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Abstract

We propose a nonparametric test of an hypothesis of conditional independence between variables
of interest based on a generalization of the empirical distribution function. This hypothesis is of
interest both for model specification purposes, parametric and semiparametric, and for non-model
based testing of economic hypotheses. We allow for both discrete variables and estimated parameters.
The asymptotic null distribution of the test statistic is a functional of a Gaussian process. A bootstrap
procedure is proposed for calculating the critical values. Our test has power against alternatives at
distance n~'/2 from the null; this result holding independently of dimension. Monte Carlo simulations
provide evidence on size and power. Finally, we invert the test statistic to provide a method for
estimating the parameters identified through the conditional independence restriction. They are

asymptotically normal at rate root-n.
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1 Introduction

We investigate the application of an hypothesis of conditional independence in econometrics. Let

Y, X, and Z be random variables; following Dawid (1979), we write

Y U X|Z (1)

to denote that Y is independent of X given Z. This assumption is related to the more commonly
treated hypothesis that Y 1l X (Y is independent of X)), in that it imposes an infinite number of
restrictions on the joint distribution.® These assumptions are stronger than the mean independence
conditions usually employed in regression analysis: for example, that Y is mean independent of X,
i.e. that E(Y|X) =0, or that Y is mean independent of X given Z, i.e. that E(Y|X, Z) = E(Y|Z).
We now give two concrete reasons for interest in the conditional independence hypothesis.

Our first application concerns the evaluation of the impact of a social program such as a job
training program. Let D denote the dummy variable such that D = 1 when the person receives
treatment (participates), and D = 0 if not treated. Let Y; and Y, be the outcomes associated
with the participation values D = 1 and D = 0, respectively, and let X denote individual observed
characteristics. A common measure of the impact of partial coverage programs, such as job training

programs, is the average treatment effects on the treated

If it exceeds the appropriate measure of cost, the program should be maintained, see for example
Heckman, Ichimura, Smith and Todd (1995). The main problem in the estimation of E(Y; — Yy|D =
1, X) is that the second term, F(Y,|D = 1, X), cannot be observed. Replacing it with the observable

average outcomes of nonparticipants F(Yy|D = 0, X) leads to the presence of the self-selection bias

3See Phillips (1988) for a discussion of the difference between independence and conditional independence.



term B(X) = E(Y5|D = 1,X) — E(Yy|D = 0,X). One can try to characterize B(X) by using a
control group (people that applied to participate in the program but were randomly denied access
to program) to estimate E(Yy|D = 1,X) and a comparison group (eligible non-participants) to
estimate E(Yy|D = 0, X). The potentially high dimension of X however makes direct nonparametric
estimation of B(X) problematic. Instead, the most common approach in this literature is to use
the probability of program participation given observed characteristics, Pr(D = 1|X) = P(X), also
referred to as the propensity score, to characterize the bias. The important role of the propensity
score is often motivated by the results of Rosenbaum and Rubin (1983). They show that if there

exists an X such that
(Ylv Yb) AL D‘ X )

and 0 < Pr(D = 1|X) < 1 for all X, then, conditioning on X is equivalent to conditioning on the
univariate index P(X). In particular, E(Yy|D, X) = E(Yy|X) = E(Y|P(X)), so that

B(X)=B{P(X)}=0, forall X.

This index sufficiency restriction is essentially the conditional independence restriction that treatment
D is ignorable given the observables X. The weaker mean independence restriction is not sufficient
here.

Our second application concerns semiparametric model specification. Consider the semiparamet-

ric binary choice model

1 if X >«
Y = (2)
0 otherwise,
where [ is a vector of unknown parameters and ¢ is an unobservable stochastic error term. The
semiparametric literature divides into two broad categories according to whether ¢ is assumed to

be independent of X or only mean (actually median) independent (see the recent review papers

by Manski (1994) and Powell (1994) for discussion). In the latter case, Manski (1975) developed



the maximum score procedure for estimating # which was subsequently shown by Kim and Pollard

13 to a non-normal limit. Horowitz (1992) suggested a

(1990) to converge, on centering, at rate n
smoothed version of the maximum score procedure obtaining, under smoothness conditions, asymp-
totic normality at a rate faster than n'/?, but still less than n'/2. In fact, Chamberlain (1987) showed
that the semiparametric information in this model is zero: i.e. that one cannot estimate (3 in this
model at the usual n'/? rate. By contrast, in the case that ¢ is assumed to be independent of X it is

possible to estimate 3 with the n'/? rate of convergence; the Ichimura (1993) and Klein and Spady
(1993) procedures both achieve this. If

e X, (3)

then

Y LX| 57X, (4)

so that the independence condition on the unobservable random variable € implies the conditional
independence of the observable quantities. The conditional independence restriction (4) is weaker
than (3), which suggests that an alternative way of specifying (2) would be to assume the weaker
condition (4). Note also that when Y is binary, for example, independence is equivalent to mean
independence.

The above discussion holds much more generally in the class of transformation models considered
in Han (1987), Y = D - F(57 X, ), where D is monotonic and non-degenerate, while F' is monotonic
in each of its arguments. This includes transformation models, binary choice, duration models and
censored regression. We can also extend the discussion to include panel data models where the
independence assumption is even more crucial. Suppose that ¥; = F(a+ 37X, + &), t =1,...,T,

where the composite random term o« + ¢; is independent of 7 X,, ..., 81 Xy, then

Yy, Y LXy, . Xyl BT X, BT X



In this case, it has only been possible to consistently estimate § under the independence assumption,
see Powell (1994, p2513).

We now come to the contribution of this paper. We first provide a nonparametric test of (1) based
on an empirical distribution function. A large literature now exists on testing parametric regression
models against general alternatives, see for example Bierens and Ploberger (1996), Hong and White
(1995) and Fan and Li (1996). These amount to testing a null hypothesis of mean independence of
the regressors from some parametrically defined residual. Andrews (1995) extends this to testing the
null hypothesis of a parametric conditional distribution against a general nonparametric alternative.
There are many nonparametric tests of independence for continuous data, starting with Hoeffding
(1948), including those based on empirical distribution functions such as Blum, Kiefer and Rosenblatt
(1961) and Skaug and Tjgstheim (1993) and Delgado (1996), and those based on smoothing methods
like Robinson (1991) and Zheng (1994). However, there do not appear to be any fully nonparametric
tests for conditional independence.? We propose a nonparametric test of (1) based on an empirical

measure using the fact that under (1),

Pr(C)Pr(ANBNC)=Pr(ANC)Pr(BNC) (5)

for any events A € o(Y),B € 0(X), and C € o(Z). Here, o(X), for example, denotes the sigma
algebra of events generated by X. If Z were a null random variable, so that o(Z) 2 o(Y)Uo(X),
then we are considering the (unconditional) independence of ¥ and X. See Chow and Teicher (1988,
pp 221-223) for further discussion.” A key question addressed in the sequel is how to choose the

events A, B, and C so as to apply this principle to mixed continuous and discrete data. We extend

“When X,Y,Z are jointly normal with mean p and covariance matrix ¥ = (0i5), Y 1L X |Z is equivalent to
oyx = 0, while Y 1 X is equivalent to o¥* = 0, where the concentration matrix £~ = (¢%). In this case, there
are simple parametric tests of both independence and conditional independence. For categorical data there are also

numerous tests of independence and conditional independence, see Agresti (1990, p228).
5The condition can be more generally stated in terms of arbitrary sigma algebras F;, F», and F3, which allows for

intermediate cases between independence and conditional independence of random variables.



the usual treatment based on quadrants to a general class of rectangles suitable for these types of
data. In our first example the central hypothesis concerned observable quantities, while in the second
case there were unknown parameters involved; our test is therefore devised to allow for estimated
parameters.® Our test statistic is easy to compute and to analyze; its asymptotic distribution is a
functional of a Gaussian process whose quantiles can be found by the bootstrap. Empirical measure
based tests like ours have a major theoretical advantage over smoothing based tests in that they have
power against all alternatives at distance n~='/2; this holds, in theory, for any dimension.

