

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station

New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 1144

Note: Cowles Foundation Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment.
Requests for single copies of a Paper will be filled by the
Cowles Foundation within the limits of the supply. References
in publications to Discussion Papers (other than mere
acknowledgment by a writer that he has access to such
unpublished material) should be cleared with the author to
protect the tentative character of these papers.

STOCHASTIC ALGORITHMS FOR DYNAMIC MODELS: MARKOV
PERFECT EQUILIBRIUM, AND THE "CURSE" OF DIMENSIONALITY

Ariel Pakes and Paul McGuire

January 1997

Stochastic Algorithms for Dynamic Models:

Markov Perfect Equilibrium,

and the `Curse' of Dimensionality.

Ariel Pakes and Paul McGuire �

May 1994 (revised December 1996)

Abstract

This paper provides an algorithm for computing policies for dy-
namic economic models whose state vectors evolve as ergodic Markov
processes. The algorithm codi�es a learning process that agents might
actually use. It has two features which break the relationship be-
tween its computational burden and the dimension of the model's
state space. First the integral over future states needed to determine
policies is never calculated; rather it is estimated by a simple aver-
age of past outcomes. Second, the algorithm never computes policies
at all points. Iterations are de�ned by a location and only policies
at that location are computed. Random draws from the distribution
determinned by those policies determine the next location. This se-
lection only repeatedly hits the recurrent class of points, a subset of
the feasible set whose cardinality is not directly tied to the dimen-
sion of the state space. Our motivating example is Markov Perfect
Equilibria (a leading model of industry dynamics; see Maskin and Ti-
role,1988). Though estimators for the primitives of these models are
often available, computational problems have made it di�cult to ex-
amine their implications. We provide numerical results which show
that our algorithm can increase speed and decrease memory require-
ments by several orders of magnitude; opening up new possibilities for
applied work.

�Yale University and the NBER, and Yale and the EGC. We thank the referees, G.
Gowrisankaran, K. Judd, D. Pollard, J. Rust, and N. Stokey for helpful comments, and
the NSF (grant SBR95-12106) for �nancial support.

1

Stochastic Algorithms for Dynamic Models: Markov Perfect
Equilibrium, and the `Curse' of Dimensionality.

by Ariel Pakes and Paul McGuire

Applied analysis of dynamic economic models is restricted by the compu-
tational problems we run into in attempting to construct optimal, or equilib-
rium, decision rules. In single agent problems this has become most apparent
in the use of estimation algorithms that require the solution of a dynamic
programming problem for each trial value of the parameter vector to be es-
timated. Applied work on multiple agent dynamic equilibrium models has
typically been less ambitious. Here the computations are primarily used to
obtain the policies implied by parameters estimated elsewhere. These poli-
cies are then used to analyze the response of a complex economic system to
changes in its environment.1

In all cases the policies are typically obtained by computing a �xed point
to a mapping of a function whose domain is a subset of Rn, where n is the
dimension of the \state space" (the number of relevant state variables) in
the problem. In the simplest case this is done by discretization. Each state
variable is allowed to take on K distinct values (the grid points), and a �xed
point involvingKn points is calculated. Thus without further restrictions the
dimension of thisc calculation grows exponentially in n. In multiple agent
problems n typically equals the number of state variables per agent times
the (maximum) number of agents (ever) active. This is one source of the
\curse of dimensionality" in this context. Another is in the computational
burden for each agent active at each point. That calculation depends on
a probability weighted summation of a function of possible future values
of the state variable. The number of possible future values can also grow
exponentially in n.

This paper introduces a learning algorithm which can circumvent these
two problems for a class of models of interest to economics; models in which
the state vector evolves as an ergodic Markov Process. Our algorithm does

1Early papers in the single agent tradition include Wolpin,1984, Miller,1984,
Pakes,1986, and Rust,1987. Multiagent examples include the I.O. literature on evaluating
the impact of di�erent market institutions (eg. Judd, 1992, and Pakes and McGuire,1994),
the literature on the implications of macroeconomic policies in a world of heterogeneous
agents (eg. Hoppenhayn and Rogerson, 1993), the literature on computing asset prices
in �nancial markets (see the review by Marcet,1994), and the literature on computing
the solution to represetative agent growth models (eg. Taylor and Uhlig,1990), and their
implications for tax policy (eg. Bizer and Judd,1989).

2

this by; i) never attempting to obtain accurate policies on the entire state
space, and ii) substituting an estimate for the integral over possible future
values needed to determine policies.

Recall that in a �nite state ergodic Markov Process every sample path
will, in �nite time, wander into the recurrent class of points, say R, and
once in R will stay within it forever (points inside R do not communicate
with points outside of it; see, for eg., Freedman,1983, chapter 1). Thus
to analyze the impacts of an event from an initial condition in R all we
require is knowledge of the policies on R. Our algorithm only computes
policies for a single point at each iteration, and the process which selects
those points eventually con�nes itself to selecting points in R. Depending on
the economics of the problem, the number of points in R need not grow in n
at all.

The algorithm uses an average of past draws to estimate the probability
weighted summation of the function of future states needed to determine
policies. Though this procedure is both faster and has less memory require-
ments than the alternative of determining policies by explicitly integrating
over possible future outcomes, it is also less precise (particularly in early it-
erations). This generates a tradeo� between the computational burden per
point, and the number of iterations needed for a given level of precision. Since
the precision of the estimate does not (necessarily) depend on the dimension
of the integral being estimated, while the cost of doing the summation ex-
plicitly does, the larger is n the more we expect the tradeo� to favor our
procedure.

Our algorithm is asynchronous, it only calculates policies for a single
location at each iteration. Averages of past outcomes are used to form esti-
mates of the expected discounted value (EDV) of the future net cash
ows
(FNCF) that would result from the di�erent possible actions of each of the
agents active at that location. The policy with the highest estimated EDV
is chosen as the agent's policy (hence policies are obtained from a simple
single agent maximization problem). Jointly, the policies the agents chose
determine the distribution of the next iteration's state. A random draw from
that distribution is then taken and used to update both; the location of the
algorithm, and the estimate of the EDV. Use of the draw to both determine
the evolution of the state, and to estimate the returns to alternative actions,
mimics what would happen were agents actually implementing policies based
on our procedure and then using the actual market outcomes to update their
estimate of the implications of their actions.

3

We stress that we do not know of conditions which insure, a priori, that
our algorithm will converge to the desired policies. However there is a check
of whether convergence has occured, and we use it to build a stopping rule
for the algorithm2. Also, as discussed below, the computational advantages
of our algorithm will vary with the structure of the problem (e.g. they should
increase in n and be larger when the cardinality of the recurrent class is small
relative to that of the state space).

Our numerical results provide an indication of the extent of these ad-
vantages when using our algorithm to compute a class of Markov Perfect
Equilibria (MPE; see Maskin and Tirole, 1988a and b). They indicate that
we can convert problems that would have taken years on the current gen-
eration of supercomputers to problems that can be done in a few hours on
our work station. Moreover our algorithm seems to be free of convergence
problems (which contrasts sharply with previous experience in computing
similar MPE).

Di�culties in computing MPE have limited our ability to do applied work
in Industrial Organization (I.O.). Though progress has been made in esti-
mating the demand and cost primitives underlying I.O. models, progress that
allows us to compute pro�ts and consumer surplus as a function of the distri-
bution of state variables, we have had less success in analyzing how the state
variables themselves evolve. This limits our ability to analyze even interme-
diate run responses to changes in the environment 3. Since realistic dynamic
models for analyzing these responses are far too complicated to solve ana-
lytically, further progress will require a mix of estimation and computational
strategies: we will have to compute the responses for empirically relevant
values of the model's parameters.

This paper proceeds as follows. The next section outlines a Markov Per-
fect model of industry dynamics. This will both help to focus the subsequent
discussion and provide a framework for computing examples. Section 2 con-
siders the burden of computing equilibrium policies for this model using

2This is the most we expect from applying �xed point algorithms to functional equations
which are not contraction mappings (see, Judd, forthcoming, and the literature cited
there). We can prove convergence for a single agent version of our problem (which is a
contraction).

3For an example of the likely distortions from predictions based on state variables that
do not change in response to environmental changes, see Pakes Berry and Levinsohn's
(1993) analysis of the response of the average miles per gallon of new car sales to the gas
price shock of 1973.

4

pointwise backward solution algorithms. Section 3 introduces our algorithm
and section 4 contains numerical results which provide an indication of its
power. A closing section summarizes related computational results. There is
an appendix which outlines a computer program which runs our algorithm
(and illustrates just how easy it is easy to program).

