we use the expansions to define a method of size correction which is then investigated
on simulated data. To justify our formal expansion requires some new work. The mathematical form
of the test statistic is a ratio of a degenerate weighted U-statistic to a non-degenerate weighted U-
statistic. While Edgeworth theorems exist for U-statistics that are asymptotically normal [Callaert,
Jannssen and Verarbereke (1980) and Bickel, Gotze and van Zwet (1986)], and even for degenerate
unweighted U-statistics that are asymptotically mixtures of chi-squares [Gotze (1979)], to our knowl-
edge there is no such existing theory applicable to the particular random variables that constitute
our test statistic.

Notation. For any scalar random variable X let x;(X), ¢ = 1,2,..., denote the i'th asymptotic

cumulant of X. Let ®(-) denote the normal cumulative distribution function.

2 Higher Order Approximations to the Distribution of a Smoothing Test
Consider the following nonparametric regression model:
Yi=9(Xi)+w, i=1,...,n,

where {Y;, X/}7 , is independently and identically distributed (i.i.d.) as {Y, X'}, g(-): R* — R is

the true but unknown regression function, and w; is the error satisfying F(u;|X;) = 0. The null and



alternative hypotheses of interest are

Hy : Prig(X)=g0(X,0)] =1 forsome 3 € B
Hy : Prig(X)=g¢(X,0)] <1 forallgehB,

where go(+, 3) is a known function once the unknown parameter g is given. The parameter space B
is an open subset of RP.
The test we examine is based on the quadratic form
o= s S g
i g
where K;; = K((X; — Xj;)/h) in which K(-) is a kernel function and h = h(n) is a smoothing
parameter, and u; = Y; — go(X, ﬁ) in which ﬁ is, under the null hypothesis, a root-n consistent
estimate of 3. Under certain conditions, including h — 0 and nh? — oo, it has been shown that
nh?2[, — N(0,0?) in distribution under Hy, where 02 = 2 [ K2(u)du [ f?(z)ol(x)dx with o2(z) =
E(?|X =z) and u =Y — g(X), while f(-) is the marginal density of X, see Li and Wang (1996)
and Zheng (1996). In addition,
52 — hd Z Z G202 Kz
i g
consistently estimates 02 under Hy.! Therefore, under Hy,

sup | Pr(T < 2) — &(z)| = o(1), 2)

z€R

where T = 6 nh%2I,. The test is implemented one-sided, that is we reject Hy if 7' > 2., where
®(z,) =1 — a for a level « test.
Simulation results on this and other smoothing based tests indicate poor performance of the stan-

dard normal distribution in moderately large samples, see the references cited in the introduction.?

L An alternative estimate of 02 can be based on nonparametric residuals although this is less attractive to implement.

2Zheng (1996) applied a two-sided test based on T to some simulated data and reported good size performance of

his test. However, implementing a one-sided test based on two-sided critical values will incur loss of power.
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This is consistent with (2) since the o(1) error could decrease arbitrarily slowly. In the next section,

we provide a refined asymptotic approximation for the null distribution of T based on Edgeworth

theory that gives an error close to o(n™!) in (2).

3 Higher Order Asymptotic Approximation

We now provide a refined asymptotic approximation for the finite sample distribution of T based on

Edgeworth theory. Our theorem is stated for the version of the test in which 5 is the nonlinear least

squares estimator. Let G; = 0g(X;,5) /0B ,i=1,...,n

THEOREM 1. Suppose that Assumptions A given in the appendiz hold and that the null hypothesis
is true. Then, (a) the asymptotic cumulants of T are, to order O(R3¥2 4+ h¥/2/\/n),

where
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with wy; = GGy, po = QHE(G1K1GY) /R, iy = GluaGr, Q = E(G.GY), and o2 =
2h B (uiuiK%).

Furthermore, letting

3 n‘l’n«TQ o n‘l’an nx‘l’ n$3
Fnl(I):‘D<$+%> ; Fn2($):q)<$+71 672 +73 7274 )

with Y1 = k3(T) = 651(T), Y2 = —k(T), Yus = 9a(T) = 1483(T) =36 {o(T) — 1} 42411 (T)ris(T),
and Ypy = 8:3(T) — 3k4(T), under the additional conditions B given in the appendiz, (b) we have the

formal Edgeworth approximations

sup | Pr(T < z) — F,j(x)| = o(n™%), j=1,2, (7)

z€R

where n~ = h%? n= = min {(nhd/Q)_l, hd} :

The first qualitative conclusion we draw from Theorem 1 is that the magnitude of the size distor-
tion can be made as close to order n~'/2 by taking the bandwidth as small as possible. However, there
is a constraint that nh? — oo which precludes the root-n distortion being reached for a consistent
test.

There is a trade-off to be made here between having good size distortion and good power. As was
shown in Zheng (1996), the test has power against Pitman local alternatives at distance (nh/2)=1/2
from the null hypothesis.®> At one extreme, this magnitude can be made arbitrarily close to order
n~Y2 by taking a large bandwidth, while if bandwidth is small this magnitude can be arbitrarily

large, i.e. power is essentially zero.*

3Consider the local alternative hypothesis

H, : 9(X) = go(X; fo) + 6ny(X)

for some sequence &, — 0. When 6, = (nh%/?)~1/2, we have, under H,,, TN U v2(x) f?(x)dz /o, 1] in distribution.
4In the extreme case where one takes h as a fixed constant, the test is equivalent to a version of the ICM test of



Figure 0 below gives the trade-off between achievable size distortion and power in the range where

there is power against alternatives larger than n~1/4.

*** FIGURE 0 HERE ***

The trade-off is unaffected by the dimensions d, since by choosing bandwidth of the form n=%/¢,

—8/25 For example, at 6 = 1/2 one achieves size

for positive 6, one gets size distortion of order n
distortion of magnitude n~'/4 and power of magnitude n=3/%. See Gourieroux and Tenreiro (1994)
for an interesting discussion about the local power of similar smoothing-based tests.

