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The Hangman’s Paradox and Newcomb’s
Paradox as Psychological Games

John Geanakoplos
Yale University

Abstract

We present a (hopefully) fresh interpretation of the Hangman’s Paradox and
Newcomb’s Paradox by casting the puzzles in the language of modern game
theory, instead of in the realm of epistemology. Game theory moves the analysis
away from the formal logic of the puzzles toward more practical problems, such
as: On what day would the executioner hang the prisoner if he wanted to surprise
him as much as possible? How should a surprise test be administered? We argue
that both the Hangman’s Paradox and Newcomb’s Paradox are analogous to
a well-known phenomenon in game theory, that giving a player an additional
attractive (even dominant) strategy may make him worse off.

In the Hangman’s Paradox, the executioner is determined to surprise the
prisoner as much as possible, yet he cannot surprise him at all because he cannot
commit in advance to a random schedule. The possibility of changing his mind
(i.e., the presence of alternative strategies) superficially would seem to help the
executioner, but because it changes the expectations of the prisoner, in the end it
works dramatically to his disadvantage. In Newcomb’s Paradox a man given an
extra dominant choice is worse off because it changes God’s expectations about
what he will do.

Our analysis cannot be couched in terms of the standard Nash framework of
games, but must instead be put in a recent extension called psychological games,
where payoffs may depend on beliefs as well as on actions.



The Hangman’s Paradox is an intriguing puzzle, dating back at least to the 1940s,
that appears hard to make rigorous in conventional logic, or conventional game theory.
(See Gardner [?] for an introduction to the problem, and O’Connor [?], for the first
published discussion.) The story goes something like this:

A judge sentences a man to a hanging one morning in the next week; moreover,
he assures the prisoner that the hanging will come as a surprise. The very logical
prisoner reasons that were he to reach the sixth night alive, he would know that
he was to be hanged the next morning, so that it would be no surprise. Hence he
deduces that the executioner could not plan to hang him the last morning. But then
he reasons that if he reached the fifth night alive, he would deduce from the fact that
he could not be hanged on the last morning, that the hanging must be on the sixth
morning. But then he would not be surprised. Hence he deduces from the judge’s
sentence that he could not be hanged on the sixth morning either. Reasoning the
same way back to the first morning, the prisoner realizes he cannot be hanged at all.
Secure in his calculations, he sleeps peacefully. But then he is completely surprised
and hanged on the fourth morning.

Can the judge’s sentence be carried out or not? What indeed will become of the
prisoner under these circumstances? There is a large literature which analyzes the
Hangman’s Paradox in terms of the ambiguity of knowledge and surprise, and the self
referential aspect of the judge’s sentence. A complete bibliography would include over
forty articles (see for example [?] for many references). One interesting conclusion
reached by several authors (see Gardner [?], following Scriven [?] and O’Beirne [?])
is that the judge’s sentence is self-contradictory, hence the prisoner, no matter how
logical he might be, cannot rightfully deduce anything about the hanging day from
it, and hence will be surprised whatever day the hanging turns out to be, so that in
fact the sentence can be carried out, and the sentence is true and self-contradictory!
Whatever its other merits or shortcomings, this analysis does not provide any guide to
the date of the hanging. We are given no reason, for example, to think the executioner
will choose the hanging day with equal probability, or choose the fourth day for sure.

It is typical of many analyses of the Hangman’s Paradox that they come to some
conclusion about the logical consistency of the judge’s sentence, but they do not in
the end decide what will happen to the prisoner: their analysis, as it were, leaves the
prisoner hanging.

What I wish to do here is recast the puzzle in the familiar game-theoretic lan-
guage of incentives and decision-making. Implicitly, I argue, the judge has suggested
that the executioner will hang the prisoner and try to surprise the prisoner as much
as possible. With a well-defined objective thereby specified for the executioner, a
recently invented extension of the theory of games, called “psychological games,” al-
lows us to calculate explicitly what the executioner will do and what the prisoner will
expect. I am thus able to reach the conclusion that the puzzle is indeed paradoxical,
but that it can be handled by a traditional Bayesian theory of knowledge.

In my formulation the paradox does not turn on the ambiguity or self-contradictory
nature of the judge’s sentence. It stems from the remarkable fact that in the properly



formulated psychological game, the executioner’s desire to surprise the prisoner as
much as possible prevents him from surprising the prisoner at alll The executioner
will carry out the hanging on the very first morning, and this will have been perfectly
anticipated by both the prisoner and any one in the audience who had heard the
judge and knows that the executioner and the prisoner are rational.

To restore the common sense view that the longer the time horizon given by the
judge, the more perfectly can the prisoner be surprised, it is necessary and sufficient to
imagine that the executioner also gets a tiny pleasure out of not hanging the prisoner
whenever he expects to be hanged. Under this hypothesis, the prisoner would indeed
be almost completely surprised when the executioner hanged him, if the horizon were
long enough.

In Sections 1, 2, and 4, I remind the reader of the essentials of game theory and
psychological games, and then turn back in Section 5 to the hangman’s paradox.
Along the way in Section 3, I also illustrate Newcomb’s paradox via psychological
games. There too, I argue that a paradox that is usually posed in terms of God’s om-
niscience and individual decision-making has instead a simple (though still puzzling
and perhaps instructive) interpretation as a psychological game.