1 A Simple Model

This section outlines a model of industry dynamics (due to Ericson and
Pakes,1995, henceforth EP) that we will work with. The model has �rms in-
vesting to explore pro�t opportunities. Successful investments lead to states
where the �rm earns more pro�ts. Unsuccessful investments, those that leave
the �rm behind its competitors, lead to a deterioration of pro�ts and may
eventually induce owners to exit.

Pro�ts in any period depend on the �rm's own level of quality or e�ciency,
as well as on the levels of e�ciency of other competing �rms. We let i index
levels of e�ciency, and assume i 2 Z+, the positive integers. Let si 2 Z+

be the number of �rms with e�ciency level i, so the vector s = [si; i 2 Z
+]

is the \industry structure". Extensions in which i is a vector are discussed
below.

Pro�ts for a �rm at i when the market structure is s are given by �(i; s).
We allow �(�) to vary with demand and cost primitives, and with the equi-
librium assumption. For example, the publically available program for com-
puting our dynamic equilibria contains three examples of �(�)4. The �rst
is a standard di�erentiated product model where i indexes the quality of a
�rm's product and equilibrium in the product market is Nash in prices. The
second and third examples are both homogeneous product markets in which
equilibrium is Nash in quantities. In one i indexes inter�rm di�erences in the
marginal cost of production and in the other it indexes inter�m di�erences
in capacites. In each case the equilibirum assumption is used to solve for the
quantities and prices as a function of state vector, and these are substituted
into the pro�t function to obtain �(i; s). 5

4The examples are programed up to a set of parameter values determined by the user.
To access a description of, and code for, this algorithm (as well as a number of auxiliary
programs designed to help analyze its results); FTP to \econ.yale.edu", use \anonymous"
as login, and your own username as \password". Then change directory to \pub/mrkv-
eqm" and copy all needed �les. There is a \read.me" �le to start you o�.

5Published results that use these examples can be found, respectivley, in: Pakes

5

Given �(�) an incumbent has two choices. It chooses whether to exit or re-
main active, and if it remains active it chooses an amount of investment. If it
exits it receives a sello� value of � dollars (and never reappears). If it invests
x it incurs a cost of cx and has a probability distribution of improvements
in i which is stochastically increasing in x.

Thus if we let � be the discount rate, and pr(i0; s0jx; i; s) provide the �rm's
perceptions of the joint probability that its own e�ciency in the next period
will be i0 and the industry structure will be s0 conditional on (x; i; s), the
Bellman equation which determines the EDV of the �rm's FNCF [V (i; s)] is
given by

V (i; s) = maxf�; �(i; s) + sup
(x�0)

[�cx + �
X

V (i0; s0)pr(i0; s0jx; i; s)]g: (1)

The max operator determines if the continuation value of the �rm (the ex-
pression on the right hand side of �) is greater that the sello� value (�). If
so the �rm shuts down. If not the �rm chooses an amount of investment (an
x � 0) which determines the probability distribution of the increment in the
�rm's state over the period; i.e. a distribution for

it+1 � it � �t+1:

We will assume � can be written as a di�erence of two independent ran-
dom variables, i:e:

�t � �t � �t:

� represents the outcome of the �rm's investment process and has proba-
bilities given by the family P = fp(�jx); x 2 R+g, which is stochastically
increasing in x. � is an exogenous random variable with density �(�). Its
precise interpretation depends on the structure of the pro�t function but it
typically represents common demand or supply conditions (eg.,competition
from outside the industry, or factor prices). The distributions of the � of dif-
ferent �rms are independent, but the realization of � is common across �rms.

and McGuire (1994) and Gowrisankaran and Town(1996); EP(1995); and Berry and
Pakes(1993) and Gowrisankaran(1995). Note that in all these cases the quantity (or price)
choice can be computed without solving the dynamic problem. This is because we have
constrained this choice to be a function of (i; s), and the choice does not itself have an
independent e�ect on the evolution of the states. Benkard(1997) extends the program to
allow quantity (or price) choices to have an independent e�ect on the state variables, and
Fershtman and Pakes (1997) expand the strategy space to allow for collusive possibilities.

6

Both � and � are non negative, integer valued, random variables; � = 0 with
probability one if x = 0 (a �rm cannot advance without some investment),
and �(0) > 0 as is p(0jx) for all �nite x.

Thus if ŝi is the vector providing the states of the competitors of a �rm at
state i when the industry structure is s, and q[ŝi

0ji; s; �] provides that �rm's
perceived probability that the states of its competitors in the next period
will be ŝi

0 conditional on a particular value of �

pr(i0 = i�; s0 = s�jx; i; s) = (2)

��p(� = i� � i� �jx)q[ŝi
0

= s� � e(i�)ji; s; �]�(�):

where e(i) is a vector which puts one in the ith slot and zero elsewhere (so
that s��e(i�) lists the states of next years competitors if s0 = s� and i0 = i�).
Note that q[�ji; s; �] embodies the incumbent's beliefs about entry and exit.

For simplicity we assume there is only one potential entrant a period who
pays an amount xe (> ��) to enter, and enters one period later at state
!e 2
e �
 with probability pe(�). The entrant only enters if the EDV of
FNCF from entering is greater than xe.

6

We have just described the primitives of the model. We now note the
properties of its equilibria that we use below. For regularity conditions which
insure these properties see A.1 to A.7 in EP (1995).

EP show that a rational expectations MPE exists for our model. In
equilibrium, �rm behavior depends on the perceived distributions of future
industry structures formalized in the transition probabilities, q[ŝi

0ji; s; �]. Yet
the investment, entry, and exit choices, generated by that behavior, together
with the known distributions of � given alternative values of x and the dis-
tribution of entry locations, generate an objective distribution of industry
structures. The model is considered consistent for a given perception if and
only if the investment, entry, and exit decisions which result from those per-
ceptions generates an objective distribution of industry structures identical
to those perceptions.

EP also show that we will only observe �rms at an i 2
 = f1; :::; Kg,
and that there will never be more than a �nite number, say n, of active �rms.
Thus K is the dimension of the grid, n is the number of state variables, and

6Di�erent entry models are easy to accommodate provided the distribution of i0s at
which entry occurs is �xed over time. That is the \ability" of entrants must progress at
the same pace as the \ability" of the outside alternative; else entry would eventually go
to zero and stay there.

7

�S, where S � fs = [s1; :::; sk] :
P
sj � n <1g, are the possible states, in

our analysis. Note that #S is �nite, so equilibrium policies can be computed
for each s 2 S.

The heart of the equilibrium is a stochastic process for industry structures
[for fstg]. This process is a homogeneous Markov process, i:e: if st provides
the history of industry structures, and st = (st; st�1; :::; s1), then Pr[st+1 =
s0jst] = Pr[st+1 = s0jst] � Q[s0jst].

EP also prove that the transition kernel,Q[�j�], associated with each pos-
sible equilibrium (and there may be more than one of them) is ergodic. Thus
there exists a unique positive recurrent class, say R � S, such that, no mat-
ter s0, st will, in �nite time, wander into R, and once in R there is a no
probability of communicating outside of R.

Note, however, that the actual nature of the states in R (e.g. does it
include both relatively fractured and relatively concentrated structures?),
and the pattern of likely transitions between those states (do we cycle over
the divergent types of structures, or are their sudden events that take us
more directly from one to another?), depends on the primitives of the model;
�(�); �; xe; �; �(�) and P: These in turn, depend on demand patterns, techno-
logical opportunities, and the institutional structure of the industry; objects
that are likely to vary from problem to problem. Thus to use this model for
applied work we need some idea of the appropriate primitives and a compu-
tation algorithm that allows us to analyze their implications.

2 Equilibrium, the \Backward Solution"

Method, and Computational Burden.

Backward solution methods are iterative procedures which start each itera-
tion with a set of numbers in memory, provide a rule which updates those
numbers in the course of the iteration, and check to see if the updated num-
bers satisfy a convergence criteria at the end of the iteration. If not the
algorithm begins a new iteration. A detailed description of a backward solu-
tion method for our problem is given in Pakes and McGuire (1994; henceforth
PM).7

7For good overviews of backward solution algorithms for dynamic programing problems
see Bertsekas,1995, and Judd, forthcoming, chpt.12.

8

PM's updating procedure is synchronous; i.e. it circles through the points
in S in a �xed order and updates all estimates associated with every s 2 S
at each iteration. If the values and policies from successive iterations are the
same, then the algorithm is said to have converged. Any set of values and
their associated policies that are a �xed point to the operator de�ning the
updating rule satisfy the all the equilibrium conditions (conditions 6a to 6d)
in EP (1995).

