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Abstract

A famous theorem on trend removal by OLS regression (usually at-
tributed to Grenander and Rosenblatt (1957)) gave conditions for the
asymptotic equivalence of GLS and OLS in deterministic trend extrac-
tion. When a time series has trend components that are stochastically
nonstationary, this asymptotic equivalence no longer holds. We con-
sider models with integrated and near-integrated error processes where
this asymptotic equivalence breaks down. In such models, the advan-
tages of GLS can be achieved through quasi-differencing and we give
an asymptotic theory of the relative gains that occur in deterministic
trend extraction in such cases. Some differences between models with
and without intercepts are explored.

1. Introduction

Grenander and Rosenblatt (1957) analysed asymptotic efficiency con-
ditions in time series regressions with stationary errors. They considered

*A first draft containing some of the results reported here was written in 1993. The
present paper is an abridged version of Phillips and Lee (1996). Our thanks go to the
NSF for research support under Grant Numbers SES 9122142 and SBR 94-22922.



univariate regression models with trends such as y; = 'z + u, where
2z = (1, t, ..., t*) and wu; is stationary with spectral density f,(\) > 0, and
demonstrated the asymptotic equivalence of GLS and OLS trend extraction
techniques. Hannan (1970, chapter VII) extended the Grenander-Rosenblatt
theory to the case of multivariate time series regressions and provided a gen-
eral treatment of the subject. The Grenander-Rosenblatt result relies on the
continuity of the spectrum of u; at the origin (where the spectral mass of z
in the above model is concentrated) and it is satisfied in most models that
involve stationary time series. But, the condition is violated when there
is a unit root in the data generating process of w;. In fact, the condition
fails whenever wu; is strongly dependent or integrated of order d with d > 0
(denoted as I(d)). For in that case, the spectral density of u; behaves like
a multiple of A™2¢ as A — 0 and is unbounded at A = 0. In such cases
as these, the asymptotic equivalence of GLS and OLS breaks down and we
can achieve efficiency gains in estimating the trend coefficients 5 by using
GLS methods. When w; is near-integrated in the sense that it has an au-
toregressive root that is local to unity, there is again a peak at the origin
in its spectrum and we can still expect gains to accrue from the use of GLS
estimation.

The present contribution calculates the efficiency gains in GLS trend
extraction when wu; is an integrated or near-integrated process. These cases
are the most commonly studied in the econometrics literature, they have
bearing on the issue of unit root testing, and they lend themselves to simple
quasi-differencing formulations that are convenient in practical work. In
contrast to the integrated and near-integrated cases, the effects of strong
dependence on the efficiency of OLS have received attention in the literature.
In particular, Yajima (1988), Beran (1994, ch. 9) and Samarov and Taqqu
(1988) study GLS efficiency gains in models with stationary long-memory
errors where 0 < d < 1/2. The case where there are nonstationary strongly
dependent errors with 1/2 < d < 1 was analysed in Lee and Phillips (1994).

2. Efficiency Gains in Models with Near Integrated Errors
Suppose a time series y; is generated by

Yt = 5%2]@ —|—Ut 5 t= ]_, ceey T 5 (].)
w=au1+e, a=1+¢/T,
where 2z = (1, ..., t*)’, and c is a constant that represents local departures

from unity. The parameter setting o = 1 + ¢/T facilitates efficiency calcu-
lations using local-to-unity asymptotics (see Phillips, 1987a, and Chan and



Wei, 1987). The Grenander-Rosenblatt theory applies when || < 1, and
our interest is in the unit root and intermediate cases. Hence, attention here
focuses on the domain ¢ € (—o0,0].

Initial conditions for u; are set at ¢ = 0 and ug may be any random
variable with finite variance 03. Cases where 03 — oo are sometimes of
interest and these can correspond to situations where the initial conditions
are in the increasingly distant past, although observations on the process y;
are available only from ¢ = 1. The effect of such alternative initializations
on our results are considered later.

The primary requirement on the shocks &; is that normalized partial
sums S; = Zizl gs of & satisfy an invariance principle and this will be so
under a wide variety of differing conditions on ;. The following conditions
on ¢ are sufficient for the limit theory here.

