COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 1127

Note: Cowles Foundation Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment.
Requests for single copies of a Paper will be filled by the
Cowles Foundation within the limits of the supply. References
in publications to Discussion Papers (other than mere
acknowledgment by a writer that he has access to such
unpublished material) should be cleared with the author to
protect the tentative character of these papers.

MATRICES WITH IDENTICAL SETS OF NEIGHBORS
Imre Barany and Herbert E. Scarf

May 1996



MATRICES WITH IDENTICAL SETS OF NEIGHBORS

Imre Barany
Mathematical Institute of the Hungarian Academy of Sciences
P. O. Boz 127, Budapest, 1364 Hungary

and

Herbert E. Scarf
Cowles Foundation, Yale University

New Haven, Connecticut 06520 USA

Abstract

Given a generic m by n matrix A, a lattice point A in Z" is a neighbor of the origin
if the body {z : Az < b}, with b; = max{0, a;h}, i = 1, ..., m, contains no lattice
point other than 0 and k. The set of neighbors, N(A), is finite and 0-symmetric. We
show that if A’ is another matrix of the same size with the property that sign a;h
= sign ajh for every i and every h € N(A), then A’ has precisely the same set of
neighbors as A. The collection of such matrices is a polyhedral cone, described by a
finite set of linear inequalities, each such inequality corresponding to a generator of one
of the cones C; = pos{h € N(A) : a;h < 0}. Computational experience shows that
C; has “few” generators. We demonstrate this in the first nontrivial case n = 3, m = 4.
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1 Introduction

Test sets for integer programming were introduced by Graver (1975) and Scarf (1986). They

provide a way of telling if a feasible solution z € Z" is optimal or not by checking, for each h in

the test set, whether z + h is feasible and yields an improved value of the objective function.
The test set of Scarf, the set of neighbors of the origin, is associated with a matrix A of size

m by n, and is applied to the class of problems of the form

min a1z (1.1)

subject to  a;z <b; (i=2,...,m), z € A"

in which a single row of A becomes the objective, and the remaining rows are used, with arbitrary
b;, to form the constraints.

For each lattice point h € Z™, the smallest body of the form
Ky={zx e R": Ax < b} (1.2)

containing 0 and & is given by b; = max{0, a;h}, for i =1, 2, ..., m. We designate this body by
(0, h). The lattice point h € ZZ"™ (h # 0) is defined to be a neighbor of the origin if (0, h) contains
no lattice points in its interior. The collection of such neighbors is denoted by N(A). Note that
in this definition the special role of a; as the objective function has disappeared.

In the next section we introduce various conditions on A to ensure that N(A) is a test set for
the integer programs (1.1), or that N(A) is nonempty and finite. Finiteness of N(A) is proved
in quantitative form (Theorem 3). Our main result (Theorem 1) characterizes matrices with
identical sets of neighbors. It turns out that this collection of matrices C(A) is a polyhedral set

determined by the cones

C; =pos{h € N(A) : a;h <0} (1.3)
where A is a generic (cf. Section 2) matrix. C(A) has a product structure since the rows of the
matrices in it vary in the interior of C}, the polar of C;, independently of each other.

Computational experience and some theoretical results (cf. Remark in Section 2) indicate that

C; has “few” generators. We demonstrate this (Theorem 2) in the first nontrivial case n = 3,



m = 4. The proof is based on properties of the neighbors and of 3-dimensional lattices. It uses

geometry of numbers and is basically elementary.

2 Results

We assume throughout that the rank of A is n. Notice first that N(A) is symmetric about the
origin. This follows from (0, k) —h = (0, —h).
Next, we need to formulate various conditions on the matrix A. A convenient way to do so is

to consider the dual feasible region
D(A)={y e R™ : yA=0, y > 0}.

The first condition we need is

(A1) Thereisy € D(A) with y; >0 (V).

This is equivalent to saying that K is bounded for every b, or that 0 € int conv{a, ..., a;,}. We
will show (Claim 1 in Section 3) that (A1) implies that N(A) is nonempty and, further, that it is
a test set for the integer programs (1.1).

