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Abstract

This paper considers a generalized method of moments (GMM) estimation prob-
lem in which one has a vector of moment conditions, some of which are correct and
some incorrect. The paper introduces several procedures for consistently selecting the
correct moment conditions. The procedures also can consistently determine whether
there is a sufficient number of correct moment conditions to identify the unknown
parameters of interest.

The paper specifies moment selection criteria that are GMM analogues of the
widely used BIC and AIC model selection criteria. (The latter is not consistent.)
The paper also considers downward and upward testing procedures.

All of the moment selection procedures discussed in the paper are based on the
minimized values of the GMM criterion function for different vectors of moment
conditions. The procedures are applicable in time series and cross-sectional contexts.

Application of the results of the paper to instrumental variables estimation prob-
lems yields consistent procedures for selecting instrumental variables.

Keywords: Akaike information criterion, Bayesian information criterion, consistent
selection procedure, downward testing procedure, generalized method of moments
estimator, instrumental variables estimator, model selection, moment selection, test
of over-identifying restrictions, upward testing procedure.
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1. Introduction

Empirical researchers using generalized method of moments (GMM) estimation
methods often find that the J test of over-identifying restrictions rejects the null
hypothesis. Rejection of the null indicates that not all moment conditions are correct.
In such cases, it may be useful to employ a moment selection procedure that estimates
which moments are correct and which are incorrect.

This paper introduces several such moment selection procedures. First, we con-
sider procedures based on a moment selection criterion (MSC). Minimization of the
MSC over the parameter space C for the selection vectors yields an estimate of the
correct moment conditions. We introduce GMM analogues of the widely used BIC,
AIC, and HQIC model selection criteria. We refer to these criteria as GMM-BIC,
GMM-AIC, and GMM-HQIC. These criteria are based on the J test statistic for
over-identifying restrictions. A “bonus” term is subtracted from the J test statistic
that rewards selection vectors that employ more moment conditions. We demon-
strate that the GMM-BIC, GMM-AIC, and GMM-HQIC moment selection criteria
are the proper analogues of BIC, AIC, and HQIC by showing that they use the same
asymptotic trade-off between the “model fit” and the “number of parameters.”

For specificity, we define the GMM-BIC criterion here. Let ¢ denote a moment
selection vector, i.e., a vector that selects some moment conditions but not others.
Let |c| denote the number of moment conditions selected by c. Let J,,(c) denote the J
test statistic for over-identifying restrictions constructed using the moment selection
vector ¢. Let C be the parameter space for the moment selection vector. Let p be
the dimension of the vector 6 to be estimated by GMM. Let n denote the sample
size. Then, the GMM-BIC moment selection criterion chooses the vector in C that
minimizes

Jn(c) = (] = p)Inn over C. (1.1)
Note that |c| — p is the number of over-identifying restrictions.

We also consider two testing procedures that can be used to select correct moment
conditions. These procedures are similar to informal methods based on the J test
often employed by empirical researchers to determine which moments to use. We
consider downward testing (DT) and upward testing (UT) procedures. Both are
based on the J test.

We specify conditions under which the MSC and testing procedures are consis-
tent. The conditions allow for independent identically distributed (iid), stationary
and ergodic, independent non-identically distributed (inid), and strong mixing non-
identically distributed (mnid) random variables (rv’s). Under somewhat stronger
conditions, the procedures are strongly consistent, see Andrews (1997b). The GMM-
AIC procedure does not satisfy the conditions for consistency or strong consistency,
but the other procedures do.

Our results cover the case of linear instrumental variables (IV) estimation as a
special case. Thus, the procedures introduced in the paper can be used to consistently
select IVs for two stage least squares (2SLS) or two stage instrumental variables
(2SIV) estimators (see White (1982) regarding the latter).



The finite sample behavior of the moment selection procedures is investigated
in Andrews (1997b) via a Monte Carlo experiment. The GMM-BIC, DT, and UT
procedures perform best and about equally well in the experiment. The GMM-HQIC
procedure is next best and the GMM—-AIC procedure is worst overall.

The Monte Carlo results indicate that moment selection procedures may be use-
ful tools for empirical researchers if used prudently. In particular, the use of a small
parameter space for the selection vectors seems highly desirable. If one uses the pro-
cedures indiscriminately, with a large parameter space, the procedures may perform
poorly.

We find that a simple method can be used to detect whether a MSC is reliable. In
those cases where an MSC performs poorly, there are typically two or more selection
vectors that yield MSC values that are close to the minimum and that yield parameter
estimates that differ noticeably from each other. In cases where a moment selection
procedure performs well, the latter typically does not occur. Thus, one can use this
as a condition for detecting reliability of the MSC.

Topics for future research include the following: determination of optimality prop-
erties for some moment selection procedure, investigation of the use of the bootstrap
to assess the performance of moment selection procedures and/or to improve the
performance of moment selection procedures, extension of the results to cover simul-
taneous moment and model selection, see Lu and Andrews (1997), and analysis of
the asymptotic behavior of the procedures in the context of weak instruments, as in
Stock and Wright (1997).

We now discuss the literature that is related to the procedures introduced in this
paper. Gallant and Tauchen (1996) recently address the issue of selecting a small
number of efficient moments from a large pool of correct moments. This is a different
problem from that addressed here. Gallant, Hsieh, and Tauchen (1997) consider
using t-ratios for individual moment conditions as diagnostics for moment failure.
Their t-ratios cannot be used to construct consistent moment selection procedures
and their use as diagnostics for moment failure is questionable, because the inclusion
of any incorrect moments typically yields an inconsistent parameter estimator, which
in turn leads to rejection of all moments asymptotically, not just incorrect moments.
Kolaczyk (1995) considers an analogue of the AIC in an empirical likelihood context,
but his analogue is a model selection criterion not a moment selection criterion.
The closest results in the literature to those given here seem to be Eichenbaum,
Hansen, and Singleton’s (1988, Appendix C) test of whether a given subset of moment
conditions is correct or not. They propose a likelihood ratio-like test based on the
GMM objective function for a single block of potentially incorrect moments. They do
not consider moment selection criteria, such as GMM-BIC. Somewhat related to the
procedures considered here are the results of Smith (1992) and Pesaran and Smith
(1994).