Our second contribution is to propose a new estimation method for parameters that are defined
as the unique values that make an hypothesis of (1) between certain residual quantities be satisfied.
The estimator minimizes a criterion function which is based on one of the test statistics. It can be
interpreted as a version of Manski’s (1983) Closest Empirical Distribution (CED) estimator. We
show, using an extension of the asymptotic analysis of Pakes and Pollard (1989), that the estimator
is asymptotically normal at rate root-n. Our estimator can be viewed as a substitute for the average
derivative estimator of Stoker (1986,1992) or the nonlinear least squares estimator of Ichimura (1995)
in estimating semiparametric index models. It has the benefit of not requiring smoothing methods for
its construction. In some cases, this at the cost of the stronger conditional independence assumption;
however, with a binary Y, conditional independence is equivalent to conditional mean independence
and we are not requiring any stronger condition.

A key technical issue we face in this paper is the verification of the stochastic equicontinuity
property for processes involving both discontinuous indicator functions of rectangles and nonlinear
functions of the underlying parameters.

We treat first the testing problem: in section 2 we introduce our test statistic, in section 3 we
make our assumptions and present the limiting distributions (we use an i.i.d. setup suitable for
cross-sectional data); section 4 gives a bootstrap method for obtaining critical values. Section 5
treats with the estimation problem. We provide a small simulation experiment in section 6.

Notation. We use 1(-) for the indicator function, i.e. 1(A) = 1 if event A occurs and 1(A) =0

®Note that (3) itself is not directly testable because one cannot estimate ¢ consistently.
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otherwise. Let = and —, denote weak convergence of probability measures and convergence in

probability respectively; all limits are taken as sample size n — oc.

2 Test Statistics

Our population is the random vector U € R? from which we observe an independent and identically
distributed (i.i.d.) sample {U;}7_;. Of interest are certain residual [or index]| functions computed
from U, that is V(U;0) = (Y(U;0), X (U;0), Z(U;0)) € R? where the parameter § € © C R? and
d = 1+ m + k. The null hypothesis to be tested is that Y (U;6°) and X (U;6°) are independent
conditional on Z(U;6°) for some particular §° whose value is not known.

We shall base our test on the equality (5) for some (separating) class of subsets and replace the
population probability measure by an empirical measure. Most previous work has been based on
quadrants, i.e. the empirical distribution function.” These sets apparently work well for continuous
data but, as currently applied, are unsuited for discrete data as the following example illustrates.
Suppose that Pr(Y =1, X =0) =Pr(Y =0,X =1) = 1/2, then Y and X are perfectly dependent
with the same marginals Pr(Y = 1) = Pr(X = 1) = 1/2. Unfortunately, quadrants located at the
observations will not uncover this dependence; in fact, Pr(Y < 1,X <0) =Pr(Y < 1)Pr(X <0),
Pr(Y <1,X <1)=Pr(Y <1)Pr(X <1), etc. In view of this, we consider the more general class
of all rectangular subsets of R? of a certain (possibly zero) width. Let aq, by, @ =1,...,d be given

nonnegative numbers, possibly infinite, and let
Bo(Va) = [Va — Ga, Vo + o]

be a rectangle in the component a. Let also B(v) = x¢_;B,(v,), and B(y), B(z), and B(z) be the

rectangles obtained by intersecting the corresponding intervals.® Then let

"There has also been some work using multivariate half spaces, i.e. hyperplanes, see Beran and Millar (1986)

8Formally speaking, the sets we examine are of the form A = {V € B(y) x (—oo,oo)erk} € o(Y), where
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F(v|0) =Pr{V(U;0) € B(v)}

be the joint rectangular distribution function of V, and denote the corresponding probability functions
of (Y,Z), (X,Z) and Z by G(y,z|0), H(x,z|0), and L(z|), respectively; also, let F(v) = F(v|0%),
G(y,z) = G(y,2|6°), H(z,z) = H(z,2]6"), and L(z) = L(z]|¢"). When b, = 0 and a, = oo,
these functions correspond to the usual distribution functions. For discrete variables, events of the
form {V < v} are not a wise choice, as discussed above, and would give zero power against some
alternatives, see Joag-Dev (1984). For these variables we shall take a, = b, = 0. For continuously
distributed data we take a, > 0 and b, > 0, except we also rule out the case a, = b, = oo. Note
that the choice of rectangles can vary with location, so that a data series with both continuous and
discrete components can be accommodated by choosing atomic rectangles at points of discreteness
but intervals elsewhere. There is, therefore, wide latitude in choosing which rectangles to use for a
given application. We discuss this further in section 6 below.

Letting A(v|0) = L(z|0)F (v|0) — G(y, z|0) H(z, z|0), the null hypothesis is equivalent, to!°
Ho: A(v|6°) =0, forallveRY some 6’ cO CR.

The alternative hypothesis Ha is the negation of this. A number of functionals of A can be used
to test Hp; specifically, the Kolmogorov-Smirnov K'S = sup, |A(v|6°)| and the Cramér von-Mises
CM = [ A%(v|6°)du(v) for some measure u(-) (for example p = F). Shorack and Wellner (1986)

discuss a number of alternative test functionals in a variety of contexts. Note that Hg is true if and

o(Y) is the sigma algebra generated by the random variable Y, B = {V € B(z) x (—oo,oo)l+k} € o(X), and
C = {V € B(z) x (—oo,oo)“rm} € 0(Z). Then, for example ANBNC = {V € B(v)}. Note that, for example,
o(A(y): y eRY =o(Y).

9In our discrete example, the dependence is uncovered by this choice of events, since clearly Pr(Y =1, X = 0) #
Pr(Y =1)PrX =0).

10T his is because the class of rectangles of a given width separates probability measures. That is, if two probability

measures P; and P, agree on the class of all rectangles of given width, then they agree on all Borel sets.



only if I =0, for I = CM, KS. The quantities C'M and K S provide a general measure of the amount
of conditional independence there is.

We suppose that there exists estimates 0 of 6° that are root-n consistent under the null hypothesis.
In some cases there are many candidate estimates; we provide a general method in the second
part of the paper that provides root-n consistent estimates under the assumption of conditional
independence. To implement the test we replace A(v|6°) by the empirical analogue A, = L, F, —

GnH,, suppressing dependence on 5, where

<
Il

—
<
I

—

in which Z; = Z,;(U;;0), X; = X;(U;;0), and Y; = Y;(U;;6). We then estimate CM and K S by

: (6)

Note that a maximum is used in K.S, instead of the usual supremum. This particular version

CMy, =n 'Y A2(V) ; KS,=max |A,(V})
=1

1<i<n

of the Kolmogorov-Smirnov statistic has recently been suggested by Andrews (1995) in another
context. It has the advantage of requiring only O(n?) computations. Computation of both tests can
be completely vectorized.!! Given critical values ¢,, our level-a test based on either test statistic

I, =CM,,KS, is then

1 Although CM,, and K S, are desirable from a computational point of view, they can have poor (small sample)
performance for large d, because the evaluation points ‘Z are not representative enough. In practice the following

statistics may work better with large d and small n,

f— 1 204y - f— .
CM] =m ;An(tz) ;o KS) = max. |A,(t:)],

where {t;;¢ =1,...,m} is a fixed or random grid of points. The number of evaluation points, m, is under the control
of the practitioner, but should increase with sample size, see Beran and Millar (1986) for justification of this device.

In the simulations presented in section 6 we used a random grid of points based on the observations.



reject if : I, > ¢,. (7)

In section 4 below we discuss how to compute critical values ¢, with the property that Pr[l, >

Ea’ Ho] — o and Pr[[n > Ea‘ HA] — 1.