2.1 Assumption EC (Error Conditions)

(i) Eer =0 Vt; (ii) sup, Elet|"® < oo for some b > 2 and 6> 0;

(iii) 0% = lim E(S%/T) exists, and 0% > 0; (iv) & is strong mizing with
coefficients ouy, that satisfy > o7 4 o 2 < 0.
In the following, we use W (r) to denote standard Brownian motion and
Jo(r) = [y e(r=5)edV (s) to denote a linear diffusion process. Note that J,(r)
satisfies the linear stochastic differential equation dJ.(r) = cJ.(r)dr+dW (r).
Under Assumption EC we have:

2.2 Lemma s
(i) T2 = oW (r); (i) D> S0, zriee = o [} gu(r)dW (r);

(iii) 7 1%mﬂ:akum>TlD*”ztwwu:ab% () Je(r)dr;

where Dyr = diag(T3, T?, ..., T?**1), gi(r) = (r, ..., 7F) and = signifies
weak convergence.

Simple least squares regression on (1) leads to the trend coefficient es-
timator Bkc = (Er{zktz;t)_l (ST 2ks1¢). GLS regression requires use of the
full covariance structure of the error process u;. The Grenander-Rosenblatt
theory can be expected to cover contributions to the covariance structure
that come from the stationary or weakly dependent components &, but not
those that come from the autoregressive root & = 1+ ¢/T since it is the
latter that produces a peak in the spectrum of u;. Hence, as an alternative
to OLS, we consider a partial GLS detrending procedure that is based on the
quasi-differenced data zp; = 2 —azgr 1 and 4y =y —agyy_q fort =2, ..., T,
combined with the initial observations zp; = zp1, y1 = y1 for t = 1. This



leads to the estimator (3, = (ElTEktE,{Et)_l ST 2kt

We show that the partial GLS estimator Bkc of 3, in (1) is asymptotically
more efficient than (3, under both a unit root (¢ = 0) and a near unit root
(c < 0). The following results give the limit distributions of these estimators.

2.3 Theorem
1
F2 Bro—B)= 005! /0 g (r) Jelr)dr = N(0, V)

where Fklf = T_ID,ZF2 = diag(TV/?, T3/%, ..., T*Y?), Qy = _]61 9k (T) gk (r)'dr
is a k x k matriz with elements q;; = 1/(i+j+1) and

St
Vlcocls = O'QQI;1 /0 /0 gk(r)e(TJrs)c(l/Qc)(l — 672C(T/\8))gk(s)'drdsQ;1 )

2.4 Theorem

_ 1 1
Flgz(ﬁkc_ﬁk)j(’ [/0 fck(r)fck(r)/dr} /0 fae(r)dW (r)= N(0, V) ,

with

-1

1 -1 ~ ~
VI = o {/0 ka(r)fck(r)/dT] =o? [@k +2Qk — c(Qr+Q})

Here, fo(r) = g,(:) (r)—cgg(r), g,gl)(r) = (1, 2r, ..., kr*=1Y and Q) and @k
are k x k matrices with elements @;; = ij/(i+j—1) and q;; = i/(i+7),
respectively. R B

Define the relative efficiency of By, to By by Rie = det(Vi2#)/ det(V?).
To provide some illustrative comparisons, take the case of the linear trend
model where k& = 1in (1). Then, when ¢ = 0, TV/?(3,0 — ;) = N(0, 602/5)
— a result obtained earlier in Durlauf and Phillips (1988). On the other
hand, TV2(3,y — 1) = oW(1) = N(0, 0?). Hence, for linear trend ex-
traction there is an asymptotic efficiency gain of 20% from the use of the
partial GLS estimator 3;; when w; is integrated of order 1. When ¢ # 0,
the variances of the limit variates are

Vs = 902[3e%(c—1)% + 2¢* + 32 — 3]/6¢°,  and V¥ = 302/(3 — 3¢+ ).