In terms of the methods used, the model selection literature is the closest literature
to the present paper. We borrow from this literature extensively in the present
paper. Much of this literature has focussed on the lag length selection problem
for autoregressive and autoregressive-moving average (ARMA) models and, more



generally, the regressor selection problem for regression models. The BIC criterion is
introduced by Schwarz (1978), Rissanen (1978), and Akaike (1977); the AIC criterion
by Akaike (1969); and the HQIC criterion by Hannan and Quinn (1979). Model
selection via upward Lagrange multiplier testing is introduced by P&tscher (1983)
for the ARMA selection problem. Consistency, strong consistency, or lack thereof of
these procedures are established by Shibata (1976), Hannan (1980, 1982), Hannan
and Deistler (1988), and Potscher (1989), as well as some of the references above.
For the literature on regressor selection, see Amemiya (1980), Potscher (1989), and
references therein.

The remainder of this paper is organized as follows. Section 2 describes the mo-
ment selection problem and introduces definitions, notation, and assumptions that
are used throughout the paper. Section 3 introduces a class of moment selection crite-
ria, including the GMM-BIC, GMM-AIC, and GMM-HQIC criteria, and provides a
condition under which such criteria are consistent. Sections 4 and 5 introduce down-
ward and upward testing procedures, respectively, for selecting moments and provides
conditions under which they are consistent. Section 6 establishes that GMM-BIC
is the appropriate analogue of BIC etc. An Appendix of Proofs provides proofs of
results stated in Sections 2—-6.

2. Description of the Moment Selection Problem,
Definitions, and Assumptions

2.1. The Moment Selection Problem

We have an infinite sequence of random variables Z1, ..., Z,, ... drawn from an
unknown probability distribution PV (the data generating process) that is assumed
to belong to a class P of probability distributions. The class P allows for the cases
where the random variables are iid, inid, stationary and ergodic, weakly dependent
and non-identically distributed, etc.

We have a random vector of moment conditions

Gn(0):0 — R (2.1)

and a random 7 X r weight matrix W,,, both of which depend on {Z; : ¢ < n}, and
© C RP. Typically, the moment conditions are of the form G,(0) = £ Y%, m(Z;,0).

We assume that G,,(f) converges in probability as n — oo to a function G°(6)
Vo € ©, VP € P. (A formal statement of assumptions is provided below.) Usually,
this holds by a weak law of large numbers (LLN) and G°(#) is the expectation of
Gr(0) or its limit as n — oco. The superscript “0” on G°(6), and on various other
quantities introduced below, denotes dependence on P.

In the standard GMM framework (which is not adopted here), one assumes that
all » moment conditions are correct. That is, for some ° € ©, one has G°(6°) = 0.
Furthermore, to achieve identification, one assumes that #° is the unique solution to
these equations. The parameter ° is then called the “true” value of 6. In this case,



the standard GMM estimator 51@ of #Y is defined to minimize
G ()W, G, () over 6 € ©.2 (2.2)

The GMM estimator 6, is consistent for 6 under minimal (and well-known) addi-
tional assumptions.

Often in empirical applications, however, researchers find that the J test of over-
identifying restrictions, see Hansen (1982), rejects the null hypothesis that all » mo-
ment conditions are correct. Thus, it seems useful to consider statistical inference in
the case where not all of the moment conditions are correct. That is what we do here.
We presume that the researcher does not know a priori which moment conditions are
correct. (Otherwise he would discard the incorrect moment conditions and be faced
with the standard situation considered in the literature.)

Below we show that under certain assumptions it is possible to consistently esti-
mate which moment conditions are correct and which are incorrect, given a suitable
definition of “correct.” This allows one to construct a GMM estimator that relies only
on correct moment conditions asymptotically, provided there is a sufficient number
of them.

2.2. Definition of the Correct Selection Vector

Here, we define the vector of “correct” moment conditions. We let ¢ € R" denote
a moment selection vector. By definition, ¢ is a vector of zeros and ones. If the j-th
element of ¢ is a one, then the j-th moment condition is included. If the j-th element
is a zero, then it is not included. Let

S={ceR :¢;=00r1 V1<j<r, where c=(c,...,c;)'}. (2.3)

Let |c| denote the number of moments selected by ¢, ie., || = 7% ¢; for ¢ € S.
For any r-vector v and any ¢ € S with ¢ # 0, let v, denote the |c|-vector that results
from deleting all elements of v whose coordinates equal coordinates of elements of ¢
that are zeros. Thus, Gp.(0) is the |c|-vector of moment conditions that are specified
by c€ S. For ¢ =0, let v, =0 (€ R).

We now define the “correct” selection vector ¢® of moment conditions. Let ¢°(6)
be the r vector of zeros and ones whose j-th element is one if the j-th element of
G(0) equals zero and is zero otherwise. Thus, ¢’(6) indicates which moments equal
zero asymptotically when evaluated at the parameter vector 8. Define

Z2Y={ceS: | =) for some 0 € O}. (2.4)

As defined, 29 is the set of selection vectors in S that select only moment conditions
that equal zero asymptotically for some § € ©. (The notation “Z°” is meant to
remind one of “zero under PY”.) Define

M2 ={ce 2" |c| > |c*| Ve* € 2°}. (2.5)

As defined, MZ2° is the set of selection vectors in Z° that maximize the number
of selected moments out of selection vectors in Z°. (The notation “MZ°" denotes
“maximal zeros under P°.”)



For given P? € P, we consider the following assumption:
Assumption IDc’. MZ° contains a single element .

When Assumption IDc® holds, we call ¢ the “correct” selection vector. The correct
selection vector ¢” has the property that it uniquely selects the maximal number
of moment conditions that equal zero asymptotically for some parameter § € ©.
Depending upon P°, Assumption IDc” may or may not hold. Below we analyze the
properties of moment selection procedures both when this identification assumption
holds and when it fails to hold.

If the maximum number of moment conditions that are zero asymptotically is p
or less, i.e., |c| < p for ¢ € MZ9, then Assumption IDc typically does not hold. The
reason is that whenever there are as many or more parameters p as moment conditions
|c| there is usually some p-vector 6, € © that solves the |c¢| moment conditions G.(6) =
0. Thus, Assumption IDc? typically requires one or more over-identifying restrictions
for it to hold. That is, it requires |c| > p for ¢ € MZC.

Next, for distributions P? for which Assumption IDcY holds, we consider the
following condition:

Assumption ID#". GY% () = 0 has a unique solution ¢° € ©.

When Assumption ID8° holds, we call 8" the “true” value of #. The true value 8" has
the property that it sets the moment conditions selected by ¥ to be zero and is the
unique parameter vector 6 that does so.

Note that the standard GMM situation considered in the literature corresponds
to the case where MZ°% = {1,} and Assumption ID§° holds, where 1, denotes an
r-vector of ones. The former condition implies that Assumption IDc” holds.

