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ABSTRACT

To obtain consistency and asymptotic normality, a generalized method of moments (GMM)
estimator typically is defined to be an approximate global minimizer of a GMM criterion func-
tion. To compute such an estimator, however, can be problematic because of the difficulty of
global optimization. In consequence, practitioners usually ignore the problem and take the GMM
estimator to be the result of a local optimization algorithm. This yields an estimator that is not
necessarily consistent and asymptotically normal. The use of a local optimization algorithm also
can run into the problem of instability due to flats or ridges in the criterion function, which makes
it difficult to know when to stop the algorithm.

To alleviate these problems of global and local optimization, we propose a stopping-rule (SR)
procedure for computing GMM estimators. The SR procedure eliminates the need for global
search with high probability. And, it provides an explicit SR for problems of stability that may

arise with local optimization problems.

Keywords: Computation, generalized method of moments estimator, global optimization, j-step

estimator, stopping rule.
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1. INTRODUCTION

This paper proposes a stopping-rule (SR) procedure for the computation of GMM estimators.
In contrast to local optimization algorithms typically employed in practice, the SR procedure
guarantees that the GMM estimator is consistent and asymptotically normal. The SR procedure
is quite flexible. -In particular,”it-can be taken to-involve similar -computations to the local
optimization algorithms typically in use. A drawback of the SR procedure is that there is a small
probability that the SR criterion is too stringent and one is left with the problem of searching for
an approximate global optimum of the GMM criterion function.

The SR procedure can be described briefly as follows. First, one obtains an initial estimator,
say 50, typically using some local optimization algorithm, perhaps with multiple starting values.
Next, one checks to see if 8, satisfies the SR [|An(80)Gn(0)|> < crm/n, Where || An(8)Gn(6)|?
is the GMM criterion function and c,, is a constant that depends on r, the number of over-
identifying restrictions. If 8o fails the SR, one needs to look for a new initial estimator, perhaps
by considering new starting values for the local optimization algorithm. If 8o satisfies the SR, one
computes a j-step estimator 53 using j Newton—Raphson (NR) iterations, as in Robinson (1988),
starting from the initial estimator 50. The final GMM estimator is then taken to be the value of §
that minimizes the GMM criterion function over all values considered up to this point, including
o@-‘ The final estimator is guaranteed to be consistent and asymptotically normal. In fact, it is
guaranteed to be an approximate global minimizer of the GMM criterion function.

The remainder of the paper is organized as follows. Section 2 describes the difficulty of finding
an approximate optimum of the GMM criterion function by global search. It also describes the
problem of terminating a local optimization algorithm when instability, due to flats or ridges,
occurs. Section 3 describes the SR procedure in detail. Section 4 provides the asymptotic jus-
tification for the SR procedure. The regularity conditions of Pakes and Pollard (1989) are used

when establishing these results. An Appendix provides proofs of the results given in Section 4.



2. COMPUTATIONAL PROBLEMS
2.1. Global Optimization

Standard definitions of extremum estimators, including GMM estimators, require that one
minimize a criterion function over a parameter space © C R?. The best specified definitions in
the literature do-not require -one to ‘precisely minimize the criterion function — a task that is
usually impossible to carry out in practice. Rather, they require that one finds a value 8 that is
close to minimizing the criterion function. For example, Pakes and Pollard (1989) require that 9
yields a value of the criterion function that is within 0,(1) of the minimum to obtain consistency
of # and within o,(n~1/2) of the minimum to obtain consistency and asymptotic normality of 8.

If the criterion function and parameter space are convex, as occurs in a number of econometric
applications, e.g., see Pratt (1981), then the criterion function has a unique local minimum, which
also is the global minimum. In this case, an approximate global minimum can be computed by a
local optimization algorithm started at any value in the parameter space.

Our concern here is with non-convex problems. For such problems, the most widely used
method to compute econometric extremum estimators is an algorithm called multi-start. This
algorithm is described as follows. One starts with an initial value 7, obtained either judiciously
or randomly, one uses a local optimization algorithm to converge to a local minimum, and then
one repeats the process a number of times with different starting values. The estimator g is
taken to be the value in © that corresponds to the smallest value of the criterion function that
is computed during the multi-start process. Often this algorithm is applied somewhat informally
with the choice of starting values and number of starts specified vaguely.

The multi-start algorithm has the advantages of being easy to apply (given some local op-
timization algorithm) and of being tractable (because the number of starts can be chosen with
the speed of function and function derivative evaluations in mind, and the local optimization
algorithm can be chosen with the nature of the criterion function in mind). A major problem
with the multi-start algorithm, however, is that it does not necessarily find the global optimum

or an approximate global optimum. In consequence, the estimator it delivers is not necessarily



consistent and asymptotically normal.

To ensure that one is close to the minimum of the criterion function, it is necessary to carry
out a global optimization of the criterion function. The theory and practice of global optimization
of functions is a subfield of computer science that has been increasingly active in the last twenty
years. Various approaches have been explored, e.g., see Floudas and Pardalos (1992) and Horst and
Tuy (1992). This research area, however, is still in a state of considerable flux. No consensus has
emerged as to the best methods for global optimization even for well-studied classes of functions.
No widely available and widely used software has been developed.

One reason for the unsatisfactory state of practical global optimization methods is that global
optimization is an intrinsically hard problem. This is quantified by results from another sub-
field of computer science, viz., information-based complezity theory. Complexity theory utilizes
the concept of e—cardinality. The (worst case) e—cardinality of a global optimization problem is
defined to b‘e the minimal number of function and first derivative evaluations necessary to find
the global optimum of a function to within ¢ (i.e., to find a value 8 in the domain O of a function
f such that f(g) < infgee f(#)+¢), given that the function to be optimized could be any function
in some specified class.