In this case, the relative efficiency Rj. = Vl‘éls /Vfgs, is graphed against

negative values of ¢ in Figure 1. As ¢ — —oo, Ri. — 1, so there are no



gains from the use of GLS—detrending in the limiting case. This is to be
expected since ¢ — —oo is the limit of the domain of definition of ¢ that
corresponds to the stationary case, for which the Grenander—Rosenblatt
asymptotic equivalence result holds. Figure 1 also shows that the maximum
gains in efficiency from GLS occur for finite ¢ < 0, rather than at zero.

Figure 1 about here

In the general case, write the limit variates from theorems 2.3 and 2.4 as

Ze=0Qg" Ji aer) Ielr)dr,and Ze = o [ i For) (Y] () awv ).

Then, as ¢ — —oo the asymptotic equivalence of Zc and Z; is given by

2.5 Theorem /—c (20 — Zc) 2,0 and Ry, — 1 as ¢ — —o0.
3. The Effects of a Fitted Intercept

A constant term is not included in (1) because the intercept is not con-
sistently estimable. Nevertheless, it is usual in empirical work for regression
detrending procedures to involve fitted intercepts. So it is of some interest
to consider the asymptotic behaviour of the estimators Bkc and ﬁkc in this
case. In related work, Canjels and Watson (1995) studied the case of lin-
ear trend extraction with a fitted intercept and near integrated errors. The
treatment that follows considers the case of general polynomial trends with
fitted intercepts and near integrated errors, and indicates some subtleties in
the limit theory that arise as ¢ — —oo due to the doubly-infinite triangular
array structure of y;.

Consider the following model in place of (1)

e =B+ Bpzre +w =0z +u, t=1,..,T. (2)

It turns out that when the localizing parameter c is fixed, the presence of
the constant term 3 in the regression (2) does not influence the asymptotic
distribution of the partial GLS estimator (.. To see this, note that

T3z = | 1 + S CETZkt (3)
t

21 — —22 Zkt 21 zktzkt
where z; = 2 —az1 = [—¢/T,2,) = [—¢/T, Az, — (¢/T)z, | for t =

} =
2,..,Tand z1 = z1 = (1,7, = [1,2,]. Setting Dy = diag(1, Fyr), we



have
—1/ 537\ p=1/2 10
D, — . 4
2t 1
( ! t) T 0 ,]0 fck(r)fck(r)/dr ( )
Since this matrix is block diagonal, it follows that the inclusion of a fitted
intercept in a partial GLS regression on (2) does not alter the asymptotic
distribution of the estimates of the trend coefficient vector 3, that is given in
theorem 2.4. Thus, the GLS estimates of 3;, have the same limit distribution
whether or not an intercept is included in the regression. This result depends
critically on the assumption that the localizing parameter is fixed.
Unlike Bkc, the limit distribution of the OLS trend estimator Bkc is

affected by a fitted intercept. In this case, the limit distribution is found to
be

FY2(Br—By) = oH; / () — W) Te(r)dr = B, sy, (5)
= N(O, kaCmOIS)’

where Hj, is k x k with elements h;; = 1/(i+j+1) —1/(i +1)(j + 1) and
hy, is k-vector column with i’th element 1/(7 + 1).
In the linear trend case (k = 1), the asymptotic relative efficiency of 510

to BIC is

6¢=°(3exp(2¢)(c? — 4c +4) + 12cexp(c)(c — 2) + 2¢3 + 9¢% + 12¢ — 12)

g _
Ry = 3/(3 —3c+c?)

(6)
which is plotted in Figure 2. Note that the limit of R{, as ¢ — —oo,
does not appear from this figure to be unity, as would be expected from
the Grenander-Rosenblatt theory, a point that is unnoticed in the work of
Canjels and Watson (1995). In fact, a simple calculation shows that R{, — 4
as ¢ — —oo.