To obtain consistent estimators of ¥ when Assumption IDcY holds, it turns out
that one does not need Assumption IDA" to hold. To obtain consistent estimators of
both ® and 6°, however, one needs both Assumptions ID® and ID# to hold.

Next, we discuss Assumptions IDc? and ID6° in the context of linear IV esti-
mation. Consider the iid linear regression model Y; = X[0* + U, for i = 1,...,n
under P°, where EU; = 0 and E||X;|| < co. We consider the IVs Z; € R", where
A0 = EZXZ' € R™P and p° = EZ;U; € R". The moment conditions in this case
are Gn(0) = 130 (V; — X{(‘))Z and the corresponding limit function is G°(0)
= BE(Y; — X10)Z; = p° — A%0 — 6*). Let ¢* € S denote the selection vector that
selects all of the IVs that are not correlated with the error U;. Thus, the j—th ele-
ment of ¢* is one if the corresponding element of p® is zero and is zero otherwise. We
assume that there are more good IVs than parameters, i.e., [¢*| > p. In this context,
the parameter of interest is 8* and the selection vector of correct IVs is c*.

A question of interest is: When do Assumptions IDc® and ID° hold with ¢? = ¢*
and 00 = %7 Tt is easy to see that ¢* € 20, Let A? denote the matrix A° with the
rows corresponding to zeros in ¢ deleted. Then, Assumption IDY holds with ¥ = ¢*
if and only if p? is not in the column space of AY for any ¢ # ¢* with |c| > |¢*],
where p0 # 0 € Rl¢l, A9 € RI¥*P_and |¢| > p. Only very special A° and p° matrices
violate this condition. If the former condition holds, then Assumption IDE° holds
with ° = 6* if and only if A% is full column rank p, because G% () = A% (9 — 6%).



2.3. The J-test Statistic

All of the moment selection procedures considered below are based on the J test
statistic used for testing over-identifying restrictions, see Hansen (1982). The J test
statistic based on the vector of moment conditions selected by c¢ is defined to be

i /
Jn(c) = nelgé Grc(0) Wi Grc(0). (2.6)

Here, W), is the |c| x |c| weight matrix employed with the moment conditions G,,.(f).
For example, Wy, might be defined such that it is an asymptotically optimal weight
matrix when the moment conditions selected by ¢ are correct.? (Note that W, is not
necessarily equal to the matrix that results from deleting the rows and columns of
W,, that correspond to the elements of ¢ that are zeros.) By definition, when ¢ = 0,
Whe =0 (€ R).

The GMM estimator based on the moment conditions ¢ € C is defined to be any
vector 0, (c) € © for which

o~

Gre (0 (€)Y WieGre (0 (c)) = i0f Glne(6) WicGine(6)- (2.7)

o~

Thus, the J,,(c) test statistic also can be written as J,(¢) = nGe(0n(c)) WieGre(@,(c)) A

2.4. The Parameter Space for the Moment Selection Vectors

Next, we discuss the basis for various moment selection procedures. We consider
estimation of ¢” via an estimator that we denote generically by ¢. The parameter
space for ¢ is denoted by C C S. The parameter space C is defined to include ¢ = 0.

The parameter space C should be a very much smaller set than S that exploits
the nested or hierarchical structure that typically arises. Otherwise, the finite sample
behavior of ¢ will be poor and computation will be difficult. First, C should incor-
porate the information that certain moment conditions are assumed to be correct.
Second, if applicable, C should incorporate information that certain blocks of mo-
ment conditions are either correct or incorrect block by block rather than moment
condition by moment condition. This often occurs in the common case where the
moment function m(Z;,0) is of the form

where m*(Z;,0) € R™, X; € R, X, is a subvector of Z;, and r = r; X r2. Depending
upon an underlying model, one might assume that the moments m*(Z;,0)X;; € R™
are all correct or all incorrect for a given j < ry, where X; = (X1, ..., Xir,)’. This
is plausible if a model implies that Em*(Z;,0)X;; = 0 or not depending on whether
Xi; is in the information set of decision maker ¢ or of the decision maker at time 3.

Third, if X, is a function of X;;, such as ij, then C should incorporate, when
appropriate, the feature that the whole block of moments m*(Z;,0) ® (X;j;, Xi¢)' is
either correct or incorrect. Fourth, C should incorporate, again when appropriate,
the feature that a whole block of moments mj(Z;, #) ® X; is either correct or incorrect
for some k <y, where m*(Z;,0) = (m}(Z;,0), ... ,m} (Z;,0))".



2.5. Definitions of Consistency

We introduce two definitions of consistency. The first is the standard definition
of consistency that is analogous to the definition used in the model selection litera-
ture. The second, called s-consistency, is a stronger definition that requires that the
moment selection procedure is consistent and also is able to determine when there
are not enough correct moment conditions to identify .

All limits considered here and below are limits “as n — 00.” Let “—,” denote
“convergence in probability as n — c0”. Let “wp — 1”7 abbreviate “with probability
that goes to one as n — 00.”

We say that a moment selection estimator ¢ € C is consistent if

b

¢=c" wp — 1 under P°, VP € P that satisfy Assumption IDc. (2.9)

Because C is finite, ¢ = ¢’ wp — 1 is equivalent to the standard (weak) consistency
condition that ¢ —, c°.
We say that a moment selection estimator ¢ € C is s-consistent if ¢ is consistent

and
|c| <pwp — 1 under P, VP € P for which |¢| < p for all c€ MZ°.  (2.10)

The second part of the definition of s-consistency requires that the moment selection
procedure is able to determine whether or not there are one or more over-identifying
restrictions, which is necessary for identification of V.

The above definitions of consistency and s-consistency are “weak” versions that
require behavior that holds “wp— 1.” In Andrews (1997b), we consider strong con-
sistency and strong s-consistency that require analogous behavior that holds “for n
sufficiently large with probability one.”

2.6. Performance When Assumption IDc’ Fails

Below we analyze the behavior of the moment selection procedures introduced
below in the case where Assumption IDc? does not hold. For this purpose, we make
the following definitions. Define

cz'=cn2z". (2.11)

As defined, C2Y is the set of selection vectors in the parameter space C that select
only moment conditions that equal zero asymptotically for some 6 € ©. Define

MCZ° = {ceC2Y: || > |¢*| Ve* € C20). (2.12)

As defined, MCZ° is the set of selection vectors in CZ° that maximize the number
of selected moments out of selection vectors in CZ°. We show below that for many
moment selection procedures discussed below ¢ € MCZ? wp — 1 whether or not
Assumption ID? holds. That is, for these procedures, with probability that goes
to one as n — 00, C lies in the set of selection vectors that mazimize the number
of selected moments out of all selection vectors in the parameter space C that select
only moments that equal zero asymptotically for some 6 € O.



