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Abstract

‘We develop a dynamic model in which the probability of failure of an infinitely lived
financial intermediary (bank) is determined endogenously as a function of observable
state and policy variables. The bank takes into account the effect of the optimal policy
(the interest on deposits, dividend payouts, risky investments) on the probability of
failure, which in turn affects the bank's ability to extract deposits. With the aid
of simulations we study the effect of variables such as bank size, the riskiness of the
bank’s investment opportunities, and reserve requirements on the bank’s optimal policy
and on its probability of failure. A major finding is that small banks choose policies
that render them more risky than large banks. As the risks are correctly priced by
depositors, rates offered by small banks incorporate substantial risk premia. Another
interesting finding is that a tighter reserve requirement induces banks of all sizes to
take fewer risks.
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1 Introduction

Assessing the probability of failure of banking firms is of great importance whether one
believes in “market discipline” or in “hands on” bank regulation. We develop a model in
which the probability of failure of a financial intermediary (bank) is determined endoge-
nously. The model contributes to a better understanding of the economic forces at play in
the determination of the equilibrium probability of failure of depository institutions in the
absence of full deposit insurance. It sheds light on the effectiveness of market discipline
in controlling the riskiness of banks’ portfolios, and hence on their probability of failure.
The model is also important for regulators, as it may help in developing tools for identi-
fying “problem banks” and for evaluating regulatory measures such as risk-based deposit
insurance schemes.!

In the model we develop, an infinitely lived bank accepts deposits each period for a
specified interest rate, and it invests the total available funds in riskless bonds, risky secu-
rities, and risky projects. The depositors take into account the probability of failure when
supplying funds to the bank. The bank takes into account the effect of its policy decisions
on its own probability of failure, and hence on the willingness of depositors to supply funds.
In equilibrium, depositors’ beliefs are correct in that their perceived probability of failure
is true. We can, therefore, express the probability of failure as a function of the bank’s
observable policy variables and its equity capital, which we shall call, for simplicity, the
bank’s size. Under fairly general conditions we show that there exists a unique value func-
tion for the bank’s stochastic dynamic program, and we provide a set of conditions that
ensures that the bank’s policy function is unique.

The paper is related to the portfolio selection models of financial intermediaries (e.g.
Hart and Jaffe (1974)), where intermediaries are modeled as risk averse agents, and asset
returns are exogenously determined. Flannery (1989) incorporates in this framework de-
posit insurance and capital adequacy regulation in the form of a permissible leverage ratio,

which decreases with bank riskiness.2 We depart from the traditional portfolio selection

!There is empirical Lterature that attempts to develop an early warning system for “problem banks” by
identifying measures of risk that best predict actual bank failure rates (e.g., Santomero and Vinso (1977);
Lane, Looney, and Wansley (1986)).

2In Flannery’s model the bank can select the desired degree of riskiness; by increasing it, the bank



model in several ways. First, our model is an infinite horizon, dynamic model of optimiza-
tion. Second, it incorporates an explicit mechanism of market discipline. Third, and most
important, the probability of failure is determined endogenously.

An important feature of the model is that in equilibrium the interest rate offered by
the bank incorporates a premium above the risk free rate (e.g., the rate on U.S. Treasury
bills of a similar maturity.) This is consistent with Matutes and Vives (1994) where two
banks are engaged in a one-shot game, each selecting both its riskiness and the interest
rate on deposits. Their model predicts that the interest rate chosen by each bank increases
with its riskiness.® Recent empirical work is consistent with this prediction, indicating that
the rates on large, uninsured certificates of deposit (CD’s) include significant default risk
premia.* See, for example, James (1988), Hannan and Hanweck (1988), Keeley (1990), and
Ellis and Flannery (1992).

To address a series of policy related issues we simulate the model for a variety of pa-
rameter values. In the base case simulation we study the optimal policy—dividends, risky
investments, and the interest rate on bank CD’s—for banks of various sizes. As a result,
we can determine the probability of failure for banks of different sizes. We then study the
effect of several parameter changes on the optimal policy and the probability of failure.

An interesting question addressed in the simulations is whether a high interest rate
on uninsured CD’s reflects bank riskiness or, rather, simply indicates a pressing (possibly
temporary) need for funds. In the base case simulation high interest rates are associated
with large deposits and a high probability of failure; high rates reflect both a high demand
for deposits and a risk premium.

It is well known that when there is deposit insurance banks tend to become less safe,

regardless of size. The “too big to fail” principle suggests that the moral hazard problem

increases the value of the put option embedded in deposit insurance, at the price of decreasing the permissible
leverage ratio. Flannery shows that, for suitable parameter values, the bank's problem is concave with an
interior solution, despite the fact that the bank is risk neutral.

3For a related model in the asset pricing tradition see Crouhy and Galai (1991).

¢An exception is Crane (1976) who finds no significant relation between CD rates and measures of bank
risk. Crane reports, though, that bank CD rates tend to decrease with total demand deposits in the bank.
According to Crane total deposits can be regarded as a proxy for bank size, which is an indication for the
soundness of the bank. We do not agree with this interpretation as a large amount of deposits (relative to
the equity base, for example) may entail—depending, of course, on the bank’s behavior on the asset side—a
large risk of default.



arising from the introduction of deposit insurance is most severe for large banks. Therefore,
other things equal, we should expect large banks to be less safe. Boyd and Runkle (1993)
observe that according to modern financial intermediation theory larger banks can afford
to invest in many projects (whose returns are not perfectly correlated) and hence are more
diversified and safer. They provide empirical evidence suggesting that the investment port-
folios of large banks are less risky, although they find no evidence that these banks have a
lower probability of failure. Also, they are not able to disentangle empirically the “too big
to fail” and the cost of diversification effects.