Note that in view of the trade-off between size distortion and power, a simple notion of optimality
based on maximizing local power for the size adjusted test [as used in classical parametric statistics,
see Rothenberg (1984)], is not well defined here. Really, one needs to have a preference function
jointly defined over both size distortion and local power which then enables one to pick some unique
point on the ’budget constraint’ given in Figure 0.

Regarding the direction of the higher order effects, both the skewness and kurtosis are unambigu-

ously positive, while the mean and variance can take either sign.

EXAMPLE. Under homoskedasticity, the order h%? mean and skewness corrections simplify.

Specifically,

Bierens and Ploberger (1996) (see Fan and Li (1996b) for a proof of this result) which has power against Pitman local
alternatives at distance n~/2 from the null hypothesis. However the null asymptotic distribution of the test statistic
with a fixed h is no longer the standard normal, in fact, it is an infinite sum of weighted independent chi-squared(1)
distributions. This explains the poor finite sample performance of the standard normal distribution for large smoothing

parameter values observed in our simulation studies.

5For a broad range of bandwidths, specifically § < 2/3d, the terms in the cumulant corrections of order 1/nh?/?

are of smaller order than A? and can be ignored.
6We show below that by using size-adjusted critical values one can reduce the size distortion to magnitude less

than order n=9.



_7d)2 tr(Q,07)
2vy(K)va(f)’

where v;(g) = [ ¢?(s)ds and Q; = E [G1G f(X1)], while

k(T =

k3(T) = 8h?/? v3(f)s«(K) |
{QVQ(K)I/Q(f)}S/Q

where v5,(K) = [ [ K(u — v)K(u)K(v)dudv = [ K(v)K % K(v)dv. If, furthermore, f were uniform
and K were Gaussian, then the mean correction is —h%/2d/2,/7 and the skewness correction is

h9/287 /\/6.

4 Size Correction

We now use the approximations of Theorem 1 to define a method of correcting the test for its
deficient size. Similar procedures have been defined for a wide range of parametric testing problems,
see Rothenberg (1984).

Let «, be the true rejection frequency of the test, i.e. a,, = Pr (f > za|H0) , then from Theorem

1, we have that
a, =a+0(n™%).

Define the corrected critical values c¢,; and c,2, where

_ Ym t /VnQZgé

Cal = Za 6
o =, T YwZa  TwsFatYniZa | Zatz (Ya F Yn2Za)
o « 6 72 18

and let af; be the rejection frequency of the test using c,; as critical value. Then,
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(a) oy =ato(n ) ; (b) any =a+o(n ) (8)

which follows from (7). In practice, we must replace v,,; by an estimate, say 7,;, j = 1, ..., 4. Letting
e . A1 + 27l
al « 6
8 _ - ;}\/nl + %223 _ ;}\/nBZa + 3%422[ + Zo//}\/nQ (;}\/nl + §n2zi)
o « 6 72 18 ’
we have the following corollary
COROLLARY. Provided the estimation error in Yn;, j = 1,...,4, is small enough, (8) holds for the

estimated critical values. Specifically, for (a) we just need consistency, i.e. (Yn;—"Vnj)/Vnj = 0p(1) for
j = 1,2, while for (b) we need that (Vnj — Ynj)/Ynj = 0p(n™27V) for j =1,2 and (Jn; — Ynj)/Vnj =
op(1) for j =3,4.

We now discuss how to estimate m;; and hence v,;. Note that there are no terms which arise
from “smoothing bias” which makes our job easier. The population moments m ;i can be estimated
by their sample equivalents. For example,

SR i M= e YN BRI,

U; Ty 5 mii1 = 7135'3h2d uiujul RIS IR

i=1 ’ bl i GAAL AL

where 7;; = GllgG;, with

N—1
Q-

R ~ 1 ~ ~
i#j

where () = %Z?:l C:’ZCA?; Here, G; = Gg(Xi,B) /OB ,i=1,...,n.
In view of the U-statistic structure of the above estimates, we expect them to be root-n consistent

for the population quantities which would satisfy the conditions of the corollary.



5 Simulation Results

To evaluate the performance of the Edgeworth expansion derived in the previous sections, we applied
it to testing two parametric specifications.

The first one (DGP1) is taken from Hérdle and Mammen (1993). There is one regressor X; (d = 1)
and the parametric specification is go(X;, 3) = (o + (1 X; + $2X7?. In the simulation experiment, we
generated n independent observations X; from the uniform distribution on [0,1] and generated u;
independently from the standard normal distribution. As in Héardle and Mammen (1993), we set

Bo = 1 = Pa = 1, and take the kernel function K (-) to be the quartic kernel

K(u) = %(1 —w?)?I(Ju| < 1).

The smoothing parameter is chosen according to h = cxsgn™/ 3 where c is a constant and x4 is the
sample standard deviation of { X} ;.

The second model (DGP2) is the one considered in Zheng (1996). There are two regressors
Xj; and Xy; and the parametric model is specified as go(X;, 3) = o + (1 X1 + PoX2. In the
experiment, the two regressors are generated as Xi; = Z1; and Xo; = (Zy; + Z2;)/v/2, where Zy; and
Z»; are independent observations from the standard normal distribution. The error term wu; is drawn
independently from the standard normal distribution. As in Zheng (1996), By = /1 = f2 = 1; the
kernel function K is the bivariate standard normal density function; and the smoothing parameter
his h = cn~%/® where c is a constant.

For both models, we considered two sample sizes: n = 100 and 200, and four values for the
constant ¢ in h: ¢ = 0.5, 1.0, 1.5, and 2.0. The number of replications is m = 1,000.