We now modify PM's backwards solution algorithm to make it compa-
rable to the stochastic algorithm introduced below. To do so we need to
rewrite the Bellman equation in a way that isolates the integral of future val-
ues needed to determine policies. Substituting (2) into (1) and rearranging

V (i; s) = max
�2f0;1g

f[1� �]�+ � sup
x�0

[�(i; s)� cx+ �
X

�

w(�; i; s)p(�jx1)]g; (3)

where

w(�; i; s) �
X

(ŝ
0

i
;�)

V (i+ � � �; ŝ
0

i + e(i+ � � �))q[ŝ
0

iji; s; �]�(�): (4)

The term, w(�; i; s), provides the EDV of FNCF conditional on the current
year's investment resulting in a particular value of �, and the current state
being (i; s). It is an expectation because it is constructed by integrating out
over the possible outcomes of both the investment strategies of competitors
(the ŝ

0

i), and over the outside alternative (the �).
Since any set of values for w(�), say w+(�), determine the values of possible

investment outcomes, (3) can use them to determine the investment policy a
�rm follows if it continues (say x+). Similarly x+, w+(�), and (3) determine
a �+ 2 f0; 1g, and this implies a V +(�). Finaly if, for each possible (i; s),
these V +(�) satisfy (4) when w+(�) is substituted for the w(�) on the left
hand side of that equation, then the equilibrium conditions are satis�ed for
the policies and value functions generated by w+(�). Consequently the search
for equilibrium policies can be recast as a search for a set of numbers, the
w(�), that satisfy the �xed point just described.

Let W be the set of vectors whose elements are the w(�; i; s) ((�; i; s) 2
V �
� S), and consider the operator T :W !W de�ned pointwise as

(Tw)(�; i; s) =
X

(ŝ
0

i
;�)

V (i+ � � �; ŝ
0

i + e(i + � � �)jw)qw[ŝ
0

iji; s; �]�(�); (5)

9

where

V (i; sjw) = maxf�; �(i; s)� sup
x�0

[�cx + �
X

�

w(�; i; s)p(�jx1)]g;

and

qw[ŝ
0

i = s�i ji; s; �] � Prfŝ
0

i = ŝ�i ji; s; �, and the policies generated by wg:

A w 2 W generates equilibrium policies and value functions if and only if it
is a �xed point to T . Any such w will be denoted by w�8.

Now consider a backwards solution technique that holds an estimate of
w in memory and uses T to update each of its components in each iter-
ation. At each s iteration j begins by computing V (�jwj�1) and the as-
sociated policies for each incumbent and potential entrant. It then uses
these policies to compute a distribution for the future competitors of a �rm
at (i; s), say qw(j�1)[ŝ

0

iji; s; �]. Given V (�jwj�1) and qw(j�1)[�j�] we obtain
wj(�; i; s) = (Twj�1)(�;i;s) from (5). We stop iterating when Twj � wj, in
which case wj = w�.

The computational burden of such backward solution techniques is essen-
tially the product of three factors, the �rst two of which generate its \curse"
of dimensionality :

� the number of points evaluated at each iteration;

� the time per point evaluated;

� the number of iterations.

Consider the case when there may be more than one state variable per
�rm. Then i 2
 is a \tuple". Let K be the number of distinct tuples in

 (K = #
; thus if i is a couple whose elements can each take on k values,
then K = k2). The rate at which the computational burden of the algorithm
increases with an increase in the number of state variables di�ers depending
on whether the increase is in the number of state variables per �rm, or in the
maximum number of �rms ever active (our n). We focus on the case in which
K is �xed and n increases. If we have no further restrictions both the number
of points evaluated at each iteration, and the time per point evaluated, will

8Recall that there may be more than one equilibrium, so we abuse notation slightly by
not distinguishing between a particular, and the set of, equilibrium values.

10

grow exponentially in the number of states per �rm. As noted below further
restrictions are often available in economic models.

Since each of the n active �rms can only be at K distinct states, the
number of points we need to evaluate at each iteration, or #S � Kn. How-
ever symmetry, or more precisely exchangeability, of the value and the policy
functions in the state variables of a �rm's competitors implies that we do
not need to di�erentiate between two vectors of competitors that are per-
mutations of one another 9. As shown in Pakes (1993), this insures that an
upper bound for #S is given by the combinatoric (K+n�1

n); but for n large
enough this bound is tight. The bound increases geometrically (rather than
exponentially) in n (thus symmetry can be quite helpful). Both our and
PM's calculations impose symmetry; so all numerical results discussed in
this paper use the restrictions implied by symmetry.

The computational burden at a given s, or per point, is primarily de-
termined by the cost of calculating the expected value of future states (of
obtaining the w(�; i; s) from the V (�jw) in equation 4 above). Say iteration
j � 1's policies determine that m �rms will be active at point s (accounting
for entry and exit). Also assume that there is positive probability on each
of � points for each of the m � 1 active competitors of a given �rm. Then
to compute the required expectation we need to sum over �m possible future
states10. Thus the average computational burden per point is proportional toP
f(m)m�m, where f(m) is the fraction of points with m �rms active. The

computational burden of obtaining the optimal policies given the evaluation
of this summand need not grow in m at all (it does not in the algorithm
introduced above).

As an example we consider the calculations in PM (1994). That paper
presents an analysis of a di�erentiated product market in which the products
were unidimensional (so each `i' is an integer), K = 21, and n, the maximum
number of �rms ever simultaneously active, was 6. If we would have increased
market size until n = 10 then we would have had to compute equilibria with
forty seven times as many points. Since � = 2 the increase of n from 6 to

9This is the reason that the (i; s) notation for a �rm and its competitors is more
compact than the more traditional (ij ; i�j) notation. I.e. the more traditional notation
cares about the order in which the competitors are listed, while our notation does not.

10We sum over a function of each possible future value of the tuple (f�jg
m�1

j=1 ; �). We
could reduce this by using the symmetry restrictions discussed above, but this would
require us to �nd the probabilities associated with each unique ŝ

0

i vector; a task whose
computational burden generally outweighs the gains from using symmetry.

11

10 would also entail a twenty two fold increase in the computational burden
per point evaluated. Thus if we optimistically assume both that the number
of iterations would not increase when we increased n, and that there was
no memory problems, the increase from n = 6 to n = 10 would increase
computational time by a factor of over a thousand. The typical run in PM
took about three hours to run on our work station, so a run with n = 10
would take over three months, and one with n = 12 would take several years.
Even more telling is that to accomodate two state variables per �rm with 21
grid points each and no further restrictions we would have had to increase
the number of points evaluated at each iteration by a factor of 1:9 � 108.11

We come back to this example below.

3 A Stochastic Algorithm.

The stochastic algorithm also iteratively updates an estimate of w�. However
it combines two distinct ideas to overcome the two aspects of the `curse'
of dimensionality listed above. First it is asynchronous, only updating a
single location at each iteration, and the selection process which chooses the
transitions eventually focuses on the recurrent class of points, or R, a subset
of S whose cardinality does not necessarily depend on the dimension of the
state space. Second the algorithm reduces the computational burden per
point by estimating the integral of future values (the integral in (4)) needed
to determine current policies by an average of past monte carlo evaluations
of those integrals.

Combining these ideas produces an algorithm that might actually be used
by agents attempting to infer optimal behavior from past outcomes. Thus
assume s = st and that all agents believe that the EDV of FNCF are given
by w(�j�; st) = w+(�j�; st). They would then choose their policies to maximize
the V (�; stjw

+) obtained by substituting w+ for w in (4) above. These choices
would generate a distribution of outcomes for each agent's competitors given

11With similar issues in mind, Judd (forthcoming) discusses a set of approximation
techniques based on �tting parametric functions to only a small fraction of the points in
S, and then using the information obtained from those values to predict the value function
at other points as needed. We have a separate paper (Pakes and McGuire, 1995) showing
how symmetry reduces the dimensionality of these approximations signi�cantly, but our
experience with them on problems similar to those considered here was disappointing (we
had extreme convergence and accuracy problems). As noted below there is considerable
potential for combining approximation techniques with stochastic algorithms.

12

by qw+[�ji; st], and nature would choose the market outcome as a random
draw from qw+. The current perception of the value of this outcome to
�rm i is obtained by substituting its ŝi into the evaluation function given
by w+ and (3). If these values are viewed as random realizations from the
integral de�ning the appropriate components of w�, the agents might use
them to update their estimates of w�. Our algorithm for �nding w� mimics
the learning algorithm just described.