In Sections 6 and 7, I suggest that the Hangman’s Paradox provides a practical
lesson beyond the challenge some see in it for logical reasoning. Indeed the Hangman’s
Paradox arose in the context of a very practical problem: how to give a surprise test
over a short period of time to students who know the test has to be given. The
lesson is that it is best to precommit to choosing the day randomly (as is the case for
recent drug testing of international athletes). If the students doubt that the chances
are really random, but believe instead the day will be chosen by an instructor bent
on surprising them, then they will assume the test will come on the first possible
day, and again the first day after each day the exam is not given, making surprise
completely impossible. If the examiner cannot convince the class that the day will
be chosen randomly, then he must try to convince them instead that he gets a small
pleasure out of not examining them when they expect to be examined. If they believe
this pleasure is tiny but nonzero, then over a long enough horizon he can indeed give
them the exam on a day when they expect its probability to be arbitrarily close to 0.

1 Game Theory and Nash Equilibrium

John Nash’s theory of equilibrium in games [?] is based on the following question.
Suppose there is a group of N agents. Each agent m must choose a strategy sn,
in some finite set S,. Each agent n has a utility w, : 51 X --- x Sy — R that is
determined by the actions all the agents take (including of course n himself). What
strategy should agent n choose in order to make his utility as high as possible, given
that what is optimal for him depends on what the other agents are simultaneously
deciding to do?

Nash’s solution was to find a designated strategy (ry,...,7n) for each agent such
that if each agent was informed of everyone else’s designated strategy, then he would



want to play his own designated strategy, that is, for all n in IV,
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I shall always restrict attention to games for which there is a unique Nash equilib-
rium (and later a unique psychological Nash equilibrium). In such circumstances, the
force of Nash’s theory is that one may predict that out of the huge number of possible
combinations of strategies available to the players, they will collectively choose the
Nash equilibrium. To the extent that the theory is sound, it explains why in certain
circumstances we should expect one kind of outcome over another.

One can give many interpretations or justifications of Nash equilibrium. One
is that it is the only agreement or contract that the agents could make (specifying
what each will do) which does not give any agent acting alone an incentive to break.
Another interpretation is that if the game is repeated over and over, and agents
believe their opponents will do what they have done in the past, the only stationary
point of this dynamic process is a Nash equilibrium. Lastly we might suppose that
agents thinking hard by themselves about what to do and what to believe, and what
others will do and believe and so on in a game with a unique Nash equilibrium would
come to the conclusion that the only consistent beliefs they could have and attribute
to others are the Nash equilibrium beliefs.

The point of Nash’s solution was not that such thinking would lead a group of
agents to make wise choices. On the contrary, one consequence of his theory is that
each agent’s pursuit of his own selfish interest might lead the group to make disastrous
choices. Consider for instance the following game (which has some points of similarity
with the Prisoner’s Dilemma):

Player 2
Left Right
Tough 1,1 5,0
Gentle 0,3 4,4

Player 1

Fach player has two available strategies, called Tough and Gentle for player 1
and Left and Right for player 2. The two numbers in each cell of the matrix give the
utility payoffs to agents 1 and 2, respectively, from each possible joint combination
of strategies. The best available choice for the group would be for them to choose
(Gentle,Right), resulting in a payoff of 4 to each. But player I would have an incentive
to defect from his designated strategy. The only combination of strategies from
which neither player would want to defect, and hence the unique Nash equilibrium,
is (Tough,Left), which provides the miserable outcome (1, 1). The players, trapped
by their own self-interest, end up hurting themselves.

Another very important property of Nash equilibrium is that improvements (re-
ductions) in the payoffs from a strategy may actually hurt (help) a player. Suppose for
example that player 1 is educated and acquires a strong distaste for Tough behavior.
The payoffs might now be:



Player 2
Left Right
Tough —4,1 0,0
Gentle 0,3 4,4

Player 1

Notice that as compared to the previous game, the payoffs to player 1 are either
the same or 5 utiles lower at every possible outcome. Yet it is clear that the only
Nash equilibrium of the new game is for the players to choose (Gentle,Right), giving
each a payoff of 4. Curiously, by hurting some of his own payoffs, player 1 in the end
gets a higher payoff than before. The reason of course is that player 2 no longer has
to fear that player 1 will play Tough, and so he is content to play Right, which is
much more agreeable to player 1.

In the original game, Tough was a dominant strategy for player 1, in that it was
better for player 1 no matter what player 2 chose. Any coherent theory based on
individual decision-making (including Nash equilibrium) would have player 1 choose
Tough. The second game differs from the first only in that the viability of Tough
for player 1 has been destroyed; yet this difference makes player 1 better off. This
appears paradoxical since in game 1 it is player 1 alone who chooses between Tough
and Gentle. But he cannot commit himself to playing Gentle, i.e., he cannot make it
known that he will play Gentle, and hence it is truly rational for him to play Tough,
and therefore for player 2 to play Left.

This reasoning has been well understood for many centuries. Both William the
Conqueror, in his attack on England, and Cortez, in his attack on Mexico, burned
their ships so that their men would have no opportunity of retreat. By eliminating
their own options beforehand, which in some circumstances might have been optimal,
these generals realized they could affect the behavior of their opponents, and thus
gain in the end.!

Finally, let us turn the story on its head and note that if in the situation of game
2, player 1 finds a way of dramatically increasing his payoff from Tough to reach the
situation of game 1, then he will paradoxically find that he gets a lower payoff in
the end, moving down from the Nash equilibrium payoff of 4 in game 2 to the Nash
equilibrium payoff of 1 in game 1.