In principle, the test based on T is a one-sided test. However, Zheng (1996) used two-sided critical
values from the standard normal distribution. Hence, in our experiment, for DGP1, we computed
rejection rates of T based on one-sided critical values from the asymptotic normal distribution (z,),
the first order Edgeworth expansion (¢,;), and the second order Edgeworth expansion (é42); for

DGP2, we computed rejection rates of T based on both one-sided and two-sided critical values
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from the asymptotic normal distribution, the first order Edgeworth expansion, and the second order
Edgeworth expansion. The rejection rates for DGP1 are reported in Tables 1 and 2, and those
for DGP2 are reported in Tables 5 and 6. In addition, we also computed the first four corrected
cumulants, their means and standard deviations over 1000 replications, as well as the first four
empirical (estimated) cumulants of T. These are reported in Tables 3 and 4 (for DGP1) and Tables
7 and 8 (for DGP2). To examine the overall performance of the asymptotic normal distribution and
the second order Edgeworth expansion, we have also drawn QQ plots for both DGP1 and DGP2
when n = 100. These are given in Figures 1 (DGP1) and 2 (DGP2). Both Figure 1 and Figure 2
have four graphs corresponding to ¢ = 0.5, 1.0, 1.5 and 2.0 respectively. In each graph, the standard
normal critical values (z,) and the Edgeworth corrected critical values (¢,2) are plotted against the
empirical critical values of T generated from 1,000 replications. As reference, the 45 degree line
is also drawn. The distribution that generates a QQ plot closer to the 45 degree line provides a
more accurate approximation to the true distribution of T. The two vertical lines in each figure
corresponds to the empirical 95% and 99% critical values of T. Detailed results are summarized

below.
*** TABLES AND FIGURES HERE ***

For DGP1, both Tables 1 and 2 as well as Figure 1 show clearly that the standard normal
distribution performs poorly as reported in Hardle and Mammen (1993), and its performance is very
sensitive to the value of the smoothing parameter. The second order Edgeworth expansion, on the
other hand, significantly improves on the asymptotic normal distribution and is relatively stable over
the values of the smoothing parameter considered. The QQ plots in Figure 1 indicate that the second
order Edgeworth expansion over-corrects slightly on both tails for ¢ = 0.5, and is very accurate for
¢ = 1.0, 1.5, and 2.0. Tables 3 and 4 show that the mean of T is always negative and becomes smaller
as h increases; The variance of T is smaller than one and decreases as h increases; Overall the first
two corrected cumulants are very close to the corresponding empirical (estimated) cumulants; The

third and fourth corrected cumulants are not as close to the corresponding empirical cumulants as

11



the first two.

For DGP2, Tables 5 and 6 show that the asymptotic distribution provides a more accurate
approximation than for DGP1. For almost all the values of the smoothing parameter considered,
the test based on two-sided asymptotic critical values has a better size than that based on one-sided
asymptotic critical values. However, both are sensitive to the values of the smoothing parameter.
As h increases, the rejection rate based on asymptotic critical values (both one-sided and two-sided)
decreases. As n increases, the rejection rates are closer to the nominal sizes as predicted by the
asymptotic theory. The rejection rates based on Edgeworth corrected critical values are very stable
over the smoothing parameter values considered, and they are closer to the nominal size than based
on asymptotic critical values except at 1% level. The latter may be due to the small sample size or the
small number of replications in the experiment. Figure 2 shows that the standard normal distribution
provides an accurate approximation at ¢ = 0.5, and is better than the Edgeworth expansion in the
middle but worse in the right tails. However the standard normal distribution gets worse when c
increases, and the Edgeworth expansion is very stable. Tables 7 and 8 indicate that the test statistic
T still has a negative mean but closer to zero than for DGP1; it’s variance is closer to one; It is
positively skewed. Although the test based on two-sided normal critical values has an accurate size,
it loses power in comparison with the one based on one-sided critical values. Hence the test based

on Edgeworth corrected one-sided critical values is recommended.

6 Conclusion

Both our theoretical and simulation results indicate superior performance of the Edgeworth expansion
to the standard normal distribution in approximating the finite sample distribution of T under the
null hypothesis. This is consistent with the superior performance of the bootstrap reported in Li and
Wang (1996) whose validity is predicated on Edgeworth expansions similar to those established in
this paper.
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7 Appendix

Let
2
52 = = 22 K2 9
7 n(n — 1)hd Xi:;uzug ij? (9)
- hd/QIn
T = M (10)
o
d/2]
7, = M (11)
O’n

where 02 = E[5?]. Let 0,, = E[ulu3K?%)]. Then o2 = 20, /hd :

We assume that Hy is true and that the following conditions hold:

ASSUMPTION A.
1. The parametric regression function go is twice continuously differentiable with respect to both

B and x. The estimator B is root-n consistent, specifically,

~ .1 &
nWW—%ﬁﬂﬂﬁﬁ;GM+%m

where Q = E(G;GY) is finite and non-singular.

2. The estimator 5 has the moderate deviation property: for some ¢ > 0,

Pr [Hnlﬂ(B - ﬂo)H > clog n} = o(n"®),

12 is Euclidean norm.

where ||z]| = (2'x)
3. The marginal density f(-) is strictly positive, bounded, and continuously differentiable on its

support.
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4. The conditional moments p;(z) = E(|u;[’ | X; = ) exist and satisfy [ p;(x)f(z)dz < oo for
i=12,....

5. The kernel K is a symmetric, bounded, differentiable density function, and satisfies [ K*(u)du <

6. The smoothing parameter satisfies h — 0 and nh® — oo, as n — oo.

REMARK. The precise number of moments in A4 depends on the rate of convergence (i.e. the
bandwidth and dimensionality); we have chosen to implicitly assume that all moments exist. The
moderate deviation assumption A2 has been verified for maximum likelihood estimators under a

variety of conditions, see Pfanzagl (1980).

PrROOF OF THEOREM 1. The proof is divided into three parts. In part A we outline the
asymptotic expansions establishing the order in probability of the remainder terms. In part B below
we justify dropping of remainder terms as far as the order n~ < distributional approximation is

concerned, while in part C we give an Edgeworth theorem.