For example, consider the class F of functions from © to R, where © is a nonempty compact
subset of R%, each member of which is s—times continuously differentiable with uniformly bounded
s—th derivatives in all directions. The e—cardinality of the global optimization problem for this
class of functions is of order e~%/* and it is achieved by searching over a regular grid of points,
see Nemirovsky and Yudin (1983) (or, for a summary of their results, see Traub, Wasilkowski,
and Wosniakowski (1988, Ch. 5, Sec. 8)). (These results hold even when one allows for random
and adaptive selection of the function and derivative evaluation points and random algorithms.)
Robinson (1988) discusses and analyzes the use of the grid search method in an econometric
context to obtain né—consistent estimators for a given £ > 0.

The use of grid search, however, shows how difficult the global optimization problem is. Con-

sider a function with s = 1, first derivatives bounded by M, and parameter space @ = [0, L]%.



To obtain an e—approximate solution, one needs (LM/¢)? function evaluations. For example,
in econometric applications it would not be unusual to have L = M = d = 10, which requires
10%°/¢° function evaluations. If ¢ = .01, then 10* evaluations are required. At one second per
evaluation, 3.17 x 1032 years are required to carry out the computation. Alternatively, consider
a lower dimensional problem with d = 5, L = M = 10, and ¢ = .01. In this case, 102° function
evaluations are required. At one second per evaluation, the computation time still is 31.7 million
years.

An alternative approach is to employ a global optimization method that may not be optimal
in terms of worst case e— cardinality, but may be more efficient than a grid search for many of the
functions in the class of functions F. This approach has promise, especially as computer hardware
and algorithms improve. To date, however, no algorithms that guarantee convergence to the global
optimum have become standard in econometrics or elsewhere. When global optimization methods
are used in econometrics, algorithms that do not guarantee convergence to an (¢—approximate)
global optimum often are employed. An example is the simulated annealing algorithm run for a
finite length of time, e.g., see Goffe, Ferrier, and Rogers (1994).

An alternative to global optimization is provided by Veall (1990). He proposes a test of
the null hypothesis that a given trial value fis a global optimum. The test requires that one
draws N* random variables from a uniform distribution on the parameter space O, evaluates the
criterion function at those points, and compares a particular function of the resulting criterion
function values to the value of the criterion function at §. For a given significance level a, the
test guarantees (for large N*) that the null hypothesis that 8 is the global optimum will be falsely
rejected with probability less than or equal to a.

A serious problem with Veall’s test, however, is that the error one wants to control in this
testing context is not that of falsely rejecting the null. Rather, the error of foremost concern is
that of falsely accepting the null, viz., of falsely concluding that fisa global optimum. The latter
probability is the power of the test and it depends on N*. No method is provided with Veall’s

test to calculate how large N* must be in order to ensure that the probability that the test falsely



accepts the null is less than some specified value a. In consequence, the use of Veall’s test does
not necessarily produce estimators that are consistent and asymptotically normal.

In sum, the computation of extremum estimators is problematic in practice because they
require the solution of a global optimization problem that is often difficult to compute. The
standard method of computing the solution, i.e., multi-start, produces a local optimum that is
not necessarily global. In consequence, the estimator it produces is not necessarily consistent and
asymptotically normal. Global search, which does guarantee an approximate global optimum, is
intractable in many problems. Other methods, such as simulated annealing or the use of Veall’s
testing procedure, may reduce the chance that a local minimum is erroneously chosen to be the
estimator. They do not guarantee, however, that a global or approximate global minimum is
found. Hence, they do not guarantee that the estimator produced is consistent and asymptoti-

cally normal.

2.2. Local Optimization

As discussed above, in current practice the computation of an extremum estimator typically
relies on a local optimization algorithm. Especially when the parameter space is of high dimension,
a local optimization algorithm may have trouble finding an exact local optimum. It may converge
slowly or not at all, due to flatness of the criterion function in certain directions or due to small
bumps or ripples in the criterion function. In such cases, it is useful to have a stopping rule that
specifies when the algorithm is “close enough” to a local optimum.

In practice, informal stopping rules often are utilized. Usually, such rules are based on how
much the criterion function or the parameter estimates change over a number of iterations of the
algorithm or on how close the vector of derivatives of the criterion function is to zero. A common
problem with such rules is that little guidance is available to indicate when small changes are
“small enough” or when close is “close enough.”

For the asymptotic results of Huber (1967), Hansen (1982), and others, the vector of derivatives

of the criterion function is “close enough” to zero for asymptotic normality of the estimator if it is



o,,(n‘l/ 2). Unfortunately, this result is difficult to exploit in practice because it is not clear how
one should pick a reasonable sequence of values that is op(n‘l/ 2) out of the multitude of sequences
that have that property. In addition, it is impossible to pick a reasonable sequence without first
normalizing the magnitude of the criterion function in some way, since the scale of the criterion
function and its derivatives usually is arbitrary.

To conclude, a second problem that arises in the computation of extremum estimators is that

of specifying a reasonable stopping rule for a local optimization algorithm.

3. DESCRIPTION OF THE STOPPING-RULE APPROACH
Here we present a computational approach for GMM estimators with over-identifying restric-

tions that alleviates the problems discussed in Section 2.

3.1. Notation and Introduction

We start by introducing some notation. The GMM criterion function under consideration is
(3.1) 14n(O)G(O)I*

where G,(6) is a k-vector of moment conditions, A,(6) is a nonsingular k x k weight matrix,
8 € © C R? is the unknown parameter of interest, and || - || is the Euclidean norm. The moment

conditions and weight matrix satisfy

(3.2) Gn(8) 25 G(8) and A, () 2> A(8) V6 €O
for some functions G(6) and A(#). The latter are assumed to satisfy
(3.3) G(6) =0 iff §=0

and A(6) is nonsingular for all # € ©. The limit function G(8) is assumed to be differentiable in
8 on a neighborhood of 8y with k x d derivative I'(#). I',(#) denotes some consistent estimator of
I'(9). That is,

(3.4) I',(8) 25 T(8) for all 6 in a neighborhood of 6 .