In our model there is no deposit insurance, and banks of all sizes have access to the
same number of risky technologies. Therefore, neither of the above effects is present. The
focus is on the interest rate policy, the investment policy, and the dividend consumption
decisions of banks of different sizes. The simulations indicate that small banks (i.e., banks
with little equity capital) are less safe than large banks. They do not reduce dividends
and risky investments sufficiently to become as safe as larger banks. The implication for
regulators is obvious—small banks should be regulated more tightly, possibly by limiting
dividend distribution.®

Next, we study the effect of a reserve requirement on the portfolio choice and the prob-
ability of failure of banks. Monetary theorists have traditionally focused on the role reserve
requirements play in controlling the money supply, in raising revenues for the Treasury (be-
ing a tax on deposits), and in insuring banks against adverse liquidity shocks. Qur analysis
suggests that reserve requirements may also influence the dividend and investment policies
of banks, thereby affecting their probability of survival. The main finding is that a tighter
reserve requirement induces smaller banks to consume more dividends but to offer lower
interest rates and raise fewer deposits; overall, the banks become safer.

When the riskiness of the investment opportunities that banks face increases, banks of
all sizes respond by shifting funds away from the most risky investments, but not sufficiently
to prevent the probability of failure from increasing. This is the main finding from simu-

lations where we vary the dispersion of the returns on risky investments, keeping all other

5The US General Accounting Office has recently proposed to prohibit dividends by under-capitalised
banks. Horne (1991) provides further details as well as « discussion of other factors affecting bank dividend
policy.



parameters constant. Small banks increase the interest rate on CD’s but do not reduce
the consumption of dividends. This is a further indication that the risk-taking behavior of
small (under-capitalized) banks should be monitored.

We study the effect of changes in the risk aversion of the bank owner-manager and find
that more risk averse banks distribute fewer dividends. Interpreting higher risk aversion
as more concentrated ownership, the simulations yield an interesting testable prediction—
other things equal, banks with concentrated ownerships pay fewer dividends.

To evaluate the effect of “market discipline” on banks’ policies and the probability of
failure, we study the effect of changes in the sensitivity of the supply of deposits to the
interest rate offered by the bank as well as the sensitivity of deposits to the probability of
failure of the bank. The results indicate a clear role for market discipline. Finally, we check
the effect of small changes in the riskless interest rate and find that they result in changes
in policy and negligible changes in the probability of failure.

For every simulation we follow, for thirty periods, a cohort of one thousand banks
that start operating at the same time and are initially of equal size. We allow the banks
to select optimal policies. As they are exposed to idiosyncratic uncertainty, the banks
gradually begin to differ in their size. We portray the evolution of the cohort as time goes
by along two dimensions—the number of banks left operating and the size distribution
of these banks. The shape of the distribution typically becomes almost stationary after
thirty periods, and in most cases, the limit distribution is skewed to the left with a small
number of very large banks. An exception is the simulation that studies the effect of the
riskiness of the investment opportunities the bank faces. As the riskiness increases, the
size distribution of the population of surviving banks becomes less skewed to the left, with
many large banks—those that make it, make it big.®

In the next section we lay out the basic ingredients of the model and describe the
environment in which the bank operates. Section 3 is devoted to a formal presentation
and analysis of the model. In section 4 we present the simulation results and discuss their

policy implications. Section 5 concludes the paper.

SOf related interest is the literature on the growth rate and the size distribution of business firms; see,
e.g., Segal and Spivak (1989) and Lucas (1978) respectively.



2 Overview of the Model

An infinitely lived, risk averse owner of a bank derives utility from the consumption of
dividend income.” Each period the bank invests the money at its disposal, the newly
acquired deposits, minus the payments to the depositors from the previous period. The
bank can purchase risky securities on the stock exchange (the market portfolio), as well as
invest in projects such as loans to new businesses, funding of R&D ventures, or the extension
of mortgages, all of which involve risk. The bank can also purchase riskless government
bonds. Short positions are allowed (up to a limit) in risky securities on the stock exchange
but not on riskless government bonds. That is to say, the bank cannot borrow at the
riskless rate. Furthermore, the bank can raise money from firms only by issuing certificates
of deposit.?

We abstract from the optimization problem of individual depositors by introducing a
supply function of deposits (that is, a demand function for CD’s) which the bank faces.
The amount of funds depositors are willing to supply increases with the interest rate offered
by the bank and with its probability of survival. These assumptions are discussed further
below.

The size of the bank is defined as the monetary value of its equity capital. This value
can become negative, up to a limit. If the monetary value of the bank’s capital plus the
maximal amount the bank can raise by short selling securities is negative at the beginning
of a period, then the bank is declared bankrupt and ceases to operate. We assume that
banks cannot rely on funds from new depositors to avoid bankruptcy; that is, a bank can
raise funds from depositors only if it is able to survive without them. This restriction
can be interpreted as part of the bank closure policy of regulators or as the depositors’
response to the bank’s precarious situation. Each period, provided it has not failed, the
bank chooses the following policy variables: (i) dividends to be distributed to shareholders;

(ii) the interest rate to be offered on deposits; (iii) the amount to be invested in risky

"We do not distinguish between owners and managers, assuming that their interests are perfectly aligned.