3 Asymptotic Properties of the Test

We now establish the asymptotic properties of C'M,, and K S,,. The main technical difficulty here is
that V' is a nonlinear function of both the data and the parameters and occurs inside an indicator
which is itself a non-smooth function. Empirical processes with estimated parameters were apparently
first studied by Durbin (1973). There followed a number of papers that extended his results to a
variety of situations, including nonlinear and dependent data. See the recent book by Van der Vaart
and Wellner (1996) and Shorack and Wellner (1986) for many references. Some recent works of
special interest to econometricians include Bai (1994), Andrews (1995), and Koul (1996).

First of all we introduce some notation. Define: &;(-,v|6) = 1{V(-,0) € B(v)} — F(v), 6(-,v|6)
= 1{Z(0) € B(2)} — L(2), &(0l) = 1{(X(-6), Z(-0)) € B, 2)} — H(x,2), 83(-0]9) =

L{(Y (0), Z(0)) € B(y, 2)} — G(y, 2), and

So(+,v]0) = L(2)61(-,v]0) + F(v)da(-,v|0) — G(y, 2)d3(,v|0) — H(x, 2)04(-,v|0).

The process A, (v]|0) = n=t ", 6(U;, v|0) is an approximation to A,(v|f) in the sense that

An(v]0) — A(v]0) = A, (v]0) + Op(n~1), (8)

where the error is uniform in both v and 6. If ° were known, then the asymptotic distribution of
the empirical process A,,(v]0°) determines the limiting distribution of our test. When 6° is replaced
by an estimate we must also take account of its variation. For this we must calculate how A,,(v|6)

changes with movements in 6. Letting

10



Aj(ul) = Ego {6;(U,V (u,0)|0)}

for j =0,...,4, we have

Do (u]6°)

A, (V(u,0)]0) = A (V(u,0%)]6°) + 507

0 -6 +0, (\9 - 90)2> .

We make the following assumptions:

ASSUMPTION 1. Under Hy,

V(0 — 6% = =2 S (U169 + oy(1),

where E{y(Ui[0°)} = 0 and E {4(Ui]0°)ep(U;0°) 7} < oc.

ASSUMPTION 2. The function V (u;0) is uniformly continuous in u and twice continuously differ-
entiable in 6 on ©g = {0: |0 — 6°| < ¢} for some ¢ > 0, with E UB—V’@ (U; 00)) } E |:Sllpe€®0 (UZ,G)) } <
oo fort=1,....d and k,r=1,...,p.

aakae

ASsuMPTION 3. The functions A;(-|6), j =0,...,4 are continuously differentiable in 6 on O,
and the derivative vector T'(-|0) = 0 (- / 90" satisfies

/P(U|00)F(U|90)TdP(U) < 0, 9)

where P 1s the distribution of U.

Assumption 2 could, perhaps, be weakened to once differentiability at the cost of a longer proof. In
general though these assumptions are fairly standard and can be verified for the linear model as we

now discuss. Suppose that

11



where Gy = (1,1)" and X = (X3, X»)”, with (g, X*)* ~ N(0,I3). Consider testing the hypothesis
that

y ALog X6 X, (11)

where o = (1, —1)7.'2 For any o and 3 we have

Yy 1+ 06560 Boa G308
a’X | ~ N |0, pla  oafa oTp
X BB ofp B

In order for assumption 3 to be satisfied, this covariance matrix should be nonsingular at o = «ay
and 3 = [; this certainly holds, since by construction 3'ag = 0. The derivatives of A; are fairly

easy to compute in this case. For example,

0 0 i
e ferx <] - ol L

= [1- ("8

x B
(BTB)M* i { (87 8)"* } '

This quantity is mean zero and has finite variance with respect to the distribution of z. Kim and

Pollard (1990) carry out similar calculations for general distributions with instead 87z replaced by

0.

The large sample properties of our test statistics are given in the following theorem which is

proved in the appendix:

12Note that the index model defined by (4) can be equivalently stated as (11).

12



THEOREM 1. Suppose that assumptions A1-A8 hold. (i) Under Hy,

nCM, = > \xie (12)
=1
where X3, £ = 1,2,... are independent chi-squared [with one degree of freedom] random variables,

while {\;},2, are the eigenvalues of the operator T, where

Tq() = [ h(-y)aly)dP(y)
in which
bl ) = [ €, V(U 60°)|6°)C ua, V (U,6)16°)dP(U)

with ((u,v|0) = 6(u,v|0) + T'(v|0)1(u|d); and (ii) Under Hy,

n'2K S, = sup |W ()|, (13)

teRY

in which W is a Gaussian process with mean zero and covariance function

w(u,u) = /C‘(U, V(u,0°)0°)¢(U, V (', 6°)]6°)dP(U).

The limiting distributions are non-Gaussian. Also, there is a ”correction factor” [the term
['(v]0°)9(u]6°) inside ((u,v|0°)] in the limiting distribution of both test statistics due to the es-
timation of °. When the parameters are known, this term disappears and ¢ = §. Similarly, when
the parameters enter in a linear fashion, the correction term can be zero, see for example Pierce and
Kopecky (1979). Even in this case, the null distributions of our tests are complicated functionals of
a Gaussian process and depend on the underlying distribution, i.e. neither test is distribution free.

This is why we use the bootstrap, see below, to construct critical values.

13



Consider next the power of our tests against local alternatives. Our tests should have power
against all root-n alternatives, just like the Bierens and Ploberger test (1996). This is true for discrete
variables by virtue of the events B we have taken; this is also true regardless of the dimensionality
of V.13 We suppose, for simplicity, that the parameters are known. The choice of how to specify
alternatives even for the (unconditional) independence test is not universally agreed on, see Nikitin
(1995, p194). For simplicity we shall assume that the data are generated by a sequence of distribution
functions F' shrinking towards a distribution function F' that does satisfy the null hypothesis, i.e.

ay (v)

Hn: F(U)ZF(U)—FW

for some function a(-) which is not identically zero (and which makes F'(v) a probability for all v for

n larger than some ng). This implies that

az(z — ayz\y, 2 77 Ixz\% 2
51(/2) ; G(y,z)ZG(y,z)ﬂLw ; H("B,Z):H(aj’z)“L%

for functions az(z) = ay (00,00, 2), ayz(y,z) = ay(y, o0, 2), and axz(z, 2) = ay(co,x, z). For F(v)

to be a proper alternative hypothesis, we require that

pv) = L(z)ay (v) + F(v)az(2) = Gy, 2)axz(z, 2) — H(z, z)ayz(y, 2)

is not identically zero. In any case, under the sequence of hypotheses H,,, we have
nt2K S, = sup |W(t) + u(t)].
teRY

This guarantees nontrivial power against such alternatives. A similar result holds for the Cramér-von

Mises test.

13 Also note that the rate of convergence to the limiting distributions in Theorem 1 is n!/2 independently of dimen-

sions which implies that the size distortion is of order n=1/2

(1996).

independently of dimensions. See Csorgd and Faraway
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4 Bootstrap Critical Values

We use the bootstrap because it performs well in many other related situations and because the
alternative methods tried in Bierens and Ploberger (1996), for example, are quite complicated to
implement.

