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1. Introduction. There has been much interest in nonlinear chaotic dynamics in economics
following the early work of Brock (1986). That deterministic systems can lead to very complex and
essentially unpredictable behaviour is an important finding for economics and raises many philo-
sophical as well as procedural questions. See the recent special issues of the Journal of Applied
Econometrics (1994, eds. Pesaran and Potter) and the Journal of the Royal Statistical Society,
Series B (1992) for excellent discussion, and LeBaron (1997) for a recent review of applications in
social sciences. We address purely the practical question about how to apply statistical inference to
a commonly used measure of stability when the data are generated by a stochastic mechanism.

The Lyapunov exponent provides some information on the stability (i.e., chaotic) properties of
a dynamic system. Indeed, as Nychka, Ellner, Gallant and McCaffrey (1992) say

A bounded system with a positive Lyapunov exponent is one operational definition
of chaotic behaviour.
Nychka et al. (1992) suggest a method, improving on an idea of Eckmann, Kamphorst, Ruelle, and

Ciliberto (1986), of testing for chaos based on estimating the Lyapunov exponent A using nonpara-



metric regression methods [see also McCaffrey, Ellner, Gallant, and Nychka (1992)]. Of course, for
purely chaotic series there is no way of evaluating the uncertainty surrounding that point estimate.
Many authors, however, have advocated including stochastic disturbances along with the chaotic
“skeleton” to reflect measurement error, unobservable quantities, and so on, see Cheng and Tong
(1992). With this addition, the usual rules of inference can in principle be applied. McCaffrey et
al. (1992) established the consistency of their nonparametric estimates of A for a stochastic system;
however, they did not establish the asymptotic distribution.

In this paper, we examine the asymptotic properties of a smoothing-based estimate of the Lya-
punov exponent for stochastic time series. Our focus is primarily on kernel estimates, because of their
theoretical tractability, but some of our results require less detailed specification of the smoothing
method used — in fact, only knowledge of its uniform rate of convergence is needed. We establish
the asymptotic distribution of our estimator of A under two sets of regularity conditions. The first
set of conditions could be considered fairly standard for stochastic time series models, at least in the
one-dimensional case. In this case, we obtain root-1" consistency [where T is the full sample size] and
asymptotic normality. Unfortunately, these conditions exclude many chaotic processes [as defined
below| because they essentially exclude the first derivative of the regression function from passing
through the origin, a feature which must hold for a bounded but explosive process. We therefore
give a second set of regularity conditions that are considerably weaker in this regard and in fact can
be verified for the univariate Feingenbaum mapping, a standard example of a chaotic process. The
price we have to pay is that we can obtain only root-n convergence, for a procedure that averages
over only a subsample of size n [the magnitude of n is determined by the rate of convergence of
the nonparametric estimation but also by the properties of the process near the interior maxima or
minima of the regression function]. The subsample results require only that the smoothing procedure
converge in probability uniformly with a certain rate, and thus can be applied more generally to the
neural net and spline methods used elsewhere in for example Nychka et al. (1992) and Gengay and
Dechert (1992). We give results both for the univariate and multivariate case, although an addi-
tional complication occurs in the proofs for the multivariate case, which necessitates less transparent
regularity conditions.

As in other semiparametric estimation problems, we expect that the first order asymptotic
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variance of the estimate is independent of the smoothing method, see Newey (1994), and that choice
of smoothing method is only a second order issue. Nevertheless, it can be extremely important in
practice, especially when the full sample is used .

The Lyapunov exponent can be interpreted within the standard nonlinear time series framework
as a measure of local stability, see Tong (1990, p309), and is of interest even outside of any direct
connection with deterministic chaos theory per se. We would like to make clear that our work does
not bear on how A should be interpreted. We merely provide rules of inference that apply under
certain probabilistic regularity conditions. Whether chaotic dynamics exist in economics data is an
empirical question, which we hope our methods can help answer.

Notation. Let p = (u1, ..., ) denote a k-vector of non-negative integer constants. For such a

vector, define || = S8 | i, 2# =T[5, 2 for z = (21,. .., 2) €R* and
oHle(2)
Dre(z) = 0z, .. 0z

for any real function c¢(z) on R¥. When u denotes a scalar constant, as is the case when k = 1,

we define D*c¢(z) to be the p-th order derivative of ¢(-) evaluated at z with the convention that

D°(z) = ¢(z) and D'c(z) = De(z).

2. Estimation. Consider the following difference equation

(1) Xt:mo(Xt_l,...,Xt_k), t= 1,...,T,

where mg: R¥ —R is a nonlinear dynamic mapping. The model (1) can be expressed in terms of a

state vector Z, = (X;,..., X; 1) €RF, and a function M: RF —R* such that
(2) Zt:M(Zt_l) for t:17,T

Let J; be the Jacobian of the map M in (2) evaluated at Z;. Specifically, we define

Amy Amy Amkq,t Amyy
1 0 0 0
(3) Jy 0 1 0 0
0 0 1 0 |




fort =0,1,...,T—1, where Am;; = D%mgy(Z;) for j=1,...,k inwhiche; = (0,...,1,...,0) €R”

denotes the j-th elementary vector. The dominant Lyapunov exponent is defined as

T
a.s. . 1
(4) A= Jim —n 17|
=1
where ||-|| is any matrix norm. This definition is now standard in the literature, see Nychka et al.

(1992). When A > 0, the series appears to the eye to be essentially random, and is very sensitive to
initial conditions — even a very tiny difference in initial conditions lead to very large differences in
the subsequent trajectory.

In earlier work this definition was applied to purely deterministic systems and is still used in this
way for much work in the physical sciences. For many time series, especially perhaps those of interest
to economists, it may be desirable to include a stochastic disturbance because of measurement error,
unobserved quantities and so on. Thus we consider the extension to allow for error as in Cheng and

Tong (1992), for example. In the first case, called system noise, we have
(5) Xt:mO(thl,...,Xt,k)—l—E‘t, t = 1,...,7ﬂ7

where {&;} is a sequence of random variables with mean zero and variance o2, and mg is now an
unspecified regression function. The model (5) can be expressed in state space form as in (2) with the
addition of the error vector U; = (g,0,...,0)" € R¥. An alternative model here, called measurement

noise, is that X; is defined in (1), but that we observe
}/;‘/:Xt"i_gt; tzl,...7T,

with €, as in (5).! In this case, we can find an mg for which (5) holds with X replaced by the
observed data Y, so there is not really any loss of generality, for our asymptotic results, in restricting
attention to (5). Furthermore, Nychka et al. (1992) argue in favour of the system noise specification
for economics data, and we therefore concentrate on system noise in the sequel.

The stochastic system can exhibit chaotic behaviour, i.e., sensitive dependence to initial condi-

tons; obviously so when o — 0, but true even for moderate ¢.? For stationary linear autoregressions

1 See Gengay and Dechert (1992) for a slightly more general set-up.
2As 0 —0, Ay — Ao.



A < 0, while for the unit root process A\ = 0. For explosive autoregressions A > 0, but these series
torque off to infinity. Chaotic series are bounded processes with A > 0. Their explosiveness is local
in nature, and the series is kept bounded and even stationary.

Let m(-) be a consistent smoothing-based estimate of mqg(-). Suitable estimation methods in-
clude: kernels, nearest neighbors, splines, series, local polynomials, neural nets, see Hardle and
Linton (1994) for a general discussion, and Nychka et al. (1992) and McCaffrey et al. (1992) for con-
siderable practical advice on how best to implement some of these methods for the specific purpose
of estimating A\. We now define our estimator of A\. We first select a subsample of values at which
to evaluate m(-) [the estimate itself will be computed with the full sample]. We assume that Z, is
supported on a bounded set Z and that 0Z is its topological boundary, and trim out observations

too close to this boundary; specifically, we keep only the T™ sample values that satisfy

(6) inf d(Zt, Zo) 2 dT,

20€0Z

for some data-dependent distance function d(-,-) and trimming sequence dr > 0. From this trimmed

sample we select a further subsample of evaluation points of size n(7T*) < T*, and for notational

simplicity we let these observations be Z;, t = 1,...,n.> We now let
(7) oL f[ J, h
=~ w_t|l , where
- t
t=1
Amyy Ay Amk—l,t A

1 0 0 0

(8) Ji=1 0 1 0 0 |,
0 0 1 0 |

where, Am;, = Dm(Z;) for t =0, 1,...,n — 1. This estimator can generally be computed fairly

cheaply for moderate k& and small n. For notational convenience we have just taken the first n

3 Under our assumptions, we have T* /T — 1 and n(T*)/n(T) — 1; we will not distinguish between quantities based

on T and those based on T™ unless necessary.



observations, but more general “blocking” schemes [for selecting a subsample of size n| could be
employed; in fact, it is generally advisable to take equally spaced observations. See McCaffrey et al.
(1992) for a discussion on the “optimal” choice of n in practice.