It is not easy to pinpoint when this principle that it might be wise to eliminate one’s own
attractive options in order to affect one’s opponents’ choices first became fully understood. All
exhortations to bravery, such as the fifth century BC Spartan saying “Come back with your shield or
on it,” might be said to serve this purpose, if perhaps not completely self-consciously. If we go back
still further in time, this strategic awareness becomes more ambiguous. A thousand years earlier,
Odysseus supposedly tied himself to the mast before his boat got to the island of the Sirens in order
to eliminate a later option. But that was for a different reason. He foresaw that his judgment would
later be impaired, and was not worried about affecting the behavior of others. And just a decade
before that incident, it seems that the Trojans were in fact confused on this very point since they
set out to bum the Achaean ships. Where did they suppose the Achaeans were going to go without
their ships, except to try harder to conquer their city?



1.1 Extensive Form Games

Games may involve more than one move by each player. In such “extensive move
games,” a strategy for a player n is a prescription of what to do in any situation in
which n might be called upon to move. As the game unfolds, each player implements
more and more of his strategy. For example, a computer program may specify how a
player should move no matter what chess position is reached. As the game progresses,
the computer appears to “think afresh” with each new position, but in fact it is just
implementing the strategy which was a ready programmed into it in the beginning.

Chess is a zero-sum game in the sense that the sum of the payoffs to the two
players must always be the same (there can only be one winner). In non-zero sum
games such as the Prisoner’s Dilemma, the payoffs to the players might sometimes
vary together, and at other times be opposed. The Nash equilibria of non-zero sum
games are often hard to find. However, for extensive form games in which the players
never move simultaneously, a Nash equilibrium can usually be found by a backward
induction similar to the kind performed by the prisoner in the Hangman’s Paradox.
We shall see this shortly.

1.2 Mixed Strategy Nash Equilibrium

Nash (following von Neumann in the case of zero sum games) noted that many
games may not have “Nash equilibrium.” Consider for example the game of matching
pennies:

Player 2
Heads Tails
Heads 1,—1 -1,1
Player 1 “pils | —1.1 1,-1

This is a zero-sum game, since the sum of the payoffs to the two players is always
zero, no matter what choices the players make. There is no (pure strategy) Nash
equilibrium to this game, for whatever pair of strategies is designated, one of the
players will want to defect. By the symmetry of this game, we need only check this
for one pair, say (Heads,Tails). At this strategy pair, player 1 gets a bad payoff of —1.
But he can defect to Tails and improve his payoff to 1, showing that (Heads,Tails) is
not a Nash equilibrium.

Von Neumann pointed out that each player could randomize his choice of strate-
gies. Player 1 would play each strategy i with probability p;, and player 2 would play
each of his strategies j with probability g;. Given a pair of randomized or “mixed”
strategies, one can immediately calculate the probabilistic expected payoff to each of
the players. A mixed strategy Nash equilibrium is a designated randomized strategy
for each player such that if every player were informed of these designated mixed
strategies, then no player could increase his expected payoff by deviating from his
designated randomized strategy.



Consider in matching pennies the pair of mixed strategies in which each player
n plays Heads with probability 1/2 and Tails with probability 1/2. The expected
payoff to each player is then 0. Notice that no player can do better by deviating. If
player 1 plays Heads for sure, he still gets an expected payoff of 0, and similarly if
he plays Tails for sure. Needless to say, no mixed strategy can do better for player 1
then the best pure strategy. Thus we have a mixed strategy Nash equilibrium.

Nash, extending von Neumann’s zero sum theorem to arbitrary games, proved
that any game as defined earlier in Section 1 must have a mixed strategy Nash
equilibrium. When a game has a unique mixed strategy Nash equilibrium, game
theorists often feel comfortable in predicting that the players will behave accordingly,
and that the individual incentives thus determine the outcome of their interaction.

1.3 Knowledge and Indifference in Nash Equilibrium

In a mixed strategy Nash equilibrium what can we say player 1 knows about what
player 2 will do? Eventually player 2 will choose one strategy. But player 1 cannot
know which at the moment he must choose to move. We may suppose that player
1 believes that player 2 will choose his strategies with the probabilities specified by
the mixed strategy equilibrium. Thus in the Matching Pennies game, player 1 must
assume the probabilities on 2’s moves are 1/2, otherwise 1 himself would not be
willing to play his designated mixed strategy.

At Nash equilibrium for a game in extensive form, players can use Bayes Law to
update their beliefs about which strategies the others are using as the game unfolds.
Thus if player 2 is supposed to play each of three strategies with probability 1/3,
then after the first observed move of player 2, the other players will be able to revise
their beliefs about which strategy player 2 is indeed using. For example, suppose
strategy a prescribes Left on every move, while strategy b prescribes Left on the first
move and Right on the second move, and strategy c prescribes Right on every move.
Then if 2 chooses Left on the first move, the other players can infer that he is using
strategies a or b with probability 1/2 each, and hence that the probability is 1/2 that
he will continue with Left on his second move. A mixed strategy thus provides a
conditional probability of the moves that the agent will make at any point at which
he is called upon to move with positive probability.

It is very important to note that at a mixed strategy Nash equilibrium, each player
will be indifferent between various alternatives. Thus to player 2 in Matching Pennies,
whether he plays Heads or Tails makes no difference to his expected payoff. He might
just as well play Heads for sure, or Heads with probability 2/3. Nevertheless, we are
bound to assert that player 1 thinks the odds are 1/2 that player 2 will play Heads,
for otherwise the Nash equilibrium itself disintegrates.

