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Abstract

This paper argues that trending time series can admit valid regression representations
even when the dependent variable and the regressors are statistically independent,
i.e. in situations that are presently characterized in the literature as “spurious re-
gressions”. Our theory is directed mainly at the two classic examples of regressions
of stochastic trends on time polynomials and regressions among independent ran-
dom walks. But it has more general applicability and, we think, wider implications.
Contrary to established wisdom, our theory justifies regressions of this type as valid
models for the data. The radical conclusion that emerges from this study is that
there are no spurious regressions for trending time series, just alternative valid rep-
resentations of the limiting dependent variable process in terms of other stochastic
processes and deterministic functions of time. We find statistical inference in such
cases to be valid, not spurious, a conclusion that is in direct contrast to universal
thinking about this subject since Yule (1926) first wrote about nonsense correlations.



1. Introduction

Spurious regressions, or nonsense correlations as they were originally called, have a
long history in statistics, dating back -at least to Yule (1926). Textbooks and the
literature of statistics and econometrics abound with interesting examples, many of
them quite humorous. One is the high correlation between the number of ordained
ministers and the rate of alcoholism in Britain in the nineteenth century. Another is
that of Yule (1926), reporting a correlation of 0.95 between the proportion of Church
of England marriages to all marriages and the mortality rate over the period 1866-
1911. Yet another is the econometric example of alchemy reported by Hendry (1980)
between the price level and cumulative rainfall in the UK. The latter ‘relation’ proved
resilient to many econometric diagnostic tests and was humourously advanced by its
author as a new ‘theory’ of inflation. With so many well known examples like these,
the pitfalls of regression and correlational studies are now common knowledge, even to
non-specialists. The situation is especially difficult in cases where the data is trending
- as indeed it is in both the examples above - because “third” factors that drive the
trends come into play in the behaviour of the regression, although these factors may
not be at all evident in the data. Moreover, as we have come to understand in recent
years (although the essence of the problem was evidently understood by Yule in his
original article) it is the commonality of trending mechanisms in data that often
leads to spurious regression relations. What makes the phenomenon dramatic is that
it occurs even when the data are otherwise independent.

In a prototypical spurious regression the fitted coeflicients are statistically signif-
icant when there is no ‘true relationship’ between the dependent variable and the
regressors. Using Monte Carlo simulations, Granger and Newbold (1974) showed
that this phenomenon occurs when independent random walks are regressed on one
another. Phillips (1986) gave an analytic theory of regressions of this type that in-
volve general stochastic trends, showing that the t- and F-ratio significance tests
have divergent asymptotic behaviour in such regressions. Therefore, such outcomes
are inevitable in large samples. Similar phenomena occur in regressions of stochastic
trends on determistic polynomial regressors, as shown in Durlauf and Phillips (1988).
The simple heuristic explanation for phenomena of this type is that conventional sta-
tistical tests do nothing more than reveal the presence of a trend in the dependent
variable by making the fitted coeflicients significant for all regressors that themselves
have trends. Thus, the commonality of trending mechanisms in data is the source of
these spurious regressions.

From a contrarian perspective, one can argue that such regression outcomes are
quite reasonable, given the shortcomings of the model specifications. For example, in
the regression of a stochastic trend on deterministic time polynomials, it seems quite
reasonable for conventional methods of statistical inference to signal that there is a
trend in the dependent variable by casting the deterministic trends as ‘significant’
regressors, even though the fitted coeflicients may be very small. Moreover, trends
are an overriding characteristic of most economic time series and, to the extent that
these trends are almost certainly imperfectly captured by empirical formulations,
such outcomes seem very likely to be inevitable in applied econometric research. In



this sense, trending mechanisms in regression can do good service as proxies for one
another in empirical specifications that have endemic shortcomings, and they may
not therefore deserve the pejorative connotation of a ‘spurious’ regression.

This paper puts forward a new perspective on spurious regressions that develops
this line of argument to some logical conclusions. We seek to explain why signifi-
cant regression coefficients occur in what seem to be manifestly incorrect regression
specifications that ‘spuriously’ relate variables that may be statistically independent.
The common theme, of course, is that all the variables share the common feature
of a trending mechanism, even though they may otherwise be unrelated and even
though the trending mechanisms themselves may be very different. We develop an
asymptotic theory to explain this phenomena. The radical conclusion that we reach
is that, in contrast to conventional wisdom, there are no spurious regressions for
trending time series. Our theory unmasks ‘spurious’ regressions as valid empirical
regressions that capture different mathematical representations of the limiting form
of the dependent process. A fascinating feature of this theory is that, just as we
may model a continuous function by Fourier series in terms of different orthonormal
system coordinates, so too may we validly model a trending process in various ways,
including the use of regressors that are independent of the time series being modelled.
The fact that the fitted regression coefficients are significant in such cases is shown
to be nothing other than the correct statistical manifestation of the existence of this
underlying model. Thus, we find inference in such cases to be valid and not spurious,
in direct contrast to universal thinking about this subject since Yule’s original work.

The starting point in the approach that we adopt is the general orthonormal
representation theory of a continuous stochastic process, and the theory that we use
here is outlined in Section 2 of the paper. Our theoretical development is primarily
focussed on stochastic trends and their associated Brownian motion limits, but many
of our results hold for other limiting stochastic processes (such as diffusions) that
are amenable to an orthonormal representation, and to deterministic functions of
time other than polynomials and trigonometric functions. Section 3 shows how the
orthonormal representation of a stochastic process is accurately reproduced by a
fitted regression, and is completely captured when the number of regressors grows
with the sample size. An illustration for the important case of the regression of an
integrated time series on a trigonometric polynomial is given in Section 4, and some
associated issues of efficient regression are studied in Section 5. Section 6 shows
that the Weierstrass approximation theorem can be extended to give a theory of
approximation of continuous functions by independent Wiener processes, gives some
illustrations, and applies the theory to the case of the classic ‘spurious’ regression
of independent random walks. Section 7 concludes the paper. Proofs are collected
together in Section 8 and notation is listed in Section 9.

2. Some Preliminary Representation Theory

We start by making use of the general representation theory of a stochastic process
in terms of an orthonormal system. Several forms are available, the most common of



which is the Loéve-Karhunen representation, which is given in lemma 2.1 below. This
result ensures that any random function that is continuous in quadratic mean has
a decomposition into a countable linear combination of orthogonal functions. The
representation is analogous to the Fourier series expansion of a continuous function.
Thus, suppose X (t) is a stochastic process that is continuous in quadratic mean on
the interval [0,1] and has covariance function (r,s). Let {¢x}3~, be a complete
orthonormal system in Ly[0, 1], and let Ax be the eigenvalues of 4(r, s) corresponding
to the functions ¢y, i.e. Agpi(r) = fol v(r, s)¢x(s)ds. Mercer’s theorem (e.g. Shorack
and Wellner, 1986, p 208) ensures that the covariance function can be decomposed
as

¥(r,8) =3 Meer(r)ea(s), (1)
k=1

where the series converges absolutely and uniformly on [0, 1]2. The corresponding de-
composition for the stochastic process X () is most often called the Lo¢ve-Karhunen
expansion, although the stationary Gaussian case is sometimes attributed to Kac and
Siegert (1947). The following statement of the expansion is given in Logve (1963, p.
478):

2.1 LEMMA: A random function X (t) that is continuous on the interval [0, 1] has on
this interval the orthogonal expansion

X(t) = 3 Vower(r)tn, 2)
k=1

1
E(&:£;) = b5, /0 i(5)@;(s)ds = &,

iff the Ax are the eigenvalues and the ;. are the orthonormalized eigenfunctions of its
autocovariance function (r, s). The series (2) converges in quadratic mean uniformly
on [0,1]. The orthogonal random quantities £, that appear in (2) can be represented

in the form §; = )\;1/2 j;,]:z:(s)cpk(s)ds. The 6x; above is Kronecker’s delta.

Just as Fourier series of continuous functions do not always converge pointwise
(but do converge in mean), the representation (2) of the stochastic process X(t)
converges in quadratic mean but not necessarily pointwise. For this reason, the
equivalence in (2) is sometimes represented by the symbol “~”, signifying that the
series is convergent in the Lo sense and that distributional equivalence applies.