Condition (A1) implies that there exists a non-zero vector in D(A) with n+1 or fewer positive

components. Our next condition, a weak form of non-degeneracy of A, says

(A2) every non-zero y € D(A) has at least n + 1 positive components,

which is the same as saying that 0 is not in the convex hull of any n rows of A. We will show in
Theorem 3 that, under (A1) and (A2), N(A) is finite in a quantitative form.

Finiteness of N(A) was proved in White (1983) and in Barany, et al. (1995) under the stronger
condition “all n by n minors of A are nonsingular.”

In general, the set of neighbors need not form a minimal test set for the integer programs (1.1);
a proper subset of N(A) may also be a test set. The reason for this ambiguity is that we may
have two bodies (0, h) and (0, h'), with distinct lattice points h and 2/, which are identical, free of

interior lattice points, but with A’ on the boundary of the first body and h on the boundary of the



second. In this case, removal of either one of these points h or h' results in a smaller test set. As
we shall see, this is more a problem of exposition than substance, aside from a lower dimensional
set of matrices.

The matrix A is called generic if it satisfies conditions (A1) and (A2) and
(A3) aih # 0 for every i and every h € N(A).

For a generic matrix A, N(A) is the unique minimal test set for (1.1). Notice that generic matrices
form a dense set in the collection of matrices satisfying (A1) and (A2): any such matrix with
algebraically independent entries is automatically generic.

Now let A be a generic matrix and C(A) the collection of matrices A’ satisfying, for every i
and every h € N(A)

sign ah = sign a;h . (2.1)

As we shall see the closure of C(A) is a polyhedral cone. This follows from

THEOREM 1: Let A be a generic matriz and A’ € C(A). Then A’ is also generic and has precisely

the same set of neighbors as A. Moreover, dual feasible bases of A and of A’ coincide.

This, of course, shows that C(A) = C(A’). Theorem 1 says, in other words, that elements of C(A)

are characterized by conditions (cf. (2.1))
a,eint Cf , i=1,..,m

where C} is the polar of the cone C; defined in (1.3). Thus C(A) has a product structure: any
choice a} € int Cf (i =1, ..., m, the a} are chosen independently!) gives rise to a generic matrix
A =d), ..., ad, ]t € C(A).

Write now G; for the set of generators of the cone C;. Each Gj is finite and

O

7

={z :92x<0, g€G,}

is a (minimal) polyhedral description of C} and of C(A). The simpler the structure of the Gj, the

simpler this polyhedral description becomes.



We have investigated the structure of N(A) on several examples, mainly in dimension 3, 4,
and 5. The computational experiments provided beautiful pictures and insightful examples, and
showed structural properties of the neighbors. The experiments led to the conjecture that the

cones C; have “few” generators. We prove this in the first nontrivial case.

THEOREM 2: If A is a generic 4 by 3 matriz, then C; has (i) either three generators and they

form a basis of Z3, (i) or four generators, and some three of them form a basis of Z3.
Before proceeding to the proofs some remarks are in place here.

REMARK 1: Most frequently, test sets are considered when the corresponding matrix A is integral
(Lovész (1989), Sturmfels and Thomas (1994), and others). These matrices often lie on the
boundary of the decomposition (given by Theorem 1) of the set of matrices satisfying (Al). For

matrices on the boundary of a cell C the set of neighbors need not be a minimal test set.

REMARK 2: In the 4 by 3 case the number of generators of C;, |G;|, is bounded independently of
A (according to Theorem 2). It is unlikely though that, in general, |G;| is bounded by a function
of n and m alone. However, as A. Barvinok (1995) pointed out, a deep result of R. Kannan (1990)
shows that |G;| is polynomial in the size of A. We mention further that, in the 4 by 3 case, in

every computational example we had with 4 generators, the generators formed a parallelogram.