Indifference can arise even in pure strategy Nash equilibrium (at least for games
with infinite strategy spaces). Consider the following bidding game: Each of two
players names a real number between 0 and 1. If a player names the strictly highest
number, he gets $1 minus his bid; otherwise he gets $0. It is easy to see that the
unique Nash equilibrium of this bidding game is for both players to bid $1, so that



each gets nothing. At that equilibrium either one of the players could play anything
else without affecting his own payoff. Yet we are right in supposing that the other
play knows for sure what will be played.

1.4 Single Decision-Maker Games

It may turn out that the payoffs to all the players in a game do not depend on the
strategy choices of players 2, ..., N. In other words, it may be that player 1’s actions
alone determine everybody’s payoff. In such a one person game, there can be no
paradoxical equilibrium. Player 1 will simply choose that strategy which makes his
payoff highest. If there is a unique Nash equilibrium, it must be a pure strategy
equilibrium.

2 Psychological Games and Psychological Nash
Equilibrium

In the theory of games just described, the payoffs to the agents depend on what the
players do. But more generally we may wish to consider games in which the payoffs
to the agents also depend on what the players think. Thus in the Hangman’s Paradox
only the executioner acts, but his payoff might be said to depend on what the prisoner
thinks, i.e., on how surprised he is, or perhaps more precisely, on how surprised the
executioner thinks the prisoner is.

Psychological games (see [?]) were invented to take into account the dependence
of utility on beliefs (see also [?] for a related but distinct idea called information-
dependent games). In general, payoffs might depend on what the players think, or
what they think others think, and so on all the way up the whole hierarchy of beliefs.
We can simplify these vast possibilities by limiting the thinking to beliefs about what
players are going to do. Furthermore, in keeping with the spirit of Nash equilibrium,
we suppose that in equilibrium everybody knows what strategies (or mixed strategies)
every player is using. Hence we can reduce the entire hierarchy of beliefs about beliefs
to the first level, namely the common beliefs about what each player will do.

A psychological game (in this simplified form) is thus given by strategy spaces
Sy, for each player n from I to N, and by utility functions

Up ST X -+ XSy xS X+ xSy — R.

The utility u,, depends on the strategies every agent chooses, which are represented
by the first N-fold product of the individual strategy spaces, and by the beliefs
commonly held by each player over what the (other) players will do. These beliefs
are represented by the second N-fold product of individual strategy spaces. For these
n, the element in S, is the belief the other agents have about what agent n will do
(which could equally well be viewed as the belief n has about the beliefs the other
players have about what he will do).



Formally, a psychological Nash equilibrium specifies a strategy choice (71, ...,7n)
for each agent such that if each agent believed every agent would implement his
designated strategy, then he would want to play his own designated strategy, that is
for all n in IV,
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for all s, € S,,.

Thus an agent who considers deviating realizes that the other agents will not expect
him to deviate, hence he will hold their strategies and their beliefs (about his actions)
fixed when he considers the payoff effect of a deviation.

Since the beliefs are assumed to be correct in equilibrium, it does not appear that
psychological Nash equilibrium is any different from Nash equilibrium. We shall see,
however, that it is.

3 Newcomb’s Paradox

The philosopher Newcomb suggested the following parable of faith, decision-making,
and free will. God tells a man that he can have a box, or he can have the box and
a diamond. God asks the man to have faith, telling him that if He believes he will
choose the box, it will contain four diamonds, but if He believes he will choose the
diamond and the box, the box will be empty. God never lies, and will not touch the
box after that moment. What should the man do?

The man, being very rational, reasons that whatever is in the box, he would only
do better taking the diamond as well. So he takes both. But God, being omniscient,
knew the rational man would decide to take both, and so placed nothing in the box.
God was true to his word, the man apparently acted rationally, yet he ended up with
one diamond instead of four.

Newcomb’s Paradox has been ably discussed many times (see [?], [?], and also the
entire book [?] devoted to the subject). Nevertheless, it may be of some use to con-
sider the concise presentation of the puzzle that can be obtained via the appropriate
psychological game. Accordingly, let us examine a one player game where only the
man moves, but his payoffs depend on God’s beliefs as described below:

Beliefs
Both Box
Both 1 5
Box 0 4

Man

No matter what God’s beliefs are, the man would rather choose Both, and so max-
imizing his payoff, as is required in psychological equilibrium, he will choose Both.
But in psychological Nash equilibrium, the beliefs are correct. Hence there is exactly
one psychological equilibrium, in which the man ends up with only one diamond and
an empty box.



In Newcomb’s description, the story requires an omniscient being to guarantee
the promised outcome no matter what the man chooses. The wide applicability of
psychological games, however, stems from the observation that God can often be
replaced by a logical being whose beliefs matter and who, by virtue of logic, not
divine power, has the correct beliefs, as we shall see in examples below.

By reinterpreting Newcomb’s paradox as a psychological game we shift the em-
phasis from the logical conundrum that choosing a dominant strategy may be bad to
the familiar game-theoretic paradox we discussed in Section 1 that the availability
of an additional attractive (dominant) choice may make a player worse off. Were
the man disgusted by the act of choosing Both, he would have chosen the Box and
obtained four diamonds. This paradox is even more starkly apparent in Newcomb’s
story because there is only one player. In Nash equilibrium, in a one decision-maker
game, the paradox could not arise. But in psychological equilibrium the beliefs intro-
duce the same possibilities for paradox as the second player does in a conventional
Nash game.