For some of our results we use a kernel estimator m(-) of mg(-), which is defined as follows

9) m(z) = 9() , where

_ 1 &
p— —_— t* .
Zr TZZ 1

t=1

~

Derivatives of m(z) and f(z) provide suitable estimates of the corresponding derivatives of m(z) and
f(2). The kernel K(-) is a non-random real function on R*, and the bandwidth parameter by is a
positive constant or scalar random variable satisfying the assumptions below. The data dependent
scale matrix €2 is used to obtain invariance of the estimator under one-to-one transformations of the
form Z, 1 — BZ; 1 + vy, where B is a nonsingular k£ X k& matrix and v is a k-vector, see Bierens
(1987) for further motivation. We use the class of kernels, denoted Ky 4, defined for non-negative
integers, k, 6, and v, introduced in Andrews (1995). A complete definition is given in the appendix,
and here it suffices to note that k is the dimensionality, the vector ¢ is the order of derivative being
estimated, and v(> ¢) the number of zero moments of K, i.e., its order. See Andrews (1995) for
more discussion and examples of these kernels. The main reason for using this particular smoothing
method is theoretical, some useful results we need are only available for this method, as far as we

are aware.

3. Asymptotic Properties.



3.1. The Case k=1.

Our main result is for the scalar case, k = 1. The asymptotic behavior of \ for general k > 2
will be discussed later.

Note that when k = 1 we have Z, = X;, J, = Dmy(X,) [defined in (3)], and J, = Dm(X,)
[defined in (8)] for all ¢. In this case, we replace Z = X, and take d(z,y) = |z — y|. Hence the

expressions (4) and (7) of section 2 simplify as follows:

(11) A= lim —Zln Dmy(X¢—1)*] and

T—o0 2 T

(12 . Z (X 1)) Lo

where 1, = 1 if inf, cox |Xi—1 — 79| > dp, and 1, = 0 otherwise.? This representation of A and
h\ emphasizes the mathematical connection with the problem of estimating average derivatives, see

Hérdle and Stoker (1989).

When we take n = T, we impose the following assumptions:

ASSUMPTION A.
(1) (a) {X; : t> 1} is a sequence of strictly stationary strong mixing random variables with
mixing numbers of size —2r/(r — 2) for some r > 2.5
(b) Forallt > 1, X, lies in an open bounded set X (C R ) with minimally smooth boundary
denoted 0X.
(c) {e; : t > 1} is a sequence of martingale differences with E(s; | F-.l) = 0 a.s. and
E (|5t|2r) < oo for all t > 1, where F! = 0(X, ..., X;) is the o-algebra generated by
(X5, Xy).

4 Note also that

T
a.s. . 1 2
AE N o=y I [Dmo(Xe1)?] 1o,
t=1
i.e., trimming has an asymptotically negligible effect.

5 See Appendix for the definition of strong mixing random variables.
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(2)

(a) The distribution of X} is absolutely continuous with respect to Lebesgue measure with

density f(z) for all ¢ > 1.

D f(z) exists and is continuous on X and sup,., |D* f(z)| < oo for all g with p <
max{w, ¢+ 1} where w > 2 and ¢ > 1 are positive integers that also appear in the other
assumptions below.

(i) The density f(z) > 0 for all z € X. Furthermore, there exist strictly positive

constants A, A, o, and A such that A < |z —z,| "¢ f(z) < A for all z, € 9X and

all z such that |z — 2| < A.

.. 2r/(r— 2m x x
(i) [ Jo(@)P"/" " f(z)dz < oo, where v(z) = Zrelt, DI

DFmy(z) exists and is continuous on X and sup,.y |D*mg(x)| < oo for all p with

p < max{w,q+ 1}.

E (|In | Dmo(Xe—1)|[*") < oc.

(miny<i<p [Dmo(X,-1))™" = O,(1), |Dmg(z)] > 0 for all zp € X, and
E [|Dmo(Xe-1)| "] < 0.

K() € Ki1w ) Kigiig1-

The data-dependent bandwidth parameters {ZT : T > 1} satisfy C1byr < ZT < Cybyr
with probability tending to one for some sequences of bounded positive constants {b;y :
T > 1} and {byy : T > 1} and some positive finite constants Cj, Cy that satisfy:
(a) T%b;rl;x{4vq+2}d:r;1aX{6vfI+3}9 — o0; (b) b’»;;(q+1)d;(q+3)9 — 0; (c) T%bgTd;69 — 0;(d)
bf%bg)Tdfg — 0; (e) the trimming sequence dr satisfies dy > Chbor, Td2T+29 — 0, and

d%g/blT — 0.

The martingale difference assumption for the noise (Assumption 1(c)) is more general than the

ii.d. assumption that been assumed in much of the previous chaos literature, e.g., Nychka et al.
(1992) and McCafrey et al. (1992). This assumption allows the distribution of the noise to be state
dependent. In this case, it is possible for a noisy chaotic process to be both stationary and stay
inside its basin of attraction, provided the support of noise is sufficiently small (see Chan and Tong

(1994) among others for this point).

Our assumption A2(c)(i) is that the marginal density f(x) is zero at, and only at, the boundary
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points, and that the rate of convergence to zero is controlled by the parameter p. This type of
assumption has been used before in the context of average derivative estimation, see Hardle, Hart,
Marron, and Tsybakov (1992, p223). The bounded support assumption is quite strong. However,
the formula for the asymptotic variance of our estimator is finite for positively dependent Gaussian
autoregressions, so we expect that our result holds more generally. Assumption A2(c)(ii) requires
that o+ 1> 2r/(r — 1).

The main substantive restriction is given in A3(c), which is slightly weaker than the requirement,
that Dmg be bounded strictly away from zero. This condition is not satisfied by any univariate
chaotic process that we are aware of. However, it does include a large range of other processes such
as first order linear autoregressions with a non-zero coefficient, and other nonlinear processes.

In Assumption A1(b) the set X’ is assumed to be some open bounded subset of R with minimally
smooth boundary. Examples of sets with minimally smooth boundaries include open bounded set
that are convex or whose boundaries are C'! -embedded in R. Finite unions of the aforementioned type
whose closures are disjoint also have minimally smooth boundaries. Assumptions A2(b) and A3(a)
imposes smoothness on f(-) and myg(-). These conditions are needed to ensure that the realizations of
m(-) are smooth with probability tending to one and therefore the stochastic equicontinuity condition
can be verified. This condition is used in the stochastic equicontinuity based proof considered here
(viz., Theorem 7 of Andrews (1989)). The use of higher order kernels K (-) (Assumption A4) is due to
the need to establish the T convergence of the kernel estimators [see Lemma 1(a)-(b) in Appendix]
for some sufficiently large x > 1/4, and in particular to reduce bias. Assumption A5 allows for data-
dependent methods of choosing bandwidth parameters including cross-validation, generalized cross-
validation, and plug-in procedures. The assumptions for the bandwidth and trimming parameters
are compatible if w is sufficiently large.

On the other hand, when we use a subsample of size n (< T') to estimate /A\, we use the following
alternative assumptions:

A2(b)* D* f(z) exists and is continuous on X and sup,cy |D* f(x)| < oo for all p with p < w
where w > 2 is a positive integer.

A2(c)* The marginal density f satisfies inf,cx f(z) > 0.

A3(a)* DFmg(x) exists and is continuous on X and sup,., |DFmg(z)| < oo for all p with
9



B< w.
A3(c)* M,, = max;<i<p (|Dm0(Xt_1)|71) = (minj<s<,, | Dmo(Xi—1)|) "' = Op(n?) for some ¢ >
0.

A" K(+) € Ki1-

A(5)* The data-dependent bandwidth parameters {/b\T : T > 1} satisfy Cibyr < /b\T < Cybyr with
probability tending to one for some sequences of bounded positive constants {by : T > 1}
and {byr : T > 1} and some positive finite constants C;, Cy that satisfy: (a) T%*“b%Td‘Q"’ —
oo; (b) T“bggld;gg — 0; (c) the trimming sequence dr satisfies dr > Csbor, Td?ﬁQg — 0 for
some 0 < Kk < %

A(6)* n — oo and n = O(T%).

Our new assumption A2(c)* that X; has positive density on its bounded support strengthens
A2(c). It is perhaps strong in relation to some previous work on nonparametric and semiparametric
estimation in time series, see for example Robinson (1983), Andrews (1995). We have made it here
because the boundedness assumption is frequently assumed in the chaos literature, see Nychka et al.
(1992), see below for a chaotic process that satisfies this condition.