REMARK 3: The cones C; play a role in another question as well. Sturmfels and Thomas (1994)
considered integer programs of the form min{cx : Az < b, x € Z"} with ¢ and b varying while
A is a fixed national (or integral) matrix. They show that there is a fan, i.e., a subdivision of
R" into cones Kj, ..., K with nice intersection properties, such that for every b € R™ and every

¢, ¢ € int K;, the integer programs
min{¢;x : Az <b, x € Z"} and
min{dx : Az <b, x € Z"}

have the same solution. It can be shown (using the results of this paper) that for any particular

¢; € int K;, K; is the polar of pos{h € N(4;) : c;ih < 0} where A; = [¢;, a1, ..., am)”.



REMARK 4: There is yet another case where the cones C; come up. Given a generic m X n matrix
A and b € R™ the set K of the form (1.3) is a maximal lattice free convex body if ZZ™ Nint Kp, = ¢
but Z" Nint K = ¢ for every convex body K properly containing Kj. Every facet of K} contains
exactly one lattice point in its relative interior. Associating this set of lattice points with the
maximal lattice free convex body K}, gives rise to a simplicial complex C(A) depending only on
A (see Bardny, et al. (1994) and Bérany, et al. (1995) for the precise definition). The proof of

Theorem 1 shows that for A" € C(A), the simplicial conplexes K(A) and KC(A’) coincide.

3 N(A) is Nonempty and Finite
We show first that, under condition (A1), N(A) is nonempty in the following stronger form.

CLAIM 1: If A satisfies (A1), then every set K with 0 € K} and |Z"NK}| > 2 contains a neighbor

of A.

PROOF: Suppose 0, z € Z" N Ky, z # 0. We construct a (finite) sequence z = zp, 21, ..., 2z¢ SO
that z; € int(0, z;_1), (0, z;) C (0, zi—1) (i=1, ..., ¢) and 2z, € N(A).

Assume z; has been constructed. If Z"Nint(0, z;) = ¢, set £ = ¢ and stop. Otherwise pick any
ziv1 € Z" Nint(0, z;) and continue. The algorithm stops since, in view of (Al), K} is bounded

and zg, 21, ..., z¢ all belong to (0, z0) C Z,. O

The Claim implies that N(A) # ¢ and, further, that V(A) is a test set for the integer programs
(1.1). Now we turn to the proof of finiteness of N(A).
As N(A) does not change if a; is multiplied by a positive number we may and do assume that

|la;]| =1 for all i. Define

d = min{|det B| : B is a nonsingular n X n minor of A} . (3.1)

THEOREM 3: If A satisfies (A1) and (A2), then for every h € N(A)

2

n

hl|l < —. 3.2
Inl < 2 (32)



ProoF: Fix h € N(A), (0, h) is bounded (by (Al)) and int(0, k) # ¢ because of (A2). Consider
the ball B inscribed in (0, h) that has the largest radius p, let its center be c.

ZZ" N B = ¢ implies, via a simple induction, that p < %\/ﬁ

Write I for the set of indices i € {1, ..., m} for which the hyperplane {z : a;x = b;} is tangent

to B. (Here b; = max{0, a;h}.) For ¢ € I the equation of this hyperplane can be written as
ai(r—c)=p. (3.3)

The corresponding inequalities represent the ”active” constraints on the largest inscribed ball.
The simple necessary condition for the maximality of p is 0 € conv{a; : ¢ € I'}. Then condition

(A2) implies 0 € int conv{a; : ¢ € I'} which shows, in turn, that the polyhedron
P=A{zx:ax<b;, icl}

is bounded (and, further, that B is unique but we won’t need this). Clearly (0,h) C P.

A vertex v, of P, is the solution of n equations of the form (3.3). Write M for the matrix
whose rows are the a; of these n equations. Further, let M7 be the matrix obtained from M by
replacing its jth column by the all-one column. We get for the jth component of v — ¢

(v—c); = det M7
v CJ_pdetM'

The denominator here is nonzero since otherwise the corresponding equations do not determine a
vertex. Expanding the numerator along the all-one column and using ||a;|| < 1 we get |[(v —c¢);| <
pn/d. By (3.1)

lv— |l < pnv/n/d < n’/2d .