For the case where G,(8) is not everywhere differentiable, one c@n define T',,(#) using numerical
derivatives of G,(8), see Pakes and Pollard (1989, p. 1043).

Typically a GMM estimator is computed by (i) choosing a weight matrix A, that does not
depend on 6, usually A, = I, (ii) obtaining an nl/?-consistent and asymptotically normal esti-
mator 8, by minimizing (at least as best as one can) the criterion function ||A,Gr(6)||* over O,
(iii) choosing a weight matrix A,(6) that is more efficient than A, of step (i) and evaluating it at
50, and (iv) obtaining the final n1/2-consistent and asymptotically normal GMM estimator gby
minimizing || An(80)Gn(8)||? over © (again, at least as best as one can).

The above procedure requires two global optimizations to guarantee consistency and asymp-
totic normality of the GMM estimator. The SR procedure we consider, on the other hand, does
not require a global investigation of the GMM criterion function. The basic idea behind the SR
procedure is that one can exploit knowledge of how large the GMM criterion function should be
when evaluated at its minimizing @ value to tell whether a particular value is an approximate
minimizer. This allows one to avoid carrying out a global investigation of the criterion function.

In particular, the minimized GMM criterion function (multiplied by n) has a x? distribution
asymptotically, where r = k—d > 0 is the number of over-identifying restrictions — a result
well-known from the theory of tests of over-identifying restrictions. In consequence, one can see
whether a trial value 8o yields a value of the criterion function that is small relative to typical
realizations of a x? random variable. If it is, then 50 must yield a criterion function value that
is close to that of the globally minimizing value (though it may not be close enough to yield
asymptotic normality of 50).

By starting with such a value 8o and doing j iterations of an NR procedure, one obtains a
j-step estimator E)\J that is consistent and asymptotically normal. The j-step estimator §j could
be taken to be the final GMM estimator. One can show, however, that any estimator 8 that leads
to a smaller criterion function value than b} has the same asymptotic distribution as 53 Thus, we
take the final GMM estimator 8 to be the value which minimizes the criterion function over all

values considered, including 53 This choice is consistent with the idea that the GMM estimator



is an optimization estimator.

Robinson (1988, Thms. 2-6) has shown that a j-step estimator is consistent and asymptotically
normal if a suitable initial estimator is used. His results apply to differentiable GMM criterion
functions. Our results given below extend his to include non-differentiable GMM criterion func-
tions. More importantly, our results differ from his in terms of the choice of the initial estimator.
Robinson’s initial estimator is obtained by a global search over a regular grid of points with mesh
size that is designed to yield an né-consistent estimator for some 0 < £ < 1/2. As argued in
Section 2, such a global search is intractable in many problems. In addition, Robinson (1988)
considers a random search to obtain an initial estimator that is né-consistent. Our results also
differ from Robinson’s in terms of the definition of the final GMM estimator, which in Robinson’s
case is the j-step estimator, whereas in our case it is the value that minimizes the GMM criterion

function over the values already considered including the j-step estimator.

3.2. Description of the SR Approach
We now describe the SR approach in more detail. It entails the following steps:
(i) Starting with a trial estimator, 50, one checks to see whether it satisfies the SR. That is,

one checks to see if

(3.5) 140 (B0) G @)II? < =2,

where ¢, is a constant defined below. Here, A,(#) must be an asymptotically optimal weight
matrix. That is, A,() must be such that A,(#) = A(6) for all § in a neighborhood of fp and
A(8,)'A(8y) = V=1, where V is the asymptotic covariance matrix of n!/2G,(6o). Typically, Bo is
the GMM estimator computed via the standard two-step procedure described above (though it
need not be). It usually is the result of a multi-start algorithm that utilizes one or more starts.
If 50 passes the SR, one proceeds to the second step below. If not, one looks for a new trial
estimator. For example, one might apply the multi-start algorithm with new starting values.

(ii)) Given that 8o passes the SR, one computes one-step, two-step, ..., j-step NR iterations

starting from 50, call them 51,52, veey ’0; The number j depends on ¢, , (see below), but it is



typically three or less. By definition, the j-step estimator is
(3.6) 0; =0;1 - (I‘;—IA;'—I Aj—lrj—l)_lr;—lA;—lAj—lGn(gj—l)

for 7 > 1, where f‘j..l = Fn(b}_l), Ej_l = An(aj_l), and A,(6) is an asymptotically optimal
weight matrix. 7

(iii) One takes the final GMM estimator 8 to be the value that minimizes ||A,(8)G,(8)|?
over all the values considered to this point including 50, ey 51 (Or, if it is computationally
more convenient, one can take @ to be the value that minimizes ||A,(8)Gy(8)||? over a subset of
the values considered to this point, provided the subset includes @) The final GMM estimator
is guaranteed to be consistent and asymptotically normal with asymptotically efficient GMM

covariance matrix. That is,
(3.7) n!/2(§ — o) - N(0, (I'V-IT)™1)

where I' = T'(6y).

3.3. Choice of the Cutoff Value c,

Here we discuss the choice of the cutoff value ¢, . Given the trial value 50, we want the SR to
be such that if 6 passes the SR, then 8, is suitable for use as the initial estimator for the j-step
estimator. It turns out that we need an SR that tells us whether 50 is né-consistent for some
0 < £ < 1/2, because this guarantees that 8o is sufficiently close to fy to provide a good starting

value. To this end, we show below that an estimator 50 is né-consistent iff
(3.8) 14,(80) G (0) 11" = O,(n™2) .