Figure 2 about here

We now show why GLS appears to be more efficient than OLS at the
boundary of the domain of definition of c. First, observe that the asymptotic
theory for (3, and (. essentially involves a triangular array limit theory
when both |c| and T are large. Limits taken along different diagonals of this

)



array are not necessarily equivalent. To fix ideas, the partial GLS estimator
of B in (2) has the explicit form

~ N C 2\t c N\
Bre = [Z{Zktykt - <Zk1 - ?Eszkt) (1 + T) (Zkl - ?Zgzkt)
2\ —1

~ o~ C — C ~ C ~
X [E{Zktyt - <Zk1 - ngzkt) (1 + T) <y1 - ?Egyt)] , (7)

and for ¢?/T large this is approximately

-1

~

B

-1
[E{zktzﬂkt — T (5T 5) (z{gkt)’} 57 Zdi — T (ST 2) (5750)]

7 (- 5) (- 3) | [oF (331 ®)

which is the OLS regression coefficient of zg; in a regression of g, on Z
with a fitted intercept. Call this estimator the fitted mean GLS estimator
of 3 in (2) . Now, in place of theorem 2.4, we get the following asymptotic
distribution theory.

3.1 Theorem The limit distribution of the fitted mean GLS estimator (3,
in (2) is given by

FY (B —)=0 [ / Tor(r) T oxlr)d r]_l [ / 17ck<r>dW<r>} = N(0, V"),

_ -1
where f . (r) = fer(r fo fex(r)dr, and kacmgls = [fo (T )dr}

Let ch— o []0 Fer (™) Fer(r )’dr} [_]61 ?Ck(r)dW(r)} be the variate rep-
resenting the limit distribution of the fitted mean GLS estimator given
in theorem 3.1. Define the efficiency ratio of this estimator against OLS
as R = det(VS™%)/ det(V;[™"*). Then, we have accordance with the
Grenander-Rosenblatt theory at the limit of the domain of definition of ¢ as
follows.

3.2 Theorem: +/— ch 2.0 and Ry — 1 as ¢ — —oo.

An intercept in the regression also affects the asymptotics of the partial

GLS estimator when ¢?/T — ¢;, or equivalently, ¢/v/T — ¢y, where cq is

some finite negative constant and ¢; = 2. In this case when ¢/ VT ~ ¢,



the partial GLS estimator given in (7) is approximately

~

-1
B = Br+ [E{gkt%t j_lcl T (23 Zkt) (25%)'}

- ~ 1 ~
X [Efzktut + — 1 +c \/_ ( szt) (ul —coﬁEgTutﬂ .

Then, in place of theorem 3.1, we get the following limit theory as T" — oo

for Bk

FY2(8, ~B,)=V [ / 1 1</ Falr dr)ul]

where V' = ]0 Jeu(r) fer(r)'dr — (c1/ (1 + 1) (Io Jew(r ) (IO Jen(r ) ’

and o (r) = fer(r) — (ci/ (1 + 1) .[0 fer(s)ds. This limit distribution is
somewhat unusual because the first period error term w; plays a role in
the asymptotics. This is explained by the fact that the normalized sec-
ond moment matrix (3) is not block diagonal in the limit as 7" — oo when
¢/VT ~ cy, the intercept in (2) is not consistently estimated, and conse-

quently uq has an effect on the limit distribution of ﬁk
Setting 0% = var(uy) and he, = [0 fex(r)dr, the variance of the limiting

distribution of ﬁk is
V=V / rYdr + 03— b, }Vl.
ke { ML)

To illustrate, take the case k = 1 and suppose 03 = 0. The relative asymp-

totic efficiency RY, = V™ /2 of the partial GLS estimator 51 and the
OLS estimator is plotted in Flgure 3 against c¢g. As is apparent from the
figure, the efficiency curve tends to 4 as ¢g — 0 and tends to 1 as ¢g — —o0.

Figure 3 about here

Finally, we go back to the direct comparison of OLS and GLS in the
model (2). In the general case, define the efficiency ratio of the fitted mean
OLS estimator (3, and the GLS trend coefficient estimator 3, by R}, =



det (V™) / det(VZ*). The limiting behaviour of this ratio as ¢ — —oo is
given in the next result.
3.3 Theorem R — (k+1)? as ¢ — —oo.

For k = 1 this reduces to the earlier result discussed above, where R, —
4. The factor (k + 1)? measures the additional variance in the limit of the
OLS procedure that is due to estimating an intercept in the regression.