The jth iteration is de�ned by its estimate of w, wj 2 W , and by its
location, sj 2 S. Thus the algorithm's updating rule must update both s
and w. We begin with the update for s. This requires policies for the incum-
bents and the potential entrant. The investment and exit policies policies for
incumbents, say, x(�; sjjw

j) and �(�; sjjw
j) are obtained as the solution to

max
�2f0;1g

f[1� �]� + �supx[�(i; s
j)� cx + �

X

�

wj(�; i; sj)p(�jx1)]g:

In the simplest of our entry models the potential entrant pays xe dollars to
enter, and if it enters becomes an incumbent in the next period at location
ie minus the realization of �. The entrant enters if the EDV of FNCF from
entering exceeds the cost of entry. Thus if we let �e equal one if the entrant
enters and zero otherwise, the jth iteration's entrant policy is

�e(sjjw
j) = 1, �wj(0; ie; s

j + e(ie)) > xe; (6)

where e(ie) is a K-vector which has one for its ie element and zero elsewhere.
These policies determine a distribution for sj+1. The actual sj+1 is ob-

tained as a random draw from this distribution. To obtain the draw use
�(�jwj) to determine which of the �rms in sj remain active, and let the rth

active agent's location be ijr and its investment be xjr(�jw
j). Then for each

active agent draw a random variable from the distribution p(�jxjr), say �j+1
r .

Also draw �j+1 from �(�). We obtain sj+1 as follows. Compute ijr+�
j+1
r ��j+1

for each active agent. If �e(w
j) = 1, also compute ie� �j+1 for the potential

entrant. Now count how many of these numbers equal i for each i 2
. The
vector of integers obtained by this procedure is sj+1. Note that if wj = w�
the process generating sj+1 would be an ergodic Markov process, and hence
would wander into the recurrent class in a �nite number of iterations and
stay there.

We now update wj. For each agent and each possible realization of �,
use V (�jwj) to evaluate the state de�ned by the actual simulated draws for

13

� and for the locations of the agent's competitors; i.e. evaluate

V (i+ � � �j+1; ŝj+1
i + e(i+ � � �j+1)jwj):

This expression is the jth period evaluation of being in location (i+�� �j+1)
when all the other competitors states are determined by their simulated
draws. Its expectation conditional on information realized by iteration j
is
P

(ŝ
0

i
;�) V (i+ �� �; ŝ

0

i+ e(i+ �� �j+1)jwj)qw
j

[ŝ
0

iji; s
j; �]�(�): So if wj = w�,

this expectation is w�.
Since V (i + � � �j+1; ŝj+1

i + e(i + � � �j+1)jwj) is the current period's
perception of the value of a random draw from w�(�; i; s), it is used to update
wj(�; i; s). In particular if the random draw is di�erent from wj(�; i; s), then
set wj+1 � wj equal to a fraction of the di�erence; i.e. if �(j; sj) 2 (0; 1) set

wj+1(�; i; sj)� wj(�; i; sj) = �(j; sj) � (7)

fV [i+ � � �j+1; ŝj+1
i + e(i+ � � �j+1)jwj]� wj(�; i; sj)g:

Note that if we set �(j; sj) equal to the inverse of the number of times the
estimate of w�(�; i; s) has been updated in the past, then the wj(�; i; s) are
just the sample average of past draws on the EDV of FNCF from (i; s)12. Also
if V (i+ � � �j+1; ŝj+1

i + e(i+ � � �j+1)jwj) = wj(�; i; s), then wj+1(�; i; s) =
wj(�; i; s). Consequently if wj = w� then the expectation of wj+1 is w�; if
we are at w� we will tend to stay their.

We have now shown how to update both wj and sj (see the appendix for
more detail). We still need an initial estimate of w� and a stopping rule, and
the choice of these is determinned by our equilibrium conditions.

3.1 Equilibrium Policies.

We need conditions that de�ne equilibrium policies on a subset of S that is
rich enough for subsequent analysis, so we begin by detailing what we mean
by \rich enough".

12In general the weights need only satisfy Robbins-Monroe type regularity conditions.
That is, they must; i)be a function of information available at iteration j, ii) have a sum
that tends to in�nity as the number of times the point is hit tends to in�nity, and iii) have
a squarred sum that remains bounded as the number of times the point is hit grows. For
a discussion of the importance of these conditions, and of optimal weighting schemes, see
Ruppert,1991.

14

The subvector consisting of the components of w associated with points
in S� � S determine the set of entry, exit, and investment policies generated
by w for the points in S� and will be denoted by wjS�. wjS� allows us
to analyze behavior in subgames starting from any point in S� if, when
the policies generated by w are followed, st 2 S� implies that the sequence
fs�g��t will be in S� (with probability one). A wjS� with this property will
be said to generate policies for subgames from S�.

De�nition 1 (Policies for Subgames from S�) A wjS� will be said to
generate policies for subgames from S� if and only if

inf��tPrfs� 2 S�jst; wg = 1;

for each st 2 S�. �

The next observation shows how to determine whether a given wjS� gen-
erates equilibrium policies for subgames from S�. Notationally if Q(�; �jw) is
the Markov transition matrix generated by w and Q(�; �jw) � [qwij], then we
say that S� ! r [Q(�; �jw)] iff qwir > 0 for some i 2 S�:

Observation 1 Assume that for a w 2 W there is an S� � S such that

1. if S� ! s0 [Q(�; �jw)], then s0 2 S�, and

2. 8s 2 S�

(a) if si > 0 then for each v 2 V either

w(�; i; s) =
X

ŝ
0

i
;�

V [i+ � � �; ŝ
0

i + e(i + � � �)jw]qw(ŝ
0

iji; s; �)�(�):

or the r.h.s. cannot be calculated from wjS� and w(�) � w�(�),

(b) the analogous condition is satsi�ed for w(0; ie; s+ e(ie)), the value
assigned to entry at (i; s):

Then wjS� generates equilibrium policies (and value functions) for subgames
from S�. �

15

Condition (1) insures that QS�

(�; �jw), the matrix formed from the ele-
ments of Q(�; �jw) for which (i; j) 2 S� � S� de�nes polices for subgames
from S�. Condition 2 insures that these policies are equilibirum policies.
Though any s 2 S� only communicates with other s 2 S� if optimal policies
are followed, there are s 2 S� that could communicate with an s =2 S� for
a feasible policy. For these s there is at least one w(�; i; s) that is on the
boundary of wjS� in the sense that r.h.s. of (2), or Tw(�; i; s), cannot be
calculated from wjS�. Equilibrium requires w = Tw if w(�) is not on the
boundary and w(�) � w�(�) if it is.

Proof. We begin by showing that wjS� generates policies for subgames from S�.

Since points in S� can only transit to other points in S�, qwij = 0 whenever i 2 S�

but j =2 S�. An inductive argument shows that if Q has this property then so

does Q� � QQ��1, 8� � 1. Thus if st 2 S�, then Prfs� 2 S� jst; wg = 1

8� � t) limT!1 inft��<T Prfs� 2 S�jst; wg = 1 (8st 2 S�). For our policies

to be equilibrium policies conditions 6:a to 6:d in EP (1995) need to be satis�ed

8s 2 S� . Simple substitutions show that the equality in (2) and the de�nitions

of fQ(�; �jw)g and fV (�; �jw)g imply that; the transition probabilities and value

functions satisfy (6a) and (6c) 8s 2 S�, and that the policies satisfy 6b and 6d

for (i; s) tuples for which the summation on the r.h.s. of (2) can be calculated

(8� 2 V). For simplicity assume V = f0; 1g (any �nite set would do). If w(0; i; s)

cannot be calculated, then 9ŝi of positive qw probability with ŝi + e(i) =2 S�.

Since �(� = 0) > 0, this can only occur if �(i; sjw) = 0) � � supx[�(i; s
j) �

cx+�
P

� w(�; i; s
j)p(�jx1)]g � supx[�(i; s

j)�cx+�
P

� w
�(�; i; sj)p(�jx1)]g (from

w(�) � w�(�)). But then �(i; sjw�) = 0 and our policy is optimal. Similarly

if w(1; i; s) cannot be calculated but w(0; i; s) can, then �(i; sjw) = 1 but 0 =

x(i; sjw) � x(i; sjw�) � 0) x(i; sjw) = x(i; sjw�). �

We base our initial conditions and stopping rules on Obervation 1 and results
from a related arit�cial intelligence (AI) literature.