2.7. Basic Assumption

We now state the basic assumption under which the results below hold. This
assumption holds quite generally.

Assumption 1. (a) G,,(0) = G°(0) + O,(n~'/?) under P° V6 € © C RP for some
R"-valued function G°(-) on ©, VP € P.

(b) Whe —p W2 under Py for some positive definite matriz W. Ve € C, VP € P.

(¢) infoco Gne(0) WieGne(8) —p infgee GO(0)WOEG2(0) = GU(O*)YW2G2(6*) under
PO for some 6* € © that may depend on ¢ and P°, Vc € C, VP? € P.

Assumption 1(a) typically holds by a central limit theorem (CLT) because G,,(6)
is often a sample average. Assumption 1(b) is a standard condition used to obtain
consistency of GMM estimators. It is satisfied by all reasonable choices of weight
matrices W.

Assumption 1(c) is implied by Assumption 1(b) and the following: G,(0) —,
GY(0) uniformly over # € © under P? for some R™-valued function G°(-) that is
continuous on ©, where © C RP is compact, VP? € P. The latter can be verified using
a generic uniform convergence result, such as a uniform weak LLN, e.g., see Andrews
(1992). Alternatively, when the moment conditions are linear in 6, Assumption 1(c)
typically holds under almost the same conditions as Assumption 1(a), because the
“inf’s over # € ©” can be calculated explicitly. In the linear case, the parameter
space O can be unbounded.

For illustrative purposes, we provide a sufficient condition for Assumption 1 for
the case of stationary data. (The proof of sufficiency is given in the Appendix of
Proofs.) Let EY denote expectation under P°. Let ||B|| denote the Euclidean norm
of a vector or matrix, i.e., ||B|| = (tr B'B)Y2.

Assumption STAT. (a) {Z; : ¢ = ...,0,1,...} is a doubly infinite stationary and
ergodic sequence under P°, VP9 € P.

(b) Gn(0) = 2577 1 m(Z;,0) and m(z,0) is continuous in 6 on © for all z in the
support of Z;.

(c) EVm(Z;,0)|)* < oo and Z;‘;l(EOHEO(m(ZZ-,8)\E_j)]]2)1/2 <ooVheO, VP ¢
P, where F; denotes the o-field generated by (..., Z; 1, Z;).

(d) Either (1) © C RP is compact and E°supgeg ||m(Z;,0)|| < co VP? € P or (ii)
m(z,0) = my(z) + ma(2)0 V0 € ©, where myi(z) € R" and ma(z) € R™P, and
© = RP.

(e) Assumption 1(b) holds.

Note that the leading example where the moment conditions are linear in 6 and
Assumption STAT(d) part (ii) holds is the linear IV estimator of the linear regression
model Y; = X[0* + U; with IV vector Z; € R". In this case, the moment conditions
are Gy (0) = 15 (Y; — X10)Z; = mi(Z) +ma(Z:)0, where mi(Z;) = YiZ; € R,

ma(Zi) = Z; X, € R™P, and Z; = (Y;, X}, Z';).



3. Moment Selection Criteria

Here we introduce a class of moment selection criteria (MSC) that are analo-
gous to the well-known model selection criteria used for choosing between competing
models.

The MSC estimator, ¢pg¢, is the value that minimizes M SC),(c) over C, where

MSCy(c) = Jn(c) — h(|c|)in. (3.1)

The function h(-) and the constants {k, : n > 1} in the definition of MSCy(c)
are specified by the researcher. They are assumed to satisfy:

Assumption MSC. (a) h(-) is strictly increasing.
(b) kp — 00 and Ky = o(n).

Given Assumption MSC, h(]c|)ky, is a “bonus term” that rewards selection vectors
that utilize more moment conditions. This term is necessary to offset the increase
in J,(c) that typically occurs when more moment conditions are added even if they
are correct moment conditions. Assumption MSC(b) implies that the bonus given
for more moment conditions increases without bound as the sample size n increases.

It is always possible to specify moment selection criteria for which Assumption
MSC holds, because the researcher chooses h(-) and {k, : n > 1}.

Now we introduce three examples of moment selection criteria. These are ana-
logues of the BIC, AIC, and HQIC criteria developed for model selection. We refer
to them as the GMM-BIC, GMM-AIC, and GMM-HQIC criteria. In each case, they
take h(x) = x — p. They are defined by

GMM —BIC : Ky =Inn and MSCgicn(c) = Ju(c) — (|c] —p) Inn,
GMM — AIC : Ky, =2 and MSCxicn(c) = Jn(c) = 2(|c] —p),

GMM — HQIC : £k, =QInlnn for some ¢ > 2 and

MSChqicn(c) = Ju(c) —Q(|c| —p)Inlnn. (3.2)

We show in Section 6 that these are the proper analogues of the BIC, AIC, and
HQIC model selection criteria. The GMM-BIC and GMM-HQIC procedures satisfy
Assumption MSC. The GMM-AIC procedure does not satisfy Assumption MSC(b)
because Kk, = 2 - co. In consequence, the GMM-AIC procedure is not consistent.
For brevity, we do not prove this here. The proof is similar to the proof of the lack
of consistency of the AIC model selection procedure, see Shibata (1976) and Hannan
(1980, 1982). The GMM-AIC procedure has positive probability even asymptotically
of selecting too few moments.

Consistency of ¢pss¢ is established in the following theorem.

Theorem 1. Suppose Assumptions 1 and MSC hold. Then,

(a) Cysc € MCZ° wp — 1,¥PY € P,

(b) Crrsc = & wp — 1 iff Assumption ID holds and & € C, VPY € P, and

(c) Crso is consistent iff Cyrso is s-consistent iff & € C for all PY € P for which
Assumption IDc® holds.



Comments. 1. Part (a) is a robustness result that specifies the asymptotic behavior
of Carsc for all PO € P. Note that if MCZ°NMZY #£ 0, then Errsc € MZ% wp — 1,
VPY € P. The result of part (a) is analogous to results concerning the behavior of
extremum estimators when the standard identification condition fails.

2. It is shown in Andrews (1997b) that the results of Theorem 1 hold under some-
what stronger assumptions with “wp — 1” replaced by “for n sufficiently large almost
surely.” Thus, GMM-BIC and GMM-HQIC are strongly consistent and strongly s-
consistent under suitable assumptions. For GMM-HQIC, these assumptions include
the requirement that an asymptotically optimal weight matrix is employed.