We first discuss the method for the case that the parameters 6° are known. The basic problem for
the bootstrap is how to impose the null hypothesis in the resampling scheme. Simple resampling from
the empirical joint distribution of V; will not impose the null restriction. In the independence case,
one can resample from the marginal empiricals thereby imposing independence, see for example Skaug
and Tjgstheim (1993). We essentially do the same here except that our marginals are conditional
on Z. Let PXYZ be the joint empirical distribution, then write PXY4 = PXYIZ. pZ where PXY1?
and PZ are the empirical distribution of (X,Y) conditional on Z, and the empirical marginal
distribution of Z, respectively. The conditioning variable Z is an ancillary statistic, so that we can
conduct inference conditional on the sample {Z;}? ; without any loss of information, i.e. we can
work with PXY1Z. Our proposal consists of drawing resamples { X7, Y;*, Z*}" |, where Z} = Z;, from
a conditional distribution Pf”z in which we impose the null hypothesis of independence between

X and Y conditional on Z. That is,
pXYIZ _ pX|Z . pY|Z

where PX1Z and PY1Z denote the bootstrap conditional distributions of X and Y, respectively. We
just explain the procedure for computing PX1Z_ since PY1Z is constructed in the same manner. Unlike
with the joint distribution P*# of X and Z where the (naive) bootstrap distribution can be chosen
to be the empirical distribution P4 = n~'Y>" , 1(X = X;) 1(Z = Z;), the analogy does not
carry over to ]Sff 4. The reason for this is simple: unless one has repeated observations for Z
among the observed values {Z;}" ;, only one value of X, namely X;, will be associated with each
Ziy t=1,...,n,so that

pXIZ (x* | 7)) ' YL (2 = Z)1(X; = XT)
n 1 ? n_l Z?:l 1(2] — Zz) )

15



or X = X, with probability 1, ¢ = 1,...,n. Even in the rare event that each value of Z in our
sample is associated with two or three distinct values of X, it will still be inadequate to produce a
good approximation of PX# through the empirical distribution pPX 2,

One way to solve this problem is to smooth P:X?. We choose the following smoothing procedure
in our simulations and application below. For any set A, including singletons, let

n S Ka(llZ; — Zi])1(X; € A)
nt 3 K125 = ZiD) ’

PY (A Z,) = (14)

where Kj,(u) = h™'K(u/h), and the univariate kernel K is a symmetric, nonnegative function that
integrates to one, and is absolutely integrable. In practice, a weighted distance is chosen to reflect

the different scales of the vector components.'* We resample from (14); this involves choosing

Kin(|1Z; — Zi)) _1

X = X; with probability =m0, J =10,
j=1 g

In practice, it will be advisable in small samples to choose the bandwidth parameter h to be, for
example, the distance from Z; to its k’th nearest neighbor (k-NN).'® This guarantees that each X7
is drawn from at least k observations of X whose associated Z are the k closest to Z;. We generate

B bootstrap samples and with each sample compute C'M; and KS; in analogous fashion to C'M,,

and K S,. The level « critical values ¢, are computed as an approximate solution to

Pr*[CM; > ¢,] = «, (15)

where Pr* denotes probability conditional on the sample.

The consistency of this procedure:

sup |Pr*(I}; <¢)—Pr(l, <c¢)| =0 as., n— oo,
ceR

14See Hirdle and Linton (1994) for discussion of smoothing methods and Horowitz (1995) for background on the

bootstrap.
15For such h, and K the uniform distribution, we get a k-nearest neighbor smooth distribution with X} = X with

probability 1/k for all X;, j=1,...,n, such that Z; € Nj(Z;), where N} (Z;) denotes a k-neighborhood of Z;.
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where [,, denotes either CM,, or K.S,, and I denotes either CM;: or K S}, should follow from the
following argument. Firstly, suppose that instead of the fixed distribution P of U, there was a
deterministic sequence P, of probability measures which for each n satisfies the null hypothesis.
Theorem 1 can be extended to include this triangular array and, provided P, — P, the limiting
distribution is the same as given in Theorem 1. Secondly, one can show that PXZ and PY1Z are
almost surely uniformly consistent, under regularity conditions such as can be found in Hérdle et al.
(1988). Thus, the bootstrap test statistic has the same asymptotic distribution.

Suppose now that #° is replaced by the estimated value 6. In some special cases the correction
term due to parameter estimation is zero, i.e. E(I') = 0. This occurs in the linear index model
when X is mean zero. In this case, one can use the above algorithm without re-estimating 6 each
time. In general, however, E(I') # 0. We suppose that there is a well defined inversion mapping
r(Y,X,Z) = U [which is certainly the case in linear index models]. In this case, we recommend the

following procedure:

1. With the original data and @ estimate PX1% and PY1Z but also PZ [for the latter just take the
unsmoothed empirical distribution function]. Now draw a random sample {Y;*, X/, Z*}" | from

the joint distribution PX1Z . pYlZ. pZ.
2. Compute Uy = r(Y;*, X7, Z*) and reestimate 6* using the bootstrap sample {U7}" | .
3. Compute Y = Y/(UF,0*), X7 = X(U?,0%), and ZF = Z(Ur,0%),i=1,...,n.

4. Compute C'M; and K S} using the bootstrap sample {17;*, )/(\;*, ZZ*}

n
i=

=1
Repeat the above B times and compute ¢, as in (15).
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5 Estimation

5.1 Method

There has been much work in the statistics literature on models defined by conditional independence
restrictions, see for example Wermuth and Lauritzen (1990). Suppose our "model” is that there is a
unique 6° such that Y (U; 0°) and X (U; 6") are independent conditional on Z(U;6Y). For example, one
might specify the binary choice model (2) in this way; this would be a slight generalization allowing
the distribution of ¢ to depend on the index. We now examine an estimation method for #° based on
using only the assumption of conditional independence; specifically, we invert our Cramér von Mises
test statistic.'® We work with the Cramér von Mises criterion because of its analytical tractability.
Alternative procedures based on the supremum and other norms can also be implemented; however,
their asymptotic distribution is not guaranteed to be normal, see for example Rao, Schuster, and
Littell (1975).

The conditional independence assumption is equivalent to saying that §° globally minimizes (set-
ting to zero) the criterion Q(0) = [ A%(v|0)du(v), where u(-) is absolutely continuous with respect
to Lebesgue measure. We work with a fixed measure p(-) for convenience here. Now let f be an

approximate minimizer of

Qu(0) = [ A2(010)du(v) = A0 (16)
The criterion function is discontinuous, so that 6 is not unique; some arbitrary tie breaking rule is
needed to obtain a unique estimate. The Nelder-Mead simplex method is recommended for computing
the estimates when the dimensions of 6 exceed one [perhaps taking as starting values estimates
computed as minimizers of a smoothed version of @Q,,].

We now give some examples. (a) Suppose that we wish to estimate the parameters [ of the

16See Pollard (1980) for a similar strategy [except that in his case the parameter to be estimated lies inside a smooth
distribution function].

There is also the question about how to best estimate the distribution function F', see Brown and Newey (1996).
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linear regression (10), where £ Il X is the identifying assumption made concerning the continuously

distributed random variables (¢, X). In this case, one version of the criterion function is

Qu(®) = [ {Fe*(e.) = Fi(e)FX (@)} du(e,) (17)
for some positive weighting function (e, x), where F&X (e, z), F¢(e), and F-X(x) are the corresponding
empirical distribution functions, for example, Fo*(e,z) = n™! Yioi1(e; < e, X; < x). This is
example (iii) given in Manski (1983) who uses empirical weighting, i.e. p(e,z) = F%*(e,z). (b)
Suppose that instead we only assume that Y 1 X ‘ BT X , which allows for some heteroskedasticity
albeit depending only on the index, then we might take

Q) = [{FS X @R N (y,2.2) = FV N ) B N @) dulye,z). (1)

as criterion function.

A competitor to our estimation method would be to use the semiparametric profile likelihood
method, where available: for example, in (b) choose 3 to maximize Y7, In f(Y;|7X;), where [ is a
kernel estimate of the conditional density V|37 X evaluated at the observation points. This method
has the disadvantage of requiring smoothing methods which can contribute a very large second order
effect [see Linton (1995)]. It is also rather hard to define in more complicated situations like when

all variables are subject to a parametric transformation.

5.2 Asymptotic Properties

The consistency argument is standard: given the identification assumption it is sufficient to establish

to show that

sup |Qn(0) — Q(0)| —, 0,
9o

which follows by sup,cga Suppee | An(v]0) — A(v|0)| —, 0.1

I7"This result is established in the appendix for shrinking ©,,.
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Asymptotic distribution theory for estimators derived from this type of criterion function have
been given in Pakes and Pollard (1989) for the case that the norm is finite dimensional, and more
recently in Van der Vaart (1995) for the case that both the norm and © are infinite dimensional. In
our case, the parameter space is finite dimensional but the norm is infinite dimensional, i.e. there

are an infinite number of restrictions. We have the following theorem.