3.2 Lessons from a Related AI Literature.

Go back to the backward solution technique de�ned by the operator T : W !
W (equation 5). To apply T we need to calculate the sum,

P
V (�; �jw)qw(�j�),

at each point at each iteration. This requires the formula for qw(�j�) which is
both complicated (see equations 6 to 8 of EP, 1995) and puts positive weight
on a set of points whose cardinality grows exponentially in the dimension of

16

the state space.
Since we can obtain random draws from qw(�; �) without computing the

implied probabilities, and it is easy evaluate the V (�; �jw) associated with
those draws, the stochastic algorithm substitutes an average of past draws
for the needed summation at each point. Were we to do this synchronously,
updating all components of w at each iteration, our algorithm would be a
direct application of stochastic approximation (Robbins and Monro, 1951).
In that literature wj+1 �

P
V (�; �jwj)qw(j)(�j�) is a random vector whose

conditional distribution (conditional on wj) may be unknown (in our case it
can be constructed from qw(�j�) but the construction is tedious). The goal is
to calculate a root of its conditional expectation (in our case any zero root
de�nes a w�).

Blum (1954) provided conditions which insure convergence for the mul-
tidimensional case of Robbins and Monroe's problem, and since then the
literature has branched out to deal with rates of convergence, asymptoti-
cally e�cient weighting schemes, etc. in a variety of applied problems (see
D.Ruppert, 1991,for an accesible review). Most closely related to our inter-
ests is the branch concerned with dynamic programing; the reinforcement (or
`machine') learning literature (see Barto, Bradtke, and Singh, 1995, hence-
forth BBS, for a review). Since this literature deals with single agent dynamic
programming problems, it focuses on cases where the operator T (in equation
5) is a contraction mapping 13.

Much of the machine learning literature is asynchronous; i.e. only the
estimates at points associated with the realization of a location variable are
backed up at each iteration. Recall that our algorithm is asynchronous with
location variable sj. Early convergence proofs for the asynchronous case
required the condition that all points in the state space are recurrent, or
S = R. The advantage of asynchronous algorithms when S = R results
from the fact that in this case the frequency with which a particular point
is updated tends to the probability of that point in the ergodic distribution,
and the precision of the estimates associated with the point increase in this
frequency. Thus provided the estimates that will be used intensively are as-
sociated with points with relatively heavy weight in the ergodic distribution,
the asynchronous procedure will provide relatively precise estimates of in-

13It also focuses on cases where both the states and the controls can take on only a �nite
set of values, however we have shown that, at least in the synchronous case, convergence
does not require the discreteness of the controls.

17

tensively used points and will not waste much time on points that are rarely
used. Extensive numerical analysis indicated that; i) often much of the prob-
ability mass in applied problems is concentrated on a very small fraction of
the state space, and ii) the imprecision in estimates associatd with points of
small probability have little e�ect on the precision at the points of interest14.

The intuition underlying the usefulness of the asynchronous algorithms
when R = S is even more telling when R is small relative to S (since then we
can analyze behavior from any s 2 R not knowing policies outside of R), and
a part of the AI literature has done away with the R = S requirement for
convergence. Among the conditions that replace it is that the inital estimate
of the value function be larger than its true value (see the appendix to BBS).
This insure that policies which could bring the agents to states that are not in
R are tried early on, and only discarded after they are shown to be inoptimal.

Though this literature can guide our choice of initial conditions and stop-
ping rules, it does not contain a set of conditions which insures that our
algorithm converges (since our T is not a contraction). On the other hand
most of the algorithms in current use for computing �xed points to opera-
tors that are not contractions do not insure convergence (see, for eg., Judd,
forthcoming). Indeed many of these algorithms cannot determine whether
the values they output satisfy the �xed point condition. We now show that
though we do not currently have a procedure for determining a priori whether
our algorithm will converge for a given problem, there is a sense in which we
can tell, a posteori, whether a given run has produced a w�.

3.3 Stopping Rules and Initial Conditions.

We still need a stopping rule and an initial condition. To base a stopping rule
on a complete check of the conditions in Observation 1 for a given w, we would
have to �rst divide the components of w into those associated with transient
and recurrent states, and then split the w associated with recurrent states
into those on the boundary and those not. This task is too computationally
burdensome to be useful. Instead we use practical approximation procedures
for both identifying an S� for a candidate w, say S�(w), and determining
whether wjS�(w) generates equilibrium polices.

Recall that 8w 2 W the process generated by Q[�; �jw] is a �nite state

14In experiments not reported here we found similar results using our algorithm and the
examples analyzed in the next section (wherein S 6= R and T (�) is not a contraction).

18

Markov chain. All such chains have at least one recurrent class (see Freed-
man,1983, chapter 1), and any recurrent class will satisfy the �rst condition of
observation 1. Thus to obtain S�(w) we; use Q[�; �jw] to simulate a sequence
fsjg, let S

J1�J2 be the set of states visited at least once between j = J1 and
j = J2, and set S�(w) = SJ1�J2 . Provided both J1 and J2 � J1 !1, SJ2�J1

will converge to a recurrent class of Q[�; �jw] and satisfy the �rst condition of
observation 1.

To check the equilibrium conditions on this wjS� we need a norm, a k � k,
to weight deviations from the conditions at di�erent (�; i; s) tuples. As noted
we are less concerned with the precision of our estimates at infrequently
visited points, so we use a weighted Euclidean norm with weights equal to
the empirical distribution of visits in the simulation run.

Observation 1 requires the norm to check di�erent conditions according
as (�; i; s) is on the boundary of wjS� or not. To do this we would have
to separate out the components of wjS� on the boundary. The separation
program is very time intensive, and since the boundary points tend to be
visited very infrequently how one treats them has little e�ect on our norm.
Thus our stopping criteria was based on a calculation kw � Twk on all of
wjS�; when there were attainable future states for which we could not calcu-
late V (i0; s0jw), we set their probability equal to zero and renormalized the
probabilities of the remainder of the states so their sum equalled one.

Any procedure which uses a norm weighted by the frequency of visits to
de�ne a stopping rule (and recall that much of the bene�t of the stochastic
algorithm stems from focussing disproportionate attention on the more fre-
quently visited states), will face the problem that since boundary points tend
to be visited infrequently, their equilibrium conditions will not be given much
weight. To ameliorate any biases that this might cause in determining the
boundary we employ an initial condition (a w1) which overestimates w�(�). If
w1 > w� then all policies that could be optimal will be tried initially, and wj

will tend to approach w� from above (and then all equilibirum conditions are
satis�ed). There are two obvious candidates for such starting values; i)the
value function for the one �rm problem for the i of the (i; s) couple we are
after, and ii)�(i; s)=(1� �). The value function for the one �rm problem is
easy to calculate, and �(i; s) has to be calculated when we visit the point for
the �rst time anyway (since nothing is in memory for the point then, see the
appendix). The relative performance of the two initializations di�ered with
market size (the value function for the one �rm problem is not sensitive to
the distribution of active competitors whose number increases with market

19

size). However, even for small market sizes, the pro�t function initialization
typically worked better 15.

Use of a weighted norm for our stopping criteria also implies that we
could stop with relatively imprecise estimates at infrequently visited recur-
rent points. To mitigate any problems that this may generate the output
of the algorithm includes a count of how many times each point has been
visited. If the analyst needs policies from an infrequently visited s (recurrent
or transient) one can either use local restart procedures to obtain more pre-
cise estimates in the required neighborhood (see SSB), or revert to pointwise
calculations which use the reliably computed values as terminal values for
their locations.

There are two important details. First, since outcomes based on later
itertion's values are likely to be closer to w� than those from early iterations,
the stochastic approximation literature has extensive discussion of e�cient
weighting schemes (see Ruppert, 1991). These typically downweight early
outcomes, a procedure we also found useful. The simple procedure we used
restarted the algorithm after a million draws with initial evaluations given by
the �nal values from the prior million, and with hj(s) : S ! Z+, the number
of times the point s has been visited by iteration j, reset to 1 for those s hit in
the last million and to 0 elsewhere. When starting from our initial conditions,
it seemed e�cient to iterate on this `averaging' procedure several times before
starting up one long run which stopped on our endogenous stopping criteria
(though this procedure is likely to be less helpful if w1 were closer to w�).

Second, there is the question of when to perform the test. We stopped
the algorithm every million iterations and then calculated �rm values for all
active �rms and the potential entrant at each `s' for which hj(s) � 1 twice;
once using wj directly [this produces V (i; sjwj)], and once using the ex-
plicit summation V �(i; sjwj) � �V (i0; ŝ

0

ijw
j)p(i0ji; x; �)qw

j

(ŝ
0

iji; s; �)�(�): Our
stopping conditions required small values for both the weighted means of
V (i; sjwj)�V �(i; sjwj) and the weighted correlation between these two vari-
ables. The weights used for the evaluations at (i; s) were proportional to the
number of times the value at (i; s) had been updated since the beginning of
our long run 16.

15This discussion assumes that we have no additional information on fw(�)g. If, for
example, we had values of fw(�)g for a close, though not identical, set of primitives (a
situation which will often be the case in applied work), we would make use them. Our
point is simply that initial conditons that err on the high side are likely to perform well.