8The specification of the model is sufficiently flexible to allow for restrictions of the Glass-Steagall type,
which prohibit commercial banks from owning the equity of firms. For example, it can be postulated that
investments in risky projects must take the form of loans. The possibility of short sales, which is intended
to capture the ability of banks to raise money on public securities markets, can be prohibited altogether
without altering the nature of the analysis.



securities; and (iv) the amount to be invested in risky projects. The bank’s remaining funds
are invested in riskless government bonds, and they are required to exceed an exogenously
specified fraction of deposits (a reserve requirement).®

The policy variables, together with the bank’s size at the beginning of the period,
determine its probability of survival for the next period. Depositors take the probability of
survival into account when they choose the amount of funds they are willing to supply. In
equilibrium, depositors’ beliefs regarding the probability of smviva.l are correct. That is,
given the supply-of-funds function induced by the depositors’ beliefs, the policy chosen by
the bank induces precisely the probability of survival conjectured by the depositors. The
size of the bank at the end of each period (conditional on survival) is determined by its
initial size, the policy it chooses, and the realizations of the returns from risky investments.

A crucial assumption of the model is that the bank behaves as a risk averse agent.
When markets are complete, every consumer who owns a share in a productive firm wants
the firm to maximize expected profits, which is equivalent to maximizing the value of the
firm’s shares on the stock market.!® The assumption of complete markets is, of course, an
abstract benchmark. Our model subsumes a certain degree of incompleteness in financial
markets, whereby depositors are unable fully to diversify their portfolios by depositing
in several banks and by hedging on securities markets against bank default risk. When
markets are incomplete banks may contribute to financial innovation by introducing CD’s
whose probability of default depends on the types of projects the bank finances.

Dreéze (1987) discusses various approaches to the choice of an objective function for a
firm when markets are incomplete. One approach relates the firm’s decision criterion to the
preferences of its shareholders. Another approach endows the firm with preferences of its
own. Although there are sensible criticisms of the latter approach, we find it quite suitable

for our purposes.!? When a bank is owned by a small group of shareholders who are also

*The bank in our mode] cannot use the Central Bank discount window to raise funds, even though the
interest rate on such loans is often set below the market rate. This assumption is based on the general
belief that the discount window cannot be simply regarded as an inexpensive source of funds. Loans at the
window are very short term (15 days in the U.S.), require collateral, and often entail tighter supervision
on the part of the regulators. Hence, these loans are in fact more costly than they may seem at first. See
Poole (1992) for an extensive discussion.

10See Drése (1987) and the references therein.
11 An interesting criticism of this approach is that “although the axioms of consistent behavior may be



active in its management (for example, “family banks”), it is likely that the personal wealth
of the shareholders will be tied closely to the performance of the bank. The assumption of a
risk averse owner-manager captures this situation rather well. For banks whose ownership
is less concentrated, this effect is weaker, and hence the degree of risk aversion is likely to
be smaller. In the simulations of the model, we parameterize the utility function of the
bank and study the effect of the degree of risk aversion on the bank’s choice of policy and
probability of failure.

The market structure:

Banks are thought of as selling differentiated commodities: Their branches are situated
in different geographical locations, some have more branches than others, some specialize
in particular services (foreign currency transactions, import and export services), some
securitize loans and mortgages while others do not, etc. Depositors differ in their tastes and
needs, and therefore—other things equal—prefer to do business with a particular bank. By
“other things equal” we mean price and the probability of failure. The former is captured
by the interest rate on CD’. The latter is a summary statistic of several features that
typically differ across banks: bank size, the portfolio of the bank’s investments, and the
bank’s dividend policy. When all banks offer the same interest rate on CD’s and have
the same probability of failure, each depositor chooses to work with the bank whose other
features are most preferred by the depositor (location, number of branches, etc.).

We focus on the differentiation across banks in the interest rate offered on CD’s and the
probability of failure, while abstracting from other features. We view depositors as choosing
an optimal savings portfolio and allocating funds between bank deposits and other assets.
Each bank faces an elastic supply of deposits that depends on the characteristics of the
bank. The policy choices made by the bank (the interest rate on CD’s, the dividends to be
distributed, and the investment portfolio) affect the probability of failure. Banks may differ
in size and in the policies they choose, and hence may differ in the probability of failure.
As a consequence, bank CD’s are differentiated commodities that trade at different prices.

equally cogent for a firm as for an individual, the decisions of the firm are in the nature of group decisions;
institutional rules of group decision easily result in violation of the axioms-as illustrated by the Condorcet
paradox of majority voting.” Dreze (1987, p.315)



Our purpose is to study the relation between the interest rate on CD’s, the dividend and
investment policies, and the (endogenously determined) probability of failure for banks of
various sizes. We accomplish this by solving the dynamic stochastic program of a bank
that, each period, faces an elastic supply of deposits. For every contingency—and in par-
ticular, for every possible bank size—the solution prescribes an optimal policy, and yields
a probability of failure, which is perceived correctly by depositors and affects the amount
of funds they are willing to supply.