There are many different representations of standard Brownian motion that orig-
inate in the general form (1). The one we will work with is most easily developed
as follows. Suppose W(r) is a standard Brownian motion on [0,1], and V(r) =
W (r) — rW(1) is the corresponding Brownian bridge process. The covariance func-
tion of V(r) is 7(r,s) = r A s — rs, which can be decomposed as in (1) above with
eigenfunctions given by the orthonormal system {/2sin(k7r)}$ ; and corresponding
eigenvalues Ay = (km)~2 - e.g. Shorack and Wellner (1986, pp. 213-214). This leads



to the following Ly -representation of V(r) :
o— sin(knr) . ! sin(kns)
Vir)= ﬁ; Tfk, with & = \&L TV(s)ds. (3)

The components & in this decomposition are independently and indentically distrib-
uted (iid) as N(0,1), as can be verified by direct calculation. The representation (3)
gives rise to a corresponding expansion for the Brownian motion W (r), viz.

W(r)=r& + \/52 ‘Sin(%t)‘fk’ (4)
k=1

with
1 ..
=W,  &=v2[ ZE ) - sw)as

The series (4) is known to converge almost surely and uniformly for r € [0,1] - e.g.
Hida(1980, pp. 73, Remark 2), and Brieman (1992, p. 261), where the series are
defined over the intervals [0, 27], and [0, 7]. The latter series may be obtained from
(4) by means of a simple time dilation using r = z/7.

The representation (4) is one of many. For instance, we may replace the orthonor-
mal system of trigonometric functions {v/2sin(knr) 2>; by an orthonormal system
of polynomials in r with its associated eigenvalues to produce alternative polynomial
representations of V() and W(r). Another popular representation of W(r) is in terms
of Schauder functions (orthogonal tent functions) and here again the convergence is
uniform in r € [0, 1] almost surely - see Karatzas and Shreve (1991, lemma 3.1, p.
57).

3. Reproduction of the Orthogonal Representation by
‘Spurious’ Regression

The existence of expansions like (3) and (4) indicates that continuous processes such
as Brownian motion can be represented and, indeed, generated by deterministic func-
tions of time with random coefficients. To the extent that standardised discrete time
series with a unit root converge weakly to Brownian motion processes, we infer that
deterministic functions of the same type may be used to model such time series.
This brings us to the study of prototypical ‘spurious’ regressions in which unit root
nonstationary time series are regressed on deterministic functions - see Durlauf and
Phillips (1988).

In particular, we are concerned to ask the following question. Consider the time
series Yy = Zju,s, where u; is a stationary time series with zero mean and finite
absolute moments to order p > 2. What are the properties of a regression of the form

K
-~ t -
Y= I;bwk(;) + Uy (5)

4



or, equivalently (with @z = n~/2by),

K ~
Ye _ ¢ Ug
A E el -t 6
\/ﬁ P ak‘pk(n) + \/ﬁ ( )
when the limiting behaviour of the dependent variable is a Brownian motion, i.e.

Yin] - 2

A WP V=

1 = B() = BM(o?), ™)

and the regressors ¢, form a complete orthonormal system in Ly[0,1]? All empirical
applications of interest (including polynomial trends, trend breaks and sinusoidal
trends) will be covered if we confine ourselves to orthonormal systems of piecewise
continuous and differentiable functions ¢;.

In view of (2) and (7), we may very well expect that the regressors in (6) take
on the role of the deterministic functions in the orthonormal representation of the
limiting Brownian motion B(:). Perhaps, we can even go further than this. If K — oo
as n — 00, could (6) succeed in reproducing the entire Ly orthonormal representation
of B(-)? We now proceed to examine whether these heuristic notions can be made
more precise.

Let @x = (@x) be the coefficients and ¢x = (¢;) be the K—vector of regressors
in (6). Let cx € R¥ be any vector with cycx =1, te ax be the usual least squares
regression t-ratio for the linear combination of coefficients cjax, and let R? and
DW be the regression coeflicient of determination and Durbin Watson statistics,
respectively. The following two theorems give the asymptotic properties of these
statistics when K is fixed and when K — o0.

3.1 THEOREM: For fizred K, as n — oo we have:
() cheix = i [Jfo wxB] £ N (0,6 fo fo xclr) (r A s) () dsdrexc) = N(O, cicArcec),
(b) n? T, @2 = [y BL,,
(© 02z = & [fo excB]/ (fo ng)l/ g
(d) R?=1- [yBZ / [} B2, DW o,
where By, (1) =B (-)— (fol Bcp’K) (f;,l PrPx - ¢k () is the Ly -projection residual

of B on ¢k, Ak = diag(A1,..., k), and A is the eigenvalue of the covariance
function r A s corresponding to py.

3.2 REMARKS:

(a) Theorem 3.1 (a) shows that the fitted coefficients in the regression (6) tend
to random variables in the limit as n — co. Moreover, the random limits are



(d)

equivalent in distribution to the corresponding random elements in the Loé&ve-
Karhunen representation of the limit process B(-). Thus, far from being a
spurious regression, (6) reproduces accurately in the limit the appropriate el-
ements in the orthogonal representation of the limiting form of the dependent
variable process. In this sense, we can interpret (6) as a partial but nonetheless
correctly specified empirical version of an orthogonal representation of Brown-
ian motion. We use the word ‘partial’ here because (6) has only K regressors,

le pg = ((,pj);{zl. The model is correctly specified because the regressors that

are omitted from (6), viz. ¢, = (50K+j)]°;1 , are all orthogonal to the included
variables. Hence, (6) is indeed well suited to least squares regression. All of
the above holds in spite of the fact that the Durbin Watson statistic DW %0,
indicating that the residuals in the fitted model are serially dependent. Thus,
conventional wisdom that the regression model (5) is spurious and that the low
DW statistic signals that inference is hazardous is inappropriate here.

Part (c) of theorem 3.1 shows that the fitted coeflicients are statistically sig-
nificant with probability that goes to one as n — oo. Here, the t- ratios of the
regression coefficients in (6) diverge at the rate Op(n!/2). The coefficients in
(6) are not spuriously significant. The significant t-ratios correctly indicate the
presence of the orthonormal representation

B(r) = > VApu(r),  where & = iidN(0,1)
k=1
= > w(r)m,  where n;, = iidN(0, \y). 8)
k=1

In effect, the fitted regression (6) is an empirical model for (8). Setting nx =
(7:)5, we have

dxax = N(0,cxAkck) = kTk- 9)

The significant t-ratios signal that the regressors play an important role in
representing the dependent variable - or its limiting version, the stochastic
process B(r).

An important feature of the true model (8) is that the coeflicients 7, are ran-
dom variables, whereas the variables ¢, (r) are deterministic. The empirical
regression (6) correctly reproduces this feature of the true model as n — oo, as
is clear from (9).

With some changes in notation, theorem 3.1 holds if the limiting behaviour of
the dependent variable is a general continuous stochastic process X (r) rather
than Brownian motion. Suppose that for some a > 0, n™ %y, ; = X (), a con-
tinuous stochastic process on [0, 1] with continuous covariance function ~(r, s).



Instead of (6), we run the empirical regression
Y K t u
t ~ i Yt
e l?_lakspk(n) T

Then, in place of (a), (b) and (c) of theorem 3.1, we have the following limiting
behaviour:

(i)
dedx = dy [ /0 l(pKX].l.N(o,dK [ f /0 l(pK(r)'y(r,s)<pK(s)'] chsdr)
= N(O,dAxck),
(i)

n 1
-(1+2 2 2
n~(1+20) E ug =>/ Xowr
t=1 0

where X, ()= X ()~ (J3 Xé) (J3 ox#) o (), and

)
1/2 ! - v
nY/ toax = Ck [/(; cpKX] / </0 Xw{) .

Thus, the empirical regression asymptotics correctly reproduce the form of the
random coefficients in the general Loéve-Karhunen representation of X(-) given by
(2) and correctly signal their significance. These results apply, for example, to the
linear diffusion process X(r) = [; e("~*)°dW(s) for some constant c, and thereby
(1)-(iii) cover the important case of near integrated time series y; (i.e. time series
with a root, 1 4+ ¢/n, that is near to unity) for which we have n‘1/2y[n_] = X(:).