*

Assumption 3(c)* is considerably weaker than assumption 3(c). It is one of the subjects of
extreme value theory whose mathematical study was initiated by Gnedenko (1943), and can be easily
understood in the context of i.i.d. random variables. Suppose that Y7,...,Y,, are i.i.d., then what

magnitude can we expect for the random sequence (min<;<, [¥;|)™'? We have for any 0 < € < oo,

Pr< 1 < 6) = (1= Be(e'n) + Fy(—n=%)}"

n?miny <<, |Y;| ~
_ 1— 5”_6) "
n
(13) — et

Y

where by Taylor expansion

&ule) =n{Fy(c 'n %) — Fy(—e 'n %)} =2fy(0)e ' +0(1)
10



provided ¢ = 1 and 0 < fy(0) < oo. Here, Fy and fy are the cumulative distribution function
and density of Y;. Therefore, M, = (nmini<;<, |Y;|)”" = O,(1) and in fact converges in law to an
extreme value distribution. In the dependent [strong mixing] case, the same rates and indeed limiting
distributions apply under a certain additional condition on the tails of the joint distributions, called
Watson’s condition after Watson (1954), see the recent review paper by Leadbetter and Rootzén
(1988). Specifically, if convergence holds for the associated i.i.d. sequence }A/; that has the same mar-
ginal distribution, and if the Watson condition holds, then the rates of convergence and asymptotic

~

Y;- 6

—_~ —_~ _1
distributions of M,, and M,,, where M,, = (n minj <<, ) , are the same.

In our case, we associate Y with Dmg(X). We therefore expect that assumption 3¢* holds with
¢ = 1 for chaotic Markov processes, since, as we have assumed, they typically have positive density

throughout its support. For example, consider the [zero noise| univariate Feingenbaum mapping

(14) Xt - 4Xt_1(1 - Xt—l)-

The stationary ergodic density for this process is the well-known arcsine law f(z) =1 / \/m
on [0, 1], see Tong (1990, p60).” This is strictly positive at the point x = 1/2 at which |Dmg(z)| = 0,
so the “associated” i.i.d. sequence satisfies assumption 3(c)* with ¢ = 1.

When ¢ = 1, the rate of growth of n compatible with assumption A6* is O(T?/3), where & is
the rate of convergence of the nonparametric estimator. The best one can hope for here, therefore,
is an expansion rate of n close to O(T"/3), which means that A would be (close to) T%/¢ consistent.
The rates improve when ¢ is smaller.

For the process (14), assumption 3(b) is satisfied for any r. For r = 3, for example, we have

1
d
E (Jln [Dmo(X,_0) ) = / (In |4 — 82)° —2 _ 117.04.
0 m2x(1 — z)
One last issue, which we partially address, is that our assumption 2(b) can exclude some chaotic

processes. Namely, in the zero noise Feingenbaum mapping f(0) = f(1) = co. This boundedness

6 Watson (1954) showed this result for m-dependent sequences, while Loynes (1965) extended this to strong mixing

sequences.
7 Although this process is deterministic, expectations can still be given meaning by interpreting them as integrals

with respect to f. Furthermore, the process with a small amount of system noise is genuinely random but can be

expected to have stationary density close to f.
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assumption for the density has been widely made in previous work in this field, see for example Cheng
and Tong (1992, Appendix A), but we believe it is not crucial. The main use of this assumption in
our analysis is to establish the uniform consistency of the nonparametric estimates, for which purpose
this assumption has been universally made, see Andrews (1995) and Masry (1996) among others.®
Intuitively, however, an infinite density can be expected to improve the rate of convergence for a
regression function estimator, because inside a given window width, there will be more observations
at such poles. Recent work by Hengartner and Linton (1996) has established the superior pointwise

rates of convergence in such problems.

Let
P li E z”: d
= lim var |— | an
1—00 _\/ﬁ p— t
- -
(15) ®;, = lim var |— nil, 7=1,2, where
J n—00 _\/ﬁ ; Jt

M = M+ N N = v(Xe_1)e; and ny = In|Dmo(X;_1)| — A

We now have the main result of this paper.

THEOREM 1. (a) Suppose that Assumptions A1-A5 hold with n = T. Then, we have
VT(A = \) = N(0,®).

(b) Suppose that Assumptions A1, A2(a), (b), (c)*, A3(a)", (b), (c)*, A4*,and A5" hold andn satisfies
A6*. Then, we have

V(= A) = N(0, D,).

REMARKS:
1. This answers conjectures 3.2 and 3.3 of McCaffrey et al. (1992) in the affirmative, namely

that root-n convergence is to be expected.

8 Uniform convergence results for series estimators, like Newey (1995), typically have been shown using “higher-level”
conditions that depend on the marginal density in a complicated way, and which most likely require this assumption

also.
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2. The result of Theorem 1(b) can be straightforwardly extended to the cases in which X is based
on nonparametric estimates other than the kernel estimate. This is because an inspection of the proof
of Theorem 1(b) shows that the argument goes through for any nonparametric estimator Dm(-) of
Dmy(-) provided it is uniformly consistent at the 7% rate for some 0 < k£ < 1/2 (see equation (A.28)
in Appendix). In these cases, one can replace the assumptions that we use to ensure the uniform
convergence of the kernel estimates (see Lemma 1 in Appendix for the list of such assumptions) by
alternative assumptions depending on the choice of smoothing method. For local polynomial and
series estimators one can find such conditions in Masry (1996) and Newey (1995), respectively.

3. It is evident from (15) that the choice of which particular size n triangular array subset affects
the resulting asymptotic variance. In practice, it is advisable to take observations equally spaced so

as to minimize their mutual dependence.

We next discuss estimation of the asymptotic variance. The proof of Theorem 1(a) consists in

establishing that
1 X
VIO =) = —= n +0,(1),

and T1/2 Z?zl 71, satisfies a central limit theorem. In fact, 7, is a stationary and mixing sequence

with mean zero. Likewise, in the proof of Theorem 1(b) we show that

ViR~ ) = %;ﬂ;nwopm.

This structure can be used now to apply standard methods for estimating asymptotic covariance
matrices, which have been developed in, inter alia: White (1984), Gallant (1987), Newey and West
(1987), Andrews (1991), Andrews and Monahan (1992), Hansen (1992), and DeJong and Davidson

(1996).
Define
N n—1 . N n—1 .
o = .Z k(é)ﬁ(]’) and &, = ’Z k(é)%(]’),ﬁzl,zwhere
j=—n+1 j=—n+1
. I B
(16) 7(]) = n NeNe—|55 W(]):Z Z NetNe,t—| 35|
t=l4+1 =g+
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. P D*n(X,s)  Df(Xi) .
e = ‘X“)}{[DWXH)P [pmxt_mﬂxt_l)}l“

Mo = {In[DA(X; 1) = A} L and i = f + e
Here, k(-) and S,, denote a kernel function and a lag truncation parameter respectively. Under the
conditions of Theorem 1(a), we use ® withn = T, whereas we use &, with n < T under the conditions
of Theorem 1(b).
For the consistency of the estimators ® and </I\>2, we impose the following assumptions on the

kernel function and the lag truncation parameter:

ASSUMPTION S.

(1) k(-) belongs to the following class

Ki = {kz ‘R — [-1,1] | k(0) = 1,k(—x) = k(z) Yz € R, /OO k*(z)dr < oo,

o0

k(-) is continuous at 0 and at all but a finite number of points} .

(2) S, satisfies S,, — oo and S,,/n — 0.
We also use the following bandwidth conditions:

A5 The data-dependent bandwidth parameters {/b\T : T > 1} satisfy Cibip < /b\T < Csobor
with probability tending to one for some sequences of bounded positive constants {by7
T > 1} and {bsr : T > 1} and some positive finite constants C;, Cy that satisfy: (a)
TY2pex et gitatate oo . (b) b9 2y MY 0 (¢) the trimming sequence dy

satisfies dp — 0.

COROLLARY 1. (a) Suppose that Assumptions S, A1-A4, and A5* hold with 2r/(r—2) in Al(a),
max{w, ¢+1} in A2(b) and A3(a), and K1 1. () K1 g+1,4+1 in A4 replaced by 3r/(r—2), max{w, g+2},

and Ky g42 g+2 respectively.  Then,



(b) Suppose that Assumptions S, A1, A2(a), (b), (c), AS3(a)", (b), (c)*, A4*, and A5* hold with
2r/(r —2) in Al(a) replaced by 3r/(r — 2) and n satisfies A6*. Then,

62 —p (I)Q.

REMARKS:

1. Compared to Theorem 1(a), Corollary 1(a) imposes weaker conditions for the kernel function.
In particular, no higher order kernel is now needed for consistent estimation of ®.

2. The proof of corollary 1 requires an extension of Andrews (1991, Proposition 1) to allow
for residuals derived from nonparametric smoothing procedures [and to deal with certain specific
features of our data generating process in part (b)].?

3. Regarding practical implementation of the above procedure we refer the reader to the above

cited papers, and Andrews (1991) in particular.®

3.2. The General Case k >1.
We now discuss the extension of the results in section 3.1 to the case in which k£ may be greater

than one. The central technical problem here is that

n

H Jnft

t=1

2 n
(17) In #> I,
t=1

as was the case for k = 1. This makes the argument much less transparent. We shall consider two
cases: (a) when n is small relative to 7" and (b) when n = 7' In the latter case, stronger unverifiable
assumptions are required, while the former case permits weaker standard conditions although results
in slower rates of convergence. The rate of convergence to a normal distribution is n'/? as is to be
expected from section 3.1.