A Asymptotic Expansion
As in Zheng (1996),
62 = 5*[1 + Op(n1)],

whence

T=T@5 ) =T+0,n"), (12)

where we have used the fact that 52 = O,(1). In fact, it will follow from the calculations given in

Appendix B that the distribution of T is the same as that of T up to order n~ L.
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We write
Pt = S S G — 0] (13
i jF#Ei
Since 52/2 is a non-degenerate U-statistic, one can show by using Lemma 3.1 in Powell, Stock, and

Stoker (1989) that 52 — 02 = O,(n"Y/2). Therefore, we get

o _ 1
sl=o 1[1——20_2(02—0')+O( DI, (14)
and consequently
= 1 9
T=1T, 20_2T(0' 02) + Op(n7h). (15)

We now simplify the expression for T;,. Using assumption Al, we have that u; = u; — G, (5 —-B)+
op(n~1/%). Thus,

In n _ 1 hd ZZU U] g hd Zzzukwkzu] i (16)

e i i
hd Zzzzukwkl Wi + @) ( 3/2).
togFE

Let U = m DDt GiKijG;. Then, noting that U is a non-degenerate U-statistic, one can show
by using Lemma 3.1 in Powell, Stock, and Stoker (1989) that U = E(G;K12G)/h*)+0,(n"'/?). Thus,
the third term on the right hand side of (16) equals

1
E E E UkaﬂilUgilGlul =
k1

Substituting (16) into (11) and using (17), one gets
1

Tnzwzzuua =

Tn i j#i

hd/z ZZZUMZ% ij

n( On k1 j#i
hd/2 hd/2
ZZuka,ul + O ( \/E)

noy, 7

1 1

+

hd/2

= Tn1—2Tn2+Tn3+O (\/ﬁ

)- (18)
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Now consider the second term on the right hand side of (15). From the facts that: Tps = O,(h%?),

T3 = Op(h%?), and 52 — 02 = O,(n~/?), it follows that

hd/2

T,(6% = 03) = Tu(s® ~ 03) + Oyl 7).

Equations (15), (18), and (19) yield the following asymptotic expansion for T

hd/2

T:Tn1_2Tn2+Tn3 2T4+O(\/ﬁ)v

where T,,1, Tp2, Ths are defined in (18), and

1 _
“ i nl<"2

- 2h3d/20.3 Y>> wau Ky luiui Ky — ).

2n(n — ni gtk £k

~ o)

(19)

(20)

In conclusion, the asymptotic expansion of T up to order Op(%) is given by (20) whose properties

we record below in more detail.

LEMMA Al.
(i) T defined below satisfies T,y — N(0,1) in distribution,

1

W ZZuzu] ijs

On 5 jri

Tnl =

(i) Tho satisfies

Tn2 = n(n hd/QO'n Z Z Z Uku)kzu] i

1#j#k
1 2
Pl DR, 222
i#j
+0,(n71h).

In addition, h=%?T,; — N(u*,0%), where u* # 0 and 0% > 0 are constants;

16
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(iil) Ty3 satisfies
hd/2
Th3 =

hd/2
L

non 17
In addition, h=%*T,3 — Y22, )‘iX?,[ll + p**, where N\; and p** are constants, and X?,[l} s are indepen-
dent x? random variables with degree 1;

(iv) Tha is given by

Tn4 =

2h3d/20.3 D00 D K ugu Ky — 0], (24)

2n(n — I

In addition, n*/?*T,4 — N(0,0%**) in distribution, where o®** is a positive constant.

Lemma Al states that up to order O,(h%2n~1/2) T is the same as the truncated statistic

T, =Th — 200 + Ty — 2T504.

We are now ready to derive the first four moments of T,. First we introduce some additional

notations. Let

E(T,

Hij = E(T’I’LZTTZ] 5 Za] = 17273a4a

D, i=1,2,34,
)
)
)

Hije = E(Tanank s i,j, k= 1, 2, 3, 4,
Hijkl = E(Tananan] s i,j, k’,l == 1, 2,3,4.

1 hd/2
P2 = WE[Ugmeu] = h*Pmy,  ps = o Eluirii] = h7*m
— 1 E SKB 1
Ha = O'g(n — 1)h3d/2 [UIUQ ] ( n— 1)hd/2 my

To evaluate the second moment of T}, we note from Lemma Al (ii), (iii), and (iv) that g4 =0,

paa = O(n™1), poa = O(h%?/\/n), and pzs = O(h*/?/\/n). Hence,
/2
E[Tf] = pa1 + 4poo + psz — 4pgg + 213 — 4pisg + O(%% (25)
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where using the expressions for T),1, T2, and T,,3 given in equations (21)-(23), one can easily show

that

Hi1 =

22 =
M3z =
Hi2 =
iz =

Ha23 =

Similarly,

1+0(n),
1
UTME[“iugmew(MsKsz + wysKas)] + p3 + O(n™1) = h¥may + m3] + O(n™1),

2h4
— Bluguima] + s + O(n”7) = h7[2mags + mg] + O(n ),

n

E[u%u%Klgwnggg] = 2hdm12,

2,d
oih

2

;E[u%ugKlngg] = 2hd’m13,
2
EE[ugugw;ﬂKlngg] + a3 + O(n_l) = hd[2m23 + mgmg] + O(n_l).

Lemma Al implies that Mo20 = O(hgd/Q), H333 = O(th/Q), Haaa = O(?’L_B/Q), H14a4 =

O(n™1), was = O(R¥?/\/n), and pi3s = O(h%%/\/n). Thus, ignoring terms of order O(h3¥/? +
h2/.\/n) or smaller, we get

E[T?] = pi11 — 6112 — 6pt114 + 3pa1s + 12102 + 3pa3s — 127103, (26)

There are only three terms on the right hand side of (26) that are of order larger than O(h3%/?).