3. Theorem 1(b) is similar to Theorem 3 of Hannan (1980) for (weak) consistency
of model selection criteria for lag selection in ARMA models.

4. Over-rejection of the J test in finite samples (see the July 1996 issue of the
Journal of Business and Economic Statistics) affects the MSC only if the amount
of over-rejection differs for different selection vectors c. Greater over-rejection for
selection vectors with large |c|, which seems plausible, leads to a higher probability
of using only correct moments, but not necessarily all of them.

5. The proofs of Theorem 1 and other results below are given in the Appendix of
Proofs.

4. Downward Testing Procedures

The testing procedures considered in this section and the next are moment selec-
tion procedures that formalize the procedures that empirical researchers often use in
a less formal, and sometimes vague, fashion. Two advantages of considering precisely
specified moment selection procedures are that (i) sufficient conditions for consistency
can be established and (ii) the effect of moment selection on post-selection statistical
inference can be assessed, e.g., via simulations or the use of the bootstrap.

We consider tests based on the statistic J,,(c). Starting with vectors ¢ € C for
which |c| is the largest, we carry out tests with progressively smaller |c| until we find
a test that does not reject the null hypothesis that the moment conditions considered
are all correct. Let kpp be the value of |c| for the first test we find that does not
reject. (Therg is such a first test because the J test statistic based on ¢ = 0 equals
zero.) Given kpp, we take the downward tgsting estimator ¢pr of ¢y to be the vector
that minimizes J,(c) over ¢ € C with |¢| = kpp. This is the downward testing moment
selection procedure.

Note that the downward testing moment selection procedure progresses from the
most restrictive model to the least restrictive model. This contrasts with a downward
testing model selection procedure in which the largest parameter vector, and hence the
least restrictive model, is considered first. Upward testing model selection procedures,
which are analogous to downward testing moment selection procedures, are referenced
in Amemiya (1980) and P&tscher (1989).

We now define kpr and ¢pr more precisely. Let Tng > 0 denote the critical
value employed with the test statistic J,,(c) when |¢| = k and the sample size is n. In
the leading case where J,,(c) is constructed using an asymptotically optimal weight

10



matrix, Jp(c) has an asymptotic chi-square distribution with |c¢| — min(p, |c|) degrees
of freedom when all moment conditions in ¢ are correct.® In this case, one can take

fYn,k = Xzfp(an) (41)

for values of k > p, where x2_ () denotes (1 — ay,)-th quantile of a chi-squared
distribution with & — p degrees of freedom.

Let kpr € [0,7] be such that mingcc,cj=r Jn(c) > Yy Yk = kpr +1,...,r and
mincecﬂc':EDT Jn(c) < Vrdpr- Define ¢pr to be any vector in C for which |[¢pp| = %DT

and Jy,(¢pr) = min Jn(c). In words, %DT is the greatest number of moments

cEC:\c|:EDT
for which some J,,(c) test does not reject for some ¢ € C. Given kpp, ¢pr is the vector
that minimizes J,(c) over vectors ¢ € C with |c| = kpy.

For consistency of ¢pr, we assume the critical values v,  satisfy:

Assumption T. 7, ; — o0 and v, =o(n) Vk=p+1,..,r

Assumption T holds if {7, : K = p+1,...,r} are defined as in (4.1) with the
significance level ay, satisfying o, — 0 and In oy, = o(n) (see Theorem 5.8 of Pétscher
(1983)). For example, the latter condition holds if a, > Agexp(—A,n), for some
0 <A, — 0 and Ay > 0. Note that, when comparing two sets of moment conditions,
a consistent MSC of Section 3 implicitly specifies a significance level that also goes
to zero as n — oo for a test based on the difference between the two J,,(c) statistics.

Consistency of ¢pr is established in the following theorem.

Theorem 2. Suppose Assumptions 1 and T hold. Then,

(a) epr € MCZ° wp — 1, VP € P,

(b) epr = & wp — 1 iff Assumption ID® holds and & € C, VP° € P, and

(c) Cpr is consistent iff Cpr is s-consistent iff ¢ € C for all P° € P for which
Assumption IDc® holds.

Comments. 1. Theorem 2(b) and Theorem 3(b) below are similar to Theorem
5.7 of Potscher (1983) for (weak) consistency of upward LM tests for lag selection in
ARMA models.

2. Over-rejection by the J test in finite samples, which has been documented
in some cases, leads to a higher probability of using only correct moments, but not
necessarily all of them.

5. Upward Testing Procedures

Upward testing procedures are based on the statistic J,(c) and critical values
{Ynp = B =1,..,r}. Starting with vectors ¢ € C which have the smallest positive
values of |c|, we carry out tests with progressively larger |c| until we find that all
tests with the same value of || reject the null hypothesis that the moment conditions
considered are all correct. Let kUT denote the largest value such that for all k < k:UT
there is at least one ¢ € C with |c| = k for which the null hypothesis is not rejected.
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Given %UT, we take the upward testi/r\lg estimator ¢y of cg to be the vector that
minimizes Jy,(c) over ¢ € C with |c[ = kyr.

__ More precisely, kyr and ¢y7 are defined as follows. Let K = {|c| : ¢ € C}. Define
kyr to be the largest integer in K for which mingccijc— Jn(c) < 7, Vk € K with
k< %UT. Define ¢yr to be any vector in C for which [cyr| = EUT and J,(cyr) =
minceC:|c|:EUT Jn(c).

As with the downward testing procedure, the critical values {7, : k = p+1,...,7}
can be taken as in (4.1). For consistency of cyr, the critical values are assumed to
satisfy Assumption T.

To ensure that the upward testing procedure does not stop at too small a value
|c|, we need to assume that C satisfies the following assumption. Let |MC°| denote
the (unique) number of moments selected by the vectors in MCP.

Assumption UT. Vk € K with k < |MC°|, 3¢, € C° with |c| = k, VP° € P.

The parameter space C can always be defined so that Assumption UT holds, but
neither the MSC procedure nor the DT procedure requires this assumption.

Note that it follows from the definitions of ¢/ and ¢pr that |cyr| < [cpr|. Thus,
if the UT and DT procedures select different moments, the UT procedure selects fewer
than the DT procedure.

Consistency of ¢y is established in the following theorem.

Theorem 3. Suppose Assumptions 1, T, and UT hold. Then,

(a) epr € MCZ° wp — 1, VP € P,

(b) epr = & wp — 1 iff Assumption ID® holds and & € C, VP° € P, and

(c) Cpr is consistent iff Cpr is s-consistent iff ¢° € C for all P° € P for which
Assumption IDc® holds.