Thus, we need to determine a suitable sequence of cutoff values {c., : n > 1} such that c,,/n is
O,(n=%) for some 0 < £ < 1/2.

A suitable sequence of cutoff values is one that is not too small, because if ¢, is too small
there is a high probability that there is no value 6 in © for which the criterion function is less
than or equal to ¢, ,. On the other hand, if the cutoff value ¢, ,, is too large, one may end up with

a poor initial estimator from which to start the j iterations.
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To determine what is neither “too small” nor “too large,” we first need to find an appropriate
normalization of the criterion function ||A,(8)G.(8)]|?, since the criterion function can be mul-
tiplied by any scalar constant without changing its relative magnitude for different values of 6.
The natural normalization to use is to require the weight matrix A, () to be an asymptotically
efficient weight matrix, as is done in Step (i) above. This choice of weight matrix yields a scale
invariant criterion function. Multiplication of G,(8) by a scalar or any nonsingular matrix leaves
| An(8)G(8)||* unchanged, because A,(#) changes to offset the change in G,(6).

This choice of weight matrix has a second advantage that is quite important. In particular,
with this choice of weight matrix, the minimum over § € © of the criterion function (multiplied
by n) has a known asymptotic distribution that is nuisance parameter free. Its asymptotic dis-
tribution is a chi-square distribution with r = k—d degrees of freedom. This result allows us to
choose a cutoff value c, , such that we know that with high probability there exists a value 6 € ©
such that the criterion function evaluated at 6 is less than the cutoff value.

Based on the asymptotic result referred to above, we approximate the distribution of
infoco n||A4,(8)GL(0)||* by a x2? distribution. Using this approximation, if we let c,, be the

(1—ay,)-quantile of a x? distribution, then the probability that

. 2 Crn
(3.9) ;ggllAn(o)Gn(o)” < o

is approximately a,. That is, a, is the approximate probability that the chosen cutoff value c,
is such that no value of 4 satisfies the SR.

For most sample sizes, the choice of @, = .05 is reasonable. The corresponding c., values
are given in Table I for r = 1, ..., 20. The choice of &, = .05 has the advantage that it yields
a fairly small probability that the SR is too stringent, i.e., that no initial estimator satisfies the
SR. Furthermore, it has the advantage that if one fails to find an initial estimator that satisfies
the SR, then one can conclude that either (i) a test of the over-identifying restrictions rejects the
null with the conventional significance level of .05 or (ii) the over-identifying restrictions hold but
one is not able to find a suitable initial estimator due to the intractability of global optimization

or due to an excessively stringent SR, which occurs with approximate probability .05. With the
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standard method of computing the GMM estimator, the second possibility is generally ignored
when a test of over-identifying restrictions is carried out.

We note that for every paper in the literature that computes a GMM estimator, call it 50,
and for which the standard test of over-identifying restrictions fails to reject the null at a 5%
significance level, the estimator 50 satisfies the SR defined with a, = :05. Thus, in a very wide
variety of cases, an initial estimator that satisfies the SR is available.

In some cases the standard test of over-identifying restrictions may reject the null at 5% for
all parameter values 50 that one has computational time to comsider. It still may be helpful to
use the criterion function ||A,(0)G,(6)||? with an asymptotically efficient weight matrix A,(8) to
compare different parameter estimates in such cases, because of the natural normalization that is

provided by this weight matrix.

3.4. Choice of the Number of Iterations j
We now discuss the value of j (for the j-step estimator) that is required for given c, values.

If ¢, n/n = Oy(n~%), then it turns out that one needs
(3.10) j > —log(2¢)/log2 .

For example, if £ € (1/4,1/2], (1/8,1/4], or (1/16,1/8], then it suffices to take j = 1, 2, or 3
respectively.

Note that ¢, need not depend on n. If it does not, then an initial estimator that satisfies the
SR is né-consistent with £ = 1/2. In this case, the above condition (3.10) just requires j = 1.

If ¢, grows with n, however, then the probability a, that no value satisfies the SR goes to
zero as n — oo, as may be deemed desirable. In fact, the relationship between @, and ¢, as
Crn — 00 With nis

(3.11) a, X Kc:‘/,fe_c""/2

for some constant K (see Johnson and Kotz (1970, p. 179)). In consequence, a,, declines to zero

very quickly unless ¢, , increases very slowly. For example, if one wants a,, to decline geometrically
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fast, say a, ~ Kyn~> for some K; > 0 and A > 0, then c,, must increase at a logarithmic rate
and ¢, ,/n = O(n~%) V€ < 1/2. In this case, one can take j = 1.

Alternatively, if one wants a, to decline exponentially fast, say o, = Koe=*"" for some
Ky >0, A > 0, and v > 0, then ¢, , must satisfy c., =~ K3n” for some K3 > 0. In this case,
if v < 7/8, then ¢,, = O(n~%) with £ > 1/16 and one can take j = 3. Note that one would
probably not want to choose c,, such that it corresponds to £ < 1/16 because this could yield an
initial estimator that passes the SR but is not very close to 6.

In sum, for any choice of a,, (and corresponding ¢, ) that ranges between a, (and ¢, ) being
independent of n to a, declining at the very quick rate of a, ~ Kye™*"" for v < 7/8, it suffices
to take j = 3. Thus, a conservative strategy is to choose j = 3. This covers a very wide range of
o, values and is not unduly burdensome computationally since it involves at most two iterations

more than may be strictly necessary.

4. RESULTS

In this section, we provide the results that establish that the SR procedure yields a consistent,
asymptotically normal, and asymptotically efficient GMM estimator. The regularity conditions
that we use are very close to those of Pakes and Pollard (1989), who provide a discussion of many
of the assumptions. A feature of these assumptions is that they do not require that the GMM
criterion function is differentiable in 6.