9 An alternative bootstrap approach to computing standard errors has been proposed in Gengcay (1996), but nothing

has been established about its asymptotic properties.
10 There is a commercially available sweet of programs in the Gauss language, see Ouliaris and Phillips (1994), that

can perform many of the bandwidth selection and other procedures defined in Andrews (1991) and the other references.
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We first introduce more notation. Define

O [|TTy Sl

(18) Ft(‘]nfla 7JO) = GAm(Zt)’

(19) Fo(2) = E{Fa(Jpr,.. o Do) Ze = 2} = (Fra(2), .., Fu(2))
_ Ty Jull

(20) Qis(Jn-1,-..,Jo) = aAm(Zt)aAlm(Zs)” and

(21) Am(Zt) = (Amlt, Am2t7 e ,Amkt)l .

Define also

(22) Gr = —%Zv(zﬂ)et

=1
] T
2 T el - A] ,
t—1
where v(Z;_1) = Z?Zl D% {Frj(Zi—1)f(Zi-1)}/ f(Zi-1) . To determine the trimming, we take d(z,y) =

. 1/2
{x’ﬂ_ly} .

We make the following assumptions.

~

(23) Grs = VT

ASSUMPTION B.
(1) (a) {X; : t> 1} is a sequence of strictly stationary strong mixing random variables with
mixing numbers of size —2r/(r — 2) for some r > 2.
(b) Forallt > 1, X, lies in an open bounded set X (C R ) with minimally smooth boundary
denoted 0X.
(c) {&; : t>1}areiid. with E(s; | Gl) =0and E (|5t|2r) < ooforallt > 1, where Gt =
o0(Zs,...,7Z;) is the o-algebra generated by (Zs,...,Z;) and Z, = (Xy, ..., X g11).
(2) (a) The joint distribution of Z, € R is absolutely continuous with respect to Lebesgue
measure with density f(z).
(b) D*f(z) exists and is continuous on Z = X x --- x X and sup,.z |D*f(z)| < oo for all
p with |p| < max{w,q+ 1}, where w > 2 and ¢ > k/2 are positive integers that also

appear in the other assumptions below.
16



()

(i) The density f(z) > 0 for all z € Z. Furthermore, there exist strictly positive

constants A, A, o, and A such that A < ||z — 2| % f(2) < A for all z, € 0Z and

all z such that ||z — z|| < A.

(ii) [ |v(z )P f(2)dz < oo

DFmy(z) exists and is continuous on Z and sup,.z |D*mg(z)| < oo for all p with
|| < max{w, g+ 1}.

K(-) € Kraw Krgrigr

Amin {\F(Zi 1 — EZy 1)(Zy 1 — EZ; 1)} > 0.

The data-dependent bandwidth parameters {ZT : T > 1} satisfy C1byr < /l;T < Cybyrp
with probability tending to one for some sequences of bounded positive constants {b;r :
T > 1} and {byy : T > 1} and some positive finite constants C7, Cy that satisfy: (a)
T4 bmax{Q(k+1),q+k+1}d$ax{6,q+3}g — o0; (b) ba;T—(qH)d;(qH)g S 0; (¢) THbEd% — 0;(d)
bbspdy 0 (e) the trimming sequence dr satisfies dr > Caobar, Td%Hg — 0, and
dT /b1 — 0.

IS E(Jrte- o o) = E [ (o - -, J0)|GH7 Y] || = Op(T 1) for some non-
negative integers [,m < oo.

sup,cp sy B (| Fi—1(Jr-1, ..., Jo)||") < oo and supyps, [Fr(z)| < oo for all 2y € 0Z.
S S Qus(rts -, Jo)ll = Oy(1).

For some 2 x 2 positive semi-definite matrix =, Gp = (G, G) = N(0,Z).

Assumption B6(a) is trivially satisfied for the case k = 1, since in this case F; 1(Jr_1,...,Jp) =

1/Dmgy(X,_1) and hence one can take | = m = 0 and G7"7' = G/ = 0(Z,_1) = o(Xi_1).

Assumption B6(b) and (c) are also satisfied for the case k = 1 under Assumption A3(c), because in

that case we have

and

sup FE [HE—I(JT—M ey Jo)HT] =F [|Dm0(Xt_1)|7q 3

<T,T>1

sup | Fr(zo)| = [Dmo(zo)|
T>1

1 o :
?;g\QmJT L)l =5 Zm

17



However, for the case k > 2, the Assumption B6 can be restrictive when n = T', at least it is hard
to find more primitive conditions that would justify this assumption, except when my is linear — in
this case, F; is constant with respect to t and Q;; = 0.

Assumption B7 is satisfied for G by a central limit theorem for strong mixing random variables

for any k. In the case k = 1, it is satisfied for G2, and in fact jointly for (G, Gr2), because then

1. 1T 1
fthIhZM—Alz 7 2 I Dma(X1)| = .
t=1 t=1

For k > 1, the asymptotic normality of G- follows by some results of Furstenberg and Kesten (1960).

Letting

t=s—1

m@ILhMHHhM)

where {&; }le is a sequence of stationary and asymptotically independent scalar random variables,

we can write

> -

t=1

1 T
T In || H Jril| — A]
=1

11

MH

and apply their central limit theorem.
On the other hand, when we use a subsample of size n (< T') to estimate /A\, we use the following

alternative assumptions:

B(2) (a)" D*f(z) exists and is continuous on Z and sup,, |D*f(z)| < oo for all g with pp < w
where w > 2 is a positive integer.

(b)* The marginal density f satisfies inf,cz f(z) >0

B(3)* D#mg(z) exists and is continuous on Z and sup,.z |D*mg(z)| < oo for all p with |u| < w.

B(4)* K(-) € Ki1.-

B(5)* The data-dependent bandwidth parameters {/b\T : T > 1} satisfy Cibip < /b\T < Cobar
with probability tending to one for some sequences of bounded positive constants {b;7

T > 1} and {bsr : T > 1} and some positive finite constants C;, Cy that satisfy: (a)

11 See the remark after Theorem 3 in Furstenberg and Kesten (1960).
18



T%*”bf;ld@ — o0; (b) T“bgjfld;gg — 0; (c) the trimming sequence dy satisfies dp > Cobor,
Td3"*¢ — 0 for some 0 < k < 1.

B(6)* maxi<i<n ||Fi—1(Jn-1,- ., Jo)|| = Op(n?) for some ¢ > 0.

B(7)* For some =g > 0, Gz = N(0,Z9).

B(8)* n — coand n = O(T%).

THEOREM 2. (a) Suppose that Assumptions B1-B8 hold. Then,
VT(X = A) = N(0,d'Za),

where a = (1,1)".
(b) Suppose that Assumptions B1, B2(a), (b)*,(c)*, B3 ,B4(a)",(b), and B5*-B7" hold and n
satisfies BS*. Then,

V(A = A) = N(0,Ex).

When we use the full sample result of Theorem 2 (a) (i.e., n = T'), we use the same estimate ®,

of the asymptotic covariance matrix defined in (16) above, except that

~

Et 3 M =& — A,

(24) Mt = f ZDeJ { (Zia J?(Zt—l)}

where

0In HH?*I ot 12

= In (H H Jn al HHJn tH) ;o Fie= 8A;ﬁ»t
J

t=s—1

Here, ﬁ]() is the kernel estimate of the regression function F,,;(-) obtained by smoothing ﬁﬁ against

Zy_y. If, for example, ||-|| is the Euclidean matrix norm, i.c., |C|| = tr (C"C)"? for any matrix C, we
have
1 _0Ap 0A,
F; Ol [Ty Jn- el {AnaAmJt + ‘%mﬁAn} =1 k
it = OAM D) y J=14 ...,
Jt 2||Ht:1 Tt

12 Note that the trimming is implicit here, and is reflected in the smaller sample size T*.
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where A, = [[}; Ju—t, and

3An n—t—1 8Jt t
= T Jis |-
dAmy, ( 11 t) dAm;, 117
s=1 s=0
The matrix 0.J;/0Am, consists of either zeros or ones. Therefore, ﬁj,t can be calculated analytically

using these expressions, although it is considerably easier to use numerical derivatives. On the other

hand, when n < T, we can drop the first term in (24) and use 7y = 55 2\

4. Numerical Results. We first analyze how our procedure works on the following AR(1)

process,
Xy =pXi1+uw 5w~ N(0,1),

for which A = In|p| and ® = (1 — p?)/p?. We conducted simulations of our procedures for estimating
A and ® when k& = 1.1% We used the analytic first derivative of the estimator (9) with a quartic kernel
K(u) = 15(1 — u®)?1(Ju| < 1)/16 and bandwidth h = ~ % range { X, },_, , where v € {0.2,0.3,0.4}.
No trimming at all was used. A total of 1000 replications were used for each experiment. We take
p € {0.5,0.7,0.9,0.95,1.0}, n = T € {100,200, 300,500}, and first report the mean, median, and
standard deviation of \.
***k TABLES 1,2,3 HERE ***

There does appear to be a substantial small sample upward bias; although this improves with band-
width and sample size, so that when n = 500 and h = 0.4 X range the estimated X lies very close to
the truth. For this configuration, the standard deviation of the estimator is very close to the asymp-
totic standard deviation predicted by Theorem 1. In Figure 1 below we compare the finite sample
density [as computed by kernel method with Silverman’s rule of thumb bandwidth] with the normal
density that has the same mean and variance for one particular configuration. The distribution has
some skewness, but generally is close to normality.