But diam(0, ) < diam P < n?/d because the diameter of P occurs between two of its vertices.

O

4 Proof of Theorem 1

We start the argument by taking A’ to be identical with A in rows 2, ..., m and differing only in

row 1. By assumption sign a}h = sign ajh for every h € N(A).



Cram 2: N(A') C N(A).

PrROOF: Let ' € N(A’). There is no loss in generality in assuming that a;h’ < 0 since if this
were not true we could select the neighbor —h' € N(A').
Assume /' is not a neighbor of A. Then by Claim 1 of the previous section there is an h € N(A)

with h € int(0, h') 4, so that

ajh < max{0, a;h'} =0,

a;h < max{0, a;/'} = max{0, a;h'} , i=2, ..., m.

We show now that h € int(0,h') 4+ contradicting the assumption that ' € N(A’).
We certainly have afh = a;h < max{0, a/h'} for i = 2, ..., m. In order to demonstrate ah <
max{0, a/h'} it suffices to show that ajh < 0. But since h € N(A) we have sign a,h = sign a;h < 0.

O

Write now A(t) =tA+ (1 —t)A" and a1(t) = ta; + (1 — t)a). We use a homotopy argument

for
LEMMA 1: A(t) is generic for every t € [0,1].

PROOF: Set

t* = min{t > 0 : A(t) is not generic} .

where the existence of the minimum and t* > 0 are easily justified. Assume, by way of contra-
diction, that t* < 1. Clearly sign a;(t)h = sign aih for every h € N(A) and every ¢ € [0,1]. Thus
A(t) satisfies condition (A3) for every ¢t € [0,1]. Claim 2 implies, further, N(A(t)) C N(A) for
every t € [0,t*).

We can reformulate conditions (A1) and (A2) for A(t) as
(A1) 0 €int conv{ai(t), az, ..., am},

(A2) 0 ¢ conv{any n of them}.



These conditions are true for ¢ € [0,¢*) but one of them fails at ¢*. If (A1’) fails, then 0 appears on
the boundary of conv{a; (t*), ag, ..., an}. By Caratheodory’s theorem, 0 is in the relative interior
of the convex hull of some of these vectors, including, of course, a;(t*). Renaming these vectors
suitably we get

0 € relint conv{a; (t*), ag, ..., ar} (4.1)

where k < n and we assume, further, that as, ..., a; are linearly independent.
If (A2') fails at t*, then 0 is in the convex hull of some n or fewer of the rows of A(t*). We

conclude again, that (4.1) holds with k£ < n and ag, ..., aj linearly independent.

CLAIM 3: There are n+ 1 — k rows of A(t) which we can take to be ag1, ..., @nt1 so that for all
t € [0,t%)

0 € int conv{aq(t), az, ..., Any1} - (4.2)

PRrROOF: Define L = lin{ag, ..., a} = pos{ai(t*), as, ..., ax} and let T denote the orthogonal pro-
jection of z € R"™ onto L+, the orthogonal complement of L. Set Q(t) = conv{ay (t), k1, ---, Gm}-
(A1) implies

0 € relint Q(¢) for t € [0, t*) .

The halfline {—Xa;(t) : A > 0} intersects the boundary of Q(t) (which is a convex polytope in
L+) at —A(t)a1(t). This point belongs to a facet F(t) of Q(t). Since a@i(t) is not on this facet
and since a;(t) changes linearly with ¢, F'(¢) is constant on an interval [/, t*). By Caratheodory’s
theorem there are linearly independent vertices of F'(t), which we take to be Gj.y1 ..., Gp, such that

there are —A(t)a;(t) € conv{ag+1, ..., G} implying

P

—a(t) = Y alta (43)

i=k+1

with a;(t) continuous on [t/, t*], positive on [/, t*), and 0 at t*. The linear independence of
Qf+1, -, Gp sShows p < + 1.