The conditions outlined in the paragraph containing equations (3.1)-(3.4) are NOT assumed to
be in force throughout this section. We let ”A” denote the min operator, i.e., aAb = min{a, b}. We
let ||-|| denote the Euclidean norm of vectors and matrices. Thus, for a matrix, || B|| = (tr(B'B))'/2,
where “tr” is the trace operator.

The first result establishes the basic asymptotic properties of the one-step estimator b, (i.e.,

4’9} with j = 1) based on the initial estimator bo.

AssuMmpPTION RC (Rate of Convergence): n€(§0 — 60) = 0,(1) for some 0 < £ < 3.
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AsSUMPTION 1: G,(8) -~ G(@) for all 8 in some neighborhood of 6y for some function G(-)
that satisfies G(6g) = 0, G(-) is differentiable on a neighborhood of 6y with derivative T(-) that is

Lipschitz at 6y, and T = T(0y) is full rank d.
ASSUMPTION 2: FEither (a) For every sequence {6, : n > 1} of numbers that converges to zero,

n/? sup (|G, (8) — G(8) — Gn(Bo)| = 0,(1)
[16—60]|<6n

or (b) Gy(+) is differentiable on a neighborhood of 8y for all n with derivative that satisfies

nl/4

sup %Gn(e) — I‘(G)H = 0p(1)

[16—60]|<bn

for every sequence {6,, : n > 1} as in part (a).
ASSUMPTION 3: /nGy(6o) LR N(0,V) for some k X k covariance matriz V.

AsSSUMPTION 4: For every sequence {6, : n > 1} of numbers that converges to zero,

SUP||6—go|[<5n || An(8) — All = 0p(1) for some k X k nonsingular matriz A.
AsSUMPTION 5: For all0 < y<1/4 and all0 < M < o0,

n’  sup  |[Tn(8) = T(0)]| = Op(1) .
(|6—bo||[<Mn—7

ASSUMPTION 6: V is nonsingular and A’A = V1,

The above assumptions are fairly standard with the possible exception of Assumption 2(a).
The latter is employed when G, (6) is not differentiable in 6. It can be verified using the stochastic

equicontinuity results given in Pakes and Pollard (1989) or Andrews (1993, 1994).

THEOREM 1: Under Assumptions RC and 1-5,
(a) n®93 (8, - 60) = O5(1),

(b) if € > L in Assumption RC, then

n1/2(8, — 6y) % N(0, (I"A'AT) IV A'AV A AT(T' A'AT) ) ,
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(c)if €> % in Assumption RC and Assumption 6 also holds, then
A28, — 80) ~5 N(0, (T'V'T)™Y) and nf|A,(81)Ga(81)]> - 12 .
By taking the results of Theorem 1 for the one-step estimator and iterating j times, we obtain
the desired results for the j-step estimator.
COROLLARY 1: (a) Under Assumptions RC and 1-5, for all j > —log(2£)/log2,
n1/2(5j — 6o) A, N(0O, (I"A'AI‘)'lI"A’AVA’AI‘(I"A'AI‘)_I) .
(b) Under Assumptions RC and 1-6, for all j > —log(2£)/log?2,
nl/2(6; — 8o) 4 N(0, ('VTT)™Y) and nl| 4n(8;)Ga(@)I2 -5 X2 -
Next, we determine necessary and sufficient conditions for the initial estimator 50 to be nt-
consistent.

AssuMPTION D (Definition of Initial Estimator): 145 (80)Grn(80)|? = Op(n=2¢) for some 0 < € <

1
5
AssuMPTION C (Consistency): 8o —= 6o.

Note that an initial estimator 50 that satisfies the SR (3.5) also satisfies Assumption D, because

¢rn is chosen in Section 3 such that ¢, ,/n = O,,(n'%) for some 0 < £ < -%

THEOREM 2: Under Assumptions 1-4, Assumption RC holds if and only if Assumptions D and C

hold.
Combining Theorem 2 and Corollary 1 gives the following result.
COROLLARY 2: (a) Under Assumptions D, C, and 1- 5, for all j > —log(2£)/log2,

/(8 — 8) 4 N(0, (I’ A’AT) "I A’AV A’ AT(I"A'AT)7?)
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(b) Under Assumptions D, C, and 1-6, for all j > —log(2¢)/log2,

nV/%(8; — 6) < N(0, (T'V™'D)™Y) and n|A,(8;)Gn(8;)]|* - x2 .

We now specify two sets of sufficient conditions for consistency of 8o (Assumption C).
AsSUMPTION D1: [|4,(80)G(80)|| = 0,(1).
ASSUMPTION 7: G(0o) = 0p(1).
ASSUMPTION 8: sup|jg_g,||>5 [|G=(8)]|7! = Op(1) V6 > 0.
AssuMPTION 9: [|4,(60)|] = O,(1) and supgee || A71(8)]] = Op(1).
ASSUMPTION 10: supyce ||Gr(8) — G(8)|| = 0,(1) for some function G(-) on ©.
AssUMPTION 11: infjg_gy 56 [|G(6)]| > 0 V& > 0.

ASSUMPTION 12: supgce ||An(6)— A()|| = 0,(1), supgep ||A()|| < o0, and infgco Amin(A(8)) > 0

for some function A(-) on ©.
PROPOSITION 1: Under Assumptions D1 and either 7-9 or 10-12, 50 LN 0.

Proposition 1 is due to Pakes and Pollard (1989).

The following Corollary is similar to Theorem 2 and Corollary 2. It replaces the consistency
assumption (Assumption C) by sufficient conditions for consistency. Part (a) is established by
combining Proposition 1 and Theorem 2. Parts (b) and (c) are obtained by combining Proposition

1 and Corollary 1.