When deposit insurance is not explicit, as in the U.S. for deposits exceeding $100,000,
it is likely that the behavior of depositors will be affected by the possibility of bank failure
even though there is a (possibly high) probability that the government will cover losses, at
least partially.!? The studies by James (1988), Hannan and Hanweck (1988), Keeley (1990),
and Ellis and Flannery (1992) confirm this hypothesis. Strahan (1992) provides evidence
that depositors in the U.S. respond to bank risk even when their deposits are fully insured.
This may reflect less than full confidence in the solvency of the insurer, or an anticipation
of personal loss even if the insurer is solvent, due to delay in payment and foregone interest
during the period of delay. This evidence motivates us to assume the amount of funds
that depositors are willing to supply decreases with the probability of failure, even when

depositors are fully insured.

3 The Model

A bank maximizes expected life-time utility from an infinite stream of consumption of
dividend income. In each period, taking into consideration its financial situation, the bank
chooses an optimal policy. We shall set up and solve the bank’s dynamic program.

The state and policy variables:

The state of the dynamic program in period t is characterized by: (i) M, the monetary
value (possibly negative) of the bank’s portfolio at the beginning of period t, which we
shall call the bank’s size;'® and (ii) Z? and Z}, the realized gross (and hence non-negative)

}2For a comparison of deposit insurance practices across OECD countries, see Frankel and Mont-

gomery (1991).
33 M, may take on negative values, while still allowing the bank to operate. This will become clearer when



one-period returns on investments made in period t — 1 in securities and in risky projects,
respectively.!* Z2, the return on the market portfolio, is an aggregate random variable that
affects the entire economy, whereas Z¢ represents the returns to the bank’s idiosyncratic
investments in projects. In the cohort simulations, all banks will face the same realization
of Z2 and different realizations of Zf. The returns on investments from period t—1 to ¢ (as
well as the bank’s policy variables) determine My, so that the state of the dynamic program
in period t can in fact be described by M; alone. For notational convenience we define the
returns vector Z; = (Z¢,Z¥).

In period t the bank chooses the following policy variables: (i) R, the gross, one
period rate of return on deposits—the principal plus interest will be paid to depositors
at the beginning of period t+ 1; (ii) d, the dividend to be distributed (and consumed)
at the beginning of period #; (iii) a, the amount invested in securities; and (iv) 4, the
amount invested in projects. For notational convenience we define the policy vector ¢, =
(Re,de,a¢,8y).

The (gross) realized returns on investments made in period t accrue at the beginning
of period t + 1. The amount invested in riskless government bonds can be thought of as
a residual, since the total amount invested by the bank is subject to a budget constraint.
The principal plus interest, RB—an exogenously specified parameter of the model—will be
repaid to the bank in the beginning of period ¢+ 1.}®* We use the convention that variables
indexed by t are known with certainty in period ¢, while the random variables in period ¢
are indexed by t + 1. Thus, the size of the bank at the beginning of period t, M,, and the
realized returns on risky investments made in period t — 1, Z;, are known to the bank in
period t. The policy variables ¢;, chosen by the bank in period ¢, are also indexed by ¢.
The refums on risky investments made in period t, Z;+;, are random variables as of period

t. The joint probability distribution of Zg,, and Zf,, is assumed to be stationary, with

we provide the definition of bankruptcy.

1To economise on notation we assume that there is one risky security—the market portfoio—and sim-
ilarly one risky project. For reasons of tractability we abstract from the distinction between long- and
short-term projects. A possible interpretation is that, although projects may take more than one period to
complete, they can be liquidated at any time, yielding Z}if held from period t—1 to period t. Any amount
can then be re-invested into the project, yielding Z%,, in period t + 1 if liquidated, and so forth.

A more general formulation would be that in period ¢ the return on riskless government bonds is
known with certainty, but future riskless rates are stochastic. The model can easily accommodate such a
specification. It would complicate, however, the proof of uniqueness of the optimal policy.



strictly increasing and continuously differentiable cumulative distribution function, which

is known to the bank.1®

The probability of survival:

Let g, denote the probability as of period ¢ that the bank will survive to period ¢ + 1.
We impose an equilibrium requirement that there be no divergence of opinion between
the bank and depositors regarding g;. Below, we shall explain the precise meaning of the
term “survive” and show how g is (uniquely) determined. As the probability of survival
in period t + 1 is known in period t (by the bank and by depositors), it is indexed by t, in

accord with our convention.

The supply of deposits:

In period ¢ the bank faces a supply-of-deposits function, S(R¢,¢). The dependence
of the supply function on the interest rate and on the probability of survival should be
regarded as a reduced form of a complex set of considerations on the part of depositors
regarding their payoff in the event of bankruptcy, e.g., the amount of money they will
actually lose, the amount of money that regulators will reimburse despite the absence of
explicit deposit insurance, delays, transaction costs. We do not model these contingencies
explicitly. To keep the analysis tractable we assume that depositors care about only the
promised interest rate and the probability of survival.

The supply function of deposits satisfies the following properties (see Figure 1). For
any g € (0,1] and R: € [R(g:), R(g)], S(Rt,q:) is continuously differentiable and strictly
increasing in both arguments. The supply of deposits is not stochastic, namely the bank
does not face liquidity shocks. The riskiness of the bank is due entirely to its activities on
the asset side.)” The bounds R(g;) and R(g) are continuous, differentiable, and decreasing
in g;—that is, the higher the probability of survival, the easier it becomes for the bank
to induce depositors to supply the first dollar, as well as the last dollar they are willing

18The assumption of stationarity can be dispensed with by introducing other assumptions, such as compact
and convex supports for all the random variables, and the Feller property; see, e.g., Stokey and Lucas (1989,
p.220).