THEOREM 2. Let 0 be a consistent estimator of 6°, the unique point of © for which A(u|0°) = 0

for all u. Suppose also that:

(a) [Au(0)]| < 0p(n /%) + infoce [| Au(0)]] ;

(b) For all s,

A(s|0) = Eg {6;(U, s|60)}

is differentiable in 6 at 6°, with a vector of continuous derivatives T'(s|0) = IA(s|0) /89T. The
matriz H = [TTT(s0°)du(s) is of full rank.

(¢c) For every sequence {€,} of positive numbers that converges to zero,

sup  n'/? || 4,(0) — A(6) — A (6°)| = 0,(1)

|60—6°|<en,

(d) nY2A,(+|0°) = B(-), a mean zero Gaussian process with positive definite covariance function

w(s,t)

(e) 6° is an interior point of ©.
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Then
n1/2(9~— 90) = N(0,9),

with Q= H1TH™, where J = [T(s]0°)TT (t]0°)w(s, t)du(s)du(t).

REMARK 1. The assumptions have been written down in such a way as to emphasize the connec-
tion with Pakes and Pollard (1989). The stochastic equicontinuity condition might also be expressed
in terms of the more fundamental empirical processes as defined in Theorem 1. The derivative con-
dition (b) was discussed before Theorem 1; the weak convergence condition (d) was verified in the
proof of Theorem 1.

REMARK 2. The estimator 6 is not generally efficient as is evident from the sandwich form of

the asymptotic variance. If we could find a measure fioy(-|6°) for which

[ 180T (6o, )popa (516 g (816°) = | TT (516%) o516 (19)
then the asymptotic variance of the estimator computed using piop(-16°) in (16) is
-1
Qopt = [ [ FFT(S\GO)duopt(s\QO)} which is minimal among all procedures of the form (16)."® In a
simpler example, Boos (1981) gives the optimal weighting function - it depended on derivatives of
an unknown density function. In our situation too, estimating the optimal weighting function will

likely require smoothing methods and seems practically not very desirable.

5.3 Examples

We now discuss the linear regression examples. Suppose that we are in case (a) where we identify

the parameters 3 by the (unconditional) independence assumption € 1L X. Furthermore, assume that

181t also ought to be semiparametrically efficient, see Newey (1990)
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the variables are continuously distributed and we use the standard empirical distribution functions.

We have
A, = Eg% —F% —F(FY — FY) = FX(Fy = F) + Oy(n 1)

- ! i{l(ei < &) = F()} {1(X: < 2) — F¥(2)} + Oy(n™)

and the asymptotic covariance function of A, (e, x) [at the true ] is

w((er, 21), (e2,72)) = {F*(e1 A ea) = F¥(e1) F(e2)} {F¥ (1 A wy) = F¥ () F¥ (w0) |, (20)

where e; A e; denotes coordinate-wise minimum. Furthermore, I'(e, z|3%) =

0 OF Fe,X 0 e( 30 T
O [ggm ) _9F| - (8] Fx%%(” = @) [ X - FAX0aX, (@)

where py = E(X), while f¢ and f¥ denote the densities of ¢ and X respectively, since

OF [Fo*(8)]

0 ot TR
% = G_ﬂE [1 {5 —(B-0")X< e} 1{X < x}} by identical distribution

_ %EX [Fe(e + (ﬁ . ﬁO)TX)]_ {X < x}} byiteratedexpectation

= EX% [Fe(e +(B-p)TX)1{X < x}} by reverse order
= Ex[Xfie+ (3-8 X)1{X <a}]
= f4) [ XfX(X)aX when §= 5

and by similar reasoning, OE [F<(8)] /08 = fe(e) [°2, X f*(X)dX when § = 3°.
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Similar calculations can be produced for the case (b) where identification is achieved through
the assumption that Y 1L X|37 X, although the formulae in this case are quite lengthy and are not

repeated here.

5.4 Standard Errors

Unlike the test statistic, the estimator 6 is asymptotically normal, and one can construct confi-
dence intervals using variations on the usual methods. In the example discussed in the previ-
ous section, there are some obvious estimates of the quantities (20) and (21) that appear in €.
For example, I'(e, z]6°) can be estimated by T'(e,z|0) = fe(e)n™' X" (X; — X)1{X; <z}, where
fe(e) = (nh) 127, K {(e — ¢;)/h} is a kernel density estimate based on the residuals e; = Y; — 7 X;
in which K is a scalar probability density function symmetric about zero with h = h(n) | 0 a scalar

bandwidth sequence. The covariance function w((ey, 1), (e, x2)) can be estimated by
D((er, 1), (e2,72)) = {Fg(er A ea) = Fi(en) Fe(ea)} {F¥ (1 A 2a) — Ff (1) F¥ ()}

where [ is computed using the residuals e;. Then compute Q= ﬁ_lj\ﬁ_l, where

H= [TOGI0) du(s) i T = [D(s0)T(0) S (s, t)ma(ls — thau(t)du(s) (22)

where the truncator function 7,,(r) eliminates contributions too far way from the diagonal, as in for
example Newey and West (1987). The integrals can be computed by numerical methods.

It is convenient to give a general method for computing standard errors when I' is hard to
calculate. In view of the approximate linearity of Ag(v|) in @ near 6°, we propose using the local
linear regression smoother [see Fan (1992) and Hérdle and Linton (1994)] to estimate I'(v]6°) which
seems preferable to the numerical derivative approach suggested in Sherman (1993) and Pakes and
Pollard (1989). Let {61,...,0,} be a grid of parameter values chosen in a neighbourhood of § and

let @(v,0) and B(v,) minimize
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Jj=1

i{An(UWj) —a—ﬂT(ej—Q)}QKc;ej), (23)

where K () is a kernel function and h = h(n) is a scalar bandwidth; then estimate I'(v|6°) by
L'(v]0) = B(v. ).

Note that the asymptotic variance of T'(v]0) is O((nh?t2)=1/2), while its bias is determined by the
smoothness of I': if this function is twice continuously differentiable, then the bias of I'(v|0) is O(h?).19
For pointwise consistency of f‘(v\g), we therefore require that A — 0 and nh?™ — oo as n — oo

These results can be extended to hold uniformly in v € R? and § € ©,,, see Andrews (1995) and

Masry (1996). In this general case, w(s,t) is the covariance of an empirical process

F.()—F() |
L), F()—G() (b2 | O E
H, () — ()
6.0 - a()

with the probability functions being defined on a general class of rectangles. The process n'/2 {F,(-) — F(:)}
has covariance function wr(s,t) = F(sMt)—F(s)F(t), where F(sMt) = Pr{V(U;0") € B(s) N B(t)};
this quantity can be estimated consistently by @p(s,t) = F,(s M t) — F,(s)F,(t), where F,(s N
t) =+1yr.1 {V(Ui; 0) € B(s)N %(t)}. Likewise for the marginal processes n'/? {L,(-) — L(-)},
nt2{G,(-) — G()}, and n*/2{H,(-) — H(-)} . The scaling factor [L(-), F(-),—G(:),—H(-)] can be
estimated by [Ly (), Fn(-), —Gn(-), —Hn(")] -

An alternative method for getting standard errors is to use the bootstrap as in Wellner and Zhan

(1996).