6. The Analogy Between BIC/AIC/HQIC and
GMM-BIC/GMM-AIC/GMM-HQIC

In this section, we show that GMM-BIC, GMM-AIC, and GMM-HQIC are the
proper moment selection analogues of the BIC, AIC, and HQIC model selection
procedures.

Consider a log likelihood function #,,(7y) that depends on a parameter v € R".
Different models are obtained by setting different elements of v equal to zero. The
maximum likelihood (ML) estimators of v for different models are just the estimators
that maximize the log likelihood function subject to different restrictions on which
elements of 7 are equal to zero. Let 7,, denote the ML estimator of 7 for model m,
where m = 1, ..., M indexes the models considered. Let g, denote the number of
elements of «y that are set equal to zero in model m. Let M = {1, ..., M’} denote the
set of models.

The model selection criteria or information criteria (IC) that we consider are of
the following form. One chooses the model m € M that maximizes

ICy(m) = tn(Vp) — %(T — Gm)in- (6.2)
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Note that r — g, equals the number of parameters in model m. The following choices
of k, yield the BIC, AIC, and HQIC criteria: k,, = Inn for BIC, k,, = 2 for AIC, and
kn = QInlnn for HQIC, where @) > 2.

We consider the asymptotic behavior of ICy,(m) for models that are correct, but
not necessarily parsimonious. We aim to elucidate the trade-off that the IC,,(m) pro-
cedure makes between the value of the likelihood for correct models and the penalty
that it imposes for redundant parameters. Our GMM MSC procedures are designed
to provide the same trade-off..

We suppose the likelihood function is regular in the sense that it has a quadratic
approximation around the true parameter value 4°. We suppose m is a correct, but
not necessarily parsimonious, model. Then, under standard regularity conditions (see
the Appendix of Proofs), we have

ln(Am) = =2 Jn(m) + Sy, where Jy(m) 4\ (6.3)

and Sy, is a random variable that does not depend on m. See (7.12) for the definitions
of S, and J,,(m).

Using (6.2) and (6.3), we can write 1Cy,(m) = —(Jn(m) — gmkn)/2 +Sp — 7hn /2.
Note that S,,—rk, /2 is a shift random variable that does not depend on m and, hence,
has no effect on the outcome of the selection procedure. Thus, maximizing 1Cy,(m)
over models m that are correct, but not necessarily parsimonious, is equivalent to
minimizing B

In(m) — gmkin, (6.4)
where jn(m) is asymptotically Xgm and @y, is the number of redundant parameters
that model m sets equal to zero.”

We now turn to the moment selection criteria introduced in Section 3 and show
that they are of the same form as the model selection criteria in (6.4). We do
this by showing that the choice between different vectors of moment conditions can
be reinterpreted as the choice between parameter vectors with different numbers of
parameters. This reinterpretation is related to the work of Back and Brown (1993),
who address a quite different problem.

The idea of the reinterpretation is as follows. Consider a moment selection vector
¢. The GMM criterion function for ¢, viz., Gpe(0) WyeGre(0), deletes the moment
conditions in G, () that correspond to coordinates j for which ¢; = 0. Alternatively,
suppose we retain all moment conditions, but add an unknown mean parameter 1, to
each moment condition Gy;(#) for which ¢; = 0. That is, the j-th moment condition
is taken to be Gy,;(6) — p; for all j with ¢; = 0. Then, we treat the parameter vector
to be estimated to be the vector that includes 6 and the p; mean parameters for
j=1,..,r—|c|.

We show below that the minimized value of the GMM criterion function is the
same whether one deletes moments or one augments the criterion function with cor-
responding mean parameters, provided the weight matrices are defined in an asymp-
totically optimal fashion.” Thus, the values of J,(c) for different vectors ¢ equal the
values of a single function that is minimized over parameter vectors with different
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numbers of parameters. The latter is analogous to the minimization of the likelihood
function over parameter vectors with different numbers of parameters, which is the
basis of the BIC, AIC, and HQIC model selection criteria discussed above.

We now state more precisely the result described in the previous paragraph. De-
fine

Jre)=n  inf  (Gp(0) — Dept) Wy (G (0) — Depr), (6.5)
0cO,ucRr—p
where D, is an r x (r — p) duplication matrix such that [Depl; = 0, Vj with ¢; =1,
[Dept]j = pq for the smallest j with ¢; = 0, [Dep]; = pip for the second smallest j with
¢j =0, ..o [Dept]j = 1| for the largest j with ¢; =0, and p,_jo41 = = pt,_, =0
whenever |c| > p.

Note that the number of parameters with selection vector ¢ is p 4+ r — |c|, where
p is the dimension of # and r — |¢| is the number of excluded moment conditions.
We can rewrite the number of parameters with selection vector ¢ as r — q., where
gc = |c¢| — p. Here g, is the number of “over-identifying restrictions.”

Now, let v = (¢, /)" € R". With the selection vector ¢, the last g. parameters
in v are set equal to zero in (6.5). Thus, different selection vectors correspond to
the setting of different parameters equal to zero in (6.5), just as different models
correspond to the setting of different parameters equal to zero in the log likelihood
function in (6.2) or (6.3).

Suppose the weight matrices W, of the GMM criterion function are defined
as follows. Let V,, be a consistent estimator of V = limn_)ooVar(\/ﬁGn(Go)). Let
Vne denote the |c| x |¢| matrix that equals V;, with the rows and columns of V,,
deleted that correspond to elements of ¢ that are zeros. Suppose Wy, = V.t + op(1).
Asymptotically optimal weight matrices are of this form. The o,(1) term allows W,,.
to be constructed with different estimators of 8° for different moment selection vectors
c. For ¢ =0, take W, = 0.

We show in the Appendix of Proofs that for W,,. as above, we have

In(€) = Jp(c) + 0p(1) (6.6)

for all ¢ € CZ°. Furthermore, under standard regularity conditions (such as those
of Hansen (1982) or Andrews (1997a)), we have: J3(c) = Ju(c) + 0,(1) —a X5,
Ve € CZY with |¢| > p. Hence, the moment selection criterion MSCy,(c) of (3.1) with
h(z) = x — p satisfies

MSCr(c) = Jp(c) = (le] = p)rn + 0p(1) = J5(c) = gekin + 0p(1), (6.7)

where J¥(c) is asymptotically ch for all correct moment selection vectors ¢ and ¢,
is the number of redundant parameters in « that the selection vector ¢ sets equal to
Zero.