16This di�ers from hj(s) because there may be more than one �rm with the same

20

Note that the computational burden of the test goes up exponentially in
the number of state variables, and that this is the only part of the algorithm
whose burden grows exponentially in the dimension of the state space. As we
will see, this is a good reason for switching to a computationally simpler test,
at least for high dimensional problems. Tests based on necessary instead of
(or in addition to) su�cient conditions, are available (see below)17.

4 Numerical Results.

The numerical results are meant to indicate the extent to which our algo-
rithm's policies match those generated by w� and its computational burden
(including the latter's relationship to the properties of the problem). We
answer both questions in the context of the example analyzed in PM(1994).
This allows us to compare the results from the stochastic algorithm to the
\exact" results used in PM (the primitives in PM's examples were chosen
before we knew of the stochastic algorithm, and hence are not related to its
properties).

Table 1 compares the investment policies and value functions computed
in PM to those obtained from our algorithm. PS(PE) and V S(V E) denote
estimates of the probability of � = 1 conditional on optimal investment,

(i; s) combination. Another modi�cation we used resulted from the fact that, especially
in the early iterations, the algorithm tends to pick up points which are hit rarely (if at
all) in subsequent iterations. This increases the memory requirements of the algorithm
signi�cantly. To circumvent this problem we developed a `pruning' procedure. After every
million draws (i.e. at the same time as the test) the algorithm is instructed to discard (or
prune) all those points which were not used since the last pruning. Note also that our
testing procedure implicitly assumes that the initial s for the last million iterations is in
R(w) and that the w is fairly constant over these iterations; conditons which should be
met near the convergence points.

17There are several modi�cations that might increase the e�ciency of our algorithm.
We have already mentionned the possibility of using alternative weighting schemes and
stopping criteria. In addition we have not experimented much with alternative methods
for storing and retrieving information. Every time we hit a point we have to retrieve
the information we have stored for that point. To store the information we have been
using a trinary tree (see the appendix). Consequently the depth of our search grows
logarithmically in the number of points stored. There are alternative variants of trees, and
alternative storage and retrieval schemes (such as hashing functions) that might prove more
e�cient. Finaly most of the procedures used in the dynamic programming literature for
improving the accuracy of updates could also be used here (see Bertsekas,1995, especially
the references to parallel programing, and Judd,forthcoming) .

21

Table 1: Exact vs. Stochastic Fixed Point1.

Mean Standard Corr-
Deviation elaton

PS .6403 14.46 .9993
PE .6418 14.43
VS 12.40 643.8 .9998
VE 12.39 639.6

1PS(PE) and VS(VE) denote the probabilities and

values from the stochastic(exact) algorithms.

and of the value functions, from the stochastic (the exact) algorithm. The
means and correlations appearing in the table use the estimates at each (i; s)
combination as raw data and then weight them by the number of times
the di�erent combinations were visited. The stochastic algorithm used here
averaged after each of the �rst ten million draws, and then ran uninterrupted
for an additional ten million.

The correlations between PM's and the stochastic algorithm's estimates
of the value functions and of the probabilities were both larger than .999, and
the di�erences between the respective estimates of the means was under .25%.
Note that this is in spite of the fact that to ease the computational burden of
the `exact' calculation PM arbitrarily limited the maximum number of �rms
ever active (n) to six. Since the stochastic algorithm can increment n at little
cost it used n = 10 18 and found that about .2% of the points in the ergodic
distribution had seven or more active �rms.

PM uses the output of the exact algorithm and simulation to characterize
the dynamic equilibrium. To provide an indication of whether the policies
from the stochastic algorithm are close enough for subsequent analysis we
ran the same simulations using our policies. When we used our simulation
to recalculate the tables in PM that are based on continuous valued random
variables; for eg. the tables on the distributions of the one �rm concentration
ratio and the average price cost margin, our tables were virtually identical

18The stochastic algorithm uses the bound on n for the procedure which stores informa-
tion, but never computes values or policies for points at which there are a large number
of active �rms if those points are not hit by the stochastic process generating s.

22

to those published in PM.
However, as Table 2 illustrates, there were some di�erences when we

compared the numbers for entry, exit, and the distribution of the number
of �rms active over periods. These \discrete" dimensions of the equilibrium
react discontinuously to both; di�erences in the estimates of the value function
between the two algorithms, and to di�erences in random draws and in the
intial s (s0). We therefore consider whether the di�erences between column
(1) and (2) are due to; di�erences in s0 and/or in random draws, or are due
to di�erences in the underlying policies.

Columns 2 to 4 of table 2 are computed from the output from one hundred
independent runs of the stochastic algorithm. Each run used the parame-
ter values in PM and was instructed to average over each of the �rst seven
million iterations. Thereafter the algorithm was interrupted every million
iterations to run our test and instructed to stop only if the weighted cor-
relation between our test value functions was over .995 and the di�erence
between their weighted means were less than 1% (see the last section). The
average (over runs) of the number of iterations at stopping was 5.1 million
(after the averaging), but this number ranged from 1 to 26 million.

After satisfying the test criteria each run ran a 10,000 period simulation
using the point at which it stopped as an initial condition and its estimate
of the fwg to determine policies. This was also the length of the simulation
run in PM, but all runs di�er in s0 and in random draws.

Columns 2,3 and 4 of table 2 look across the 100 simulation runs and
compute; the average, standard deviation, and maxima and minima of the
fraction of equilibria with di�erent numbers of �rms active. There is no-
ticeable variance over runs in these dimensions of the simulation (though
not in the average number of �rms active). However, except possibly at the
very upper tail of the distribution, this variance is quite large relative to the
di�erences between columns 1 and 2; and this tail should be incomparable
since, as noted, in computing the exact �xed point PM assumed that n = 6.

Column 5 presents the variances in the fraction of equilibria with di�erent
amounts of �rms active obtained when we held the value and policy function
�xed and simulated one hundred independent ten thousand iteration runs
from it. The �gures in column 3 and 5 are very close. Thus almost all
the variance in column 3 is due to di�erences in s0 and in random draws.
Apparently di�erences in the policies outputted by the stochastic algorithm
have little e�ect on either the discrete or the continuous dimensions of our
equilibrium.

23

Table 2: \Discrete" Statistics from Simulation Runs.

(1) (2) (3) (4) (5)
Stochastic Fixed Point

Exact Average Standard Max/Min Standard
Fixed 100 Deviation 100 Deviation
Point runs 100 runs (policies

runs constant)
Percentage of periods with n �rms active
n=
3 61.9 58.3 02.9 64.0/49.7 02.8
4 34.4 33.7 02.6 40.0/27.7 02.5
5 03.2 06.3 00.8 08.1/04.7 00.7
6 00.5 01.5 00.3 02.4/00.9 00.3
7 00.0 00.2 00.1 00.3/00.0 00.1
8 00.0 00.0 00.0 00.0/00.0 00.0

The market size in PM's simulation was set by their M parameter (it
determines the number of consumers being serviced by the market). Table 3
pushes M up from PM's intial M = 5 by units of 1 until M = 10. The same
stochastic algorithm used for table 2 generated the policies inputted for the
simulations summarized in this table; but this time we ran the simulation
run for 100,000 periods. The bottom panel provides statistics which enable
us to assess how the computational burden changes as market size grows.
The number of points in the last row refers to the number of points visited
at least once in the last million iterations. This will be our approximation
to the size of the recurrent class.

There were 21,300 such points when M = 5. The maximum number of
�rms ever active (n) does increase in M, but the number of points does not
increase geometrically in n. The top part of the panel makes it clear why;
when we increase M the number of points at which there are a large number
of �rms active does increase, but the larger market sizes no longer support
as many equilibria with a smaller number of active �rms (so as we increase
M we discard, as well as add, points to R). Indeed though the function
relating the number of points to M is initially convex, it then turns concave
giving the impression that it may well asymptote to a �nite maximum value
(Sutton,1991, considers reasons why this might be so).

24

Table 3: Comparisons for Increasing Market Size.