4 The Surprise Game and Mixed Strategy
Psychological Games
Consider a man who wants to surprise his very rational girlfriend by bringing her

either flowers or chocolate, namely the one she doesn’t expect. What should he do?
We model the situation as a psychological game, with the payoffs below:

Beliefs
Flowers Chocolate
, Flowers 0 1
Man’s Strategy Chocolate 1 0

Clearly there can be no pure strategy psychological Nash equilibrium. If the man
convinces himself he should bring say flowers, then by the same logic she will expect
flowers, and he would do better to bring chocolate instead. The woman forms her
beliefs before the man appears at her door, just as in Newcomb’s paradox God decided
whether to fill the box before the man chose. Yet we are also justified in assuming
that she will have the correct beliefs about what he will do, even though she has no
divine powers, because she can reason.

The absence of a pure strategy psychological Nash equilibrium leads us as before
to consider mixed strategy psychological Nash equilibrium. Consider again a general
psychological game. If each player n in N independently chooses his strategy via a
probability p,, on S, and if each other agent believes agent n will choose according to
a probability g, on Sy, then we can straightforwardly calculate each agent’s expected
utility by multiplying out all the probabilities. A mixed strategy psychological Nash
equilibrium is a vector of such probabilities and beliefs such that no agent can increase
his expected utility by unilaterally deviating to another probability, and such that
the beliefs ¢,, are equal to the action probabilities p,.
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At a mixed strategy psychological Nash equilibrium, just as at a mixed strategy
Nash equilibrium, we can say precisely how “surprised” an agent m is to find that
another player n has played strategy ¢: it is 1 — pp;. His expected surprise from
strategy i 1S Pp; (i — pni)-

In the surprise game there is a unique psychological Nash equilibrium; the man
randomizes and chooses flowers and chocolate each with probability 1/2. The sur-
prise, and hence his expected payoff, from Flowers and Chocolate when she believes
he is so randomizing is the same (namely 1/2), so he is indeed doing as well as he
can by randomizing, and her beliefs are indeed correct. The notion of psychological
Nash equilibrium allows us to analyze a commonplace but puzzling situation and
prescribe the sensible outcome: the man simply cannot completely surprise his girl-
friend, but he can partly surprise her, and he chooses the most surprising course of
action available.

Note once again that given her beliefs, he might just as well bring flowers for sure,
or chocolate for sure, rather than randomizing. But we have seen this over and over
again in Nash equilibrium; logical consistency breaks down unless she assumes that
he will bring each with probability 1/2.

Psychological games always have (possibly mixed strategy) psychological equilib-
ria (see [?]). This is because the beliefs which affect payoffs are taken to be proba-
bilistic, i.e., on a par with actions. One might instead have taken the view that the
payoffs should depend only on what agents know or do not know, not on their degree
of belief. In that case one would often confront games that did not have equilibria.
(This is the situation in [?], for instance.) Psychological games thus not only pro-
vide a framework for describing certain kinds of situations, they also prescribe, via
psychological equilibrium, what will happen.

Even one-player psychological games can have curious equilibria, as the surprise
game makes clear, where the only equilibrium is a mixed strategy equilibrium despite
the fact there is only one decisionmaker.

5 The Hangman’s Paradox

We are now ready to formalize the hangman’s paradox as a psychological game in
extensive form.

At each of a finite number of time periods t = 1, ..., T the executioner must choose
a move, either to Hang the prisoner, or Not to hang him. If at any time ¢ < T the
prisoner is hanged, the game ends. Otherwise it proceeds until time 7', when it ends
whether or not the prisoner has been hanged. At each date t, if the prisoner has
lived past ¢t — 1, he will have expectations about what is going to happen to him on
date t. The payoff at date t to the executioner (who is the only agent to act) will
depend on his actions and the beliefs of the prisoner, given in the matrix below. The
total payoff to the psychological game is the sum of the payoffs from all the periods
1 through T" (or until the point the game ends).

11



Beliefs
Hang Not
Hang B A
Not 0 0

Executioner

The judge has ordered the executioner to Hang the prisoner, and so he gets a payoff
B > 0 for carrying out the sentence. He gets a greater payoff A > B if he also
surprises the prisoner. (If B = 0, then the interpretation is that the executioner gets
no payoff unless he hangs the prisoner and surprises him.) In a psychological Nash
equilibrium the executioner will by definition strive to make his payoff as high as
possible.

5.1 Maximizing Surprise

It would seem a simple matter to surprise the prisoner. For example, suppose the
executioner programs a computer or Automaton to flip a fair T-sided coin and hang
the prisoner on the day that the coin designates. If the prisoner believed this strategy,
the night before the (¢ + 1)st day he would assign probability 1/(7 —t) that he would
be hanged later that morning. The expected payoff to the executioner can easily be
calculated to be the sum of [B 4+ (A — B)(1 —1/t)] from t = 1 to t = T, divided
by T', which is just slightly more than A — (A — B)(log(T 4 1)/T For large T this
converges to A, so in fact the prisoner is almost completely surprised if the horizon
is long enough. For T' = 7, the payoff is approximately [B + .63(A — B)].

In fact the executioner could design a slightly better Automaton if he could rely
on the prisoner believing he would stick to his announced strategy. Let S_7 be
the maximal payoff the executioner can achieve given that his actions are correctly
anticipated by the prisoner, when the horizon is of length 1" Let P_7 be the probability
of hanging the prisoner with 71" periods left to go, conditional on his still being alive.
The maximal surprise, for each horizon T', must satisfy the recursive relation:

Sp=prlprB+U—-pr)Al+ (1 —-p 17)S_(1r-1)

This can be maximized recursively by setting p_1 = 1, S_.; = B, and in general,
p-r = (A— S_(T_l))/Z(A —B), and S_p = S—(T—l) + (A - S—(T—l))2/4(A — B).
It is easy to see that S_; converges monotonically up to A, and slightly faster than
with the random coin flip. For T = 7, the conditional probabilities for hanging the
prisoner on each day are respectively (.20, .225, .26, .305, .375, .50, 1.0), and the
expected payoff is [B + .64(A — B)].