4. Alternative Initializations

The results given above rely on the initial observation ug having constant
variance 0(2), so that ug = O45.(1) as T — oo. There is some merit to
making assumptions about ug which give it properties that are analogous
to those of w; itself. This can be done by putting the initial conditions
that determine wug into the increasingly distant past as T" — oco. One way of
doing this (e.g. Uhlig, 1994, or Canjels and Watson, 1995) is to define ug =
u+ Z[TT ale_;, for some 7 > 0, and u = O, (1) and with e_; satisfying
assumption 2.1. Then T /2y = 0Je,0(T), where J. is a diffusion process
generated by dJ.o(r) = cJoo(r)dr + dWy(r), in which Wy is a standard
Brownian motion independent of W. All of the above theory can be developed
for this initialization of ug, with no changes of substance in the limit theory.
For example, in place of lemma 2.2 (iii) and (iv) we have:

(iit") T_l/zu[TT] = 0Jer(1); (V) T_ID*]L/2 ST | zpeuy = O'fol gi(r)Jer (r)dr,
where Jor (1) = Jo(r) + e Jeo(T). For ﬁxed T, Jeo(T) = N (0,Sc(7)) , where
Se(t) = (e*™ —1) /(2¢) - e.g. Phillips (1987&) and J.o(7) is independent
of J¢(r). Then, the limit distribution of the OLS estimator Bkc is found to
be

1
FL?Bro—Br)= 0Q;! / (1) Jer (1)

=00 | [ arnar+ [ e = v owit).

with

1 1 !
Vit = vite w0500 [ aear) ([ atemar) @i,
0 0

and Qp = fol 9k(7) gk (1) dr, as before. Similarly, for the partial GLS estima-
tor we get

F2(Br—B) = o [/1 fck(r)fck(r)/dr] R { [/; fck(r)dW(T):| + JQO(T)G}
N(0, VI | |

Tkc



with ‘/Tg]ii Vgls +O'QS {IO fck fck( ) } - {Io fck fck( )
and € = (1,0,...,0).

Figure 4 about here

The asymptotic relative efficiency of Bkc to Bkc is now given by the
ratio Rype = det(V9%)/de t(VTg,i‘Z), and this depends on the initialization
parameter 7. Figure 4 plots the efficiency curves against negative values of ¢
for various 7. Apparently, 7 has little effect on the relative efficiency of (.
to 3y, for values of ¢ < —4. However, when ¢ € (—4,0], the effect of more
distant initial conditions is seen to be substantial. A simple calculation
shows that, as 7 — o0, S¢(17) — 1/(—2¢) and J.o(7) = N(0,1/(—2c)).
Then, the initial conditions dominate the limit theory of the estimators for
¢ ~ 0. In fact, for large 7 and as ¢ — 0 we find that

det {}ZCQ; (/ol gk(r)ecrdr) (Iol gk(r)eCTdr),le}

det [ 2 [IO Jen(r) fer(r )'dr}_lee' [_/61 fck(T’)fck(T)/d’r‘}_l:|
{ 9/4 fork=1

RTlcc ~

00 for k >1

On the other hand, as ¢ — —00, v/—¢[Je.00 () — Je(1)] 2 0, Se(00) — 0 and
Je,0(00) £, 0. Hence, the limit theory for ¢ — —oo that is given in theorems
2.5 and 3.2 continues to apply even with the new initialization.

5. Conclusion

This paper shows that GLS methods are asymptotically more efficient
than OLS in estimating deterministic trend coefficients when the error process
is integrated or near-integrated. Maximal gains tend to occur when the lo-
calizing parameter c is less than zero in the near integrated case, unless
the initial conditions are in the very distant past. If the trend extraction
procedures involve a fitted intercept, some interesting subtleties in the limit
theory arise as ¢ — —oo, the lower limit of its domain of definition that
corresponds to the case of stationary errors. In this case, y; is generated
by a doubly infinite triangular array, and the limit distribution of the GLS

10



estimator depends on the relative approach to infinity of the two parameters
—cand T.

The gains in efficiency that accrue from the GLS trend extraction proce-
dures studied here suggest that there are likely to be similar advantages in
other models that involve nonstationary processes, such as multiple equation
systems with stochastic and deterministic cointegration.