3.3 THEOREM: As K — 00, dyAkck tends to a positive constant o2 = ¢ Ac, where
¢ = (ck), A = diag(A1,)2,...) and de = 1. Moreover, if K — oo and K/n — 0 as
n — 00, we have:

(a) dxax = N(0,02);
(b) n_2 ZZ:I 17? '2’ 0,
(c) n7V/ *ty 5 diverges,

(@) R? 51,

3.4 REMARKS:



(a) Part (a) of theorem 3.3 gives the limiting distribution of the coefficients as both
K and n — o0. In this case, cx becomes infinite dimensional and i@k becomes
an ly inner product. As in the finite dimensional case, ¢, ax converges weakly
to a random variable, but in place of (9) we now have

cxax = N(0,c Ac) L n,

and the limit distribution is the same as that of the variate ¢'n = X$°¢xn; from
the orthonormal representation (8).

(b) Part (c) of theorem 3.3 shows that the t-ratio %, ; diverges as both K and
n — o00. As in the fixed K regressor case, all of the fitted coefficients are
statistically significant as n — o0o. However, the rate of divergence of the t-ratio
is greater in the case where K — oo than it is when K is fixed. In other words,
the regression coeflicients become more significant, not less significant, with the
addition of regressors as n — oo. This is explained by the fact that the residual
variance in the regression (6) tends in probability to zero when both K and
n — 09, i.e. there is no residual variance from this regression in the limit, as
indicated in Part (b) of the theorem. In effect, as K,n — oo, the regression (6)
succeeds in reproducing the entire Loéve-Karhunen representation of the limit
process B (-) and thereby fully represents the dependent variable in the limit.
The fact that the empirical regression fully captures the series representation
in the limit is confirmed by the limiting regression R? of unity.

(c) As in Remark 3.2 (d), theorem 3.3 can be extended to apply to more general
stochastic processes than Brownian motion. But our proof of theorem 3.3 relies
on the use of an extended probability space in which a strong invariance prin-
ciple applies. Hence, the proof that we have given applies only in cases where
such a result is valid.

4. A Brownian Motion Illustration

As an illustration, we will take an empirical regression that reproduces the explicit
Brownian motion expansion given above in (4) . This example is of additional interest
because, as we discuss below, the deterministic functions that appear in (4) are not
linearly independent. The complication of this example and the importance of the
representation (4) make an extended discussion worthwhile.

We start with the following empirical regression

UYe =30t+ZZkT + U, (10)

where y¢ = Ziu, and u¢ = 4dN(0, 1). Rewrite the fitted equation (10) in the following
form with a normalization corresponding to (6), viz.

K 7T . krt —~ ~
Yt t b V2sin [—n] U o 1 T
Vo +kz_1 Jn ko T T Ueex(Q) o sy (1)



where 3’Kn = [ﬁzo, n Y%y, .. 0V fb}] and the regressor functions are defined by

( ),__ , V2sinnr V2sin Knr
gg\T) = ) = 3 eeey Knr .

It is convenient to write the Wiener process representation (4) in the form W(r) =
9x€k + i€k +r Where

| V2sin(K + 1)rr +/2sin(K + 2)nr
ue) =\ R T T ®+or |

and &, = [5 K+1, K425 ] . The limit distribution of the fitted coefficients and their
t-ratios in (11) are given as follows.

4.1 THEOREM: For fired K as n — o0

1 -1 1
e = [[on] [ 0]
0

1 -1 1
= N(0,Ig4+1)+ [/0 gK.‘J’K] [/0 gKgIK+] Ja (12)
= N (0, I+ hKeKe'K) s (13)

where W is standard Brownian motion,
1 2&117 (2 2&
hi = ['3' _}5;«:1@} {56_??&:1 F] ’

and ex = [1,—v2,v2,—v2,....,(-1)X/2] is a (K +1) —vector. Let cx € RX be
any vector with dy.cx = 1. Let ¢, o be the t-ratio for the fitted linear combination
K%Kn

dKZKn in (11). For fized K as n — o0

-~

(8)  ibin= N (0,1+hx (ckex)?)
©) oy = e fonok] (1 oxw] [(RWa) e [ ook Tex]

-1
where Wy, (-) =W (-)— (fol Wg’K) (fol gKg}{) gk (-) is the La -projection residual
of W on gk,
4.2 LEMMA: limg_, o Khg = %.
It follows that for Iarge K, hk ~ 1/6K, and (13) is approximately N (0, Ix+; + (1/6K) exey) -

Then, individual elements of the fitted coefficient vector by, are approximately
N (0,1) variates when K is large. When K = 0, there is only one regressor in

9



(10), hg = 1/5, and (13) is simply N (0,6/5), an outcome that is readily confirmed
by calculating the limit

b= [ (][ [ =0

directly - see Durlauf and Phillips (1988) for this special case. In general for K > 0,
the limiting variance of the first element of b, (ie. V/nbo) is o2x = 1+ hg, and

the variances of subsequent elements of bxn (viz. n~Y/2b, k > 0) are all given by
0’% K= 1+ 2hgk.

Figure 1: Limiting Variance U%K
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Fig. 1 graphs o2} as a function of K, showing the approach to unity as the number
of regressors K in (10) becomes large. It follows that, for finite K, the empirical re-
gression (10) only approximately reproduces the Wiener process representation given
by (4). In particular, the random coefficients all have variances that are too large,
ie. 02 =1+ hg, and a;‘:K = 1+ 2hg for k > 0. Moreover, in view of the form of
the multivariate limit (13), there are linear combinations of the coefficients for which
the variances are too large relative to the iidN(0, 1) elements in the Wiener process

representation even as K — oo. For example, let ex = ex/ (€€ K)l/ 2 Then

eicbrn = N (0,14 hxeyer) = N(0,1+ hx (1+2K)) = N (0,%) . (14)

as K — oo. Thus, in a certain sense, ordinary least squares regression on (10) is
inadequate and does not fully reproduce the Wiener process representation even
when K — 00. The remainder of this section studies this phenomenon.

10



One way of explaining the inadequacy of the least squares regression (10) is in
terms of asymptotic collinearity in the regressors. The functions {v/2sin(k7r)}$2,
constitute a complete orthonormal system for Ly[0, 1], and so the function in the first
element of gk, viz. go(r) = 7, can itself be expanded in terms of {v/2sin(kmr)}$2 ;.
In particular, we have the following pointwise convergent Fourier sine series repre-
sentation for go(r) = r over the interval [0,1) (e.g. Tolstov, 1976, pp. 27-28)

:a

_2¢ k
fud Z -18in 7rr, for0<r<1. (15)
=1

Thus, the regressors in the fitted equation (11) become collinear in the limit as K —
o0. This collinearity is formalized and shown to have some non-trivial consequences
for the regression (11) in the following results.

4.3 LEMMA: As K — o0, €y [fol gKg’K] ex — 0, and the infinite matriz [fol gKg’K]K
is positive semi-definite rather than positive definite.

4.4 THEOREM: Lel ex = ek/ (e'KeK)llz, and my = [my,0] be sequences of (K +

1)— vectors for which my has only a finite number of nonzero elements given in the
L-vector mp and mymy = 1. Let t, b be the usual least squares regression t-ratio
K9Kn

for the estimated linear combination dKEKn. If K — o0 and K/n — 0 as n — o0,
then

(a) €ybxn = N(0,4/3).
(b) mlbxn = N(0,1).

-1/24 -1/24 . ;
(c) n tES'(bKn’n tm’Kbxn diverge.

4.5 REMARKS:

(a) Theorem 4.4 shows that there are linear combinations of the coefficients in the
fitted regression (11)whose variances are larger than those of the Wiener process
representation in the realistic situation where the number of regressors K — oo
as n — o0o. This confirms the sequential (n — oo, then K — 00) asymptotics
given in (14) . However, these linear combinations must be infinite and involve
all the regressors. As is apparent from Part (b) of the theorem, any finite linear
combination of the coeflicients has limiting variance that is the same as the
coefficients in the Wiener representation.

(b) Lemma 4.3 reveals that the vector ek is in the null space of the matrix fol 9Kk
as K — oo. This is the direction where we can expect the regressors to be least
informative, as this is the only source of the collinearity in the regressors. (As
shown above in (15), it arises from the dependence of go(r) = 7 on the sine
series). The effect of the collinearity is to increase the varlance of the fitted
coefficients. The linear combination s’Kb Kn has limiting vanance . Other linear

11



combinations like dKZKn, where cj.cx = 1, have a limiting variance as n — oo
that is given by 1 + %c’KeK < %, with equality occuring when cx = Aeg and

A = =£1. Thus, the greatest increment in the variance of the random coefficients
over that of the true Wiener representation is 33%%.