They are given by

8
Hi11 = —USth/2E[U%UgugKuKng%] + WE[u?ugKl%]
= Shd/2m111 + Wm4,
Hi12 = WE[uiw43K34] + O(h3d/2) = W2, + O(hSd/Q)’
hd/Q
Pz = E[ulrss] + O(R*2) = h%2mg + O(R3/2).

n

To evaluate E[T?], again we first use Lemma A1l to single out terms of order O(h?¢ + h%/2 /\/n)

or smaller and ignore them. This gives

E[T)* = pa111 — 8pa112 + 4pta11s — 81114 + 2441122 + Gpta13s — 2444123, (27)
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where

H1111 = 3 + 48hdm1111 -+ O(th),
M1z = 2hd[3m12 + dmy1ma) + O(th)u
piz = 2h%[3maz + dmyms] + O(h*Y),

Hi114 = O(l/n)a

Hi122 = hd[m22 + m%],
Hi133 = h¢ [2mas + m?],
piies = h[2maz + moms].

B Error Term Calculation

We establish the following result:

LEMMA B. The distribution of T is the same as the distribution of T, [defined after Lemma A1]

to order n—°2.

Proor oF LEMMA B. This argument is similar to that given in Linton (1995) but is included for
completeness. We use the following result of Sargan and Mikhail (1971). For any random variables

T, 7% R with T'=T* + R, we have for all z and (,

[Pr(T <z)—Pr(T" <) <Pr(|R] > () + Pr ([T — =z < (), (28)
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see Rothenberg (1984) and Robinson (1988). Provided 7™ has a bounded density, the last term is
O(¢) as ¢ — 0. We therefore choose ¢ = O(n~“2log ' n) and show that

Pr(n®logn|R| > ¢) = o(n™%) (29)

for some positive constant c. It follows from (29) that 7" and 7™ have the same distribution to order
n~2. This property (over and above the in probability equivalence) is important to establish for
the interpretation of the asymptotic cumulants, see for example Srinavasan (1970) and Rothenberg
(1984).

We must check that (29) holds for all the various remainder terms in the expansion; we just

sketch the argument for (12). Let T' = YA“, T* =T,, and R being the difference between them. Thus,

where the second line follows by the mean value theorem with ¢* intermediate between & and
. Let &€ = {n%logn|R| >c}, & = {|T./260*| < c}, & = {62 -3% < ¢}, and & =
{n®|5* — 02| < ¢y} for positive constants ¢; and a; with a; < 1 and ay < 1/2 [recall that n(6%—52) =

0,(1) and n'/%(72 — 02) = O,(1)]. We exploit the following inequality for events £, £ and &,

Pr(€) < Pr(ENE& NE)+Pr(EF) + Pr(£5)

and then use the fact that & N & C & for certain ¢; [since liminf 02 > 0] to end up with
n—oo

Pr(£) < Pr (€N &)+ Pr (&) + Pr(&5).

By the Markov inequality

E[{n]5* - 7*}"]

ri(l—a 71
nril=ay)cy

e < P o)

- 1/2— 72
nT’2( / 02)01

Pr (&7) <

20



for any r and ry. Thus, provided the relevant moments exist and r1(1—ay) > €5 and ro(1/2—ay) > e,

we have
Pr(&f) =o(n™?), (=1,2.

Finally,

Pr(éné&) < Pr [neQ logn )32 —32) > c}

= o(n™?)

by the same arguments. In this case, we take a; < 1 — €z and as < 1/2 — €1, with r; and ro

correspondingly large. The moments of 72 — o2

A4 and A5 [note that [ K?(u)du < oo and K bounded imply that [ K7(u)du < oo, j > 2], see

exist by standard arguments based on assumptions

Robinson (1995). The moments of 52 —&* do not necessarily exist unless the corresponding moments
of n'/2(3 — 3y) do. Therefore, it is necessary to expand out 2 — &2 in terms of U-statistics [whose
moments do exist] and n/2(5— 3,); assumption A2 is used to ensure that contribution from n'/2(3—

Bo) is sufficiently small.

C Distributional approximation

The truncated test statistic T, is a linear combination of certain U-statistics. In this section we
establish the validity of an Edgeworth expansion for the first of these four terms, i.e. T,,;. The
remaining terms are of smaller order and we expect that with considerably more work one could
establish the validity of the distributional approximation for 7} itself using the techniques of Linton

(1996). In any case, we shall restrict our attention to the degenerate weighted U-statistic’

"The upper triangular form is just for convenience and all results likewise hold for the full quadratic form.
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1 n-1 n
U, = W Z Z UinKij7

i=1 j=it+1
and we shall suppose for notational simplicity that w;|X;, i = 1,...,n are independent with variance
such that U,, has mean zero and variance one (and is thus asymptotically standard normal). Consis-
tent with the above moment calculations, we shall suppose that U,, has third and fourth cumulants
s3n~ and »yn~ 2, say, to order n~ [here, €5 = 2¢;]. In the sequel all calculations are made in the
conditional distribution [given X7,..., X,].

We make use of the following proposition.

ProprosITION C1: Let F and G be two signed measures with Fourier transforms v and 1, where
v(0) = 1, while 1 is continuously differentiable with ¥ (0) = 1 and ¢'(0) = 0. Suppose also that G
is differentiable and [ |z||G'(x)|dx < oco. Then, for all = and all T > 0, there is a constant m such

that
24m

Y(s) —(s) 24m
A

S

|F(z) — Glz)| < l/T ds +

™ J-T

The so-called smoothing lemma is proved in Bhattacharya and Rao (1976, Lemma 12.1 and Lemma
12.2). For our application we identify G with Fy [or rather the corresponding Edgeworth measure

based on the cumulants of U,], i.e.

6ne T2n¢2

Fra(z) = ®(x) — ¢(x) {%?’H?(x) + _ 3raHs(x) + 55 Hs (2) } 7

where H;(x) are the Hermite polynomials, e.g. Hy(z) = 2> — 1, and F with the distribution function

of U,. We choose T' = n®? logn, in which case

wn(s) — Q/Njn(s)

d e
- s+o(n"?),

- 2 n2 logn
sup ‘Pr[Un <z]— an(ac)‘ < —/O

—oo<x<o0 e

where 1,(s) = [ dF,,(x) is the Fourier transform of Fy(x), while ,(s) = F [eiSU"} is the

characteristic function of U,.
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We split the range of integration into several different parts and show that each sub-integral is

o(n= ). We have

f(;zE? logn

P (8 —'van(s
s

ds

¢n(52—7/~’n£82

n1/2 Jlogn
Jo ;

ds+

€1 n
f;;el/2 /logn S(S) dS_I_

Pn (3)

Un(s) ds

n2 logn
fnﬁl

o0
fnél

ds—+

L+ 1L+ 13+ 1.