Yet we shall show that in fact the executioner cannot surprise the prisoner at
all, i.e., he cannot get a payoff above B. The reason is that the executioner is
trapped by his own zealous effort to surprise the prisoner. Suppose for example that
the executioner thought that the prisoner believed that he was going to follow the
optimal scheme defined above. From the above calculation, we know that the farther
from the end, i.e., the higher is T', the lower will be p_. Hence the executioner could
strictly increase his payoff by hanging the prisoner on the very first day. With the
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T = 7 period horizon, he could countermand his orders to the Automaton, hang the
prisoner on the first day, and gain a payoff of [B+.8(A—B)]| instead of [B+.64(A—DB)].
Realizing this, the prisoner would not believe the executioner’s announced plan. We
now show precisely what the prisoner would believe, and what the hangman would
do.

5.2 The Psychological Nash Equilibrium for
the Hangman’s Game

The charm of the Hangman’s paradox is that the executioner does so badly. Were
he content with a little surprise with nonzero probability, he could easily arrange it.
In fact, as we saw in the last section, with enough periods to work with, he could
almost totally surprise the prisoner. Yet his efforts to get still more give rise to the
paradox.

Proposition 1 The hangman’s game has a unique psychological Nash equilibrium;
in that equilibrium the prisoner is hanged for sure on the first day, the hanging is
completely anticipated, and the payoff to the executioner is B. There is no surprise
at all.

Proof of Proposition 1 One proof would be to argue by backward induction
exactly as in the statement of the hangman’s paradox. We present a shorter proof
that does not require backward induction.

Let the hangman’s mixed strategy prescribe the hanging on the tth day with
conditional probability p; that is, conditional on the prisoner still being alive on the
night of the (¢t — 1)st day. Let the corresponding conditional beliefs of all the players
be g;. The payoff for a hanging on date t is B + (A — B)(1 — ¢;), which is strictly
increasing in (1 — ¢q;). Let 7" be the set of ¢ for which (1 — ¢;) is a maximum, i.e.,
for which ¢; is a minimum. We shall prove that ¢ = 1 for all ¢ in T, for which it
suffices to show that ¢; = 1 for at least one t in T". Suppose otherwise. Since the
prisoner can only be hanged once, and there is no payoff for not hanging him, and
since A > B, optimality requires the executioner (given the ¢) to choose p; = 1 for
some ¢ in T”. But in psychological equilibrium p; = ¢, for all t in . O

Several comments are in order. In the unique psychological Nash equilibrium it is
true that the executioner could deviate and hang the prisoner on the third or fourth
day without lowering his payoff. But since we proved that ¢ = 1 for all ¢ (not just
t = 1), that would come as no surprise to the prisoner. His beliefs are that he will be
hanged on the first available day whenever he is alive; if by some miracle he is not
hanged on the first day, the prisoner would expect to be hanged on the second day,
and so on.? Thus postponing the hanging beyond the first day would not help the
executioner’s payoff.

2Many commentators seem to have overlooked that it is perfectly logical for the prisoner to believe
he will be hanged the first day and then again the second day, since the relevant opinion about the
second day is the one he forms after seeing that he was not hanged the first day.
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If the executioner is indifferent to which day he does the hanging, then why should
the prisoner expect the hanging on the first day, and why should the executioner hang
him on the first day? The answer is, because that is the unique psychological Nash
equilibrium. Exactly as we were justified in figuring that in matching pennies player
2 was equally likely to play left or right, even though many other mixed strategies
would give him the same payoff, or that in the bidding game it could be expected
that player 2 would bid $1 even though any other bid would have given him the
same payoff, so we are justified here in presuming that each player knows the other’s
strategy.

Finally, let us make clear that the paradox can be seen as another instance of
the principle of disadvantageous addition of attractive strategies that we described
at the end of the introductory section on Nash games. We can do this by comparing
the Automaton executioner game to the hangman’s game. An Automaton has no
choices, and hence effectively one strategy. An executioner who (is motivated) to get
pleasure out of surprising the prisoner and is free to change his mind at any moment
has many available and attractive strategies. One might naturally suspect that he
should be able to increase the surprise beyond what the automaton could achieve in
our discussion from Section 5.1. Indeed, if the prisoner continued to believe that the
executioner was the same Automaton, then the motivated executioner could increase
his payoff, as we saw when T' = 7, from B +.64(A — B) to B+ .8(A — B), by hanging
the prisoner on the first day. But the judge not only motivates the executioner to
surprise the prisoner, he informs the prisoner that the executioner is trying to surprise
him (and has the freedom to choose the hanging whenever he wishes); this changes
what the prisoner is prepared to believe. It makes it common knowledge that the
game being played is the motivated executioner game, not the automaton executioner
game. The executioner knows that the prisoner knows that the executioner is trying
to surprise him, and this makes it impossible to surprise the prisoner at all.