""In Figure 1, S(Re,¢:) is depicted as being strictly concave in the region R: € [R(g¢), R(g:)]. This
assumption will be added later (when we establish uniqueness of the policy function), but for now it is not
needed.



to deposit with a bank of “quality” g;. Furthermore, we assume that B(g) > RE for all
gt € (0,1], i.e., the bank must offer a premium above the riskless rate to raise deposits;
the premium must be positive even if the probability of survival is unity (i.e. R(1) > RB)
because CD’s are less liquid than government bonds. It is also assumed that limg,_.0 R(g:) =
limg,—.0 R(g:) = R.

For R: < R(g), S(Rt,q) = 0, and for Re > R(g:), S(Re,q) = S(R(ge), ¢:), which is the
maximal amount of funds that a bank of “quality” g; can raise. We make the simplifying
assumption that S(R(g:),q) decreases as ¢ decreases, approaching zero as g, approaches
zero. An interpretation of this assumption is that the set of potential clients that a bank
faces becomes smaller as the “quality” of the bank deteriorates. We also assume that for any
Ry, S(R¢,0) = 0. From the above assumptions it follows that S(R;,q:) is right-continuous
in g at g = 0, and that it is bounded below by zero and above by S(R,1).

With these assumptions we can restrict attention without loss of generality to policies
such that R € [R(g), R(g)), as it is never optimal for the bank to offer Ry > R(g:), and
the bank is indifferent between offering R; < R(g¢) and offering R: = R(q:).

The law of motion of bank size:

The law of motion governing the evolution of the bank’s size is
Mty = [Me + S(Re,qe) — di — a¢ — L]RP + a2, + 4ZE,) — S(Re,qe)Re. (1)

That is, in period ¢ the bank offers R; to depositors, raising S(R:,q:). The resources
M, + S(R:, q:) are then allocated, subject to constraints described below, to their various
uses: dividends (d;), investments in risky securities (a;), investments in risky projects (),
and investments in riskless government bonds. At the beginning of period t + 1 the bank
collects the gross return from its investments (in securities, projects, and bonds), and pays
off the depositors. The remaining funds constitute the bank’s monetary value or size, Mg41,

in period ¢t + 1.
The constraint on short sales of securities:

The bank is allowed to short sell risky securities up to a finite limit A(-), which is a
function of the bank’s monetary value net of dividends, namely a; > A(M; — d;). The
constraint A(M; — d;) takes the following form: Let M° be a non-positive number. Then,



(i) for My — d¢ < M°, A(M; — d¢) = 0, that is no short sales are allowed; and (ii) for
M; - di > M°, A(M; — d;) is strictly negative, finite, continuous, twice differentiable,
strictly decreasing, and convex. A constant cap on short sales, a cap on short sales which
is proportional to M; — d;, and a no short sales constraint, are all special cases of this
specification. Figure 2 shows the constraint for d; = 0.

The interpretation of the constraint on short sales of securities is as follows. The secu-
rities market observes the size of the bank and the amount of dividends it distributes. The
difference M; — d; (the bank’s size net of dividends) is a measure of the bank’s soundness.
The larger the size, the more funds the securities market will be willing to supply to the
bank, with the cap increasing at a non-increasing rate. The constraint captures the idea
that banks cannot raise funds on public securities markets independently of their size. This
can be a regulatory constraint, or it may simply reflect the reluctance of investors on se-
curities markets to supply funds to a bank whose net monetary value M; — d; is too low.
Notice that in addition to its size in period ¢, M, the bank’s behavior in period ¢ (i.e. the
choice of d;) affects its ability to raise funds on the stock market.

Bankruptcy—definition:

If at the beginning of period ¢t + 1, M;4; < 0, then the bank cannot repay its debt
to depositors (see equation (1)). It does not, however, necessarily follow that the bank
is bankrupt. The bank may still be able to raise funds from external sources, use part
to repay depositors, invest the rest, and survive. We postulate that whenever the bank’s
monetary value is negative, the bank is not allowed to distribute dividends; it is allowed to
raise money, however, by short selling securities. The maximal amount the bank can raise
in this manner is the absolute value of A(Mi41). If Myyy — A(M;4,) > O the bank can
repay depositors, raise money from new depositors, and continue to operate. On the other
hand, if M4y — A(M;o1) < O the regulators will not allow the bank to acquire new deposits
and will declare it bankrupt. The bank then ceases to operate.’® Letting M* denote the
(unique) solution to M4y — A(Mey1) = 0, the condition for bankruptcy can be written as

18 Any remaining funds, which by assumption are less than the principal plus interest promised to depos-
itors, are confiscated by the regulators. These funds may be distributed in part or in full to depositors. As
explained above, we do not model the bankruptcy procedure in detail, as it is not central to the analysis.



M1 < M* (Figure 2). In period ¢ the quantity M;4+1 — A(M;41) is a random variable. For

notational convenience we define the following indicator variable:

if My — A(M;) >
1 i M, — A(M}) >0 -

-~

0 otherwise.

That is, §; = 0 denotes bankruptcy in period ¢, while §; = 1 indicates that the bank will

continue to operate for at least one more period.

The determination of the probability of survival:

We turn to the determination of ¢, the probability of survival in period ¢+1 as perceived
in period ¢t. Note that g; is the probability that 647 = 1, i.e. that M3 — A(My4q) 2 0.
In light of (1), the c.d.f. of My4y — A(My41), which will be denoted by F(- ; My, ¢, ), is
induced by the c.d.f. of Z;y1, and is parameterized by M, c¢, and g:. By the properties of
the c.d.f. of Zy41, for any M,, ¢, and g¢, F'(- ; My, ¢, q:) is continuously differentiable and
strictly increasing in its argument. The probability of bankruptcy in period t + 1, as of
period ¢, is

Pr{Mi41 — A(Mi11) < 0} = F(0; My, cx, e).