M = 5 6 7 8 9 10
Percentage of equilibria with n �rms active
n=
3 58.3 00.8 00.0 00.0 00.0 00.0
4 33.7 77.5 48.9 04.4 00.7 00.1
5 06.3 16.8 41.4 62.3 33.0 07.2
6 01.5 04.2 07.3 25.0 44.3 41.8
7 00.2 00.6 02.2 06.5 15.3 34.3
8 00.0 00.1 00.2 01.7 05.9 13.1
9 00.0 00.0 00.0 00.0 00.8 03.5
10 00.0 00.0 00.0 00.0 00.0 00.0
Average n

3.43 4.26 4.64 5.39 5.95 6.64
Minutes per Million Iterations

5.5 6.5 7.5 8.6 10 11
Minutes per Test

3.6 8.15 17.1 42.8 100 120
Number of Iterations (millions)

7+5 7+2 7+21 7+4 7+9 7+3
Number of Points (thousands)

21.3 30.5 44.2 68.1 98.0 117.5

For memory comparisons we note that when n=6 a backward solution
algorithm that uses all symmetry restrictions requires about 6:4�105 points,
and if n increased to ten it would require about 3:2� 107 points. That is our
algorithm requires only about 3.3% of the points in S when n = 6, about
.4% when n = 10, and this fraction would undoubtedly decrease further at
larger values of n.

We now consider CPU times (all obtained on a Sun SPARCStation 2).
They are determinned by; the time per iteration, the number of iterations,
and the test times. The theoretical discussion indicates that the time per
iteration should be a function of the distribution of the number of �rms
active. Thus in our runs the ratio of the average number of active �rms to
the time per million iterations only increased from 1.53 to 1.65. The number
of iterations until our test criteria was satis�ed varied quite a bit between
runs; but did not increase noticeably in either M or n. Thus absent test times,

25

the average CPU time needed for our algorithm seems to grow linearly (by
about 1.65 times) the average number of �rms active. Given the theoretical
discussion this is as encouraging a result as we could have hoped for.

Recall that the test time in our algorithm should grow as does the time
per point in the exact �xed point calculation (exponentially in the number
of �rms active). As a result the test time in our runs rises from about 3
minutes when M = 5 to over two hours when M = 10. By M = 10 the
algorithm spends ten times as much time computing the test statistic after
each million iterations as it spends on the million iterations (and this would
only get worse if we pushed M up further). This suggests more research on
stopping procedure that make less intensive use of our test 19

Comparing our results to those that used the backward solution tech-
nique, we �nd that when n = 6 our program took about half the c.p.u. time
(about a third if one ignores test time), but when n = 10 even the most
optimistic projection for the backward techniques lead to a ratio of compute
time of 1=228 (1=1116 without test times). If n grew much beyond that, or
if there were more than one state variable per �rm, the backward solution
technique simply could not be used (even on the most powerful of modern
computing equipment) while we have already analyzed such problems with
our algorithm (see below).

5 Summary and Related Results.

We provided an algorithm for computing the policies generated by dynamic
economic models whose state variables evolve as ergodic Markov processes.
The algorithm is asynchronous; it only computes policies from a single loca-
tion at each iteration, and the process which selects points eventually con�nes
itself to the recurrent subset of the state space. Policies at a point are de-
terminned by maximizing an estimate of the integral which generates the
EDV of alternative actions. The estimate is obtained as a simple average
of past outcomes and is easy to calculate. The policies from any point im-
ply a distribution of outcomes, and a random draw from that distribution is
used to update both the location of the algorithm and the estimates of the
value of the policies. This mimics what would happen if agents were actually

19Even procedures that screen on necessary conditions for equilibria before going to the
full test can be quite helpful. We have used the fact that if fwg is close to fw�g, then the
changes in fwg ought to be a martingale to compute such screens.

26

choosing policies based on our procedures, nature selected a market outcome
from the distribution determinned by their actions, and the agents used that
outcome to update their estimate of the EDV of alternative actions20.

Theory indicates that the algorithm's computational advantages should
be particularly large for models in which there are a large number of state
variable, and the recurrent class is a small subset of the feasible set. There
are typically two factors which determine the dimension of the state space
in applied I.O. models; market size (which determines n), and the number
of state variables per �rm. As indicated by the numerical results, the eco-
nomics of MP models indicate that a given set of primitives can only support
certain con�gurations of �rms in any lasting way. Thus though as market
size increases the model will support structures with more active �rms, it
will no longer support structures where there are a small number of active
�rms. So as market size increases we both add and subtract points from R
and the net e�ect of market size on #R is not obvious.

It is straightforward to generalize both the model and the algorithm pre-
sented here to accommodate the important case in which there is more than
one state variable per �rm. As noted, without further restrictions #S grows
exponentially in the number of state variables per �rm in these models, so
even models where n is small can quickly become unmanageable21. A mo-
ments re
ection often generates economic reasons for expecting #R to also
grow at a much slower rate than #S when the number of state variables per
�rm increases; and we have found this to be the case in the examples we
have analyzed. Thus in di�erentiated product models where the state vector
details di�erent characteristics of the products (eg. the size, mpg, and hp of
cars), the primitives often indicate that certain combination of characteris-
tics are not demanded at a price greater than their marginal cost (eg. large
cars with a high mpg, or small cars with a low mpg). Alternatively consider
locational models where there is an initial locational choice and then a plant
speci�c cost of production (or quality of product) which responds to invest-
ments. #R in these models tends to be linear in the number of locations at

20Note that though the interpretation of our algorithm as a learning algorithm is a useful
pedagogic device, its empirical usefulness depends on several issues. These include the
method by which information on past outcomes is made available to the agents currently
active, and the number of updates possible per unit of time.

21Often further restrictions are available. Models with multiproduct �rms, i.e. in which
there may be only one state variable per product but there are many products per �rm,
are an important example (see Gowrisankaran, forthcoming).

27

which their is entry.
Still as applied work moves to larger and/or more detailed problems we

will encounter bigger recurrent classes, and a need for futher computational
simpli�cations. The AI literature for large, single agent, dynamic progaming
problems has a set of papers which combine reinforcement learning techniques
(similar to those used here) with approximation methods in the spirit of those
described in Judd(forthcoming; see SSB,1993, sec. 9 for references in AI);
a combination which is potentially quite powerful for the problems we are
interested in22.

The usefulness of our computational techniques will also vary with aspects
of the problem not discussed here. For example to compute the equilibria of
models in which behavior depends on values \o� the equilibrium" path, as is
true in many models with collusion, the algorithm will have to to be modi�ed
so that it samples from the relevant nonequilibrium paths. We have found,
however, that many problems that initially seem ill suited to our techniques
can, on deeper re
ection, bene�t greatly from them, and, partly as a result,
we make no attempt to delimit just where the ideas discussed here may be
useful.

Finaly, we note that we have never had a run of our algorithm that did
not converge. This is in marked contrast to results using backward solution
algorithms where convergence problems do occur and one has to resort to an
assortment of costly procedures to overcome them (see PM,1995).

Appendix: Outline of a Computer Program

Let j 2 Z+ index the iteration of the algorithm, and sj provide its location at iteration
j. sj � (sj

1; s
j
2; :::; s

j
k), so sji is the number of active �rms with state vector equal to i at

iteration j. hs(j) : Z
+ ! Z+ denotes the number of times location s has been hit prior

to iteration j (note that hs(j) = 0 is possible). Finaly the set of policies (value functions,
pro�ts, : : :.) for each i with sji > 0, will be called the permutation cycle of policies (value
functions, pro�ts : : :.) associated with sj .

We begin with the three subroutines that are called in the algorithm. The algorithm
is iterative, so we go next to what is in memory at iteration j, and then show how we
update that information in going from iteration j to iteration j + 1.

22Related work on easing the computational burden of single agent estimation problems
in economics includes Keane and Wolpin's(1994) use of functional form approximations,
and Rust's(1997) use of simulation to approximate the integral determining the implica-
tions of alternative choices.

28

Subroutines Needed.

The �rst calculates the permutation cylce of pro�ts for a given s, i.e. ~�(s) = f�(i; s); 8i with si >
0g (see Section 1 for examples). This subroutine is called when a point is hit for the �rst
time, and the pro�ts are stored in memory thereafter.

The second subroutine calculates initial values for the w's associated with an s which
is visited for the �rst time, i.e. it calculates

f ~w0(0; s); ~w0(1; s)g

As noted in the text, one possibility is to use f�(i; s)=(1��); �(i+1; s)=(1��)g for fw(0; i; s); w(1; i; s)g,
in which case the initial conditions are taken directly from the pro�t calculation.

The third subroutine stores and retrieves the information associated with alternative
values of s. We used a trinary tree for this purpose. This starts by searching for the
location of the active �rm with the highest state or i. The search from any given i can
move to; i) a larger i, ii) a smaller i, or, having found the correct i, iii) begin a search for
the i of the active �rm with the next highest i. A \hash" table could be substituted here.

In Memory at Iteration j

For simplicity we assume � 2 f0; 1g. For each s with hs(j) � 1, we have in memory the
fourtuple

f ~wj(0; s); ~wj(1; s); ~�(s); and hs(j)g;

where a tilde over a variable indicates a permutation cycle of values, (~wj(1; s) = fwj(1; i; s); 8i with sji >
0g; : : :). No separate information is stored for points which have not been visited (for which
hs(j) = 0).