Lifting (4.3) back to R we get



where £(t) € L so that £(t) = 3% a;(t)a; with uniquely determined and continuous (since £(t) is

continuous) coefficients «;(t). We then have

P

0=aq (t) + Zai(t)ai . (44)

2

Here a;(t) > 0 for ¢ > k, and a;(t) > 0fori =2, ..., kon [t”, t*) as well since a;(t*) > 0 as follows
from (4.1).
(4.4) shows 0 € relint conv{a(t), ..., ap} when t € [t",t*). By (A2) p=n+1and 0 €

int conv{a(t), ..., ap+1}. By (A2'), again, this holds for all ¢ € [0, ¢*). O

It follows from Claim 3 and (A1) that the cone
Ct)y={x € R" : a1(t)x <0, asx <0, ..., apz < 0}
is simplicial and nonempty. Then
min{a,11z : z € C(t) NZ"}

is reached at some h(t) € C(t) NZ"™. Since h(t) is a neighbor for the matrix [a1(t), a2, ..., ant1]7,
it is a neighbor for A(t) as well. By Claim 2, h(t) € N(A). As N(A) is finite, there is a sequence
ty, — t* (as p — 00) so that h(t,) = h € N(A) for all p. Thus a1(t*)h <0, agh <0, ..., azh <0
showing that the hyperplane {z : hax = 0} strictly separates 0 from {aq(t*), aq, ..., ax}. This

contradicts (4.1) and finishes the proof of Lemma 1. O

Thus A’ is generic and sign a,h = sign a;h for every i and every h € N(A’) since N(A’) C N(A)
by Claim 2. Claim 2 applies again with the roles of A and A’ interchanged showing N(A) = N(A').
To finish the proof of Theorem 1 we repeat the same argument for every row in A. Finally,
it follows easily from this proof that all dual feasible bases of A remain the same during the

homotopy. O

5 Few Generators

From now on we work with the 4 x 3 case. The arguments of the next two sections provide a

proof of Theorem 2.
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Shallcross (1992) has given a complete characterization of the neighbors in this case. Although
we do not use this characterization explicitly, it provides considerable insight. Claims 1 and 2
below can be found in Shallcross (1992) as well.

With a slight change of notation let ag, a1, as,as be the rows of A. We assume again that A
is generic. Define HY?, H;r, H,; as the set of z € R3 with a;z =0, > 0, < 0 respectively.

We are interested in the neighbors N = {h € N(A) : aph < 0}. They lie in cones of the
type Hy N H{ N Hy N H; which we denote by Ci2: the index shows which of the H; go with
+ superscript. By condition (Al) Hy N H; N Hy, N Hy = . So the cones in question are
C1, 04, C3,Ch2,Ca3,C31, and Chas.

Observe that the cones C1,Cs,C3, and Cf23 contain exactly one neighbor, to be denoted by
s1, 82,83, and sg, respectively. To see this note that, for instance ss is the unique solution to the
integer program

min{asr : a;x <0, i=0,1,3, v €Z>}.
Since multiplying a; by a positive number does not change the neighbors we may assume that

a;s; =1,(1=0,1, 2, 3). Set
Q={rcR®: |ax| <1,i=0,1,2,3} .
CramMm 1: N C Q.

PROOF: Assume h € N but h &€ Q, aph > 1, say. As h is a neighbor, there is no integer other
than 0 and h satisfying a;x < max{a;h, 0} for all i. But sg satisfies all these inequalities since

apso = 1 < agh and a;s0 <0 when¢<1,2,3. 0O

Recall now the definition of C'= pos N and write D = C'U (—C). We know from Theorem 2

that ap can be moved without changing N(A) as long as Hyp does not meet C.
CLAIM 2: Q\D contains no lattice point.

PrOOF: Assume to the contrary that there is a point 2z € Z3HQ\D. Move ag along ap(t) = ap+ta

until Hy(t) passes through the first such lattice point z. This happens at ¢ = tg, say. Since z is
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not a neighbor, it is in one of the cones Ci2,Ca3, or Cs31, say C12. But as Hy(t) passes through
z, it will be in the cone HS‘(t) N Hf' N H;' N H; , which contains the unique neighbor —ss. So

z = —s3, a contradiction. O
Cramm 3: If w and v are generators of C, then v —v &€ Q.