We further assume that F(0; My, ¢, g;) is twice continuously differentiable in My, ¢, and g,
with bounded first derivatives and continuous second (and cross) derivatives.!® Since the
probability of bankruptcy in period ¢+1 is defined as 1 — g;, for the model to be internally

consistent we require that g be a solution to the equation
1-g:=F(0; M, 1) (3)

The significance of this requirement is that the belief depositors hold regarding the proba-
bility of survival—which affects their inclination to supply funds—induces the bank to take
actions that make this belief correct. Thus, equation (3) can be regarded as a condition for

a rational expectations equilibrium.?° In the following lemma we show that given the state

*These additional properties regarding the derivatives of F(0; M, ct,g:) are needed to establish unique-
ness of the optimal policy.

2¥We do not require depositors to be able to compute g; themselves—we only impose that the probability
of survival which they take into account when supplying deposits be correct. If some (or all) depositors
happen to know ¢;, M; and also know the model and the stochastic processes, we can think of them as
computing g¢ themselves.



and policy variables in period t, there is a unique
g = g(Me,ct) (4)
satisfying equation (3).

Lemma 1 For any state M; and policy c;: (i) there is a unigue g; € [0,1] that satisfies
equation (3); (ii) the function g = g(M,,c;) is continuous in its arguments; and (1ii) when-
ever g(My,c.) € (0,1), it is differentiable.

The proof is in the appendix. When solving its dynamic program, the bank takes into
account the effect of the policy c; on its own probability of survival (according to the
function in (4)) and hence also on the willingness of depositors to supply funds.!

The feasible policy correspondence:

The set of feasible policy choices for the bank when the state is M, denoted by I'(M;),

is characterized by the following conditions:

0<de < M, — A(M, — ds), (5)

ae > A(M; - d), (6)

£, >0, (7)

M, + S(Re,qt) — de — ar — £ > AS(Re, q1), (8)
B(a) < Re < R(qe), ©)

21 Multiplicity of seMf-fulfilling equilibria is common in the literature on banking (e.g. Postlewaite and
Vives (1987)) if depositors believe that a bank is risky they will require a high interest rate which will
make it optimal for the bank to engage in risky activities, whereas if depositors believe that a bank is safe,
they will not require a high interest rate, and the bank will indeed be safe. This well known coordination
problem should not be confased with the result in Lemma 1, which says that for a given policy and a
given bank size there is a unique value of ¢; for which this policy results in the probability of survival g..
The essence of the proof of uniqueness can be understood by considering the law of motion of bank sise,
equation (1). Fix M; and c¢ = (R¢, d¢, a4, i), suppose that equation (3) holds, and consider an increase in
the probability of survival g.. This induces an increase in the supply of deposits at the given interest rate
R,, and since all other things are equal the extra funds the bank raises are invested in riskless bonds. Since
by assumption R® < R, this induces a leftward shift in the distribution of M;4,, namely the probability of
survival decreases. Similarly, if g; decreases the distribution of M:4; shifts to the right and the probability
of survival increases. Hence, there can be at most one equilibrium that, as shown in the proof of Lemma 1,
always exists.



where ¢ is determined by (4). Condition (5) states that the owner-manager can neither
infuse new capital into the bank nor distribute dividends in excess of its monetary value
plus the amount it can raise by short selling securities. Note that as long as M, > M*,
i.e. My — A(M;) > 0, the bank is not bankrupt and is allowed to distribute dividends
provided (5) is not violated. A further implication of (5) is that the bank cannot distribute
dividends from funds supplied by depositors. Condition (6) defines a cap on short sales
of securities. Condition (7) precludes short sales of projects since, by definition, these are
loans extended by the bank. Condition (8) is a reserve requirement—the bank is required
by law to keep at least a fraction A € (0,1) of the deposits in riskless bonds. Condition
(9) restricts the range of interest rates on CD’s that the bank can offer. As was explained
above, in light of the assumptions we have made regarding the supply function of deposits,
condition (9) does not limit the generality of our analysis.

We say that a policy ¢, is feasible in state M; if conditions (5)—(9) are satisfied, and g;
is determined by (4); we write ¢, € I'(M,). In period ¢, the bank chooses a feasible plan
{cx }52,, which consists of a feasible policy ¢; € I'(M;), and feasible policies cx € I'(My) for
every possible state My in periods k=t +1,t+2,....

Existence of the value function:

The bank’s utility function from consumption of dividends, u(-), is assumed to be con-
tinuous, strictly increasing, concave, twice differentiable, and bounded. It is normalized so
that u(0) = 0. In case of bankruptcy, the bank’s utility is zero in all subsequent periods.??
In period ¢ the bank chooses a feasible plan {c;}§2, to maximize E [E,‘:‘__’__‘ ﬁ"“u(dk)6k],
subject to the equation of motion (1), where 8 € (0,1) is the discount factor, and the expec-
tation is taken with respect to the sequence of random variables {Z;}g2,,,. The Bellman

functional equation corresponding to the bank’s optimization problem is

sup.,er(my{ulde) + BE [V(Mena)]} if6e=1

V(M) =

(10)

33We think of the utility function of an owner-manager of a bank as being additively separable, where
u(-) is the utility derived from the consumption of dividends from this bank. A failed bank cannot re-open,
and hence the utility from the consumption of dividends from this bank is gero forever. Alternatively, we
can imagine that an owner-manager of a falled bank suffers a reputational damage which prevents him from
opening another bank. His utility in subsequent periods is normalized to sero.