6. Proofs

We outline the proofs of the results given in the text. Further details are
given in Phillips and Lee (1996).
6.1 Proof of Lemma 2.2 Parts (i) and (iii) are proved in Phillips (1987a,
b). Parts (ii) and (iv) are proved in Phillips and Perron (1988) for k = 1.
The extension to k£ > 1 is straightforward.
6.2 Proofs of Theorems 2.3 and 2.4 These follow in a simple way from
the form of F,if (Bkc—ﬁk)and F,if (B — B;) and the results in lemma 2.2.
6.3 Proof of Theorem 2.5 Since J.(r) satisfies the differential equation
dJe(r) = cJe(r)dr + dW (1), we have

1

0 [ o)y = =0t [ anawn 20! [ anare) o)
Note that

[ aire) = a@nmo - [ o e

JO 0

=gmmm—{
1

since Jo(1) = N (0,24 (e —1)) = O, (1/]¢]) and (1/¢) [5 gt (r)dW (r) =
O, (1/|c|) as ¢ — —oo. Continuing the process leading to (10) until we get
to g,(fﬂ)(r) = 0, we deduce that (['01 gk(r)dJe(r) = Op (1/ |¢|) . Hence, from

(9) we obtain
1 1
Qi [ anr)ar)ar = =0t [ anawiey +0, (1/16F)

11



N 1 o 1
Z, = (erl/O i (r)Je(r)dr = _—Cle/O gi(r)dW (r) + Oy <1/ ]0\2) . (11)

-1

1 1
7. = a{ / <g,i<r>—cgk<r>><g,1<r>—cgk<r>>'dr] [ wor-caenawe)

-z [ /0 1 gk(r)gk(r)/dr} - /0 g (r) + 0, (1/1). (12)

The stated results now follow from (11), (12) and the fact that Qp =
_[01 9r(r) gk (r) dr.

6.4 Proof of Theorem 3.1 The result follows simply from (8) using
lemma 2.2 by writing

R (Aee) =[RSt (zkt—a) (zkt—zk)’pk;/ﬂ_l g A

> ol [Fwemacra] [ [ Furmree]

6.5 Proof of Theorem 3.2 Observe that as ¢ — —oo the function fer(r )

gk (r)—cgu(r) behaves like —cge(r). Similarly, Fou(r) = for(r) = [ fer(s
behaves like —c(g;~C - [0 gk (T dr) = —c(gr(r) — hg) = —cgk( ), say. It
follows that as ¢ — —oo

Zme = [/ FalriTaryir] [/ Talr)aw )

- —[/0 Gl )gkud}l [/jam)dvv(r)]. (13)

—C .

Now the limit distribution of the OLS trend coefficient estimator with a
fitted intercept is given in (5), which in the above notation is represented

by the variate
Zoe=o | [ mrmiera] | [aorina]

Just as in the proof of theorem 2.5 above, we find that as ¢ — —oo

-1

1

Zoe =L [ iy [aawe) o, (). )

12



Then, /—c (/Z\mc— émc) 2, 0, and Ry} — 1, as required.
6.6 Proof of Theorem 3.3 The efficiency ratio in this case is ch =

det(Vk’Zm(’ls) / det(V2"). Using (12), the limit variate Z. can be written as

=~ g

7= {/1 gk(r)gk(’r‘)’dr} B ./0‘1 ge(r)d(r) + 0y (1/ 1)

—C lJo

From this expression and (14) it follows that as ¢ — —oo RY has the limit

RY, = det { (vee) vkﬁmolS} . det { /0 1 gk(r)gk(r)'dr] / det [ /0 1 §k(r)§k(r)’dr] .

Now

{ / lﬁk(r)ﬁk(r)'dr} _ { / 1 gk<r>gk<r>fdr] . [( /0 1 gk<r>dr) ( / 1 gk<r>dr> ] PN

and det(Qr—hihl,) = det(Q) (1 — hyQp “hy) = {det [{/'01 gk(r)gk(r)'dr} } (1= h,Q5 ) -
Hence, R}, — 1/ (1 — thglhk) > 1. Induction shows that 1 — h%lehk =
1/(k +1)2, giving the stated result.
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