13—Although this d.g.p. violates the assumption of bounded support, the asymptotic variance formula for this design
is finite. We have used exactly the procedure described in section 2, that is we did not trim out regions where the

marginal density was small.
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Fic. 1. Parameter values were: p = 0.9, T = 500, and v = 0.4. Solid line is empirical distribution of

standardized estimator, while dashed line is a normal distribution with same mean and variance.

We now turn to the standard errors. The second derivatives estimates appearing in the residuals
n: were computed using analytic second derivatives of the estimator (9) using the same bandwidth
used in estimating the first derivative. The covariance functions were weighted with Bartlett’s kernel
k(t) =1 — |t|. We just report the results for n = 500 and lag length S,, = 5. We also tried other lag
lengths but the results were very similar. We report two different estimates of ®1/2, $1/2 and ZI\)}/ 2
— we know that 79, = 0 here, because the mean is linear.

*HAHATABLE 4 HERE®**

There appears to be considerable dependence on h, but in any case small h does quite well for large
p=0.9,0.95. It seems that the infeasible @1/2 does much better for small p.

We next examined a univariate chaotic process, the Feingenbaum map with system noise:
Xt = 4Xt_1(1 — Xt—l) + o¢&y,
where ¢;/v; ~ U(—1,1) independent of X;, and

Ve = min {4Xt71(1 — thl), 1-— 4Xt,1(1 — thl)} .
21



This particular form of heteroskedasticity ensures that the process X; is restricted to the unit interval.
The parameter o was chosen to make the noise/signal ratio, as defined in Dechert and Gengay
(1992), lie in {0.005,0.007,0.010} .1* When o = 0, A = In2. We take v € {0.2,0.3,0.4} and T €
{100, 200, 300, 500} as before, and considered full sample estimation n = T and subsamples n = ¢TI/,
n = ¢T3, and n = ¢T'Y? with ¢ = 4.31 [the subsamples were chosen equally spaced]. A local
quadratic smoother [see Masry (1996] with a quartic kernel was used in the estimation of A and
in constructing 7y,. We again used the Bartlett kernel to weight the autocovariances. Again no
trimming was used. Our results do not change much with bandwidth or with signal to noise ratio,
so we only report the results for v = 0.2 and o = 0.005 for which A = 0.692.
4% TABLES 5 HERE ***

The estimates are close to the truth, although are rather noisy, especially for the small subsamples
[note that when T'= 100 and n = ¢T'V/%, then n is actually 9]. The actual standard deviations are in
quite close agreement with the values predicted by the asymptotic theory. One surprise here, is how
well the procedure works for the full sample case, which is not covered by our theory. The standard
€erTors, 65/ 2, were less successful when n was small, but appeared to do pretty well in the larger

subsample cases. In Figure 2 we give the finite sample distribution of ) for one configuration.

5. Conclusions. Our results have provided the basic tools needed to apply statistical inference
to the Lyapunov exponent computed from stochastic data. The main result, Theorem 1, confirms that
the subsample smoothing-based Lyapunov exponent estimate is asymptotically normally distributed
at rate root-n. The best magnitude we are able to allow for n is (close to ) T%/? for processes with
chaotic-like behavior. This clearly leads to very large data requirements in order to achieve desirable
accuracy in the estimation, requirements which are only likely to be met by certain financial time
series. However, when these data are available, our results permit standard rules of inference to
be applied, in particular the huge array of methods for estimating asymptotic covariance matrices
can be employed, and the practical advice given in, for example, Andrews (1991) can be used to
decide the implementation issues. In terms of the smoothing method used to estimate the regression

14 Specifically, the unconditional variance o2 of the innovation was calculated by simulating the series many times.

The signal to noise ratio is 0, /o0, where o, is the standard deviation of the system data.
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Fic. 2. Parameter values were n = 96, T = 500, and v = 0.4. Solid line is empirical distribution of

standardized estimator, while dashed line is a normal distribution with same mean and variance.

function, our results also leave much room for choice. At present, we are inclined to recommend the
procedures developed in Nychka et al. (1992) and Dechert and Gengay (1992), since they have been

well tuned to this particular problem.

A. Appendix. Let {X; :t > 1} be a sequence of rv’s and let F! denote the o-field generated
by (Xs,...,X¢). Define

(25) a(s)=sup  sup  |Pr(ANDB)—Pr(A)Pr(B)| for s > 1.

t21 AeF, BEFF,

Then, {X; : t > 1} is defined to be strong mizing of size —f3 if a(s) = O(s7?~*) for some ¢ > 0.

The class of kernels is defined as follows:

Kisw = {K() : [1,1]F =R | /K(z)dz _1, /z“K(z)dz —0

Vi<|u|<v—-6-1, /|z”K(z)|dz<oo‘v’|,u|:1/—6,
23



DMK (z) — 0 as ||z]]| — oo Vu with |p] < 6,
D" K(z) is absolutely integrable and has Fourier transform

W, (r) = (2m)" /exp(ir'z)D“K(z)dz that satisfies

/(1 + ||7]|) sup || ¥, (br)|dr < oo Vp with |p| <6, and
b>1

sup |[DFTS K (2)[(||2]] V1) < oo Vu with |pu| <6Vj=1,...,k,

z€Rk

where V' denotes the maximum operator and i = v/ —1} .

Below, for notational simplicity, we let C; for some integer j > 1 denote a generic constant. (It

is not meant to be equal in any two places it appears.)

PrROOF OF THEOREM 1. Define the interior region

XT:{$€X inf |.T—$0|ZdT}
ToEIX

and its topological boundary Xy, and note that 0X; is a finite set. Furthermore, inf, cox |z — 0| >
dy = f(z) > Ad% ie, Xp C{x e X: f(x) > Ady}. We first present a lemma that is used to prove

our main result.

LEMMA 1. Suppose that assumptions A1, A2(a)-(c), A3(a), A4, and A5 hold. Then, we have:
for p < w,
(8) sup,en, | D*fla) — D" ()| = Op(T~120" ™) + 0,05, ").

(b) sup,cx, |D*m(z) — DFmg(z)| = OP(T—l/zbl—T(uH)d;(Hu)@) + Op(b;”;“d;@”)g).

Proor oF LEMMA 1. The results of Lemma 1 follow directly from Theorem 1 of Andrews

(1995). It suffices to verify (Assumptions) NP1-NP5 of the latter paper. Note that NP1, NP2,
24



and NP3 are implied by (Assumptions) Al, A2(a)-(b), and A3(a) respectively with n = oo, § =,
and |A| = p and (Yyy, Xpv), fre(z) and gr(z) given by (X;, X;_1), f(x), and mg(z) respectively.
NP4(a) and (b) hold by A4. NP4(c) holds with Q defined in (10) with Z, ; replaced by X, ; and
Qp = var(X;_;) using Al and a central limit theorem (CLT) of Herrndorf (1984, Corollary 1) applied
to the strong mixing random variables {X; ; : ¢t > 1}. Finally NP5 is satisfied by A5. O

(a) By adding and subtracting terms, we have

(A.1) V?@—A)::21T§:lankﬁl)—JMDmd&1Dﬂh

T
}:1anoxgg)—2ﬁ1

=1

—%Z{l—h}

t=1

(AQ) AT + BT — CT, say.