Proposition 1 Subject to the above assumptions: (i) there is a unigque continuous and

bounded function V() satisfying (10); and (ii) if 6, = 1 then V(-) is sirictly increasing.
The proof is in the appendix.

Uniqueness of the optimal policy:

This section is devoted to establishing conditions under which for every state M, there is
a unique optimal policy. More specifically, we prove that for a particular functional form of
the supply of deposits and under assumptions on the distribution of Z;4;, there is an open
region of the model’s parameters for which uniqueness of the optimal policy is guaranteed.
The proof requires showing, among other things, that for any realization of Z;4,, the right
hand side of (1) is strictly concave in (M, c;), taking into account that g; is a function of
(M, ce), and that the correspondence I'(-) is convex in a sense to be defined (see Lemma 5
in the appendix). To meet these requirements we add the following assumption regarding

the joint distribution of Z,; and Z{,;:

Assumption D:  Let Y; = ko + k1 Z8,; + ko Z},, and let Yo, = mo + m1 Z3,, + meZ¢,,,

where k; and m;, i = 0,1,2, are arbitrary constants. Then for any 8 € [0, 1],
Pri0Y + (1 - 6)Yy < 0] < OPr(Yi <0)+ (1 - 8)Pr(Y,n <0).

The meaning of Assumption D is best understood by glancing at Figure 3. The less posi-
tively correlated are Z¢,; and Z{,,, the more likely the assumption is to hold.
From now on we restrict attention to the following particular form of the supply function

of deposits,

Assumption S: S(Ri,qt) = Ta(Re — RB)*R +7,4%, 72> 0,7, > 0,0, > 1, a5 € (0,1].

We also need

Assumption R: The bounds R(g) and R(g) satisfy the following properties: (a) R(g:)
is concave in g;; and (b) R(g) is sufficiently convex in g¢; so that R(g(M;,c:)) is convex in

(Mg, Cg).

Assumption R, which is made for technical reasons, has the following economic inter-

pretation. The concavity of R(g) reflects the fact that the rate at which it becomes easier



to induce depositors to invest the “last dollar” increases as the bank becomes safer. On
the other hand, although it also becomes easier to induce depositors to supply the “first

dollar” as g, increases, this occurs at a decreasing rate. We now have

Proposition 2 If Assumptions D, S, and R are satisfied, then for any ag € (0,1] there is
an open region of a,, Tr, and v, such that for every M, the optimal policy is unique and is

a continuous function of M.

The proof is in the appendix.

4 Simulation Results

We begin by presenting our specific choices for the utility function of the bank owner-
manager, parameter values, and the stochastic processes. We proceed with a presentation of
the base case simulation. Then we present simulations in which we change parameters of the
model—in each simulation one parameter value is different from the base case simulation.
The economic interpretation and the policy implications of the various simulations are
discussed as we proceed.

In all the simulations the utility function of the owner-manager of the bank is

_f log(l+=z) \°
u(=) = (l + log(1 + :t)) ’ (1)

where p € (0,1]. The function u(-) is bounded, strictly concave, and exhibits decreasing
absolute risk aversion; the absolute risk aversion coefficient decreases with the parameter p.
The intertemporal discount factor B is set at 8 = .95 and remains unchanged throughout
the simulations.

For the distributions of the returns on the market portfolio and on investments in

projects we use the following log-normal, stationary distributions:

log Z¢ ~ N(1.10,1)
log Z¢ ~ N(1.13,03). (12)

As a lower bound on short sales of the market portfolio we use the function



and as bounds on Ry we use
R(g) = 2 - (1.995 — RB)g0%

for the lower bound, and

R(q:) = 2 - 0.5¢;

for the upper bound. Note that as g; approaches zero, both bounds approach the same
limit, and R? < R(g) < R(g:) for all g; € (0,1), for reasonable values of RB.23 We restrict
attention to the following supply function of deposits:

S(Re,qt) = 9(Ry — RP)°R 4 2¢57. (13)

In the various simulations we vary the parameters p, ag, aq, A, and oy, one at a time,
to study the behavior of 2 bank in different environments. We turn to a description of the

simulations.
The base case simulation:

In the base case simulation we use the following values for the parameters: R? = 1.03
(i.e., 3%) for the riskless interest rate, o¢ = 2 for the standard deviation of the returns on
projects, ag = 0.50 and a, = 1.1 for the parameters of the supply function of deposits,
A = 0.1 for the reserve requirement, and p = 1 for the risk aversion of the bank owner-
manager. The choice of ar and a, is in accord with the sufficient conditions for uniqueness
of the optimal policy (see Assumption S above).

The results for the base case simulation are presented in Figure 4. A central finding
is that the probability of survival increases with bank size.?* Small banks have a low
probability of survival and therefore must offer a high interest rate to depositors. The high
interest rate incorporates, no doubt, a risk premium. However, small banks also raise more
deposits than large banks. Thus, the high interest rate on deposits also reflects a desire
on the part of small banks to raise funds and “escape from poverty.” This is particularly

3 RB < 1.415 is sufficient for these inequalities to hold; in the simulations we shall use much smaller
values for the risk free interest RP.
2*We remind the reader that the term “bank size” stands for the amount of equity capital of the bank.
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evident from the U-shape of the schedule of investment in risky projects in Figure 1f; the
very small banks “gamble” by investing a large fraction of their funds in these projects.