(c) An interesting aspect of the inefficiency is that individual coefficients in the
fitted regression are all independent N(0, 1), yet some linear combinations have
variance greater than unity. To be precise, the matrix normal distribution
N (0,Ix4+1 + hxekely) generates individual component 1idN(0,1) variates as
K — 00, but all linear combinations of the components except those that are
othogonal to ex = ex/ (e’KeK)l/ 2 have variance that is greater than unity as
K — oo. This example shows that, in infinite matrix normal distributions,
it is possible to have #d/N(0,1) components and still have dependence in the
elements that produces a variance higher than unity for some infinite linear
combinations of the elements.

(d) As shown in the proof of theorem 4.4, the residual variance n~257a2 5 0,
as K — oo and n — oo. Hence, the regression t-ratio statistics diverge as
n — 00, and do so at a faster rate than they do when K is fixed (i.e faster than
O (n1/?), cf. Part (b) of theorem 4.1). In other words, when K is fixed and
when K — o0, significance tests in the empirical regression (11) correctly signal
the validity of the representation Wiener process in terms of the sine series (4) .

Figure 2: Densities of \/ﬁgo and e bgp for K =75, n = 200
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4.6 SIMULATIONS:
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We ran 30,000 simulations of the fitted model (11) with K = 75 and n = 200.
Fig. 2 shows the sampling distributions of the first coeficient, \/— bo, and the linear
combination €} bkn against the N (0,1) and N (0,%) limit distributions. Clearly,
the sampling distribution of KbKn has greater dispersion than that of fnbo, as the
limit theory predicts. In both cases, the limit theory given in theorem 4.4 gives a
reasonable approximation, but is better for the individual coefficient than it is for
the linear combination e’KZK,..

Figure 3: Densities of t-ratio of \/ﬁ'l;o
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Fig. 3 shows the sampling densities of the t-ratio of \/1750 for the parameter
settings (K = 25;n = 50,100, 150) . The substantial dispersion of these distributions
and the divergence of the t-ratio statistic are evident in these simulation densities as
n increases.

5. Efficient Regression and a Differential form of the
Wiener Process Representation

In the previous section we used the collinearity of the regressors in (11) to explain
the shortcomings of the fitted regression in fully reproducing the properties of the
Wiener process representation. Note that the linear dependence of the functions in
(4) applies only over the half open interval [0, 1) because the Fourier series for r does
not converge at v = 1. Thus, the linear term in (4) is not superfluous. Indeed, if we
use (15) in (4) we get the alternative representation

W(r)={ V2Y 5, Mnk’ 0<r<1

r=1

13



where 7, = & + (-1)*v/2¢, = N(0,3), and E (&) = (—1)* /2. Note that in
this representation, the variance of the random coefficients increases to 3, and the
coefficients are correlated. The random coefficient &, is needed to capture the value
of the process W(r) at its end point r = 1.

Another way of thinking about the regression (10), or (11) is that it is asymp-
totically statistically inefficient. To address the inefliciency, we could perform a gen-
eralized least squares regression, or equivalently transform the variables so that the
regression is efficient. The dependent variable in (10) is the partial sum process
y¢ = Xju;, and u; is a stationary time series. If the spectrum of u; is continous
we would expect, by the Grenander-Rosenblatt theorem (e.g. Grenander and Rosen-
blatt, 1957, p. 244), to get asymptotically efficient estimates from a regression of the
time series u; on appropriately transformed regressors. We pursue this intuition in
what follows.

Transforming the variables in (10) by differencing, we get the new dependent
variable Ay; = u; and new regressors, comprised of an intercept and the cosine
functions

sin -’%’—t - sink—”(:%l-2 ~ (cos k"t) Er cos Kt

no_ n =
— o —2 k=12, (16)

As in (10), we consider the fitted regression
=~ &r V2cos knt
Dye=bo+ ) by—— "+ (17)

which we write in following standardized form that corresponds to (11) in differenced
form

Ayt B cos i 5 Cx(E Uy
\/"" + E —= \/tﬁ = b’Kn__Tgﬂ.)_ + 7% (18)
Where £\’ mt 2t Kt
Cx (-) = [1,\/§cos—,\/§cos——,..., 200s——-—],
n n n n
and

]

Then we have

5.1 THEOREM:

(a)  For fized K as n — oo, byn = [fol Cx () Cx (r)’]_l [fol Ck () dW(r)] =
N(©0,Ix+1).

(b)  The infinite matriz [ T (r) Cx (r)']K = diag[1,1,..].

14



(c) When K — oo and K/n— 0 as n— oo, dKZK,, = N (0,1) for any sequence
cx € RE for which dyck = 1.

5.2 REMARKS:

(a) Theorem 5.1 shows that the fitted coefficients in the regression model (18) are
asymptotically N (0, Ix41) when the number of regressors is fixed, and that
linear combinations of unit length of the coefficients are all N (0,1) even when
K — o0 as n — o0. Thus, the regression (18) reproduces accurately the Wiener
process representation (4) in the following differential format

dW(r) = dréy + \/QZ cos(kmr)dré,. (19)
k=1

Of course, the series (19) is purely formal and it should be interpreted as a way
of writing

W(r + k) — W(r) =

he, + ‘/iz sinkw (r +h) — sink';rrsk]

kr
k=1

for h > 0. Nevertheless, it is of some independent interest outside of the present
context. In particular, let (19) hold over the two sided interval [—1, 1], and let
n be an arbitrary positive integer. Evaluating the following integral formally
term by term we get

1 /1 e~ AW (r) = 1 /1 e~ T | &y + \/Qicos(k'irr){ dr =¢
\/5 -1 - \/§ -1 0 k=1 * o

that is x
b= [ ez,
-
where Z(A) = W(A/2r) is a process with independent increments and vari-
ance E (dZ(\)?) = d\/2n. Hence, (19) is the formal inverse of the Cramér
representation of the :2dN(0, 1) process &,,.

(b) The reason why (18) is successful in reproducing the correct Wiener process
representation is that the regressor functions {1, V2 cos 7, /2 cos 2, } in
(18) form a complete orthonormal system for Ls[0,1], and so there are no re-
dundant regressors in the fitted regression. In effect, the differential form (19)
of the Wiener process is better suited to least squares regression. Similar com-
ments will apply to empirical reproductions in terms of deterministic functions
of other stochastic processes. However, in every case the most appropriate
transformation of the representation will be supplied by the mapping that cor-
responds to the use of generalised least squares. More will be said of this in
later work.

15



(c) Since the regressors form a complete orthonormal set, the infinite matrix

[ extrcxey] = diosni.d

is positive definite. Thus, the regression (18) encounters none of the difficulties
of (11).

(d) Interestingly, (18) and theorem 5.1 show that the best way to reproduce the
form of a limiting stochastic trend in terms of its deterministic function rep-
resentation is to do the regression using the stationary differenced components
of the time series rather than run the regression in levels. This is because re-
gressions of stationary time series on deterministic functions is asymptotically
efficient (by the Grenander-Rosenblatt theory), whereas the same is not true of
regressions involving stochastic trends - see Phillips and Lee (1997) for further
discussion and illustrations of this point.

6. Wiener Process Approximation Theory

The above analysis uses series of deterministic functions with random coefficients to
represent stochastic processes like Brownian motion. It is of some interest to ask if
the reverse is possible, viz. can we represent an arbitrary deterministic function on a
certain interval in terms of stochastic processes? To deal with this question we will
take a slightly different approach and try to approximate an arbitrary continuous
function on the [0, 1] interval in terms of independent Brownian motion processes.
The idea is analogous to that of the uniform approximation of a continuous function
by polynomials or trigonometric functions. The following shows that there is, in fact,
a Wiener process version of the famous Weierstrass approximation theorem.

6.1 THEOREM: Let f(-) be any continuous function on the interval [0,1], and let
e > 0 be arbitrarily small. Then we can find a sequence of independent standard
Brownian motions {W;}X. 1» and a sequence of random variables {d;}Y , such that
as N — o0,

(8)  sup,cy 'f(r) - 2?;1 diWi(")I <€ as.
(b) fol [f(r) - N &W; (r)]er <e as..