5.3 Restoring the Surprise

Common sense suggests that if the horizon is long enough, then it will be possible to
hang the prisoner and (almost) completely surprise him, even if the prisoner knows
the executioner is trying to surprise him. We now show that this common sense
view can be justified if we suppose that the executioner gets some tiny pleasure
from surprising the prisoner by not hanging him when he believes he will be hanged.
Consider the following payoff matrix in each period ¢:

Beliefs
Hang Not
. Hang B A
Executioner Not - 0

Suppose now that 0 < ¢ < min[A — B, B).
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Proposition 2 The modified Hangman’s psychological game defined above has a
unique psychological Nash equilibrium for any horizon T For any € > 0, as T gets
larger, the payoff S(T,e) to the executioner converges to A. Furthermore, as € gets
smaller, and T gets larger, the payoff not only converges to A, but it comes almost
exclusively from surprising the prisoner by hanging him, and in the limit, not at all
from surprising him by not hanging him.

The modified hangman’s game thus shows the circumstances under which a willful
executioner can adopt a credible strategy that hangs the prisoner for sure, and does
so on a day when he rationally expects the probability of hanging to be nearly 0.

Proof of Proposition 2 Suppose that the horizon T is fixed, and consider a
psychological Nash equilibrium, i.e., a probability p; that the executioner will hang
the prisoner on date ¢, assuming that the prisoner is still alive, for each date t. As
before, it is convenient to define p_; = Pr,1_¢ by the probability of hanging in the
tth period before the end. As before, we also define S_; as the expected payoff to the
executioner during the last ¢ periods of the psychological game.

In the last period, ¢ = T, the hangman will hang the prisoner for sure, since
this is a dominant strategy, and of course the prisoner will expect it. We write that
p1=1,and S 1 = B.

For t < T, in stark contrast to the standard version of the Hangman’s Paradox,
it can never be optimal to hang the prisoner for sure. If it were, and if this were
expected, then the maximal total payoff from that point on would have to be equal
to the payoff from hanging the prisoner immediately, namely B, whereas by not
hanging him, the executioner could get an immediate ¢ > 0, and then collect B
afterwards by hanging the prisoner in the very next period.

Similarly, for ¢ < T we cannot have that the executioner chooses not to hang the
prisoner for sure. If there were such a t, consider the last time it happens ¢. From
period ¢ onward (which, from the last paragraph, has positive probability of being
reached), the payoff to the executioner of following his plan is 0 (for period t) plus
whatever he gets afterward. But by our choice of ¢, in every period after that the
executioner must be planning to hang the prisoner with some positive probability,
which, being expected, would give a payoff strictly less than A. By hanging the
prisoner instead in period —t, when it is completely unexpected, the executioner can
get a payoff of A.

Thus we can conclude that for all ¢ < T, the executioner must be randomizing,
and that therefore

St=piB+(1—py)A=p_ic+5_(_1)
From this we deduce that
St=A—-(A-B)prandp = (A-5_4_1))/(A-B+e)
and that
pt=(A-Bp_g_1)/(A-B+e)=(A~- B) Y/ (A-B+¢)t7t
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Fix an amended hangman’s game with very large T'. It is evident that at the beginning
stages, when —t is large, the probability of hanging the prisoner will be very small,
since ¢ > 0. Hence the expected payoff to the executioner is nearly A. As time
progresses it becomes exponentially more likely that the hangman will act, until the
last period when the hanging takes place with probability 1.

The executioner can get his payoff of nearly A in two ways: either by chance he
hangs the prisoner early when he is expecting it with almost 0 probability, or the
hanging comes much later, when the payoff is closer to B, but along the way the
executioner picks up nearly (A — B) for all the times he did not hang the prisoner
when he attached a small probability to being hanged. We shall now show that for
small enough ¢, all the payoff actually comes from the first way: the hanging, though
still destined to happen, is nearly sure to occur in one of those early periods when it
is little expected.

Let the hanging payoff be given by s_;, which is equal to S_; minus the amended
payoff from not hanging the prisoner. Let k = (A — B)/(A — B +¢). Then it is easy
to see that s_; must satisfy the recursion

s—t = pt[p—1B+ (1 —=p-t)Al + (1 —p_t)s_¢_1)
= k’t_lB -+ (1 — kt_l)[kt_l(A — B) + 8—(1‘—1)]'

This is uniquely solved by
s y=B+k(1-E"NHA-DB).

For any fixed 0 < k£ < 1 and large ¢, the payoff from hanging is approximately
B + k(A — B). By choosing a very small ¢ > 0, and hence k nearly 1, and then
choosing large t, we see that the payoff is nearly A. O

When ¢ is chosen large, the executioner gets his payoff of nearly A by setting
the probability of hanging so low at the beginning that the actual hanging is very
likely to take place toward the end when it is not so unexpected. (This is fine for
the executioner, because along the way he is picking up a little bit of payoff for not
hanging the prisoner.)

In summary, we have shown that when there is a tiny payoff € > 0 from not
hanging the prisoner when he fully expects to be hanged, the executioner will be led
to follow a strategy that hangs the prisoner for sure, and when the number of periods
T is very large, nearly completely surprises him. To get any desired expected level of
surprise just below complete surprise, however, the horizon T must be much longer
that would be required by the Automaton executioner under the scheme defined in
Section 5.1.
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6 The Surprise Test

The Hangman’s Paradox was discovered in the 1940s when the Swedish Broadcasting
Company wanted to monitor the preparation of its civil defense units.? The SBC
recognized that if the agents knew in advance when the test would take place, they
could “cram” for it, thereby disguising their true preparedness. Testing is time con-
suming and costly, and the SBC therefore did not wish to test them often. On the
other hand, cramming also takes effort and the agents would do it only in proportion
to the probability they expected a test. The obvious solution was to randomly sched-
ule an exam. Of course, given any such posted schedule of probabilities, the agents
would adjust their behavior, cramming most when the probability of the exam was
highest. The SBC therefore hoped that by putting an examiner in charge who was
motivated to catch the agents when they were least prepared, it could improve the
reliability of the test beyond that achievable by a fixed (but random) schedule. They
saw that the effort seemed to lead to logical difficulties, and the Paradox was born.
Our analysis indeed shows that the strategy of putting a human agent motivated to
surprise the agents, but bound to give a test sometime in a finite horizon, is bound
to fail badly.