COROLLARY 3: (a) Under Assumptions 1-4 and either 8-9 or 10-12, Assumption RC holds if and
only if Assumption D holds.

(b) Under Assumptions D, 1-5, and either 8-9 or 10-12, for all j > —log(2¢)/log?2,

nl/2(8; - 65) == N(0, (I'A’AT) 1T A’ AV A'AT(T" A’AT) 1) .
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(c) Under Assumptions D, 1-6, and either 8-9 or 10-12, for all j > —log(2¢)/log2,
n!/2(8; — 5) ~2 N(0, (T'VTIT)™) and nl|An(8)Ga(8)]I* = 2 -
Next, we show that the value of the GMM criterion function minimized over § € © is asymp-
totically x2.
ASSUMPTION 13: 6y is in the interior of ©.
THEOREM 3: Under Assumptions 1-4, 6, 13, and either 8-9 or 10-12,
n inf [Au()Ga(O)]* - x? -
We now provide results that show that the final GMM estimator 8 is consistent and asymp-

totically normal.

Let & denote some estimator. We say 8 satisfies Condition (i) if
CONDITION (i): 8 — 6y and || A,(8)Gn(8)|| < infoeo || An(8)Gn(8)| + 0p(n~1/2).

THEOREM 4: Under Assumptions D, 1-5, 13, and either 8-9 or 10-12, 5,- satisfies Condition (i)

for all j > —log(2€)/log2.
PRroPosITION 2: Under Assumptions 1—4 and 13, if an estimator ] satisfies Condition (i), then
nl/:'(a— 6o) 2, N(0, (T"A’AT) "IV A'AV A'AT(I" A AT) 1) .
Proposition 2 is due to Pakes and Pollard (1989).

The definition of the final GMM estimator # and Theorem 4 imply that 8 satisfies Condition

(i). Proposition 2 then gives the desired asymptotic normality result for 9.

COROLLARY 4: Let 8 be an estimator that satisfies
142 @)GAB)II* < [ A(B)Ga(8)]” -

Then, under Assumptions D, 1-5, 13, and either 8-9 or 10-12,



(a) n1/2(8 - 8) - N(0, (I'A'AT)"'TA’ AV A’AT(I" A’ AT)~1) provided j > — log(2€)/log 2,

(b) if Assumption 6 also holds
n/2(§ — 8,) - N(0, (I'VID))

provided j > —log(2€)/log2.

17
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APPENDIX
ProOF oF THEOREM 1: First, we consider the case where Assumption 2(a) holds. Using As-

sumptions RC and 1, element by element mean—value expansions yield
(A.1) G(Bo) = T(6*) (6o — 6o) ,

where 6* lies on the line segment joining fo and 8, and may differ across the rows of I'(6*). This

result and Assumption 2(a) give
(A-2) 1G(80) ~ T(67)(Bo ~ 80) ~ Ga(o)ll
= [1G(@) — G(Bo) = Ga(B0)ll = 0p(n /%) .
(Assumption 2(a) is applicable here because consistency of 50 implies the existence of a sequence
of constants {6, : n > 1} for which 6, — 0 and P(||6o — 6o|| > 6,) — 0.)
In consequence, using the definition of 51, we obtain
(A.3) nON3 (9, —0g) = nCOrT(Gy—8,) — (T A, ApTo) 1T, AL Agn2D12 G, (Bo)

(fGA\éA\gf‘o)_l f‘{,ﬁgﬁgné’\% (fg — F(G* ) )né’\% (50 - 00)

— (T A ATo) 1T A ApnPONE G (Bo) + 0p(1) .

The components of the right-hand side of (A.3) exhibit the following asymptotic behavior. By
Assumptions RC, 1, 4, and 5, (T, A, A,To)1T4 A, Ao = (I’ A’AT)~1T"A' A40,(1). By Assumptions

RC, 1, and 5,
(Ad)  néE||To — T(0%)]| < 0790, (B0) — T(Bo)l| + né"5||T(8o) — T(67)|| = Op(1)

where the equality utilizes the Lipschitz condition on I'(:). By Assumption RC, an%(§0 — o)
is Op(1) for 0 < £ < 1 and 0,(1) for § < £ < 1. By Assumption 3, n(%)"%Gn(Og) is o0p(1) for
0<é< % and asymptotically N(0,V) for £ > %. Substitution of these results in (A.3) gives parts
(a) and (b) of the Theorem.

The first result of part (c) of the Theorem holds by part (b) by substituting V! for A’A.

The second result of part (c) is obtained under Assumption 2(a) as follows. Equations (A.1) and
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(A.2) hold with 8o replaced by 8,, since 8, is consistent by part (b). In consequence, (A.2) revised
and (A.3) yield
(A.5)  nl2G.(8) = T(0)n'’*(8; — bo) + n'/?G, (o)

—[T + o, (D(T'VID) IV 102G, (80) + 0p(1)] + nY/2Gr(80) and

It

nM? A, (8,)Gn(6y) AL = T(T'VID) IV H)02G,(80) + 0,(1)

<, N(0, I, - AT(I'V7IT)"IT4)

Since AT(I"V~IT)~1I"A’ is symmetric, idempotent, and of rank d, Iz — AT(I'V~IT')"1I"A' is a
projection matrix onto a (k—d)-dimensional space. The second result of part (c¢) now follows by
(A.5), the continuous mapping theorem, and the definition of the x2 distribution.