6.2 REMARKS:

(a) The Weierstrass approximation theorem tells us that any continuous function
f(r) can be uniformly approximated on the interval [0,1] by a trigonometric
polynomial of the form

K
a0+ Y (axsin(kr) + By cos(kr)) . (20)
k=1
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In this series approximation, the coefficients {ax, 8x} are non random and the
functions are deterministic continuous functions. In an analogous way, Part (a)
of theorem 6.1 shows that we can find a set of N independent Wiener processes
on C[0,1] and a sequence of N random variables such that, with probability one
as N — oo, the function f(r) can be uniformly approximated on the interval
[0,1] by the linear combination YV | d;W; (r) of Wiener processes.

Part (b) of theorem 6.1 is sufficient to ensure that the system of Wiener
processes {W;}2, is complete in Ls [0, 1] with probability one (e.g. see Tol-
stov, 1976, p.58). It follows that, given any continuous function f(r), we can
find a sequence {W; (r),d;}2, such that with probability one

1 N 2
i A ;[f (r) - ;diWi (r)] dr =0, (21)
and thus .
fr)~ ;mm- ()

in Ly. We may replace the Wiener processes W; (r) by orthogonal functions
Vi(r) in Ly [0,1] using the Gram-Schmidt process, i.e.

i=W, )
V=W~ (fo W) (i V) va

Vi=Wo— (fWaVa) (lv2) Ve Vi=[WVi
etc.

In place of (21), we then have

1 N 2
lim [ fr)=> eVi(r)| dr=
=1

N-oo Jg

with probability one. By virtue of the orthogonality of the functions {V; ()}
in Ly [0,1], we get the following stochastic Fourier representation in Lg

o~ Soavi, wames () ([v)7, e

=1

and, with probability one, we have Parseval’s equality

Fr-ga(f),

holding, but now with random coefficients.
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(c) We can apply the approximation theory of theorem 6.1 to the sample path of an

arbitrary Brownian motion B(-) on the interval [0, 1]. Since the sample path of
B is continuous, we can find a probability space such that theorem 6.1 applies
and then we have B(r) ~ 32, d;W; (r) in the L [0, 1] sense. We formalise this
as follows.

6.3 THEOREM: Let B (-) be a Brownian motion on the interval [0,1], and let € >0
be arbitrarily small. Then we can find a sequence of independent standard Broun-
ian motions {W,-}f;l, and a sequence of random variables {d,-}f;l defined on an
augmented probability space (Q, F, P) such that, as N — o0,

(8)  suppepoy |BO) - DL, dWi(r)| <& as. (P)

(b)
(c)

Jo [B(T') -¥N AW (T‘)]2 dr<e a.s. (P)

B(r) ~ Y2, d;W;(r) in Ly[0,1] a.s. (P)

6.4 REMARKS:

(a)

(b)

Part (c) of theorem 6.3 shows that an arbitrary Brownian motion B(-) has an
Ly representation in terms of independent standard Brownian motions with
random coeflicients. As is clear from the proof of this theorem, the coefficients
d; are statistically dependent on B(-).

Part (c) of theorem 6.3 also gives us a model for the classic ‘spurious’ regression
of independent random walks. In this model, the role of the regressors and
the coefficients becomes reversed. The coefficients d; are random and they
are co-dependent with the dependent variable B(r). The variables W; (r) are
functions that take the form of Brownian motion sample paths, and these paths
are independent of the dependent variable, just like the fixed coefficients in a
conventional linear regression model. Thus, instead of a spurious relationship,
we have a mode] that serves as a representation of one Brownian motion in
terms of a collection of other independent Brownian motions. The coefficients
in this model provide the connective tissue that relates these random functions.

Let us now replace {W; (r)} by the orthogonal system {V; (r)} defined in (22).
Then, in place of Part (c) we have, as in (23),

B(r) ~ j;e,-v,- (r), withe; = (/OIBVi) ([)1 v;2>_1. (24)

When we run an empirical regression of one random walk on a set of independent
random walks, we reproduce a finite sample version of the model given in Part
(c) of theorem 6.3. Or, equivalently, if we transform the regressors so that they
are othogonal, then we reproduce a finite sample version of the representation
(24).
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Figure 4: Fourier series fi(r) : 3 terms

10

6.5 EXAMPLE:

As an illustration, consider the quadratic function fi(r) = r2, for -7 < r < m,
combined with its periodic extension outside this interval. The Fourier series for this
function is (c.f. Tolstov, 1973, pp. 24-25)

-2 ﬁ 4 { cosr cos?r+oos3r
3 C —————22 57 T )

and this series converges to f(r) = 72 in the interval [~ n] and to its periodic
extension outside of this interval.

The function together with four terms of its Fourier series is shown in Fig. 4.
Fig. 5 shows the same function with its approximation in terms of N independent
Wiener processes with N = 150. The coefficients in the approximation are calculated
using least squares regression of f1(r) on 1,000 observations generated from 125
independent random walks. With this number of terms, the Wiener process series
captures the shape of the periodic quadratic function f; quite well.

6.6 EXAMPLE:
Next, consider the function
cost for 0<r<2
fo(r)=< 0 for 2<r<6
cosl for 6<r<8

combined with its periodic extension outside this interval. The Fourier series for this
function is (c.f. Tolstov, 1973, pp. 37)

wkr
f?(r)N_'*' —“_24’62—1 2)

and this series converges to fa(r) in the interval [0,8] and to its periodic extension
outside of this interval.
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Figure 5: fi(r) : 125 Wiener terms
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The function together with three terms of its Fourier series is shown in Fig. (6).
Note that the fourier series is well suited to the function fs as the sinusoidal part is
captured precisely by the second term of the series. Fig. 7shows the same function
with its approximation in terms of N independent Wiener processes with N = 125.
The coeflicients in the approximation are calculated using least squares regression of
fa(r) on 1,000 observations generated from 125 independent random walks. With
this number of terms, the Wiener process series adequately captures the sinusoidal
component and the flat component of the function fs.

6.7 EXAMPLE:
Finally, we consider the standard Gaussian random walk y; = Z;-=1 ug;, where

K
ug; = 1dN(0,1). Let 2, = (zxt) = (Z;-=1 ukj)k—l be K independent Gaussian
random walks all of which are independent of y;. Consider the linear regression y; =
bzt + Ui, based on n (> K) observations of these series. The large n asymptotic
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Figure 7: fo(r) : 125 Wiener terms
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behaviour of by is given by (Phillips, 1986)

1 -1 1
by = [/ W:,Wé] [/ szy] ,
0 0

where W; and W), are the standard Brownian motion weak limits of the standardised
partial sum processes n~1/2z,; and n~1/2y,,, respectively.

Suppose we orthogonalise the regressors {zx. = (xx)] : k= 1,..., K} using the
Gram Schmidt process

21t = T1t

20t = Tgy — (T5.x1.) (x’l.xL)_llxu

23t = 3t — (3. X6) (X0 Xa) ™ Zaty, X = [71,72] :=[2}]
etc.

By standard weak convergence arguments, we find
n_1/221[n,] =>W () ’ n_1/222[,,,] =V, () n_1/223[n‘] =V () etc.

Now let z; = (zkt){( , and consider the regression y; = E K2+ In this case, writing

- . K
b.x = (bzk)l , we have the limit

. 1 “1r 01 4
bzk = {/ V,?:I [/ VkWy] = €k
0 0

as in (24) . Thus, the empirical regression of y; on z; reproduces the first X terms in
the orthonormal representation of the limit Brownian motion W), in terms of an othog-
onalised coordinate system formed from K independent standard Brownian motions.
The regression t-ratios are t,, = b,x/ 55, and these have the limiting behaviour

€k
1 11,911/2’
o Wikt fa V2]

21

n- 1/2tbk =




Figure 8: Densities of t-ratio ¢y, : n = 100
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where Wy g (+) = W, (-)— (fol W,,VK) (fol VKV;() ! Vi (-),and Vg (-) = (Vi ()),If=1 .
As in the case of deterministic regressors (c.f theorem 4.1), the regression t-ratios
diverge at the rate nl/2 (shown in Phillips, 1986), indicating certain significance of the
regressors in the limit. Moreover, in view of (24), j;)l Wii — 0a.s as K — oo, and
we can expect the divergence rate of these t-ratios to increase when both K,n — oo.
Fig. 8 shows the sampling densities of the t-ratio t;, with K = 1,10,20 and n = 100
based on 30,000 simulations. The increase in the divergence rate of the t-ratio as K
increases is apparent in these graphs. R
Finally, the behaviour of the R? in the regression Yt = ’z K%+ u is:

R =1~ [f Wiy o W2, for fixed K,
R251 when K — 00 asn— .