ProoF: If u — v € @ then, by Claim 2, u — v is either in C or in —C. Assuming u —v € C,

u € v+ C,sou=uv+cfor some c € C. But then u is not a generator of C. O

Now if u,v € C'NQ belong to the same cone Cya,Cag, or Cs1, then automatically u — v € Q.
This shows that C' can have at most seven generators, one in each of the cones Cj, C;;, Ci23. The
trivial observation sg € pos{si, s2, s3} implies that C has at most six generators. The next claim

takes this number down to four.
CLAIM 4: If 51 and sy are generators of C, then C' has no generator in Cys.

PROOF: Assume h € N N Cia is such a generator. We will show that a;(s1 + s2) < max{a;h, 0}

for i =0,1,2,3 contradicting h € N. First, fori=0o0ri=3
a;(s1 + s2) < 0 = max{a;h, 0} .

By Claim 3, s1 —h ¢ Q. Now |az(s1 —h)| < 1 clearly, and a;(s1 —h) = 1—ajh € (0,1) since h € Q.
Further, ag can be moved without changing N so that Hg almost contains s; and h. This follows
from Theorem 2 and the fact that s; and h are consecutive generators of C. Then ag(s1 — h) is
between —1 and 1. Consequently, aa(s1—h) < —1. So we get az(s1+s2—h) = azsa+aa(s;—h) <0,
i.e.,

as(sy + s2) < agh = max{ash, 0} .

One proves aj(s1 + s2) < ajh = max{ajh, 0} the same way. O
Figure 1 about here
Figure 1 presents the remaining six cases in the plane agx = 1; the three lines are the traces

of the planes Hy, Ho, Hs.
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6 The Structure of the Generators
CLAIM 1: If u, v are generators of C, then u, v form a basis of the lattice Z3 N lin{u,v}.

PrOOF: By Claim 2 of the previous section there is no integer in the triangle [0, u, —v] other than

its vertices. Consequently [0, u, —v,u — v] is a lattice parallelogram. O

Here and in what follows we write [a,b,c,d] for the convex hull of a,b,c,d € R*. We say
that [a,b,c,d] is special if it contains no lattice point other than a, b, ¢, d. The notation and

terminology is extended to triangles and segments as well.

CrAmM 2: If w,v,w are consecutive generators of C, then [0, u,v, —w| and [0, —u, v, w| are special

simplices.

ProoOF: This is true because of the previous claim and because the simplices in question are

contained in Q\D. O

LEMMA 3: If0, a, b, ¢ € Z* are not coplanar and the simplices [0, a, a+b, a+c], [0, a+c, b+c, ,
and [a, ¢, a + ¢, a + b+ c| are special, then so are [a+b+c¢,b+c, ¢, b, [a+b+¢, b, a, a+ b,
and [b+ ¢, a+0b, b, 0]. Moreover, all lattice points in T = {aa+ fb+yc:0 < «, B,y < 1} are

of the form p(a+ b+ c) for some p € (0,1).

PROOF: The first statement follows simply by reflection through %(a + b+ ¢). The second needs
more meditation.

Obviously, a and b generate the lattice Z* N lin{a,b}. Then we can pick z € T'N 73 so that
a,b, z form a basis of Z3. Thus

CcC = )\1@+/\2Z)+)\3Z

with )\; an integer. In fact A3 > 1 since A3 = 1 would mean that a, b, ¢ form a basis of Z> and
then Z3 Nint T = ). Since z € T and A3z = ¢ — \ja — Aob, A1 <0 and Mo <0.

Clearly z € pos{a,b,c} and the conditions concerning special simplices imply z € pos{a +
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b, b+ ¢, c+ a}. Then, with p; > 0 one has
A3z =c—Aa—Xb=pi(a+b)+p(b+c)+ps(c+a).