For large s we rely on crude bounds for the magnitude of |¢,(s)|, which hold when s is kept at a

distance from the origin. Our proof technique in this follows closely that used in Callaert, Janssen

and Verarbereke (1980). The last integral, Iy, is o(n™) because of the form of the Edgeworth

characteristic function 1/711 The main difficulty here is in establishing what happens when s is very

small.

We first establish the behaviour of the characteristic function for large values of its argument, i.e.

.[3. Let

1

How = e

where 6 < N(n) < n is an integer, and

1 N-1
Un—1m = Rl Z

Z ’LL[U,ngj, gzl,...,N,

j=N+1

m

> uiuK

i=1 j=i+1

for integers N, m < n, with U,, = U,_; . Note that
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N-1

1 N n N
UN,n—UN—l,N = hdl2 {Z Z Uiquij_ Z Z uiquij}

i=1 j=i+1 i=1 j=i+1

N
— 3 Hp
=1

We make the additional assumption that

ASSUMPTION B1. For any a > 0, there exists a constant ¢ < 1, such that for N(n) = O(n?),
with 0 < 6 < (4 — bey) /4,

Pr{|E {exp(isHin) |Xnn}| > ] =0 ( L ) ,

nezlogn

uniformly for s € [an‘',n?logn|, where Xy, = {Uni1,UN12,- -, Un] .

REMARK. Verification of this condition [for similar random variables| was provided in Linton

(1996) when u; are normally distributed.

LemMmA C1: For some a > 0,

Vn(s)

S

n2 logn
/ ds =o(n ). (30)
anfl

PRroOF. The proof of Lemma C1 is completed using the following lemma which is proved below.

LemMA C2: For all s and for all n and N, with 6 < N < n, there exists A < oo, such that

3 2% 1, dk /2 4
()] < B 1B {explisHux) |2} Y] {1 A3l [&] } TRTEAT)

nk nt

Then, by assumption B1 there exists a constant ¢ < 1 such that

|ElexpisHiy)|uni1, - - -, ua]| < c,
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uniformly for s € [an®, n® log n| with probability 1—o ( . This gives us an exponential bound

1
n2 logn

for

3 N2k dk/2
E[|Elexp(isHy)|un+1, - - -, Un”Nfﬁ] {1 + A Z ‘S‘k [ nk ] } :

k=0

The second term on the right hand side of (31) contributes a term of magnitude O(n*logn x N*/n?)
to (30); this is o(n~¢), provided N is small enough; N(n) = o(n*=>¢)/%) will work.

We now examine I; and I, which concern the case that s is small, i.e. less than n. We first show
that in the relevant range the characteristic function of the quadratic form U, (uq, ..., u,) is close to
the characteristic function of U, ({1, ..., (,), where (;, j = 1, ..., n are independent random variables
with the same moments as u; to order p. We will find it convenient to replace u; by normal [or
scale mixtures of normal] random variables (;, because quadratic forms in these latter variables are
much easier to handle. Let A.x = maxi<j<, Apj, Where \,;, j = 1,...,n, are the eigenvalues of the
smoother matrix K = n~th=%2 (K,;) ;- To establish this result we use a modification of Proposition

1.4 of Mikosch (1991):

PROPOSITION C2. Assume that sup,s; E|u;|P < oo for some integer p > 2. Suppose also that

E(F)=E@Wr), k=2,....,p— 1. If Apax — 0, then

‘E [eitUn(ulv---vun)} & [eiwn(cl,...,cn)H < |tPO(L,,,), (32)

where L, = S0 (Zj Ké)p/2/<nhd/2>p '

REMARK. Mikosch’s result is stated for i.i.d random variables but extends straightforwardly to
heterogeneous random variables under our assumptions. The eigenvalue condition holds in probability
by the following argument. By definition,

Amae = maxVo(6) 5 Ya(0) =0K0 5 O, ={0cR% #09=1}.

n
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We have that Y,,(6,) —, 0 for any fixed or random sequence §,, € ©,, by calculation of the first
moment [in fact, Y, (6,) = O,(h%?)]. In particular it is true for 0, = arg maxgee, 0'K0 [which exists

by the compactness of ©,,].

We have

under our conditions. Therefore, (32)< [¢t[PO(n~P~2/2) and

ncl
/0

We shall use the additional assumption:

E [eitUn(uL...,un)} _E [eitUn(Cl,...,Cn)]

- dt = O(nPan~P-2/2), (33)

ASSuMPTION B2. The random variables u; are symmetric about zero and have positive kurtosis.

The bandwidth h is of larger magnitude than n~ 1/

which guarantees that we can choose (; to be scale mixtures of normals [that is (|o? ~ N(0,c?),
where ¢ has some distribution P,] whose moments through p — 1 = 5 agree with u;, and, since

€1 < 1/4, (33)= o(n~Y2) [= o(n™%)] as required.

REMARK. This assumption is clearly restrictive relative to other assumptions; it really reflects
our poor proof technique rather than actual constraints on the sampling scheme. In fact, inspection

of the cumulants in Theorem 1 show that [apart from one term of order n~'h~%2 which can be
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ignored for a much wider range of bandwidths| no moments of u; higher than the second appear, i.e.

u; might as well be normally distributed under a much wider range of circumstances.