It follows that the empirical ‘spurious’ regression fully explains y; in the limit when
the number of independent random walk regressors goes to infinity.

7. Conclusion

The results presented in this paper put the old idea of a spurious regression in a very
different perspective. In contrast to established thinking, we have shown that there
is a clear mathematical model underlying such classic ‘spurious’ regressions as the
regression of a random walk on deterministic trends. This mathematical model is
based on the orthonormal representation of a continuous stochastic process in terms
of deterministic functions. The idea is analogous to the Fourier series representation
of a continuous function, but in the stochastic process case the Fourier coefficients
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are random variables. We have shown that regressions that have in the past been
regarded as purely spurious are in fact nothing other than an approximation to these
series representations. In effect, the empirical regressions just pick off the first few
terms in the series representation of the stochastic process that is the weak limit of a
suitably standardised version of the dependent variable in the regression. Moreover,
we have shown that, if the number of regressors in such regressions is allowed to
grow with the sample size (n), these regressions succeed in accurately reproducing
the full series representation in the limit as n — oco. Our theory explains why it is
natural in these regressions for the fitted coefficients to be random variables in the
limit - they are exactly this in the underlying model! Thus, not only is there a valid
mathematical model underlying such regressions, this model is consistently estimable
in the limit as n — oo. The existence of this valid underlying model also explains
why the coefficients in such regressions are found to be statistically significant. The
fact that regression statistics like t-tests diverge as n — oo has been interpreted in
the past (including the author’s own work, 1986) as a primary symptom of ‘spurious’
regression. Yet, this behaviour is simply a correct manifestation of the existence of
the series representation. Indeed, as we have shown, the fact that the series repre-
sentation exists and can be accurately reproduced in the limit as 7 — oo increases
the divergence rate of the regression t-tests.

We hope that these new results will help both theorists and practitioners move
toward a more sympathetic understanding of empirical regressions with trending eco-
nomic time series. The radical conclusion that emerges from this study is that there
are no spurious regressions for trending time series, just alternative valid represen-
tations of the limiting dependent variable process in terms of other processes and
deterministic functions of time. It is by no means accidental that such empirical re-
lationships that have in the past been deemed ‘spurious’ are found, because they are
the inevitable empirical manifestation of an underlying mathematical representation.
However, just as some series representations of continuous functions converge faster
than others, it turns out that some regression representations of trends will inevitably
be better approximations than others.

The results presented here also have implications for unit root testing. In recent
years much of the literature has emphasized the importance of setting up a general
maintained hypothesis that includes ‘alternative’ specifications to a unit root model,
such as deterministic trends and trend breaks. Our results show that such specifi-
cations are not, in fact, really alternatives to a unit root model at all. Since unit
root processes have limiting representations entirely in terms of these functions, it
is apparent that we can mistakenly ‘reject’ a unit root model in favour of a trend
‘alternative’ when in fact that alternative model is nothing other than an alternate
representation of the unit root process itself. A fuller study of the impact of such
considerations on empirical work are left for a future paper.
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8. Proofs

8.1 PROOF OF THEOREM 3.1: Since px([n-]/n) — @k (), wehave n 1 Y0 (L) k(L) —

fol ox ¥y = Ix. Then, using (7), we obtain n™ 'SP (L)y/vn = [y ¢xB. Let O
be the observation matrix of the regressors and let y = (y;)7 in (5). Then, we have

—1 1

iN (0, dx /0 1 /0 ek (r) (r A s) soK(S)'dsdTCK) »

giving the stated result. Now let the orthonormal representation of the Brownian
motion B (-) be given by B (-) = Z°v/Aepi(-)€x, where the & are iid N(0,1) and
Ak is the eigenvalue of the covariance function r A s corresponding to ¢,. Write this
representation in the form

B()= ‘PK(')IA %k + oL Alﬂﬁl’ (26)

where the functions in ¢, are all orthonormal and orthogonal to those in the vec-
tor @y, the elements of £, are all iid N(0,1) and Ax = diag(\y,..., k), AL =
diag(Ak, Ak, ...). Using this representation of the Brownian motion B (), we get

1 1
d d
C’K/O wxB=ck (/0 PKPK ) AK €k = KA1/2€K = N(0,cxAkck)

as required for Part (a). Note that the limiting form of the distribution also follows
from a direct reduction of covariance matrix, viz.

1 1 1
/O/Of,ax(r)(rAs)gaK(s)’dsdr-—-—L o)) drAg = Ak.

For Parts (b) and (c), define ter ax = CKAK /sc,KaK, where

,( 12( 1/%)) e (P ®x) " ek (27)

A simple calculation reveals that n~2 ¢, @} = [; B2 .+ Where By, (1) = B() —

(fo BcpK) (fo <chpK)_ ¢k (-) is the Ly -projection residual of B on g, giving
Part (b). Further, n.sZIKa = (n"2Yp %) (n‘1<I>’K(I>K)"1cK = fol Bf,K,and we
deduce that
1
2, K N k [fo ‘PKB]
cxix = nl/2s 1 1/2!
ol ax [ B2 ]
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as required for (c). The first half of Part (d) follows immediately from (b) and the
usual formula for the regression R2. The second half of Part (d) follows from the fact
that

¥ (nV2A1,)° &Y (Aw)?
¥ (n2)? 1Y (nV2am,)’
~ 2
Hl'f Z [ut - b’KA‘PKt]

= %E (n“1/2i2t)2 =0p (n7Y).

Dw =

8.2 PROOF OF THEOREM 3.2: First, note that £°c2 = 1, and £ = [} y(r,r)dr =
fol rdr. Hence, £°ck < 00, and EP°AZ < oo. It follows that

diehxex = BE < (2K (F02) Y2 < (zet)? (5202) 2 < oo,
Thus, c’KA KkCk s an increasing sequence that is bounded above and is therefore
convergent. We write limg_, 00 dKAKcK = df = dAc, say, where ¢ = (ck), A =
diag(Ai1, Ag,...) and dec= 1.

To prove Part (a) we write, asin (25) , dgak = i (n 1@ ®k) " (R~ 1@ yx /n'/?).
Using the Hungarian strong approximation (e.g. Csérgd and Horvé4th,1993) to the
partial sum process yx = Zle u;, we can construct a expanded probability space
with a Brownian motion B (-) for which

sup |yx — B(K)| = 0a.5.(n'?),
0<k<n

. ('Z)i = 0as(1). (28)

or

sup
0<k<n

This gives the representation

Ye-1 M
—TTI—B( n )+0a.s.(1),

Jn

for (t —1)/n <7 <t/n, t > 1. It follows that we may write, as n — o9,

T (i) (%) - A ' oklr)B(r) + 0as (1),

Also, since K/n — 0 as n — oo, we have
21 t AN
n ek (n vx\n) =

1
dxax = cylIx+o0(1)]! [/0 SpK(T)B(T)dT+Oa'3.(1)]

1
/0 ex(r)ex(r)dr +o(1) = I + o(1),

1
= | ex)B)r +00s 1) (29)
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Now use the orthonormal representation (26) of the Brownian motion B (-) in (29),
and since the series converges uniformly we may integrate term by term, leading to

1
dyax < cy /0 ek (r) [‘PK(T),A}(/Z&( + SOL(T)'AY?fL] dr + 0g.5.(1)
1
= CII(A}(/2£K +k /0 er(r)eL (T)'dTAIL/ZdeT +0a.s.(1) = C}(A}(/zfx + 0a.s.(1),
by virtue of the orthogonality of ¢z and the elements of ¢, . Now

M2k £ N(0, eAkex) = N(0,dAc),

as K — oo. Thus, in the original probability space, when K — oo as n — oo with
K/n — 0, we have

dar L A2 +04.5(1) £ N(O, dgAkck) + 0as.(1) = N(O,dAc),  (30)

as required for Part (a).
For Parts (b) and (c), we have n~1/ e ax = CxoK/ (nl/ Zsckak) . The behaviour

of the numerator is given in (30). The square of the denominator is
- 1
ns? = n‘ZZﬂf dx (01 ¥k Pk) k.
CKGK t=1
Now