The problem of when to test is familiar to any teacher, and also to organizers of
athletic competitions who do tests for performance enhancing drugs. In the latter
case an athlete already using illegal drugs can mask them by taking auxiliary masking
drugs, or by reducing the dosage of the illegal drug he takes, in the period just before
the test will take place. These masking efforts are costly to the athlete, however.
For example, reducing the dosage of the illegal drug might force him to curtail the
most rigorous parts of his training (which it was the purpose of the illegal drug
to maintain). This reluctance on the part of the subject (student or athlete) to
constantly take efforts to hide his true condition is the reason why it would appear
that a surprise test would be successful.

To see why, on the contrary, it is inadvisable to put the testing in the hands of a
willful agent intent on surprising the subjects, we give a highly stylized description
of the situation that will allow us to carry over our previous analysis without change.
We suppose the athlete is taking the illegal drug, and that the examiner is trying to
find the test that will reveal the most.

Suppose that an examiner has a horizon of T’ days during which he can make one
test (say for drug use). It is assumed too expensive to conduct more than one test
during the horizon.? Each night the performer can take some effort e to mask the
drug. The more effort taken to mask the drug, the harder it is to detect. We suppose
that the payoff to the examiner on a day ¢ on which he gives the exam is A — e, where
e is the effort taken by the performer to mask the drug on the night before. Note
that we assume efforts from several nights previously have no benefit in masking the

3Here we rely on the account presented by Lennart Ekbom in a letter he wrote to Martin Gardner,
described in [?].

4If there were a fixed upper bound greater than one on the number of tests, our analysis would
not change.
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drug. The payoff to the examiner on day t is zero if he does not give the test that
day. The total payoff to the examiner is the sum of the daily payoffs from days ¢t =1
tot="1T.

The benefit to the athlete from making the masking effort e on the ¢ — 1st night
is e itself if a test is given on the ¢th day (since it raises his score by e), and nothing
if no test is given on the tth day. The cost to the athlete from making the effort e on
the ¢ — 1st night is €2/2(A — B), which he bears whether or not the test is given the
following morning, where A > B > 0. The total payoff to the athlete is the sum of
all his expected benefits minus the sum of all his costs, over all the days and previous
nights from ¢t =1 to t = 7.

Having described the action spaces for each agent, and their payoffs as a function
of their joint actions, we have a well-defined game (albeit with an infinite number of
strategies for the athlete). We can therefore analyze the game for its (conventional)
Nash equilibria. These are described below.

Proposition 3 The drug testing game has a unique Nash equilibrium in which the
examiner gives the test the first day, and if he forgets, then the first day afterwards
and so on, and the subject takes effort e = A — B on the night before the first day,
and the same effort every successive night until the test is actually given.

Proof of Proposition 3 Observe that if the subject believes on the night before
day t that he will be tested on day ¢t with probability ¢;, then he will act to maximize
his expected payoff g;e; — e?/2(A — B), which he does by choosing e; = ¢;(A — B).
The examiner will therefore play the same strategy in Nash equilibrium of the drug
testing game as he would in psychological Nash equilibrium of the Hangman’s game.
O

7 Conclusion

The moral of the hangman’s paradox is thus seen to be quite practical and down to
earth. If an examiner wants to test his students for sure in a fixed period of time,
but surprise them as much as possible, he should announce a random examination
schedule defined by the algorithm in Section 5.1. Each morning during the allotted
horizon he should come in and make a grand show of drawing a ball from an urn,
where the number of balls is adjusted each day so that the probability of getting an
“exam” ball is equal to that specified in Section 5.1. As the days go on, the relative
number of “nonexam” balls will steadily decrease until the last day, when there will
only be exam balls in the urn. As an approximation to the optimal schedule, the
examiner could begin with 1 black “exam” ball and T" — 1 white “no exam” balls in

5 Another example of our game might fit the stylized facts more exactly. Consider an examiner
who wants to ascertain the weight of a subject, who desires to appear as light as possible. The
night before a weighing, the subject could go to a sauna and sweat out e pounds, but at the cost
described above. Within a day or so, the weight will be back on him, and if he were not tested when
he expected, his efforts would have gone for naught.
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the urn. Each day he would publicly pick a ball out of the urn. If it is black, he gives
the exam. If white, he discards the ball and the next morning chooses from an urn
with one less white ball. Eventually the exam must be given, since if it has not been
given before, by the Tth morning the urn will only contain one black ball.

If the examiner has no way to commit himself credibly to this schedule then he
will have problems. For example, if the class thinks he will cheat and change the
number of balls in the night, then he will not be able to surprise them at all.

In that case, the examiner must convince the class that he gets a little pleasure out
of not testing them when they think he will test them. If that is common knowledge,
then once again he will be able to test them, and surprise them almost completely,
although in order to do so he will need a much longer time horizon in which to give
the exam.
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