Next, we consider the case where Assumption 2(b) holds. Using Assumptions RC and 2(b),

element by element mean—value expansions give

0

an(e*)(b\o —6),

(A.6) Gr(Bo) = Gr(B0) +

where 6* lies on the line segment joining 6o and 6, and may differ across rows of E%Gn(e*).
Equation (A.6) replaces (A.2). The proof is now the same as above from equation (A.3) on with

I(6*) replaced by -3;Gx(8*). On the right-hand side of (A.4), né* ||T(8o) — 2 Gn(6*)

is O0p(1),
because it is bounded by

(A7) né¥||T(Bo) — T(6°)|| + néhe Z%Gn(e‘*) — (%)

k)

which is Op(1) by Assumptions RC, 1, and 2(b). O

ProoF oF COROLLARY 1: Corollary 1 follows from Theorem 1 by applying Theorem 1 part (a) re-
cursively with the initial estimator 8o given by 8o, ’0\1, cers 51-_2 to obtain n(%)’\%(b} — o) = 0,(1),
n1A3 (g, — 6y) = 0,(1), ..., n(2"‘€)"%(§j_1 — 6p) = O,(1). For j > —log(2¢)/log2, we have
27-1¢ > % and Theorem 1 parts (b) and (c) applied with the initial estimator 8o set equal to é}_l

give parts (a) and (b) of the Corollary respectively. O
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ProoF oF THEOREM 2: Assumption RC obviously implies Assumption C. First we show As-
sumption RC implies Assumption D when Assumption 2(a) holds. Using Assumptions RC, 1,

2(a), and 3, we obtain

(A.8) 1Gn(Bo)ll < [Gn(Bo) — G(Bo) — Gn (80l + |G (Bo)I| + [IG(80)|

IN

0p(n"Y2) + C1(|8o — bol| + 0,(n /%) = 0,(n7%) ,

where the first equality uses the fact that Assumption 1 implies the existence of a positive constant
C1 for which
(A.9) |G(8)|| < C1]|0@ — 6o|| for @ near 6, .

By (A.8) and Assumption 4, we obtain the desired result:
(A.10) 140G (B0)|| = [I(A + 0p(1))Gr(8o)ll = Op(n™¢) -
To show Assumptions D and C imply RC under Assumption 2(a), we write

(A11) | AG(B)ll < 1A0(Gu(Bo) = G(Bo) — Gnl80))I| + | A6Grn(Bo) | + [ AoGn(0)]|

OP("_I/Q) +0p(n™¢) + Op(n_1/2) = Op(n_é)
using Assumptions D, C, 2(a), 3, and 4. This result and the triangle inequality give

(A.12) 0p(n7%) = (146G (Bo)ll > [ AG(B0)l| + [I(AoA™" — 1) AG(8o) |

Il

= (14 o())IAG(B0)ll > (1+ 0,(1))Callfo — bol| ,

where the second inequality holds because Assumptions 1 and 4 imply that there is a positive
constant C for which || AG(0)|| > C2||6 — 6| for € near 6.
Next, we show Assumption RC implies Assumption D under Assumption 2(b). Using (A.6)

(which relies on Assumption 2(b)), we obtain

8 -
Ao==Gn(6")(60 — 6o)

o0’ = Op(n_g) ’

(A.13) 1 40Gn(80)|| < || A0Gn(80)|| +

where the equality uses Assumptions RC, 2(b), 3, and 4.
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For the converse, we pre-multiply (A.6) by Ap = A + 0,(1) to get
(A14)  [I(A+ 0p(1))T + 0p(1))(Bo — 80)| < 140G (B0)l| + [ AoGrn(8o)]| = Op(n~¢)

using Assumptions D, C, 2(b), 3, and 4. Since AT is full rank d, this implies 180 — 60| = Op(n=%).

a

Proor or ProrosITiON 1: To establish consistency of 50 under Assumptions D1 and 7-9,
we apply Pakes and Pollard’s (1989) Theorem 3.1 with their G,(-) replaced by our A,(-)Gy(:).
Assumption D1 is equivalent to Pakes and Pollard’s altered condition (i) of their Theorem 3.1.
Assumptions 7, 8, and 9 are equivalent to Pakes and Pollard’s unaltered condition (ii) of Theorem
3.1, unaltered condition (iii) of Theorem 3.1, and conditions (a) and (b) of their Lemma 3.4,
respectively. By Lemma 3.4, conditions (ii) and (iil) of Theorem 3.1 then hold with G, (-) replaced
by An(-)Gyr(:). Consistency follows by Theorem 3.1.

To establish consistency of 8o under Assumptions D1 and 10-12, we apply Pakes and Pollard’s
Corollary 3.2 with their G,(-) and G(-) replaced by our A, (-)Gr(-) and A(-)G(-) respectively. The
altered conditions (i) and (ii) of their Corollary 3.2 hold given Assumptions D1, 11, and 12. The

altered condition (iii) of Corollary 3.2 holds by the following inequality:

oy —_A4x(0)G:(8) = AO)G(0)]
566 1+ [4,(8)G (O + TGO
I(Aa(6) = A@)GO)] _

(A.15)

using Assumptions 10 and 12. O

Proor oF THEOREM 3: First we consider the case where Assumption 2(a) holds. Let g be an

estimator that satisfies
(A-16) | An(BYGa(B)] < jnf [ An(8)Gn(8)]| + 0p(n™/%) .