The solution is ps = %(1 + A1 — A2) and pg = %(1 — A1 + A2) which is possible if and only if
A1 = Xo. Then pg = pug = % Thus A3z = ¢ — A1(a +b).

In the plane spanned by a + b and ¢ the triangle [0, ¢, ¢+ %(a—l— b)] is special as a consequence
of the specialty of [0, a + ¢, b+ ¢, ¢| and of [a + b+ ¢, b, a, a + b], see Figure 2.

Figure 2 about here

Assuming A\; # —1 we have A\; < —2. The halfline {\z : A\ > 0} intersects the parallelograms
Ty =[0,3(a+b),35(@a+b)+c,a+b+c and T = £(a +b) + T1 in segments of the same
length (because A3 > 2), and the first intersection contains the segment [0, z]. Then the second
intersection contains an integer point as well. But 75 is special. This contradiction shows that
AM=—-landsoAsz=c+a+b O

We will use the Lemma 3 in the form of

COROLLARY: Let C' have three generators a, b, ¢ with |det(a,b,c)| = X > 1. If T = {aa+Bb+c :

0<a,B,v<1} then TNX? = {%(a—kb—kc) for k=1, .., A—1}.
Write G for the set of generators of C. We are to check the cases separately.

CASE 1. G = {s1,82,83}. If s1 + s2 € Q, then a3(s; + s2) < —1 must hold since ags; and
apse can be taken almost equal to zero. So if s1 + s2 € Q then ag(s; + s2 + s3) < 0. Similarly,
So + s3 € Q and s3 + 51 € Q, respectively, imply a1(s1 + s2 + s3) < 0 and aa(s1 + s2 + s3) < 0.
Since ag(s1 + s2 + s3) < 0 automatically, and a;(s; + so + s3) < 0 for i« = 0,1,2,3 contradicts
(A1) we must have either s + sy € @ or so 4+ s3 € Q or s3 + s1 € Q. Assume, say, s1 + s2 € Q.
Then the interior of the segment [—s3,s1 + s2] lies in Q\D so the segment is special. But then

s34 [—s3, 51 + s2] = [0, 81 + s2 + s3], is also special and the Corollary implies det(sq, s2, s3) = £1.

CASE 2. G = {s1, s2, haz}. Then s1 + hag € @ and the segment [—s2, $1 + hoz] € Q\D. The

same argument as above shows that det(sy, sq, hog) = £1.
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CASE 3. G = {s1, h12, has}. Again s1 + haz € @ and the segment [—hi2, s1 + hog] € Q\D, and

we repeat the above argument.

CASE 4. G = {h12, has, h31}. We are done again if hia 4 haz € Q. If none of his + hag, hos + h31,
and hgi+hio isin @, then hys+hog+hsy € Ciog as one can easily check. Let z = %(hm +has+hs1)

be the first integral point on the diagonal of T, where, of course, A € Z and assume A > 2. Then
1 =agso < |aoz| = 3|ao(haz + hag + hs1)| -
But since ag can be moved so that aghi2 and aghs; are almost zero, we get

1 1 1
1 < xlaohas| < saoso = 5 -

CaAse 5: If C has four generators a,b,c,d in this consecutive order, then Claim 2 applies to
consecutive generators d, a,b and a, b, c and b, ¢,d and d, ¢, a showing that [0, —d, a,b], [0, a,b, —|,
[0,b, —c,—d], and [0, —c, —d, a] are special. This implies that [0, a,b, —c, —d] is also special. By a
theorem of Scarf (1986), these five points must lie on two consecutive lattice hyperplanes, Hy, Ho,
say. If four of them lie in one of the hyperplanes, then they have to be a,b, —c, —d as otherwise
three of the generators would lie in a hyperplane through the origin. But then a,b,c,d are the
vertices of a (special) parallelogram and any three of them form a basis of Z3. We may assume
now that three of the points lie in Hy, and the other two in Hs. If 0 € Hq, then the two generators
in Hy with each generator from H> form a basis. Finally, if 0 € Hs, then the three generators in

H, form a basis of Z3. This completes the proof of Theorem 2. O
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