Below we establish the following results:

1 T
(A.3) Ar = ﬁ;ﬁlﬂr%(l)
(A.4) Cr = op(1)

1 T
(A.5) Br = ﬁ;%tﬂL%(l)

The results (A.1)-(A.5) and an application of the CLT of Herrndorf (1984, Corollary 1) for strong
mixing random variables give the desired result.
We now verify (A.3). A two-term Taylor expansion of Ay (defined in (A.1)) about Dmg(X;_1)

gives:

T
1 Z 1
VT =1 Dmo(X;-1)

AT = [Dﬁl(Xt_l) — Dmo(Xt_l)] 1t
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5 [DA(X;_1) — Dmo(X,—1)]* 1,

Z [Dm* Xt 1)]

= AlT + A2T7 say,

where Dm*(X; 1) lies between Dmg(X; 1) and Dm(X; 1). We first consider Asr. We have

Au| < 1T%F Dia(e) - D <>ﬂ211ﬁ L
- u mi\xr) — maol\L f— _—
=2 weé\I-’)T ’ Tt=1 [Dm*(Xt—l)]z
1 2
AT < o0,(1) % -
( ) - p( ) (mln{tiXt1€XT} ‘Dm*(th)‘>
L>()7

where the second inequality follows by the uniform consistently results in Lemma 1(b) and the band-

width conditions in A5 and the last convergence to zero holds because (min{t: Xorexr} | Dm* (X ) \) 2

-1

O,(1) by A3(c) and Lemma 1(b). To see the latter, it suffice to show that (ming.x, ,ex,} |[Dm* (X 1)|)
= Op(1). For this purpose, choose first some ¢ € (0, 1). Note that there exists 0 < M. < oo and T3,

such that
1 M. €
A8 Pr( — e D R
(A8) (mm{t:Xt_leXT} |Dmo(Xe-1)| = 2 ) 2 '
by A3(c). There also exists T such that
. 1 €
(A.9) Pr ({t:X%?éCXT} |Dm( Xy 1) — Dmo(Xe1)| > ME> < 3 VT =T,
by Lemma 1(b). Therefore, for T' > max{Ti., Ts.}, we have
P ( ! <A4>
T ; = €
miye.x, cxr} ‘Dm*(thl)‘
1 M.
A.10) > Pr| — —
A0 > (e T )
1 M. 1
—Pr| — < —=% and > M.
(mln{t:XHeXT} [Dmo(X—1)| = 2 ming.x, ,ex;} [Dm*(Xe1)] )
€ 2
> 1—-=--—P i Dmo(Xi—1)| > d i Dm* (X
- 2 ' ({t:X{nirelXT}‘ mo(Xe-1)] 2 M. an {t:X{?irelXT}‘ m(Xi)
5
> 1—-=-—-P Dm™ (X, Dmo(X; i Dm™ (X, >
= 773 r({tXt max, 1P (Xey) = Dmo(Xe-y)| 4+ min,  [Dm*(Xiy JES:

1
d i Dm*( X, )| <
and = min o [Dm( H”—M)
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. R 1

> 1o 5 om0~ D) > )
€ 9

> 1l--c—-—-=1-c¢

- 2 2 :

Since the choice of ¢ can be arbitrary, we have the desired result.

We next consider A;p. We verify the following result:

1 ~
(A.11) Ay =T D) [Din(z) — Dmg(x)] f(z)dz + 0,(1).

To show (A.11), define an empirical process vy (-) by

(A.12) vp(r) = TZ r(Xi_1, 7) — Er(X,_1, )], where
"X 7) = e r(Xi).

and 7 € 7 for some pseudo-metric space 7 with pseudo-metric pz(-,-) defined by

1/2

(A.13) pr(res ) = { [ {rta ) vl )

Suppose 7 is an estimator of 7y € 7. It is well known that (see, for example, Andrews (1994, p.

2257))
(A14) VT(?) — VT(T()) L O

if (i) Pr(7 € T) — 1, (ii) pr(7, 7o) == 0, and (iii) {vy(-) : T > 1} is stochastically equicontinuous
at 7p. Therefore, the result in (A.11) holds by taking 7(-) = Dm(-) and 1o(-) = Dmy(+) if we verify
the conditions (i)—(iii) above, as is done below. Let 7 be a class of smooth functions; specifically,

for large C' < o0, let,

1/2
(A.15) T=a7(): (D] / (Dr(z))?dz | < C3,
jal<q 4T
where ¢ > 1 is a positive integer that appears in A2-A5. Note that 79(-) = Dmqg() lies in 7 by
A3(a). To show that (i) Pr(7 € 7) — 1, it suffices to show that 7(-) = Dm(-) has partial derivatives

of order ¢ on A7 that are bounded uniformly over X with probability tending to one. Note that the
27



latter holds by the uniform consistency result in Lemma 1(b) and A3(a). With the pseudo-metric

defined in (A.13), the condition (i) p7 (7, 7o) —— 0 holds since, for some positive constant C; < oo,

2 (7 = _ m(z) — Dmg(z)]? da
AE) = [ ot DRG) ~ Dmofe)]

2
< {sup |Dm(x) — Dmo(x)q (E|Dm0(Xt_1)|72) X irg ()
xEXT TEAT
2
(A.16) < (0Tt + 0,05 V™)) x O(dy)
250

where the second inequality holds by A2(c), A3(c) and Lemma 1(b). Now, the condition (iii) of
{vr(-) : T > 1} holds by the stochastic equicontinuity results of Andrews (1989, Theorem 7)
that are applicable to classes of functions that are products of smooth functions from an infinite
dimensional class and a single unbounded function. It suffices, therefore, to verify (Assumption) E
of the latter paper. E(i) holds by taking Wz, Wyre, 7a(+), 7(+), ma(Ware, 7a), and my(Wigs, 1) to
be X; 1, Xi 1, 1¢/Dmg(+), 7(-), 1;/Dmo(X; 1), and 7(X; 1) respectively. E(ii) holds by Al(b) with
Wi given by Xp. E(iii) follows by the definition of 7 in (A.15). E(iv) is irrelevant to our case. E(v)
holds since sup;~; £ |1;/Dmg(X;_1)|” < oo for r > 2 by A3(c). Finally, E(vi) holds by Al(a).
We now consider the first term on the right hand side of (A.11). We have

(A17)= —VT . -D (Dﬁ:&))} [m(z) — mg(x)] dz + VT Z (Dﬁ:&)) [m(z) — mg(z)]
(A18)= VT | :D ( Dﬂffgx)) f(lx) [{m(x)—mo(x)} f(x)} dz
T [ :D (Dﬁf()x)ﬂ [% _ %] [{(2) = mo(a)} F(z)] o

T Y (o) le) - molo)

LBGE)XT
* *ok kK
= Ajp+ Ajp + ATF, say,
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where the second equality (A.17) holds by integration by parts and the third equality (A.18) is
obtained by adding in and subtracting out a term. We first show that AjY. is 0,(1). We have, for

some positive constant Cy, C3 < 00

N[

A7l < T

(51 1760 = o)) (sup [Fio) - 100 )
(mf 2 )) x Cy (E [Dmo(Xi—1)| %)

xeXT
(A.19)
< THOUT byt ™) + Op(bpd; ™)) (Op(T2by) + Op(Bs)
x0(dy™)
20,

where the second inequality holds by Lemma 1, A2, and A3 and the last convergence to zero holds
using the bandwidth conditions in Ab.

We next consider Aj,. We write

_ I R N . o o
() = mo(@)) Fle) = = gK( = ){Xt o(Xi 1)} +
1 T - Z'—Xt 1
- Z::K<—bT ){mo<Xt1>—mo<x>},

and, letting v(z) = [D (f(z) /Dmq(z)) /f(x)], we have that

T

t=1

_ %im — mo(Xip)) /X o(2) R ("B_TX“) da

bT T

(A20) = —mo(Xe-1)} v(Xe1) {1+ 0,(1)},
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_ ﬁg Xi — mo(Xe_1)} [U(Xt )+ /X T {U(Xt_l—i-u/g:r)—U(Xt_l)}f?(u)du]
e



where the second equality follows by a change of variables z — u = (x — X} 1) //b\T, while the
third equality (A.20) is true by the following argument. First consider this term with deterministic
sequences by and Qp with C1byp < by < Cobyr and |Qp — Q| < ¢/ VT for any ¢ < oo. Then, since

X —mo(X¢_1) is a martingale difference sequence,

- (% ti (X, — mo(Xo)} MT (0(Xeor + ubr) — v(X,_1)} KT(u)dubg

= E ({Xt —mo(X;-1)}? {

X

{v(Xi1 +ubr) —v(X1)} KT(u)du} >

IN

" 2r/(r—1)\ ) 1/
(E (X, — mo(X)[7) VY {E ({ {0 ubp) — 0(Xi)} KT(u)du] )}

— 0,

where Krp(u) = det(Q) /2K (Q;l/ ?u). The inequality is due to Hélder, and convergence to zero
follows by assumption A2(c)(ii) using a well-known result for convolutions of functions in an L,—space
[p = 2r/(r — 1)], see Theorem 8.14 of Folland (1984). Using stochastic equicontinuity arguments as
above we can extend the result to bounded stochastic sequences /b\T and QT, where QT satisfies

‘SA?T—Q (AZ—Q)SC/\/T} can be

< ¢/V/T for some constant c. The result follows because Pr [

made arbitrarily close to unity by taking c large.

Furthermore,

VT 1 ZK( ) f(Xim) = (o)}

XT bt1

- VT [ g YR ( £ (Y1) = o)} S

XT

IN

VT ; [o()|” f(x)dz x inf f(2)

TEXT
T

X sup
rEXT

(A21) < VIO x 0,15

p
=0,
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where the first inequality uses the Cauchy-Schwarz inequality, while the second inequality in (A.21)
using similar arguments to Lemma 1 and the fact that [, lv(z)|? f(z)dx < oo, while the last conver-
gence to zero holds by the bandwidth conditions in Ab5.