We can now assume without loss of generality that u; are scale mixtures of normals. For any

random variables u; we can write

U, = Z)‘nj(vr%j - Uij) (34)

j=1

n

j=1
where v,,;, j = 1,...,n, are uncorrelated random variables. However, in the special case that u; are
conditionally normally distributed, we have v,; = u; and the corresponding Y,,;, 7 = 1,...,n, are

independent random variables [at least conditional on the scale parameters]. The proof now proceeds

as for the standard case of independent random variables with n replaced by h~¢; everything just

depends on the magnitudes of averages of various moments of Y,,;. See Feller (1966, p 521) for an

early treatment. Define the Lyapunov coefficients
n
Ln=>Y_E|Y,|", r=3/4,...
j=1

and note that [,,, = O(n~=24) r =34,... by direct calculation.

LEmMA C3. For some a > 0,

an€l
AEl/Q /logn

27



ProOF oF LEMMA C3. We use the following result for sums of independent random variables
which follow by identical arguments to Bhattacharya and Rao (1976, Lemma 8.9) after replacing

their definition of ,,, by ours.

ProrosiTioN C3. For all positive 6 < 1-5,

62
i (t)] < exp{—gﬂ},

for all t satisfying |t| < (1-5— 6)l3’7,1l.

Then,

¥n(s)

S

an®l
/7151/2 /logn

00 62
ds < na/? logn/ exp{——s2}ds
n1/2 /logn 3

= o(n™?),

in fact o(n~*) for any positive k, by a standard application of Hopital’s rule.

LEMMmA CA4.

%(S) — @Zn(s)

S

ds = o(n" ).

n€1/2 [logn
/O

Proor oF LEMMA C4. We use the following result for sums of independent random variables
which follow by identical arguments to Bhattacharya and Rao (1976, Theorem 9.12) after replacing

their definition of /,,, by ours.
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PROPOSITION C4. There exists a positive constant ¢; and a positive sequence 6(n) — 0, such

that for all t satisfying |t| < c;n~/2, one has

) = )] < St e (- ).

for some polynomial P(t) with constant coefficients and zero intercept.

Now integrate over ¢ and use the fact that [ [¢|7'P(t) exp (—%) dt < oo [there is no intercept in

.

ProOF OF LEMMA C2. The proof follows by the same argument as given in Lemma 5 of Callaert
et al. (1980). The different magnitudes are a consequence of the bandwidth h.

Firstly, by rewriting U,, using addition and subtraction, we obtain

Vn(s) = E(Eexp{is(Un, — Un-1n5)} exp(isUn_1n) exp{is(Up-1n — Unn)} |XNn]) -

Then, because |exp(is)| < 1 for any real s,

[Un(s)] < E(|E[exp{is(Unn — Un-1.n)} exp(isUn-1,n5) [Xnn]])

< i|s|’“E()E[exp{is(UNm—UN_LN)}U]’@_LNWN,L”)+|s|4E<U§,_LN), (36)

k=0
by the fact that for any real ¢ and positive integer k, |ef — Z?;é %,X < %k,

We deal with the terms k£ =0, ..., 3, in turn.
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(i) For k = 0, we have

E(|E [exp{is(Unn — Un-1,8)} [Xnn]])

<

E

r N
'E (exp isz Hyn ]/'\T'N,n>

(=1

|

|E (expisHy [Xwn)|"]

since, conditional on Xy ,, the Hyy are mutually independent random variables. We can clearly

replace N by N — 6.

(ii) For k =1, we have E [exp {is(Uy» — Un-1.n5)} Un-1n |[XNn] =

| N-1 N . N
WZ Z E [uju; Ky exp {is(Hiy + Hin } | XN, E |exp ISZHgN | XN n

i=1 j=i+1

Since

(=1
Fi.j

FE [h_dUinKij exp {IS(HZN + Hj]\[} |XN,n} = 0(1)

and we have N2 such terms (to be multiplied by h%/?/n), we get the stated coefficient on |s|.

(iii) For k = 2, we have, similarly, N* terms (to be multiplied by h?/n?) of the type

E [h_QduilujluizusziljlKi2j2 eXp {18 (HilN + HizN + Hle + Hj2N)} |XN,H} - 0(1)

(iv) For k = 3, we have, similarly, N° terms (to be multiplied by h3%2/n?) of the type

—3d . .
E |h uilujluizujzuisujsKiljlKi2j2KiSj3eXp 15 Z HﬁjN ’XN,R _0(1)'

§j=12,3
4=i,j

In conclusion, we have established the magnitudes of the coefficients on |s|*

right hand side of (36).

in the first term on the

Finally, we have for any m, N, E [|UN_17m|2} = O(Nm/n?), and therefore

30



E[|Ux 15| = OWNI/m?), j=2,3,...

which establishes the magnitude of the second term on the right hand side of (36).
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Table 1: Estimated Size (DGP1, n = 100)

Second Corr. cri. values Asymptotic critical values

First corrected

hn 1% 5%  10% 50% 1% 5%  10% 50% 1% 5%  10%  50%
0.5 0.012 0.059 0.121 0.469 0.007 0.027 0.045 0.284 0.008 0.043 0.104 0.469
1.0 0.009 0.052 0.105 0.488 0.003 0.016 0.031 0.231 0.005 0.032 0.076 0.488
1.5 0.008 0.047 0.099 0.491 0.002 0.011 0.018 0.183 0.002 0.021 0.058 0.491
2.0 0.006 0.043 0.100 0.499 0.001 0.008 0.014 0.145 0.002 0.017 0.047 0.499

Table 2: Estimated Size (DGP1, n = 200)

Second Corr. cri. values Asymptotic critical values First corrected

hn 1% 5%  10% 50% 1% 5%  10% 50% 1% 5%  10%  50%
0.5 0.013 0.054 0.092 0.492 0.007 0.029 0.056 0.315 0.010 0.048 0.081 0.492
1.0 0.05 0.041 0.090 0.495 0.004 0.016 0.033 0.238 0.004 0.030 0.069 0.495
1.5 0.005 0.041 0.091 0.511 0.004 0.009 0.022 0.191 0.003 0.024 0.064 0.511
2.0 0.005 0.034 0.083 0.517 0.004 0.007 0.014 0.156 0.004 0.015 0.050 0.517

Table 3: Cumulants (DGP1, n = 100)