1 -1
S (n7 1@ Bx) " ok = i [ / saK<r)saK(r)'dr+o(1)] cx =1+0(1),

as n — oo for all K such that K/n — 0. Next

L5 - A5 () - (R A ()

= ( L ' B(r)dr + oa.s.(l)) - ( /0 1 B(r)pg(r)dr + oa.s.(l))

}( / o)) dr + 0(1)>_1 (f o) B(r)dr + ons )
= By, (r)zdr + 06.5.(1),
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where
-1

By, (r) = B(?‘)-(/O]Bsa}() (/Olvxwk) px (r)
= 50~ ([ Bé) ex

1
B6) -3 ([ BO6Es) (). (31)

But, (¢;)]° is a complete orthonormal system in Ls[0, 1] and, by virtue of Lemma
2.1, we have

B0 = 20| [ eule)Ble)es] (32)

in quadratic mean. It follows from (31) and (32) that, as K — oo, By, — 0 in
quadratic mean. Hence, as K — 00,

E [ /0 1 By, (r)2dr] — 0,

n~? E ut,ns 0,

giving Part (b). In consequence,

and it follows that

_1/ t C’KaK

Cdx n‘/2sc a
KK

diverges as n — 00 when K — 0o and K/n — 0, thereby establishing Part (c). Part
(d) follows directly from (b).

8.3 PROOF OF THEOREM 4.1: Working directly from (11), a standard weak conver-
gence argument gives the limit bxn = { fol gKg’K] - [ fol gKW] . Since W(r) has the
decomposition W(r) = gx-éx + gk Ex+, (12) follows immediately.

To prove (13), we proceed by direct calculation. First,

i f1r2 -‘gfolrsinm- fgklrsinK';rr
o, Y2 folrsin':rr ﬂ%fol (sinmr)? ... 0
99k = . . . :
i %folrsinK'zrr 0 ’1?22;!.[()1 (sin K7r)?
o 1 0] \/5_1 K+1
- 3'4 w0 = [ 3 dx } say
. . I dK DK !
-\/—A-rlu—_l oo ... iy
L Kérw Kz




and
ﬁ(_l)K+2 \/E(_. 1)K+2
(K+41)%n? (K+2)%me

1 1
0 0
/0 9Kg}(+= . . ' = [ gK-r ], say.

0 0

Then

1 -1 1 1 ! /
[ A 91(9}(] [ /0 QKQIK+] ks = fj d ] [fK+ ]£K+

§—d' W)™ Tieslrs,
-D-ldK 3 — di Dx ldK) Frsbk+

-1

where

ex = [1,~dxDil] = [1, —V2,v2, ..., (-1)¥ Jé]'. (34)

Next observe that
K 00 K
2 1 2 1 2 2 1
-1 _ }: — E:
JKDK dK__ZkE= ‘7 and fK+fK+—7r4 F—S_)B_F Ez.
It follows that
-2
1 1, )\ 3 1 2 &1 2 2&1
(E“JKDKdK) f3‘+5"+=N<°’[§‘;szi} [%”;2—4 :
and hence
1 -1 01 K -2 K
2 1 2 2 1
/ ! /
9Kk g /g g ]5 = — - —_—— — — |l exe .
[/0 KK] [0 K9k | Sxe = ( { 2; 2} [90 #lgk‘iJ KK)

Since ) and £y, are orthogonal, combining this last result with (12) gives (13).
Part (a) follows immediately.

To prove Part (b), note that n~1/ th}ﬁxn = cbkn/ (nl/ ZSC}(SK") . As in (28) we

have "’
nscxmz( z ) ( ng() (t)) x.
ck (% tz:;gx (T%) 9K (_2):) _ICK — g [/01 QKQIK]_ICK,
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Next,



-1
and n~2 Z?:l 17? = fol ng’ where Wy, (1) = - (fol Wg’}() (fol gKglK) 9k ()
is the Lo -projection residual of W on gx. We deduce that

1 ~1p 1 1 1 -1 12
e ] [ (o) o] ]
0 () 0 0

as required.
8.4 PROOF OF LEMMA 4.2: As K — 0o, we have

)

K 0
1 2 1 2 1
TElE T L @0
3 = k=lk 4 k=K+lk
and
% ,,42,64 Iy &
kK+1

However, the convergence of the latter sequence to zero is faster than the former. To
see this, note that

2 2 / Z /°° 1 2
2R L1 A2 2 <3 2 S 2 2T 2p!
m2(K+1) 72 Jgenz WkK+lk ST z?2 72K

and similarly,
2 2 [ 1 2 <=1 2 [*1 2
AR IE A %<m X w<m| =
3TY(K +1)% 7t Jypp 2t T w woa k m™ Jg ¢ 3mK
It follows that
2 K
3n (K +1)3 < % - 7|-—24' Ek:l fl‘f — Ek—K+l < 37[12K3
[ 2 ]2 1_ 2 <Kk 1]? [ = 1 ]2 2 2
=57 [§ =77 2 k=1 P’] w7 Lk=K+1 ¥ [W (K+1)]
Hence,
K -2 K
1 2 1 2 2 1 1
Im K |- -—= — —_—— — | ==
Koo [ szk?J [90 7r42k:4J 6’
as required.

8.5 PROOF OF LEMMA 4.3: First observe that since the elements of gx are linearly
independent for any finite value of K, we have

1 1
2
ex [ / gxg}(] ex = /0 (ex9x)” >0,
0
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for any ex € RK with ex # 0. Hence fol 9K gy is positive definite for all finite K.
Now, let e} = [1, ~di Dg'] = [1, V2,3, ..., (-1)K /2 ] as in (34). We find

1 1 ’
= d 1
' / ? -1 3 K
€K [/0 QKQK] ek = [1,—dyDy’] [ dx Dk ] [ Dzld ]

K
1, 1 2
= 3~ d%Dkdx=3 wk}-;lkz"*o

2 . . . .
as K — oo, because ) po, ;1; = %. Hence, fol 9k gk is positive semi-definite, not

positive definite as K — oo.

8.6 PROOF OF THEOREM 4.4: As in the proof of theorem 3.2, we use the strong
approximation (28), i.e. supgck<n I% -B (ﬁ)l = 04.5.(1), by expanding the proba-
bility space as necessary. Then, using the same argument as that leading to (29), we

obtain
- 1 “1rpa
bkn = [/0 gKg’K] [‘/0 QKW] +0a.s.(1)
= N (0, Igi1+ hKeKe}() + 0g.5.(1) (36)

as in (13). It follows that e’KEKn =N (0, 1+hk (e}{ex)2) + 0,4.5.(1). But,

hi (feex)’ = rehex = hat 1
K 6K K 6K 3’

as K — oo. Then, on the original probability space, letting K — oo and K/n — 0
as 1 — 00, we deduce that & bxn = N (0,1+ 1/3), giving Part (a) of the result.
To prove Part (b), use the representation (36) giving

My bgn = N (0, 1+ hx (mgeK)z) +004(1) = N(0,1)
since

hx (m'KeK)2=6KmK3K ﬁ [m1+\/_z( l)’c 1 ]-—»O,

as K — oo.
To prove Part (c), we first find the weak limit of the residual variance

%ga% = -};;(%) ( Z\/-gx< ))
(Em @) (E= @) )
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= (/ W(r) dr+oa3(l) (/ W(r)gk(r) dr+0as(l)>
)

( / gk (r)gx (r) dr +o(1) ( (rYW(r)dr + og.s. (1))

/0 W(r)*dr — ( WgK) ( /0 l gKgK) ( / ngW) + 0a.s.(1)

= [werer-(['wa) ([ s ) ([ oxstac+ [ axcsierties ) +onald)
it ([t ([ () ([ o) o
[werar—([wo) e~ ([ Wec)exe (- D) frrtics + 0.0
= /0 1W(r)zdr - ( /0 1 ng(s,() - ( /0 le/KeK) N (0, hg) + 04.. (1)

using (33) and (35) in the final two lines of the above argument. From lemma 4.2,
Khg — 1/6, so that (fol Wg’KeK> N (0, hx) 5 0, as K — oo. In view of the uniform

convergence of the series representation W(r) = gl + 9%, €x+ (cf. (4) above),
we deduce that g3z — W(r) a.s and uniformly in r as K — oco. It follows that, if