We now turn to the boundary term Af%*. By the pointwise properties of kernel estimators [see

Hengartner and Linton (1996)],

s = VT Y (L

Dmy(z
:L‘EBXT

— VTO,(&) {Oyl3r) + 0T Vo0 %))

) (o) - moo)

(A.22)

p

by A2 and A5.
We next prove (A.6). Let ¢ > 0 be given. Since each term in Cr is positive, we have by the

Markov inequality,

E(Cr)

_ VT (1-Pr(X € &)}

Pr [CT > E] S

2
(A.23)
< gZd%ﬁg — 0,

provided that Td%”@ — 0 which holds under A5. The last inequality follows by our assumption

A2(c). In conclusion, Cpr = 0,(1) as required.

Proof of (A.5). Let 8 = [In(Dmgo(X;_1))? — 2\] (1 — 1;), then by A5,
VTE(8;) = o(1),

while

T 1T 5 T T
Z 6t] = 7 Z var(6;) + T Z Z cov (b, bs)
=1 =1 =1 s=1

st
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IIM%

ar(6,) +16{Za1/“ s)EY/® {\5\}}
s=1

(A.24) — 0.

The inequality follows by Theorem 3, part 1 of Doukhan (1994) provided 1/a+2/b = 1. Convergence

to zero then follows taking b = 2r — €/, for some € > 0, since
b 2 b+e€
Elal] < B [nDmo(X))? =22 B[(1- 1)

= O(d%FJrg)v

by the Hélder inequality and A3(b), while

T

T
Za(Qr—e’—Q)/(Qr—e’)(s) — Z 8—(27‘—6'—2)/(r—2) — 0,
s=1

s=1
taking € = ¢(r — 2) in the definition of mixing below (25). Note that var(6;) — 0 by dominated

convergence.

(b) By rearranging terms,

VA =2A) = —=) [In(Dm(X,1))* — In(Dmo(X,-1))?] 1,

(A.25) =3 [In(Dmo(X; 1))* — 2)] 1

A, + B, — C,,, say.

The arguments in (A.23) can be used to show that

(A.26) C, = o,(1)
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(A.27) B, = ﬁ ; [In(Dmo(X; 1))? — 2A] + 0,(1).

Therefore, Al(a) along with A3(b) gives

B, = N(0,®,)

by the CLT of Herrndorf (1984, Corollary 1). Now the proof of part (b) of Theorem 1 is complete

because
’An’ - Z;D Xt 1 (Xt 1) DmO(th)]‘
(A.28) < n2+¢{ sup |Dm(z) — Dmo(ac)@
a:EXT

X
<n</5 mln{fﬁthleXT} ‘Dm*(thl) ’ >

p
— 0,

where the equality holds by a one-term Taylor expansion of A, about Dmg(X; 1) (with Dm*(X; ;)

lying between Dmg(X; 1) and Dm(X; 1)) and the inequality and the convergence to zero holds by
Lemma 1(b) and A6* and A3(c)* because we then have T *n3+¢ = O(1) and (n? min <<, | Dm* (X;-1)]) =
O,(1) respectively (with the latter being verified using the similar arguments to those given in (A.8)-

(A.10) above). 0

PrROOF OF COROLLARY 1. (a) Define

. T
N i\, |
(A.29) o = ) k<5—> 10) 5 A0 =7 > s
j=—T+1 r t=l5/+1
Fo Y H(L)0 s A=k Y
= 5 )70 5 A0 =7 M1
j=—T+1 t=[j|+1

where 77, = 7,1, and 7, is defined in (15). Note that ® 2 & by the result of Andrews (1991,
Proposition 1) because Assumption A of the latter paper holds by Al(a) and Lemma 1 of Andrews
(1991). Furthermore, d—d Lo by dominated convergence. By the triangular inequality, therefore,

it suffices to show that ® — & 5 0.
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Define the process

(4.30) wir) = (250 pe

72(Xi-1)? N TQ(Xt—l)M(Xt_l)) (Xi = 75(Xi-1)) Ly

+ (ln |T2(Xt_1)| — )\) 1t
for 7 = (1,72, 73,74,75) € T*=T 1 X - -+ X Tz, where 7, = T (defined in (A.15) for i = 1,2,3,5
and T; C {7 : infacn, |ma(x)| > Ad2} . Let 7(-) = (D2*m(-), Din(-), Df(-), f(-),m(-)) and 7o(-) =
(D*myg(-), Dmgo(-), Df(+), f(-),mo(+))". Note that, with this definition, 7, = 1,(7) and 7, = n,(70)-

We now have

(A.31) g

IA

2

o

=)

=l

t}
—

=
gD

because (1/Sr) Z]_fTH k(j/Sr)| — [ |k(x)|dz < oo and

Sup () =)l

T
1 _ _
= swin 3 (@) = mlr)ey ()
t=|j|+1
. ) 1/2
A32) < 2 -
wm < 2(sw @ -l |7 725 |5l TZE‘;”% I (r ]
T 2
+ | sup ||T(x) — T su
mEEH 0 ) zl:TE’ZP* 87'77t ]
(A.33) = O (T V2b73d;™) 4 O, (b 2d ")
(A.34) =0,

as is required, where the first inequality (A.32) holds with probability that goes to one using the

fact that Pr(7 € 7*) — 1 [see the arguments following equation (A.15)]. The second equality
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2 _
37—7715( ) = Op(dT4Q)
n(7)||* = O,(d;*®) which hold by A3(c) and the definition of 7*. Finally, the

(A.33), on the other hand, uses Lemma 1 and the results that = Zt 1 SUP, 7

and 7 S SUp, g
convergence to zero (A.34) holds by A5.
(b) The proof of part (b) of Corollary is similar to that of part (a) using the arguments with 7

replaced by n in appropriate places and the following result:

(A.35) Sup 72(5) = 72(4)]

1/2

gz (In | Dmo(X; 1)] — M) 1,
t=1

2T"‘supmex |Dm(x) — Dmyg(x [1 =

n® ming.x, ex,} |[Dm*(X;_1)

T?% su Din(x) — Dmg(z)|?
T s, D) D))
n? MM X, eXr} ’Dm* (thl)‘

P
=0,

where the convergence to zero holds by Lemma 1, A3(b), A3(c)*, and A6*.

PrROOF OF THEOREM 2. We first note that the results of Lemma 1 can be extended to cover
the general case k > 1 Specifically, one can establish the results of Lemma 1 with x and X replaced
by z and Zp = Xp x - - - X Xy respectively and p+ 1 that appears in the first terms of the right hand
sides of Lemma 1(a) and (b) replaced by p+ k. In the remaining proof, we use this modified version

of Lemma 1.

(a) Define

T*
1
(B.1) Ap = flanJTtH.
By rearranging terms we have,

VTN =X) = VT(A = A1) + VT — A)
T T*
|| J]Jrel —n| HJTtH]
t=1 t=1
1 -
T In | H Jr—|| — )‘]
t=1

(B.2) = Er+ Gy, say.
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Below we establish the following result:

(B3) ET = GTl —|— Op(l)7

where G is as defined in (22). This result and Assumption B7 give the desired result using the
result that G, — Gra = 0,(1),which follows by similar arguments using (A.24).

We now verify (B.3). A two-term Taylor expansion of Ay (defined in (B.2)) about Am, gives:

T T
1 ~
Er| = —= [In|[[] Jr=ell = I T Jr—l
VT =1 =1

(B.4) = % Z Ea(Jr,. ., Jo)[AR(Z) — Am(Z,)]
Z Z — Am(Z)) Qus(Ji s -, TAR(Z,) — Am(Z,)]

ElT + EQT: say,

where Am(Z;) = (Amqg, Amay, . .. ,Afﬁkt)/ and the elements of J; lie between those of :]; and J; for
t=0,...,T* 1.

Consider Fyp first. Note that, for any £ > 0,

2 T T*
1 A~ 1 *) *
(B.5) |Eor| < T sup HAm(Z)—Am(z)H] TZZHQts(JTm---,Jo)H
LT t=1 s=1
LO,

where the convergence to zero holds by Lemma 1, B5 and B6(c).