The trade-off between the magnitude of the minimized criterion function and the
number of parameters is the same in (6.7) asin (6.4). In this sense, the BIC/AIC/HQIC
and GMM-BIC/GMM-AIC/GMM-HQIC procedures are analogous.
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7. Appendix of Proofs

7.1. Lemma 1 and Its Proof
Lemma 1. Assumption STAT implies Assumption 1.

Proof of Lemma 1. Assumption 1(a) holds with G°(0) = E°m(Z;,0) by the CLT
given in the Theorem of Heyde (1975) (of which there is only one) using Assumption
STAT(a), (b), and (c). Assumption 1(c) holds in the case of a nonlinear m(z,6)
function (i.e., under part (i) of Assumption STAT(d)) by the sufficient condition
given following Assumption 1. The latter holds by the ergodic theorem and the
uniform weak LLN given in Theorem 4 of Andrews (1992) using Assumption TSE-
1D of that paper. In the case of a linear m(z,0) function (i.e., under part (ii) of
Assumption STAT(d)), Assumption 1(c) holds by computing the infimum over 6§ € ©
explicitly and applying the ergodic theorem to each component. More specifically,
we have

inf Grue(6) WieGe (6) = Gre(0(¢)) WieGre(8(c))

S

2 GO (e))WIGL(K(c)) = ein(g GY90)YW2G%(#) under P°, where
S

n

n n -1 n

B(c) = (% > moe(Zi) Waes ngc(z,a LN mge(Zi) Waer Y " mie(Zi) and
=1 =1 =1 =1

0°(c) = (E°maoe(Z;) WO E mac(Z:)) 1 E®mae(Z;) WO E my(Z:). O (7.1)

7.2. Proof of Theorem 1

First, we establish Theorem 1(a). For any ¢ € C with ¢ ¢ CZ°, we have
Jn(c)/n 2 inf G20)YWIGY(H) > 0 under PY, (7.2)
€

where the convergence holds by Assumption 1(c) and the inequality holds because (i)
G%(#) # 0 VO € © by the supposition that ¢ ¢ CZY and (ii) W2 is positive definite
by Assumption 1(b). Equation (7.2) and Assumption MSC(b) yield: For any c € C
with ¢ ¢ C2°,

MSC(c)/n = Ju(c)/n — h(|c|)kn/n L ein(g GoOYWIGY(H) > 0 under PY. (7.3)
€
For any c € CZY, we have
Jn(c) = Op(1) under P, (7.4)

using Assumptions 1(a) and (c) and the fact that G2(6) = 0 for some § € ©. Equation
(7.4) and Assumption MSC(b) yield: For any ¢ € CZ°,

MSCi(c)/n = 0,(1) — h(|c|)kn/n = Op(1) under P°. (7.5)
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Equations (7.3) and (7.5) imply that ¢yrsc € CZ° wp — 1.
Now, suppose c1,cz € CZ°, ¢; ¢ MCZ°, and co € MCZ". Then, |c1| < |e2| and
by Assumption MSC
(Aler]) = hllea))) ki — —oo. (7.6)

Equations (7.4) and (7.6) imply that M SC,,(¢;) > MSCy(c2) wp — 1. Thus, cyrsc €
MCZ° wp — 1, as stated in Theorem 1(a).

Now, Assumption ID? and ® € C imply that MCZ° = {°}. Hence, coupled
with Theorem 1(a), the former conditions imply that ¢yrsc = ¢ wp — 1. In addition,
Assumption IDc? is necessary for ¥ to be well defined and ¢® € C is necessary for
tmsc = . Hence, these two conditions are necessary for ¢yrsc = ¥ wp — 1 and
Theorem 1(b) holds.

To establish Theorem 1(c), we note that by definition s-consistency implies con-
sistency. Consistency implies “® € C for all P? € P for which Assumption IDc
holds.” In turn, “c¥ € C for all P° € P for which Assumption IDc® holds” implies
s-consistency because (i) the former implies consistency by Theorem 1(b) and (ii) if
P € P is such that |c| < p for all ¢ € MZ°, then |¢| < p for all c € MCZ? (because
{0} € ¢2Y C 2% and by Theorem 1(a) €yrsc € MCZ° wp — 1, which together
imply that [caprse] <pwp — 1. O

7.3. Proof of Theorem 2
First, we establish Theorem 2(a). For any ¢ € C with ¢ ¢ CZ°, we have

Jn(€) /Y el 2, 00 under P° (7.7)

by (7.2) and Assumption T. Thus, kpy < |[MCZ°|, where |MCZ°| denotes the
(unique) number of moments selected by the vector(s) in MCZY.
For any ¢ € CZ°, (7.4) and Assumption T yield

Jn(€) <Vp wp — 1 under PP (7.8)

In consequence, kpr = IMCZ°| wp— 1. This result and (7.7) imply that ¢py €
MC2Z° wp— 1 and, hence, Theorem 2(a) holds.

Now, Theorem 2(b) and (c) follow from Theorem 2(a) by the same argument as
used above to show that Theorem 1(b) and (c) follow from Theorem 1(a). O

7.4. Proof of Theorem 3

First, we establish Theorem 3(a). By (7.7), we have kur < |IMCZ°|. By (7.8)
and Assumption UT, Vk € K with k < |[MCZ°, 3¢, € CZ° with |cx| = k and
Jn(ck) < Vn,jep| wp — 1. In consequence, kyr = |MCZP|. This result and (7.7) imply
that ¢y € MCZ° wp— 1 and, hence, Theorem 3(a) holds.

Now, Theorem 3(b) and (c) follow from Theorem 3(a) by the same argument as
used above to show that Theorem 1(b) and (c) follow from Theorem 1(a). O
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7.5. Proofs of Results of Section 6

Here we show that (6.3) and (6.6) hold under suitable conditions.

We establish (6.6) under Assumption 1 by first showing that J,,(c) = J;%(c) for all
c € CZ° when the op(1) term appended to the definition of V. is zero. Given c € C,
we assume without loss of generality that ¢ deletes the last r — |¢| moments. Then,
we can write

_ Gnc(e) c * r—|C
Gn(0) = ( G (6) > for Gne(#) € Rl and G%.(0) € R™I°,

DC,U = ( 5 ) for 0 € R\c\ and My = (Hh'”’Mr—\c‘)l c er\ch

V- { ‘g;c g ] for Vi, € R¥IXI. B ¢ REIXO—Ie) and D e Rl x(r—lel)

Whe = Vit, and W, = V7L (7.9)

nc

Using the standard formula for the inverse of a partitioned matrix, we obtain

e . Gue®) N [ Ve B\ '  Gnel0)
Jn<0>—”ee@,;ifmcl<G:;c<9>—u*> ( B D> G5,(60) — 11,

=n lnf l(Ql (9) + Q2(97M*))7 where Ql (9) = Gnc(e)lvnzlGnC(9)7

0cO,u, eRrle

_ Gne(®) \'( FEF —FE Gre(0)
@000 = (o ) (Zom 5 ) (o, )
F=V.'B,and E=(D-B'V,'B)™". (7.10)

Now, we solve for the value i, (f) that minimizes Q2(0, p,) for given 6. The
solution to this simple quadratic minimization problem is i, (0) = G}.(0) — F'Gpc(0).
Substituting this into (7.10) and simplifying yields Q2(0,%,(0)) = 0 and J}(c) =
Jn(c), which establishes (6.6) when the 0,(1) term added to Vj, is zero.