We show that the conditions of Pakes and Pollard’s (1989) Theorem 3.3 hold with the alterations

that 6, is replaced by 8, G, (:) is replaced by A,(-)Gx(-), and G(-) is replaced by AG(-). Since
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infpco || An(8)Gn(8)|| < An(80)Gn(fo) = Op(n=1/2) by Assumptions 3 and either 9 or 12, § satisfies
Assumption D. In consequence, 6 -2 6, by Proposition 1. Furthermore, by (A.16), the altered
condition (i) of Theorem 3.3 holds. By Assumptions 1, 2(a), 3, and 13, the unaltered conditions
(i), (iii), (iv), and (v) of Theorem 3.3 hold respectively. By Assumption 4, Pakes and Pollard’s
Lemma 3.5 applies. It implies that the altered conditions (ii)-(v) of Theorem 3.3 hold. Hence,
all the conditions of Theorem 3.3 hold. By Pakes and Pollard’s proof of Theorem 3.3 with the

alterations listed above, we get

(A17) [ An(B)Gr(B)]| = [|An(65)Ln(85)] + 0p(n™?/2)

I[A + 0p(1)][-T (I’ A’ AT) ' T" A’ AG . (60) + Gn(80)]]| + 0,(n /),

where L, (8) = T'(6 — 6o) + Gr(6p) and 6 minimizes ||A,(8)L,(8)| over ©. Now, by the same
argument as used in and below (A.5), n||An(8)G.(8)|2 <, x2. By (A.16) and the inequality
infoco || An(8)Gn(8)]] < [|An(8)Gr(8)|l, We see that ninfsce || An(8)Grn(6)])? has the same asymp-
totic distribution as n||A,(8)Gn(8)(]%.

Next, for the case where Assumption 2(b) holds, the above proof goes through provided (A.17)
can be established. Equation (A.17) holds by the proof of Theorem 3.3 of Pakes and Pollard with

v/n—consistency established via Theorem 2 above and with the argument of (A.6) used in place

of Pakes and Pollard’s condition (iii) wherever the latter is used. O

PROOF OF THEOREM 4: Define 6, L,(8), and 6}, as in the proof of Theorem 3. By the proof of

Theorem 3, under Assumption 2(a) or 2(b),
(A.18) 14n(B)Gr(B)]| = 11 4n(87) Ln(B)| + 0p(n™"72) .
By the proof of Theorem 1 above,
(A.19) nM3(0; — 0p) = —(I'A'AT) TV A’ An'/2 G (8o) + 0p(1)
= n'/%(6; — 60) + 0p(1) -
By the definition of L,(-), this yields

(A.20) | 4n(85) Ln(8;) — An(83) Ln(82)]] = 0p(n™1/2) .
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Next, by the proof of (A.2), under Assumption 2(a) or 2(b), we have
(A21) 14n(8)Gn(85) = An(@) Ln(8))]| = 0p(n™1/%) .
Equations (A.18), (A.20), and (A.21) combine to give

(A.22) 1 4n(8:)Gn(B)]| = (| An(8)Gn(B)]| + 0p(n~/?)

IN

inf | Au()Ga(6)]] + 0p(n™/?)

using the definition of 9. O

PROOF OF PROPOSITION 2: The proof when Assumption 2(a) holds is given by Theorem 3.3 and
Lemma 3.5 of Pakes and Pollard (1989).

Now suppose Assumption 2(b) holds. First, we show that g is n'/2-consistent. We have
(A.23) n!2 | Au(O)Gr(B)l] < n'/* )| An(80)Gn(Bo)ll + 05(1) = Op(1) ,

where the inequality holds by Condition (i) and the equality by Assumptions 3 and 4.

Element by element mean value expansions give

~
~

(A.24) n12G,(8) = n'/2Gn(60) + %Gn@)nl/?(ﬁ- 8o) ,

where 8 lies between 6 and 6, and may differ across rows of 527G (0), using Assumption 2(b).
Pre-multiplication by A,(f) yields:

~
o~

= 73 = 0 — =
(A.25)  n'24.(0)Gu(8) = An(B)n'/*Gn(80) + An(8)55Gn(B)n'/*(8 — bo) and
0,(1) = 0p(1) + (AT + 0,(1))n/*( - o) ,
where the second equation follows from the first, (A.23), consistency of 5, and Assumptions 1,
2(b), 3, and 4. Equation (A.25) implies that n1/2(§ — 6y) = O,(1) since AT is full rank d (< k).
We now follow the proof of Pakes and Pollard’s (1989) Theorem 3.3 and point out the alter-

ations that need to be made given Assumption 2(b) holds rather than Assumption 2(a). Let

(A.26) L(6) = T(6 — 65) + Gn(60) -



24
Pakes and Pollard’s (1989) last equation on p. 1041 is replaced by
(A.27) 14n(8)Gn(8) = AL (B)]] = 0p(n™"/?) ,

which holds by (A.25), consistency of 5, and Assumptions 1, 2(b), and 4.
Let 6* be the value that minimizes ||AL,(8)||? over ©. By Pakes ad Pollard’s argument on p.

1042, 6* is consistent. Now, an analogous argument to that given above yields
(A.28) (| 4n(6*)Gn(67) — ALn(67)]| = 0p(n~'/?) .

The remainder of the proof is as in Pakes and Pollard (1989). O

Proor or COROLLARY 4: By assumption and Theorem 4, we have

A

(A.29) 1 4n(B)Gn (B < [14n(8;)Gn(8;)]

IN

inf [|A4n(6)Gn(6)I] + 0,(n~1/?)

provided j > —log(2¢)/log2. Now, the right-hand side is O,(n~'/2) by Theorem 3. In conse-
quence, 8 is consistent for 8o by applying Proposition 1 with 50 equal to 9. Consistency of gplus
(A.29) imply that 8 satisfies Condition (i). Proposition 2 now yields the results of Corollary 4.

a
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TABLE I

Cutoff Values ¢, , that Correspond to a, = .05

r 1 2 3 4 3 6 7 8 9 10

¢rn 384 599 7.82  9.49 11.07 1259 14.07 15.51 16.92 18.31

r 11 12 13 14 15 16 17 18 19 20

¢y 19.68 21.03 2236 23.68 25.00 26.30 27.59 28.87 30.14 31.41
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