We now assume we are at sj = (sj1; :::; s
j
k), and explain how we generate sj+1:

Step 1: Calculating Policies at sj.

There are two cases to consider, hs(j) � 1 and hs(j) = 0. Let p(x) be the probability that
� = 1.

Assume hs(j) � 1. For each i 2
 with sji > 0 calculate the couple (�; x) 2 f[0; 1];R+g
that solves

max(�)f(1� �)� + �supx[�(i; s
j)

�x+ �p(x)wj (1; i; sj) + �(1� p(x))wj (0; i; sj)]g:

I.e the policies are calculated as if our jth iteration's estimates of the EDV of FNCF
conditional on the alternative possible realizations of � are correct. Let these policies be
xj(i; sj) = x(i; sj jwj), and �j(i; sj) = �(i; sj jwj).

If hs(j) = 0, call the subroutines that compute pro�ts and initial conditions. Then
calculate the policies that maximize the analogous expression with f ~w0(1; s); ~w0(0; s)g
substituted for f ~wj(1; s); ~wj(0; s)g.

29

Step 2: Updating s(j).

Recall that a �rm's state variable can take on only K values. Begin by setting a set of K
counters to zero (these will count the number of �rms at each di�erent value of the state
variable at iteration j + 1).

Draw �j+1, the change in value of the outside alternative, from �(�). Then, starting
from the lowest value of i with sji > 0, do the following. If �j(i; sj) = 0 skip all �rms

at sji and go to sji+1. If �j(i; sj) = 1, then for each of the sji �rms at i draw �j+1i from

p[�jxj(i; sj)], and up the counter at location i+ �j+1i � �j+1 by one.
This determines exit and the next iterations i for all incumbents that remain active.

We need also to account for possible entry. Recall that in the simplest entry model
a potential entrant pays xe dollars to enter, and if it enters becomes an incumbent at
location i = ie � �j+1 in the next period. Thus the EDV of FNCF from entering exceeds
the cost of entry only if �wj(0; ie; s

j + e(ie)) > xe, where e(ie) is a K-vector which has
one for its ie element and zero elsewhere. If there is entry up the counter at ie � �j+1 by
one.

The vector of values from the set of counters (ordered from the lowest location) is
sj+1:

Step 3: Updating Memory.

If hs(j) = hs(j+1), that is if location s was not hit at iteration j, then the data in memory
for location s is not changed. If hs(j + 1) = hs(j) + 1 we do update. Recall that

sj+1 � e[i+ �j+1i � �j+1];

is the vector providing the outcomes of the random draws from location s for all but the
ith �rm. Then for � = f0; 1g

wj+1(�; i; s) = [hs(j)=(hs(j) + 1)] wj(�; i; s) +

[1=(hs(j) + 1)] V jf(i+ � � �j+1; sj+1 � e[i+ �j+1i � �j+1] + e[i+ � � �j+1]g:

As noted the couple, [i + � � �j+1; s
j+1 � e[i + �j+1i � �j+1] + e[i + � � �j+1], provides

the state that would have been achieved had the �rm's own research outcome been �, but
those of its competitors and of the outside alternative been determined by the realizations
of the simulated random variables from Step 2. Thus the (j+1)st estimate of the expected
discounted value of FNCF conditional on the research outcome � is a weighted average of;
i) the iteration j estimate of that value [with weight equal to hs(j)=(hs(j) + 1)], and ii)
the jth iteration's evaluation of the state determined by i + � � �(j + 1), and the actual
realization of the simulated research outcomes of all competitors.

If hs(j) = 0 we use fw0(0; i; s); w0(1; i; s)g for fwj(0; i; s); wj(1; i; s)g and do the same
calculation.

That completes the iteration. Return to step 1 and continue. �

30

References.

Barto, AG, SI Bradtke and S Singh (1995); \Learning to Act Using Real-Time Dynamic
Programming", Arti�cial Intelligence, Vol 72, pp 81-138.

Berry, S. and A. Pakes (1993), \Some Applications and Limitations of Recent Advances
in Empirical Industrial Organization: Merger Analysis," the American Economic Review,
Papers and Proceedings, Vol. 83, pp247-52.

Bizer, D. and K. Judd (1989), \Taxation and Uncertainty", the American Economic Re-

view Papers and Proceedings, pp331-336.

Blum J. (1954): \Multivariate Stochastic Approximation Methods", Annals of Mathemat-

ics and Statistics, 25, 37-751.

Ericson R., and A.Pakes (1995); \Markov Perfect Industry Dynamics: A Framework for
Empirical Work", the Review of Economic Studies, 62, pp.53-82.

Freedman, D.(1983), Markov Chains, Springer Verlag, New York.

Fershtman, C., and A.Pakes (1997); \Simple Dynamic Games with Collusive Possibilities",
mimeo, Yale University.

Gowrisankaran, G. (1995), \A Dynamic Analysis of Mergers", unpublished Ph.D. Disser-

tation, Yale University.

Gowrisankaran, G. (forthcoming), \E�cient Representation of State Spaces for Some Dy-
namic Models", Journal of Economic Dynamics and Control.

Gowrisankaran G. and R. Town (1996), \Dynamic Equilibrium in the Hospital Industry",
forthcoming, The Journal of Economics and Management Strategy (special issue on Health
Care).

Hopenhayn,H., and Rogerson, R.(1993), \Job Turnover and Policy Analysis: A General
Equilibrium Analysis", Journal of Political Economy, 101, pp.915-938.

Judd,K. (forthcoming), Numerical Methods in Economics, M.I.T. press, Cambridge, Mass.

Judd,K. (1992), \Cournot vs. Bertrand: A Dynamic Resolution", mimeo., the Hoover
Institution, Stanford Ca.

Keane, M. and K. Wolpin (1994); \The Solution and Estimation of Discrete Choice Dy-
namic Programming Models by Simulation and Interpolation: Monte Carlo Evidence",
Review of Economics and Statistics, 76-4,pp.648-72.

Maskin, E. and J. Tirole (1988a and b) \A Theory of Dynamic Oligopoly: I and II"
Econometrica, Vol.56, pp.549-99.

Marcet, A. (1994), \Simulation Analysis of Dynamic Stochastic Models", in J.J.La�ont
and C.Sims (ed.s), Advances in Econometrics, Proceedings of the Sixth World Congress of

the Econometric Society, Cambridge University Press, N.Y.

Miller, R.(1984) \Job Matching and Occupational Choice", Journal of Political Economy,
92, pp.1086-1120.

31

Pakes, A. (1986), \Patents as Options: Some Estimates of the Value of Holding European
Patent Stocks", Econometrica, pp.755-84.

Pakes, A. (1992), \Dynamic Structural Models, Problems and Prospects", in J.J.La�ont
and C.Sims (ed.s), Advances in Econometrics, Proceedings of the Sixth World Congress of

the Econometric Society, Cambridge University Press, N.Y.

Pakes,A., S. Berry, and J.Levinsohn (1993), \Applications and Limitation of Some Recent
Advances in I.O.: Price Indexes and the Analysis of Environmental Change", American

Economic Review, Papers and Proceedings, 83, pp 240-46.

Pakes A., and P.McGuire (1994), \Computing Markov-Perfect Nash Equilibria: Numeri-
cal Implications of a Dynamic Di�erentiated Product Model, the RAND Journal of Eco-

nomics, 25 No.4., pp 555-589.

Pakes A., and P.McGuire (1995), \Computing Markov-Perfect Nash Equilibria II: Approx-
imations", mimeo., Yale University.

Robbins, H., and S. Monroe, (1951), \A Stochastic Approximation Method", Annals of

Mathematics and Statistics, 22, pp.400-407.

Ruppert, D. (1991); \Stochastic Approximation", in the Handbook of Sequential Analysis,
B.Ghosh and P.K. Sen (ed.s), Marcel Dekker Inc. , New York.

Rust J. (1987),\Optimal Replacement of GMC Bus Engines:An Empirical Model of Harold
Zurcher", Econometrica,55, pp999-1034.

Rust J. (1997), \Using Randomnization to Break the Curse of Dimensionality"
Econometrica,65,pp487-516.

Sutton, J. (1991), Sunk Costs and Market Structure, M.I.T. Press.

Taylor, J. and H. Uhlig (ed.s),\Solving Nonlinear Stochastic Growth Models: A Compar-
ison of Alternative Solution Methods", the Journal of Economic And Business Statistics

8, pp 1-55.

Wolpin, K.(1994); \An Estimable Dynamic Model of Fertility and Child Mortality", the
Journal of Political Economy,92, 852-874.

32