197 additional smoothness is present in ', then higher polynomials can be used in (23) and one can expect smaller

asymptotic bias.
20Note there is no restriction on m apart from the requirement that m > p + 1.
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6 Simulations

6.1 Testing

We evaluate the performance of our test in a binary choice model to test the conditional independence

restriction (4). Specifically, we take the following designs

D1 Y = 1(8X,+ B Xy > ¢),

D2 Y = 1(5X+ (Xy+ 100 Y3(X2 + X32) > o),
D3 Y = 1(5:X1+ foXo+ (X7 + X3) > ¢),

D4 Y = 1(BXi+ FaXs > (X2 4+ X)),

where in all cases ;1 = (B2 = 1, X = (Xj, X3) is bivariate standard normal, and ¢ is standard
normal independent of X.2! The first design satisfies the null hypothesis of conditional independence
of Y from X given the index Z = (31 X; + (52X5. The second is an order n~1/2 local alternative
to this hypothesis. The third and fourth designs represent global alternatives arising from location
and scale shifts, respectively. Note that conditioning on the index Z = ;X7 + (> X, implies that
Y (X1, Xa)| f1X1 + B2Xs reduces to testing Hy: Y 1L X4| 51 X7 + 52 Xo.

In order to implement the tests of index sufficiency we first need to estimate the index. There are
two estimators to consider; the probit estimator ﬁ p and the Klein-Spady semiparametrically efficient
estimate BKS. The implementation of the Klein-Spady estimator is perhaps problematic in that one
has to select bandwidth and trimming parameters for which there is very little theoretical guidance
as yet. Furthermore, this procedure is also quite time consuming for our purposes, since we have to
re-compute this quantity for each bootstrap sample. We could have therefore based our simulations

on Bp. This, however, leaves one open to the criticism that an estimate too efficient under the null

21 Additional simulations with (Y, X, Z) trivariate normal are reported in Linton and Gozalo (1995).
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is being used relative to BKS, the central semiparametric estimator here. To address all these issues,
we used the following first order approximation to ﬁKS. Consider the local alternative in which

PriY =1|X)=9 {ﬂOTX + n‘l/Qg(X)} for some function g(-). Let

—1

~ n ¢ (Xi—Xi) (Xi— X ! n Y — ®; — ¢;g; /nt/? _
Brs =B — n_lZ ( <I>Z-(1)—<¢i) ) {n_I; @i(l—i]bi)/n ¢i<Xi_Xi)}a

1

with (DZ = (I)(ﬂOTXi), ¢2 = ¢(ﬂOTXZ‘), Yl = E(XZ’/@OTXZ), g; = g(Xz) and gz = E(gZ’ﬁOTXZ)QQ Then,
under both D1 and D2,

nl/Q(BKS — BKS) = op(1).

In fact this result holds under the global alternatives D3 and D4, except that in those misspecified
cases BKS nor BKS will converge to (3°.

In the construction of the test we used zero width rectangles for the discrete variable Y, B(z) =
(—o0, z] for the continuous variable X, and B(z) = [z — 50/4, z — 750/4] for the index Z, where 75
denotes the estimated standard deviation of Z from one fix sample of size n = 50. Depending on the
location of the evaluation point z, the interval B (z) will contain different number of observations.
The interval width of B(z) was kept fix and independent of n throughout the simulations.

For each estimated index value ZZ = Ble,i + BQXQ,Z-, the dependence score A,, = L, F,, — G, H,
was evaluated at the m; sample points V; = (Y}, X;, Z;) for observations j whose Z; is in the interval
%(Z) This results in m = > ; m; evaluation points. For the sample sizes considered of n = 50,
n = 100, and n = 500, the average value of m; was approximately 7.5, 14.7 and 70.2, respectively,
resulting on m = 375, 1470, and 35100 evaluation points, respectively.?

We conducted 500 replications of the Cramér-von Mises and Kolmogorov-Smirnov type tests

under the null, and 100 under each alternative design. We used 100 bootstrap samples in each

ZNote that E(X;|Y 0 X;) =p ' Y0 X, forj=1,...,p,and EG L X2|>°F_  X;) = (p—1)+p ' (O, Xi)2.
23Given the large value of m using this procedure for n = 500, we decided to evaluated the test at only 10% of the

points in each interval (Z;). This cut m to a more manageable 3510 points on average.
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replication to calculate the critical values at significance levels o = 1%, 5%, 10%, and 20%. To
compute the bootstrap test, we used (14) to obtain the bootstrap observations X; with Z; and Z,
replaced by the estimated indexes Z; and Zj, Epanechnikov kernel K (-), and bandwidth h equal to
the distance from Z; to its k’th nearest neighbor. The values of k£ chosen were k = 5, 10, and 10 for
n = 50, 100, and 500, respectively. Similarly for Y;*. The bootstrap sample (Y*, X*), i =1,...,n,
was then used to obtain new parameter estimates B* with which we form a new set of index values
ZZ-*. Finally, (Y;*, X/, ZZ*), i=1,...,n,is used to compute the bootstrap tests CM* and KS,.

Our results using the Klein-Spady index estimate are given in Table 1.
kK TABLE 1,2 HERE ***

The Cramér-von Mises test appears to have good size, even in relatively small samples, while the
Kolmogorov-Smirnov test requires a larger sample size to achieve values close to the nominal values.
Both tests have power against the root-n local alternative design D2, and have power against the
global alternatives D3 and D4 of shifts in the location and the scale of the distribution of the error
term (particularly against D3). The Cramér-von Mises test has higher power against all alternatives
except for n = 50.

To evaluate the size/power loss due to having to estimate the index, we computed the two tests
with Z = 1 X1+ 32 X, assumed known. The results are given in Table 2. There is not much difference
in size performance between the two tests. The power has increased for all designs and sample sizes,

as expected, but particularly for the scale-shift design D4.

6.2 Estimation

We close with a small simulation study designed to illustrate the estimation procedure. We generated

data from

Y, = F(X;sin0 + Z; cos0) + o,¢;,
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where (g;, X;, Z;) were trivariate standard normal. The first two designs were homoskedastic, in fact
o; = 0.1, and: in design (E1) we took F' to be the identity, while in design (E2) F' is the normal
c.d.f. The third design (E3) has F the identity and o; = 0.1(X;sin + Z; cos6)?. We investigated
three estimation procedures: nonlinear least squares (nlls); the ”independence” estimator (ind) that
minimized the criterion (17) with weight function the empirical measure, i.e. p = F%¥; finally, the
”conditional independence” estimator (cind) that minimized (18) again with empirical weights. The
Nelder-Mead algorithm was used to find the minimum of each criterion function with respect to
which was throughout set equal to zero. The root mean squared errors for the estimates of sin 6 are

shown below based on 200 replications

*** TABLE 3 HERE***

In the homoskedastic designs, (E1) and (E2), the independence and conditional independence esti-
mators perform quite similarly, both exceeding the efficient estimator (in this case, nlls) by somewhat
less than 50% when n = 500. In the heteroskedastic design (E3), ind appears to be inconsistent,
while cind is actually more efficient than nlls. We next show the density functions of the ind and

cind estimators in the design E1 in comparison with a normal density.?*
**AFIGURES HERE***

There is some evidence of non-normality for the smaller sample sizes but by n = 200 both estimates
are pretty close to the normal shape.

It should be noted that the conditional independence criterion function is the same for all d.g.p.’s,
while the other two estimators take account of the special known structure of the mean through the
parametrically defined residuals. These latter estimators are therefore sensitive to the misspecifica-

tion of this parametric function, while the conditional independence estimator is not.

?AThe densities are computed using a Kernel density routine with Silverman’s rule of thumb bandwidth h. The
variables are standardised and the comparable normal density is N (0,1 + h?) reflecting the small sample smoothing

bias.
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7 Concluding Remarks

Our set up throughout has been with i.i.d. data suitable for microeconometric work and adopted
by the many papers we cited in the introduction. However, there is one important application of
our test statistic in time series: that of nonlinear Granger causality in which the null hypothesis of

non-causality from the time series X; to the series Y; might be expressed as
}/;5 1 (thlv s 7thq)‘ (}/t-fla s 7}/;5713)

for some fixed lags p and ¢, see Florens and Fougere (1996).2> A version of Theorem 1 can surely
be proved here with some considerable additional work, and the technology for calculating critical

values by bootstrap is in the process of being developed, see for example Hall and Horowitz (1996).