Empirical Random draw Mean

hy, 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
0.5 —0.446 0.899 0.473 0.138 —0.483 0.847 0.258 0.197 —-0.415 0.851 0.387 0.275
sd 0.069 0.062 0.212 0.251
1.0 —0.599 0.765 0.446 0.289 —-0.664 0.717 0.539 0.436 —0.579 0.723 0.612 0.625
sd 0.067  0.077 0.155 0.340
1.5 —0.715 0.645 0.421 0.373 -0.762 0.614 0.737 0.749 -0.693 0.607 0.774 0.973
sd 0.067 0.081 0.137 0.395
20 —0.802 0.556 0.399 0.401 -0.828 0.523 0.870 1.042 —-0.780 0.502 0.907 1.320
sd 0.066  0.081 0.129 0.437
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Table 4: Cumulants (DGP1, n = 200)

Empirical Random draw Mean

h 1st 2nd  3rd 4th 1st 2nd  3rd 4th 1st 2nd  3rd 4th
0.5 —0.392 0.882 0.439 0.309 —-0.297 0934 0.225 0.160 —0.380 0.892 0.401 0.263
sd 0.039 0.032 0.102 0.142
1.0 —0.544 0.754 0.384 0.255 —0.428 0.846 0.559 0.591 —0.529 0.792 0.587 0.551
sd 0.042 0.040 0.080 0.177
1.5 —0.644 0.658 0.369 0.260 —-0.530 0.762 0.795 1.066 —0.635 0.697 0.727 0.841
sd 0.044 0.045 0.072 0.202
20 —0.730 0.573 0.381 0.430 —-0.618 0.679 0.945 1464 -—-0.718 0.610 0.844 1.129
sd 0.045 0.048 0.070 0.230

Table 5: Estimated Size (DGP2, n = 100)

Second Corr. cri. values Asymptotic critical values First corrected
h 1% 5% 10% 50% 1% 5% 10% 50% 1% 5% 10% 50%
One-sided Test
0.5 0.014 0.035 0.087 0.481 0.004 0.027 0.067 0.418 0.008 0.033 0.090 0.481
1.0 0.015 0.046 0.087 0.469 0.010 0.033 0.052 0.347 0.010 0.038 0.079 0.469
1.5 0.011 0.048 0.088 0.466 0.009 0.023 0.045 0.265 0.009 0.034 0.069 0.466
2.0 0.008 0.044 0.082 0.488 0.006 0.015 0.033 0.224 0.006 0.028 0.060 0.488
Two-sided Test

0.5 0.062 0.050 0.084 0.506 0.002 0.035 0.087 0.519 0.007 0.033 0.075 0.530
1.0 0.020 0.051 0.108 0.505 0.005 0.036 0.099 0.526 0.008 0.041 0.077 0.474
1.5 0.018 0.060 0.115 0.482 0.005 0.032 0.088 0.539 0.008 0.032 0.066 0.436
2.0 0.030 0.075 0.124 0.494 0.004 0.024 0.078 0.560 0.005 0.021 0.051 0.394
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Second Corr. cri. values

Table 6: Estimated Size (DGP2, n = 200)

Asymptotic critical values

First corrected

hn 1% 5%  10%  50% 1% 5%  10%  50% 1% 5%  10%  50%
One-sided Test

0.5 0.014 0.061 0.113 0.539 0.009 0.043 0.103 0.48 0.012 0.059 0.114 0.539

1.0 0.009 0.052 0.119 0.531 0.008 0.035 0.078 0.443 0.009 0.047 0.108 0.531

1.5 0.010 0.057 0.114 0.520 0.008 0.034 0.066 0.368 0.008 0.048 0.101 0.520

2.0 0.010 0.060 0.113 0.513 0.009 0.029 0.060 0.320 0.008 0.043 0.091 0.513

Two-sided Test

0.5 0.026 0.051 0.113 0.494 0.010 0.043 0.100 0.499 0.016 0.047 0.106 0.504

1.0 0.016 0.045 0.103 0.517 0.010 0.039 0.092 0.491 0.013 0.041 0.087 0.504

1.5 0.013 0.043 0.095 0.519 0.007 0.032 0.080 0.530 0.008 0.033 0.073 0.485

2.0 0.013 0.048 0.106 0.522 0.006 0.028 0.077 0.540 0.005 0.028 0.062 0.466

Table 7: Cumulants (DGP2, n = 100)
Empirical Random draw Mean

hy, 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
0.5 —0.177 0.900 0.097 —-0.339 0.042 1.022 -0.536 0.004 —0.130 0.968 0.113 0.044
sd 0.145 0.024 0.697 0.116

1.0 —-0.316 0.873 0390 0.220 —0.102 0.878 0.214 0.615 —0.257 0.897 0.354 0.269
sd 0.075 0.037 0.332 0.272

1.5 —0.441 0.794 0.512 0.561 —0.309 0.798 0.690 1.276 —0.375 0.795 0.580 0.652
sd 0.060 0.048 0.230 0.411

20 —0.538 0.689 0.493 0.697 —0.449 0.697 0.884 10663 —0.478 0.681 0.790 1.158
sd 0.059 0.056 0.199 0.537
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Table 8: Cumulants (DGP2, n = 200)

Empirical Random draw Mean
hy, 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
0.5 —-0.045 0.989 0.029 —-0.094 -0.011 0.984 -0.142 0.096 —-0.101 0.985 0.127 0.031
sd 0.090 0.009 0.453 0.065
1.0 —-0.133 0.959 0.189 -0.017 —-0.181 0.937 0.345 0.231 -0.201 0.943 0.313 0.172
sd 0.039 0.015 0.191 0.121
1.5 —0.242 0.924 0.426 0.222 —-0.256 0.879 0.543 0.597 —-0.294 0.878 0.486 0.427
sd 0.032 0.022 0.128  0.205
20 —0.342 0871 0.552 0488 —0.326 0.819 0.708 0.980 —0.381 0.800 0.651 0.769
sd 0.033 0.029 0.115 0.288

39