Now, (6.6) with the 0,(1) term present follows from (6.6) without the o,(1) term
provided \/ﬁGnc@n(C)) = Op(1), because the 0,(1) term adds at most an op(1) term
to Jy(c) in this case. The previous condition holds under Assumption 1 Ve € Z°.

Next, we show that (6.3) holds under standard ML regularity conditions. Let m
denote a correct, but not necessarily parsimonious, model. We partition 7, 7°, and
Am asy = (o, 3),7° = (¥, 8YY, and 7,, = (a,,0') ,where a,a®, ay, € R"~9 and
3,3° € R¥. The assumption that m is a correct model implies that 3° = 0. The
ML estimator 7,,, for model m sets 3 = 0 and maximizes ¢, () = £,((c/,0’)) over a
parameter space A C R"9m,

We assume the likelihood function is sufficiently regular that the following con-
ditions hold: (i) m is a correct model and %,, —, 7°, (ii) o' is an interior point
of A, (iii) £,(y) is twice continuously differentiable at 4* with probability one, (iv)
(0/07)n(7°) /\/n —4 N(0,7), where T is a positive definite r x r matrix, (v) for
some function Z(7) and some € > 0, SUp,c (40 1) |=(82/0707 )en(v) — Z(7)|| = 0p(1),
Z(v) is continuous at 7%, and Z(7%) = Z, where B(y%,¢) is a ball in R" of radius e
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centered at vY. These conditions are sufficiently general to cover many econometric
models. The condition that ¢,(7) is pointwise twice differentiable could be relaxed.
For brevity, we do not do so.

We partition the information matrix Z conformably with o and 8 with diagonal
blocks Z,, and Zg and off-diagonal blocks Z,g and Zg,. We obtain
1 L9

n%én(ao) +0p(1) (7.11)

V(@ — ) =T,

using the first order conditions (0/d0a)ly, () = 0 wp — 1, element-by-element mean-
value expansions of (9/0a)l,,(qy,) about o, and some rearrangements that utilize

conditions (iv) and (v).
Now, a two-term Taylor expansion of £,,(7,,) about 7" gives

g )

= (7)) +3 (Z*)'I*Z* - _(\/_(’Ym—’YO) ~ Z) Ty (VA —") = Zy)
= Sp — 5Jn(m), where S, = 0,(v") + 2ZnIZn, Zn=1 N ln(7%),
Jn(m) = (Vn(m =1°) = Z) Ty (V1O = ") = Zy)
+2, D7 — (Z2) T Z2, (7.12)

y* is a point on the line segment joining 3,, and ¥, I = —(8?/0v0v' )ln(v*)/n, and
Z; = (L) 0/0a)a(O) V.

By conditions (i), (iv), and (v), Z,7Z,, — (Z})'L} Z}; = op(1). This result, (7.11),
(7.12), and conditions (iv) and (v) give

7 () (T e e)
:<z< e ”)—ﬁa%én(wo))Il(z( VRG] = 22 a(70) ) - 0p(1)

L2 (7.13)

Equations (7.12) and (7.13) establish (6.3).
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8. Footnotes

IThe author thanks four anonymous referees and the coeditor Alain Monfort
for very helpful comments and suggestions, especially in terms of the formulation of
Assumption IDcY. The author also thanks Moshe Buchinsky, Peter Hall, Lars Hansen,
Ariel Pakes, Walter Philipp, Chris Sims, and Yuichi Kitamura for helpful comments
and Glena Ames for typing the manuscript. The author gratefully acknowledges the
research support of the National Science Foundation via grant number SBRfQ/fL10675.

2More generally, for consistency and asymptotic normality, one can take 6,, to be
any value in © that yields a value of G,,(8)'W,,G,,() that is within op(n 1) of the
minimum, see Pakes and Pollard (1989).

3 In this case, Wi, is the inverse of an estimator, Vj,,., of the asymptotic covariance
matrix, V., of the moment conditions \/ﬁGm(eo). We recommend that V,,. be defined
using the same general formula for each selection vector ¢ (to minimize the differences
across vectors ¢) and with the sample average of the moment conditions subtracted off.
For example, in an iid case with G,,(0) = 2 3" | m(Z;,0) and V, = Var(mc(Z;,6")),
we recommend defining V,,. as follows:

n

1 . PN N L /
Ve = = 3 (me(Z,0(0)) = ine(@(c)) ) (me(Z3,9(€)) = Tincl@(c)) )
i=1
where Mye(0) = 1 3% me(Z;,0) and g(c) is some estimator of #°. In the case of

temporal dependence, sample averages can be subtracted off from a heteroskedas-
ticity and autocorrelation consistent covariance matrix estimator in an analogous
fashion. Subtracting off the sample averages is particularly important when some of
the moment conditions are not correct.

“An arbitrary o,(1) term can be added to the right-hand side of this equation
and (2.6) and (2.7) without affecting any of the results below. This indicates that
the infimum over © need not be computed exactly.

SFor conditions under which this result holds, see Hansen (1982) for the case of
moment conditions that are smooth in # and Andrews (1997) for the case of moment
conditions that may be non-differentiable and/or discontinuous. Andrews’ results
extend those of Pakes and Pollard (1989), who do not discuss the J,,(c) statistic.

80f course, when carrying out a model selection procedure, one maximizes IC,,(1m)
over all models m in M, not just the correct models, because one does not know
which models are correct. Here we focus only on the correct models, because we are
interested in the relative magnitudes of the maximized log likelihood and the penalty
term for redundant parameters for correct models. R

"Furthermore, by the results of Back and Brown (1993), the GMM estimator 6, (c)
defined in (2.7) is the same as the estimator of # that is attained via minimizing the
GMM criterion function augmented with corresponding p1; parameters, provided the
weight matrices are defined in an asymptotically optimal fashion.
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