A Appendix

Let O,(c) = {0: \/n|0 —0°| < c}. Since Pr(©¢) can be made arbitrarily small, we can essentially
confine our attention to this neighborhood.
We begin by providing some background results concerning the process
b(0,0) = n V2 [L{V (U, 6) € B0)} —E{L(V(Us0) € B(0)}], 00,0 R
i=1
and the related process
v (6,u) = n V23 [L{V(UL,6) € B(V(1,6))} — E{L(V(U,,0) € BV (w,0))}], 8¢ O,,ueRe.
i=1
The same results hold for the corresponding empirical processes involving subvectors of V (U, ), but

for convenience we just state results for v, (0, v) and v/, (0, v). Define the pseudo-metric

25See Granger and Thomson (1987) for an alternative definition and Hiemstra and Jones (1994) for an application

to financial data.
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p((0.0). (¢'.0')) = E ([L{V(U,,0) € B(0)} ~1{V(U,.0/) € B(w')}]?).

on Oy x R% Likewise, define the pseudo-metric p/((0,u), (#’,u')) on Oy x R?. Under these metrics,
the parameter spaces I' x R? and I' x R? are totally bounded. In the sequel we shall just use the
generic notation p(-,-) for a metric.

By writing = 6° + yn~'/2 we shall make a reparameterization to v,(y,v) and v/, (7, u), where

v € I'(¢) C RP. We establish the following

sup ‘Vn(77 U) - Vn(ov U)’ = Op(l) (24)
~vel weRe
and
sup |1, (7, u) — v, (0, u)| = 0,(1). (25)
~vel,weRe

To prove (24) and (25) it is sufficient to show finite dimensional (fidi) convergence and stochastic
equicontinuity. The fidi result is immediate. To complete the proof of (24) and (25) we shall use the
following lemma, proved below, which states that these processes are stochastically equicontinuous

in # and v and 6 and u respectively. Recall definition (2.3) of Andrews (1994).

DEFINITION A process vy(-) is stochastically equicontinuous if for all € > 0 and n > 0, there

exists 6 > 0 such that

lim Pr| sup |v,(t1) — va(te)| >n| <e.
n—00 plt1,t2) <6

We have the following result.

LEMMA SE. Under the above assumptions, the processes vy (y,v) and v, (y,u) are stochastically

equICONEINUOUS.
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The proof of Lemma SE for v/}, (y,u) uses the following result

LemMMA C. If a stochastic process v,(t) is stochastically equicontinuous in t, and if t = g(-),
where g is a uniformly continuous function, then the reparameterized process v, (s) = vn(g(s)) is

stochastically equicontinuous in s.

PRrROOF. Let €, > 0 be given. Take 6 > 0 for which

lim Pr| sup |vn(t) —vu(ta)| >n| <e
n—oo p(t1,te)<é

By the definition of continuity: there exists ¢ > 0 such that

p(s1,82) < ¢ = plg(s1),9(s2)) <.

But this implies that

lim Pr| sup |v,(s1)—v.(s2)] >n| <e

el p(s1,82)<¢

which satisfies the definition of stochastic equicontinuity for the process v/ (+). |

ProOOF oF LEMMA SE. We first prove the stochastic equicontinuity of v, (v, v). Make a Taylor
series expansion of V (U;, 0) about V (U, 0°)

Ve 0%V -

P
Vo (U;, 6° V(Ui 0 + Y — (U, 0% —————(U;; 0) v,
E( 9 +7) é 9 ; 6 Y 7k + 21 aekaer( Y )7’?7

for some intermediate point #. Define the processes:

V1 (7, v) =n 1/ gn; (L{T(U3;6° +yn 1) € B(0)} = E{L(T(U;0° +yn 1) € B(v) }]

=1

Un2(7,v) = n 12 i [1 {V(Ui; 0° + 77171/2) € ‘B(v)} -1 {T(Ui; 0° + 77171/2) € %(U)H ,

=1
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where T' = (T, ..., Ty)" with T,(U;;0) = V,(U;,0°) + >F_, 89 (U, 0°) (0, — 0)), £=1,...,d, and the

deterministic centering term
M3 (7, v) = n'/2E [1 {V(UZ-, 0° +yn=?) € %(U)H —-FE [1 {T(UZ-, 0° +yn=1?%) € %(U)H :
Then,
Va(7,0) = Va1 (7, 0) + V2 (7, 0) = mins (7, 0).

Using the triangle inequality it suffices to establish that

(a) vp1(7,v) is stochastically equicontinuous
(b) vna(7y,v) is stochastically equicontinuous

(c) mps(7y,v) is equicontinuous.

Proof of (a) Our argument is very similar to that contained in Sherman (1993). We show that

the following class F is Euclidean for the envelope 1,
F= {f(-,T), rel de},

where for each U and 7,

d
A0 = T {V0)+ 3 S0 < vt e

=1 k

d

Hl{ U(90+269 U007k>1)g—ag}

=1 k

For each U, define
& oV,
g(U, v, 7, 301, 500, 323, 3214) = %1T+Z%2gvg—|—2%3g‘/g (U,6°% +ZZ%M80€(U, 0°)

=1 (=1k=1
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and
Gg= {g(-, C 301, 2, 73, 74) t 2 € R s € RY s € RY, 54 € ]de} )
The vector space of real-valued functions G is of dimension dp + 2d + 1. For each 7, we have
subgraph[f (-, 7)] = {(U,r): 0 <r < f(U,7)}
This can be written as the set of all (U, r) for which the following product is 1,
H 1 {w (U,60°) + Z

oV,
Hl{WUGO +Z ‘ U90 7]€>’Ug—ag}1{7“>1} 1{r>0}°

oV U90 7k<U£+b£}

which can be written as the set of all (U, r) for which the following is 1,

2d
[T11{9>0}1{gas1 > 1}°1{gars > 0}°

=1
for some choice of gy, ..., g2412 € G. Thus the subgraph of f(-, 7) is the intersection of 2d+2 sets each
of which belongs to a polynomial class [by Lemma 2.4 in Pakes and Pollard (1989), the class of sets of
the form {g > a} or {g > a} with g € G and a € Ris a VC class]. Therefore, {subgraph(f), f & F}
forms a VC class of sets. Finally, one can apply Lemma 2.12 in Pakes and Pollard (1989).

Proof of (b) For any 6 > 0, we can find an ¢ such that § > E [{Sllpee@ lagkgg (UZ,Q))} ] /€2,

Then, by the Bonferroni and Chebychev inequalities,

0%V,
00,00,

Pr [nl/Q max sup (U;,0)| > ¢

1<i<n 96@

< nPr|n Y2 sup
0co,

0%V,

25 0.0} '

e2

£ [,

IN

o
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for{=1,...,dand k,r = 1,...,p. Thus, we can restrict our attention to the process

n

Vns(m,v) = n V2D [U(T(U0) + 0 P € B(v) — E{U(T(U;;0) +n VP € B(v))}],

i=1

where 7 € Il a compact set, and the deterministic centering term
mpa(m,v) = 0 |[E{U(T(U;0) + 71 € B(v)) } — E{L(T(U;;6) € B(0))}] -

The process v,3(m,v) is stochastically equicontinuous by a modification of the argument given in (a).

The centering term is handled by Taylor expansion:

amnél

(a1, v1) = ma(my, v2)| - < sup | == (7, 0) [y — 7
T s
om A
+S7:,11})f) 8: (m,0)| v — vo

as |my — ma| + |v1 — vg| — 0.

Proof of (c¢). The same Taylor expansion method.

We now argue that the stochastic equicontinuity of v/,(v,u) is a consequence of the result for

(7, v) combined with the uniform continuity of V' (u, ). Define the new process

VN0, u) =n 2 Y [1{V(U;,0) € B(V(u,7)} — E{1(V(U;,0) € B(V(u,m))}],
i=1
where 0, € ©,,u € RY. Lemma C implies that v//(6,7,u) is stochastically equicontinuous. There-

fore, so is v/,(0, u).
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PrRooOr orF THEOREM 1.
(i) Write
12 N2 o
M= {40 = [{Adv@.0)0)} a0,
T =1

where P,(-) =n '3 1(U; < -) is the empirical measure of {U;}!" ,, and let

oM = [RVWa0aPw) oMy = [ AXVU.0)0)aPU)

CMy™* = n2> > h(U;,Uj).