K — 0o and K/n— 0 as n — oo, we have n=2Y ¢ 4 —-»0 Then

e () ()

In consequence,
) -~
n-12¢, . €KIK
ex8k = _1/25 , _
n'/2sy 5

diverges as n — 0o when K — oo and K/n — 0. A similar argument applies to the
scaled t-ratio n~1/2t,,, =, thereby establishing Part (c)

m aK»

8.7 PROOF OF THEOREM 5.1: Direct least squares regression on (18) yields
~ 1 « t t\’ Ay
e = [ S (1) e () ] e (8 %]
1 t t\’ Ay
= [;;CK (;) Ck (;)] {ZCK( > t}
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and by standard weak convergence arguments we obtain

T = [/ ) e ()] [/ Gac 1) O ()] = N 0, T,

giving Part (a). Since {1, V2 cos r, /2 cos 27, ...} is a complete orthonormal sys-
tem for Ly[0,1] we have fol Cx (r) ¢k (r) = Ik41, and then the infinite matrix
[fol Ck (r)Cx (r)']K_’oo = diag|[1,1,...], which is positive definite, giving Part (b).
To prove Part (c), we use the strong approximation (28) and obtain in the expanded
probability space

ke [ / e () G ) o.,.s.a)] N I () W () + oa‘s.u)}

C’KZKn
1 |
= e Ui +0us, (V)] [ [ exrawe+ oa.s.<1)]

= cx Ck (r) dW (r) | + 0a.s.(1)
[ oo o]

= N(0,1) 4 0g.5.(1).

It follows that in the original probability space c’KEKn = N(0,1), when K — oo and
K/n — 0 as n — oo, giving Part (c).
8.8 PROOF OF THEOREM 6.1: Let {W;(r)} be any sequence of independent Wiener

processes on the [0, 1] interval. Using the series representation (4) for each process
W;(r) in the sequence we may write

Wi(r) =réo + ‘/52 ingrmﬁik’ (37)
k=1

where the {;; are independent NN (0,1) variates. It is well known (c.f. Tolstov, 1976)
that the continuous function f(r) can be uniformly approximated on the interval
[0, 1] by a trigonometric polynomial of the form

K

agr + Z (ak sin(kr) + By cos(kr)) .
k=1

Since { \/ﬁsin(k'trr)} is a complete orthonormal system for Ly[0, 1], a slight modifi-
cation to the proof of this approximation theorem (using the fact that the Fourier
series of a continuous, piecewise smooth and arbitrarily close approximation to f(r)
is convergent uniformly - Tolstov, 1976, theorem 2, p. 81) shows that the function
f(r) can also be uniformly approximated by a trigonometric polynomial of the form

K
aor+z (\/_sm(k‘/rr > A (1), say,
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for some K, i.e. given € > 0, there exist coefficients (ak)iio and some K for which

K \/-' .
2sin(knr) €
su T) — apr + ag | —— || < =. 38
re[opll 1) ’ g k( km ) 2 (38)

We now seek to combine (37) and (38) to produce an arbitrarily close approximation
to f(r) by Wiener processes. Given a fixed K for which (38) holds, we take a prob-
ability space on which the sequence {W;(r)} of Wiener processes and the random
variables {5,—1-} are defined and we employ the representations

— sin(k ' / ,
Wi(r) =& + ﬁ; %g)'éik =Yg (r) &g + 91 (1) &1, (39)
where & = [£i0,&inr - &iL], &1 = [Eiz1, Ein v -], and

' sin(K +1)#r sin(L +2)#r
M(T)“‘/i[ (K+1)m ' (K+2)7w '’ ]

The series (39) are known to converge almost surely and uniformly in r € [0,1] - e.g.
see Hida (1980, p.73).

Taking the linear least squares approximation to the ﬁrst term of (39) based on
N observations (i = 1,..., N), we obtain ¥5 = (EnZEn) " e nWn, and

- = = -1 /o =
¢K—¢K=(KN—NKN‘) (KLN‘L'IY">1/}_L=X;V1/)_U say,

where = '-KN [glK’ ’éNK]> Eﬁ_N = [€1J_,~°"€N_L]’ and Wy = (VVL’)le . The ran-
dom variables £;; in [Exn,Z1n] are 1dN(0, 1) Hence, by the strong law of large

numbers, as N — 00 we have N Sk NZKN = Ix4y, and N1 —KN—-LN 220, so

that Xn 230, and ¢ x — Vi &o. Moreover, the strong convergence of ¢ Kk to Yy is
uniform in r € [0,1]. To see this write

I"ZK - ¢Kl = (;ZK - ¢K), (@K - 1/)1()] v
= b (XNX' )wl] V2 < [9091] Y Pax (X X)) 2

L k=K+1

0

1/2
2 1
R Ei] Phaax (X3 Xn)])2,
L k=K+1

where Apax (+) signifies the largest eigenvalue of its argument matrix. Since Xy <3 0

and Apax (X Xn) is a continuous function of the elements of X v, we have Apax (XyXn) =
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0. It follows that

00 1/2
P 2 1 1/2
_ < — —_— A XX
rz![g)ll l¢K TPKl < [ﬂ,z k=§K+: 1 sz [Amax (X Xn)]

1/2
< (5) Do (w20,

as N — oo. Hence, given § > 0 there exists (by Egoroff’s theorem) a set C; with
P(Cs) > 1 — 6 and a number Ns > 0 for which

sup |¢K ¢K| < ———
rel0,1]

QEk 1lak |
for all N > Nj;. Then, we have

’f(r — dydy (r l |£(r) — dg¥orc (r)| + laK#’K (r) - aK¢K (7‘).
and

sup |£(r) = alx By (1) < sup |£(r) — e ()] + sup fahewoie () — ol ()
r€(0,1] r€(0,1) re(0,1]

for all w € Cj.
Now note that we can write

N
ExnWn =) diWi () (41)

=1

b (r) = ak (ExnExn)
with d; = ay (EnZxn) " €. If follows from (40) and (41) that

sup <e a.s.

re(0,1]

N
fr) =" dWi(r)

i=1

as N — oo, giving Part (a) of the required result. Replacing e by €1/2 in the above,
Part (b) follows immediately.

8.9 PROOF OF THEOREM 6.3: Let (Q, = C[0,1],F, P,) be the probability space
on which the Brownian motion B (:) is defined. Let B(:,w;) be a sample path of
B. There exists a set C with B, (C) = 1 such that, for all w, € C, the sample path
B (r,wy) is continuous. Take any such w;, € C. We can apply theorem 6.1 to B (r,w;) .
We expand the probability space to the product space

(Q>fap)=(QbXQWa]:bXfw)IJbXPVV)
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to include a sequence of independent standard Brownian motions {W;}. (deﬁned on

(Qw, F., Pw) and independent of B) and a sequence of random vanables {d:}¥,,
(defined on (R, F, P)) for which

N 1 N 2
sup |B(r,wp) — Zd,-VV,- (r)] <k, / B(r,wp) — Zd,-VV,- (r)| dr<e a.s.(Pw)
r€[0,1] im1 0 i=1

(42)
as N — oo. This is possible for all w, € C and, as is clear from the construction of the
coefficients d; in the proof of theorem 6.1, we have the dependence d; = d; (wp, ww)
on the sample path B(-,ws) as well as ww € Qw, but the functions {W; (r)} are
invariant to w,. Since (42) holds for all w, € C as N — 00, we deduce that given
the Brownian motion B(-), there exist independent Brownian motions {W; (r)} and
random coefficients {d;} that are defined on the augmented space (Q F, P) for which,

as N — oo, we have
e, /

giving (a). Parts (b) and (c) follow directly.

sup
re[0,1]

N
B(r)= Y dWi(r)| <
=1

B(r) - ZdW(rjl dr<e a.s.(P),

9. Notation

C[0,1] space of continuous functions on [0, 1] - almost sure convergence

L, [0,1] space of square integrable functions on [0, 1] 4 distributional equivalence
weak convergence = definitional equality

[] integer part of 0a.5.(1) tends to zero almost surely

rAs min(r, s) LA convergence in probability
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