Now consider ;7. By adding and subtracting terms, we have

1 — _
ElT = ﬁ tz; E—I(JT—I; ey Jo)[Am(Zt) - Am(Zt)]

— % Z (Fra(Jro1,..,Jo) — E [Fa(Jro1,.. ., Jo)|G2])
(B.6) [Affl(Zt) — Am(Z;)]

\/,ZE [Fi(Jre1, .. J)|GET] [AM(Z,) — Am(Zy)]

= Eir+ By, say.
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Note that E}, is 0,(1) because

Birl < 74| sup [AR() - Am(2)]]

zEZT

T*
(B.7) xT~1 - Z |For(Jrety oy Jo) = B [Fooi (Jrs - J0)IGE ||
t=1

and the first term on the rhs of (B.7) is o0,(1) by part (b) of Lemma 1 (modified as described
above) and the second term is O,(1) by Assumption B6(a). We next consider E};. Define Fr(z) =
E[F, 1(Jr 1,...,J0)|Z; = 2] for z € R¥. We have

T*
By = Z [Fim1(Jr-t, -, Do) |G ) [A(Zy) — Am(Zy)]
= VT(? —vp(7o) + Eq7°, where
T
(B.8) vr(r) = Z (We, 7) — Er(Wy, 7)),

’I“(M/t, T) = 1( (- Z )E [thl(JTfl, ceey Jo)fgff,”jl] T(Zt),
Efif = VT | Fr(2)[Af(z) — Am(2)]f(2)dz,

Zyp
Wiy = (Zi_1, -, Ziom), T(-) = Am(+), and 79(-) = Am(-). By similar arguments as those to verify the
stochastic equicontinuity results in (A.12) - (A.16), we can verify vy (T) — vp(1) = 0,(1).

We finally consider E;5*. We have

Eff = VT | Fr(2)[Af(z) — Am(2)]f (2)dz

= VT[> {FTj(z)f(z)}] i(z) — m(=))dz
VT 7 Fr(2)f () (@) = mo(x)]
1 _ -
(B.9) -7 IED {FTj(z)f(z)}] [{(2) = mo(2)} f(2)] dz
S I T ~
T [ e {FTJ(Z)f(Z)}] [ﬂz)— f(z)] () = mo(2)} f(2)] dz
VT ST Fr(2)f () (@) = mo(o)]



k

where the second equality holds by integration by parts, the third equality follows by rearranging

terms, and the last equality holds using the similar arguments as in (A.19) - (A.22). O

(b) Consider the expression (B.2) with 7" and T* replaced by n wherever it appears. It suffices

to show that Ep (with T replaced by n) is 0,(1). A one-term Taylor expansion gives:

1 n R n
= 0= IHHH‘]nftH _lnHHJnftH
Vi =1 t=1

\/% N Fa(Tp ... TAR(Z) — Am(Zt)]‘

|Er|

(B.10) —

IN

T Fnzt? [Tﬂ sup || Am(z) — Am(z)H]

ZEZp

x (n¢ IIQ%P;Hthl(J;fl’ ""JS)H>

p
— 0,

where Am(Z;) = (Amqg, Amay, . .. ,Afﬁkt)/ and the elements of J; lie between those of :]; and J; for

t=0,...,n —1 and the convergence to zero holds by Lemma 1 and Assumption B6(c)*. O
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TABLE INFORMATION

Tables 1-3 reports the results for the Gaussian autoregression for the full sample estimator, i.e., n =T
throughout. We give the mean, median, and standard deviation (sd) of our estimate of A along with the
asymptotic standard deviation (asd), i.e., that value predicted by the theory, for reference. Table 1 gives
the case v = 0.2, Table 2 gives the case 7 = 0.3, and Table 3 gives the case v = 0.4.

Table 4 reports the median and interquartile range (iqr) of our estimates of ®/2 in the case n = T =
500. The corresponding true values of ®/2 for p = 0.5,0.7,0.9, and 0.95 are: 0.077, 0.046, 0.022, and
0.015.

Table 5 reports the results for the Feingenbaum mapping with system noise with 7" = 500 and various
subsamples n = T,n = ¢TI/, n = ¢T3, and ¢T"/%. We give the mean, median, and standard deviation
(sd) of our estimate of A along with the asymptotic standard deviation (asd), i.e., that value predicted by
the theory, for reference. We also report the median and interquartile range (iqr) of the standard error

estimates.
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TABLE 1

n=100 | n=200 | n=300 | n= 500

p=0.5 mean -0.937 -0.844 -0.793 -0.748
(A= -0.693,® = 3.0) | median | -0.887 -0.801 -0.769 -0.739
sd 0.292 0.207 0.146 0.094

asd 0.173 0.122 0.100 0.078

p=0.7 mean -0.552 -0.447 -0.414 -0.388
(A= —0.357,& = 1.04) | median | -0.508 -0.429 -0.405 -0.383
sd 0.208 0.109 0.076 0.053

asd 0.104 0.072 0.059 0.046

p=09 mean -0.269 -0.179 -0.152 -0.132
(A= —-0.105,® = 0.24) | median | -0.242 -0.170 -0.146 -0.129
sd 0.123 0.058 0.041 0.027

asd 0.050 0.0346 0.028 0.022

p=0.95 mean -0.215 -0.127 -0.099 -0.079
(A= —-0.051,& =0.11) | median | -0.198 -0.119 -0.096 -0.077
sd 0.101 0.049 0.032 0.021

asd 0.033 0.024 0.019 0.015

p=1.0 mean -0.167 -0.080 -0.053 -0.032
A=0,9=0) median | -0.151 -0.073 -0.048 -0.030

sd 0.091 0.037 0.026 0.015
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TABLE 2

n=100 | n =200 | n=300 | n =500

p=05 mean -0.887 -0.776 -0.742 -0.720
(A= -0.693,® = 3.0) | median | -0.831 -0.751 -0.731 -0.712
sd 0.292 0.162 0.116 0.084

p=0.7 mean -0.481 -0.410 -0.388 -0.374
(A= —0.357,& = 1.04) | median | -0.449 -0.398 -0.383 -0.369
sd 0.162 0.093 0.066 0.049

p=09 mean -0.212 -0.152 -0.134 -0.121
(A= —0.105,® = 0.24) | median | -0.193 -0.142 -0.129 -0.118
sd 0.092 0.049 0.036 0.025

p=0.95 mean -0.162 -0.100 -0.082 -0.069
(A= -0.051,% = 0.11) | median | -0.147 -0.094 -0.078 -0.066
sd 0.077 0.039 0.028 0.019

p=1.0 mean -0.117 -0.056 -0.037 -0.022
A=0,9=0) median | -0.102 -0.051 -0.034 -0.020

sd 0.069 0.029 0.021 0.012
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TABLE 3

n=100 | n=200 | n=300 | n= 500

p=0.5 mean -0.834 -0.747 -0.724 -0.710
(A=-0.693,® = 3.0) | median | -0.786 -0.725 -0.716 -0.703
sd 0.260 0.147 0.110 0.083

p=0.7 mean -0.447 -0.393 -0.378 -0.369
(A= —-0.357,® = 1.04) | median | -0.420 -0.382 -0.371 -0.364
sd 0.143 0.087 0.065 0.049

p=09 mean -0.183 -0.138 -0.126 -0.117
(A= —0.105,® = 0.24) | median | -0.169 -0.130 -0.121 -0.114
sd 0.079 0.046 0.034 0.025

p=0.95 mean -0.134 -0.087 -0.073 -0.064
(A= —-0.051,& = 0.11) | median | -0.122 -0.080 -0.070 -0.062
sd 0.066 0.036 0.026 0.018

p=1.0 mean -0.090 -0.043 -0.029 -0.017
A=0,0=0) median | -0.080 -0.039 -0.026 -0.016
sd 0.057 0.025 0.019 0.011

45



TABLE 4

p:

0.5

0.7

0.9

0.95

Hl/2

median
iqr
median
iqr
median

iqr

0.431
4.213
0.080
0.154
0.047
0.019

0.079
0.328
0.034
0.010
0.024
0.006

0.022
0.012
0.015
0.003
0.012
0.002

0.014
0.005
0.010
0.002
0.008
0.002

$L/2

median
iqr
median
iqr
median

iqr

0.092
0.104
0.057
0.027
0.042
0.010

0.044
0.018
0.032
0.006
0.024
0.004

0.020
0.004
0.015
0.003
0.012
0.002

0.014
0.003
0.011
0.002
0.009
0.002

46



TABLE 5

T =100 | T =200 | T =300 | T =500
X (n=T) mean 0.693 0.693 0.693 0.693
median | 0.693 0.693 0.693 0.693
sd 0.013 0.007 0.004 0.003
se(/)\\) median | 0.049 0.036 0.030 0.023
iqr 0.019 0.011 0.011 0.007
X (n=cTV%) | mean 0.730 0.689 0.696 0.687
median | 0.767 0.728 0.732 0.706
sd 0.283 0.289 0.273 0.259
asd 0.302 0.286 0.273 0.262
se(X) median | 0.205 0.213 0.210 0.191
iqr 0.141 0.142 0.129 0.124
X (n=cT"3) | mean 0.694 0.696 0.689 0.686
median | 0.707 0.717 0.696 0.699
sd 0.203 0.184 0.173 0.154
asd 0.203 0.181 0.171 0.155
se(X) median | 0.180 0.158 0.153 0.140
iqr 0.085 0.070 0.062 0.053
X (n=cT"?) | mean 0.692 0.691 0.693 0.697
median | 0.691 0.690 0.693 0.696
sd 0.111 0.110 0.103 0.089
asd 0.138 0.117 0.105 0.092
se(X) median | 0.120 0.109 0.100 0.088
iqr 0.032 0.024 0.022 0.020
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