=1 j=1

We have to establish the following results:

n(CM, — CM?*) % 0
n(OM; — CM*) 20
n(CM* — CM:*) L 0.

The result (i) then follows since

nC’Mf;** = Z)‘EXLE’
=1

by standard U-statistic theory, see Skaug and Tjgstheim (1993).
(27) We have for any 6,

[{A2vW.0)l0) - 22(v(©,0)[60)} dPWU) < 25up [Au(0]0)] sup |4, (v]6) -

vER4 vERE

+ sup |4, (v]6) — n(v\Q)IQ,

veERE

since P < 1. We show that
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n'/2 sup sup |A,(v]0) — A,(v]0)| —, 0 (30)

96@71 ’UERd

n'/% sup sup |A,(v|0)| = O,(1). (31)

9€®n 'UERd

Since Pr(0¢) can be made arbitrarily small, (27) will then follow. Firstly,

An(0]0) = An(v]0) = {Fu(0]0) = F(v)} {Ln(2|0) — L(2)} —
{Gu(y, 210) — G(y, 2)} {Hn(2, 2[0) — H(z,2)},

so that (30) will follow if

Yhsup |Gy, 210) — B [Gu(y. 2|0)]] — 4,0 n1/4811p|E[Gn(y7Z|9)]—G(%Z)I—>p0
Msup|Hy(w,210) = E [Ha(, 210)]] — 0
/4811p\F( 0) = E[E.(0]0)]] — »0 ; n1/4811p\E[Fn(v!9)]—F(v)!—>p0
Ysup|Ly(2]0) — E[La(210)]] — 4,0 ; n'*sup|E[Ly(2]0)] — L(z)| — 0.

i n'sup |E [Hy(x, 210)] = H(x,2)| =, 0

We show just the third line, since the argument is the same for the others. The first part is a
consequence of the stochastic equicontinuity result Lemma SE established above. Also, by the mean

value theorem, we have for some intermediate vector @,

nY*|E[F,(v|0)] — F(v)] = n'/* or

S (11)(6 = 6°)

F 1/2 0
a7 010) ng\n/ (6 —67)]

< n" 1/4 sup
On

— 0,

by assumption (A4).
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Secondly, (31) is a consequence of fidi and Lemma SE [see the un-named proposition given in

Andrews (1994, p2251)].

(28) This follows from the stochastic equicontinuity of the empirical process v, (7, v) and Taylor

expansion of the mean, see Andrews (1994). Write
0 = n'2Ag(u,6

by the mean value theorem, where 6* are intermediate between 6 and 6°. By the uniform continuity

of dAg(u,0) /00 near °, we can replace 0* by 0°. Then, writing
A0(“7 0) = An(uu ‘9) - {An(u7 0) - A0(“7 0)}

we obtain

o~ 0 n
nl/QAn(u’ 9) — nl/QAn(u’ 00) + %,ﬁ/l/Q (9 — 90>
1pl/2 {An(U, g) — No(u, 5)} —nl/? {An(u, 90) — Ap(u, 90)} )

We now invoke (25) and the triangle inequality to argue that the second line is o0,(1) uniformly in w.

Therefore,

CM;;*:/{%iC(Ui,V(U,GO)\GO)} dP(U) + o,(n"1).

The result follows by interchanging summation and integration.

(26) Follows from the fact that



and (27) and (28).

Proof of (ii). We have already shown that A, (v|f) can be approximated by A, (v|f) with error of

order smaller than n~'/2. Also use the argument given in (28).

PROOF OF THEOREM 2: This uses essentially the same arguments as in Pakes and Pollard (1989,

pl041); we just give an outline. Define the linear function
Ln(s]0) = A, (s]60°) +T(s]6°)(6 — 6°).

Asymptotically, A, (s|f) is approximately linear in 6, in the sense that minimizing ||A,(0)]| is equiv-

~1/2

alent to minimizing ||L,(6)||, up to order n~'/?. This latter minimization problem can be solved

explicitly to give

nV2(6% — 6°) = [ / FFT(S\QO)d/L(s)]_l JT16nH 220 (516°) ().

Since n'/2A,,(+|#°) obeys a functional CLT, the right hand side is asymptotically normal with the

stated mean and covariance matrix. n
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Design o (%)

Percentage Rejections of Null Hypothesis (Z = 3% 4 X))

Cramér-von Mises

Kolmogorov-Smirnov

n =250 n =100 n =500

n =250 n =100 n =500

D1

D2

D3

D4

20
10
3
1

20
10

20
10

20
10

TABLE 1. Size and Power with Estimated Conditioning Variable Z.

15.4
2.8
2.8
1.2

19.0
11.0
2.0
1.0

15.0
6.0
3.0
1.0

11.0
6.0
2.0
0.0

20.6
8.6
3.4
1.0

37.0
15.0
3.0
0.0

37.0
15.0
3.0
0.0

22.0
11.0
4.0
1.0

20.4
10.2
5.4
1.2

86.0
60.0
38.0
12.0

97.0
92.0
74.0
45.0

38.0
24.0
18.0

4.0

24.0
124
2.0
1.2

32.0
20.0
9.0
3.0

24.0
15.0
6.0
1.0

14.0
7.0
1.0
0.0

25.6
12.4
6.2
1.4

38.0
21.0
9.0
1.0

38.0
21.0
9.0
1.0

19.0
9.0
3.0
1.0

20.0
10.6
2.8
2.8

60.0
36.0
19.0

6.0

90.0
66.0
44.0
23.0

32.0
18.0
13.0

2.0



Design o (%)

Percentage Rejections of Null Hypothesis (Z = 7 X)

Cramér-von Mises

Kolmogorov-Smirnov

n =250 n =100 n =500

n =250 n =100 n =500

D1

D2

D3

D4

20
10
3
1

20
10

= Ot

20
10

= Ot

20
10

TABLE 2. Size and Power with Known Conditioning Variable Z.

18.4
7.8
3.8
0.4

20.0
8.0
3.0
1.0

20.0
9.0
3.0
0.0

14.0
8.0
3.0
0.0

19.6
11.0
5.4
1.0

51.0
22.0
9.0
2.0

01.0
22.0
9.0
2.0

33.0
21.0
8.0
2.0

20.2
10.2
3.2
0.8

94.0
80.0
52.0
18.0

100.0
100.0
97.0
82.0

99.0
37.0
28.0

9.0

23.2
11.6
5.8
1.4

26.0
13.0
4.0
2.0

28.0
18.0
8.0
2.0

20.0
8.0
2.0
1.0

21.6
11.0
6.2
1.4

40.0
20.0
11.0

3.0

40.0
20.0
11.0

3.0

30.0
11.0
4.0
2.0

20.4
10.2
5.4
1.8

61.0
41.0
23.0

8.0

92.0
76.0
63.0
31.0

42.0
26.0
17.0

4.0



TABLE 3

n=20 n=50 n=100 n=200 n=300 n=500

ind 04328 0.2415 0.1608 0.1048 0.0798  0.0588

El | cind 0.3744 0.2388 0.1632 0.1127 0.0827 0.0598
nlls  0.2326 0.1316 0.0955 0.0747 0.0572 0.0412
ind  ***% 0 (0.5739 0.4630 0.3065 0.2574 0.2073

E2 | cind ™ 0.5368 0.4763 0.3202 0.2433 0.1795
nlls ek 0.4526 0.3587  0.2326 0.1869  0.1439
ind R 0.5989  0.5706  0.5425  0.5645  0.5895

E3 | cind  *®  0.2556 0.1548 0.0898 0.0678 0.0525
nlls ik 0.2966  0.2415  0.1307  0.1097  0.0799

26Could not compute
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