Had they wanted to, small banks could have offered a lower interest rate, raised less
deposits, and invested less in risky projects, increasing their probability of survival. Taking
the argument to the extreme, we find that even though small banks can reduce their riskiness
entirely by raising no deposits and investing their capital only in riskless securities, they
choose to do precisely the opposite, taking large risks in the hope of growing big. Stated
somewhat differently, our conclusion is that small banks prefer to adopt a strategy that will
increase the probability of default in the short run, in order to increase the probability of
getting larger. Since bankruptcy entails u(0) = 0 forever, the bank’s payoff is essentially the
maximum between zero and a positive value. Indeed, the value function is zero for M; < M*,
but is strictly concave for M; > M*, that is it is locally convez in the neighborhood of M*.
Therefore, small banks have an incentive to take big risks in order to be able to become
larger if the realization of the investment turns out to be good. This behavior increases the
probability of default.?®

We also see that, roughly speaking, banks of different sizes allocate the same proportion
of their equity capital to dividends, to investments in the market portfolio, and to invest-
ments in risky projects. In particular, despite their higher probability of failure small banks
allocate the same proportion of equity capital to dividend consumption as large banks. The
inclination of small banks to take risks is particularly evident in Figure 4f—the very small
banks (including those with negative equity) invest heavily in risky projects as a desperate
attempt to restore their equity base.

Cohort simulation:

We explore the results of the base case simulation (as well as the results of the simu-
lations reported below) by considering a cohort of one thousand banks of equal size, who
operate in the same environment as described above. In each period all the banks of the
cohort face the same return on the market portfolio, Z¢, both ex-ante and ex-post. In

contrast, the returns on projects, Z¢, have the same underlying distribution, but ex-post

# An analogous phenomenon is what has become known in the Corporate Finance Litersture as “asset
substitution”~—shareholders (in our case the bank owner-manager) take excessive risk in order to extract
surplus from debtholders (in our case the depositors).



the realizations differ. For simplicity we assume that the Z{’s across banks are i.i.d. Using
the results generated by the above simulation, we let each bank choose its optimal policy.
Being identical, all the banks choose the same policy in the first period. However, as the
banks face idiosyncratic uncertainty in their investments in projects, they gradually begin
to differ in their size, and hence also in their optimal policies. We follow the cohort for thirty
periods, portraying the evolution of the cohort as time goes by along two dimensions—the
number of banks left operating, and the size distribution of these banks. The results are
presented in Figure 5. Figure 5a depicts the size distribution of the surviving banks after 5,
10, 20, and 30 periods, while Figure 5b depicts the number of surviving banks as a function
of time. The shape of the size distribution becomes almost stationary after thirty periods,
and is skewed to the left with a small number of very large banks.

The reserve requirement simulation:

Our objective is to evaluate the effect of the level of the reserve requirement A on the
endogenous variables. As pointed out in the introduction, economists have traditionally
focused on the role reserve requirements play in controlling the money supply, in raising
revenues for the Treasury (being a tax on deposits), and in insuring banks against adverse
liquidity shocks. The simulations indicate that reserve requirements may also influence the
dividend and investment policies of banks, affecting their probability of survival.

We simulate the model for A = 0.2 and A = 0.4. The results, compared with those for the
base case (A = 0.1), are presented in Figure 6. The major finding of this set of simulations
is that in response to an increase in the reserve requirement, small banks offer lower interest
rates on deposits, raise less deposits, and become safer. A possible interpretation is that
a large reserve requirement makes deposits more costly, reducing the effective return on
investments (i.e. the return relative to the cost of funds), rendering “gambling” on the part
of small banks less attractive.

Interestingly, the optimal policy with respect to dividend distribution and investment in
both the market portfolio and projects is affected very little by the imposition of different
reserve requirements; the graphs detailing these results are therefore omitted. Nonetheless,
we detect a tendency on the part of small banks to slightly decrease dividend distributions
when ) is higher, whereas for large banks the opposite is true.



The interpretation is again related to the fact that a large reserve requirement reduces
the effective return on investments. When A increases, large banks respond by substituting
away from investment and increasing dividend consumption. By contrast, small banks who
want to grow and are reluctant to be perceived as risky, reduce dividend consumption.
This interpretation suggests that small banks are more sensitive to market discipline, and
that the market takes into account the effect of regulatory policies (in this case the reserve
requirement) on the risk taking behavior of banks.

The riskiness of investment opportunities simulation:

Here we simulate the model for two alternative standard errors for the return on invest-
ments in projects, o; = 1 and oy = 3, i.e., lower and higher riskiness relative to the base case
(0¢ = 2). The results are presented in Figure 7. Banks of virtually all sizes respond to an
increase in the riskiness of the investment in projects by shifting resources from investment
in projects to investment in the less risky market portfolio. In and of itself the shift away
from investment in risky projects increases the probability of survival in any single period.
This notwithstanding, the probability of survival decreases; that is, even though the bank
decreases its investment in the more risky assets, it is still the case that for any given size
the ex-ante probability of survival is lower. This is particularly true for small banks—the
differences in the probability of survival across the three simulations are on the order of 10
percentage points. However, as the bank becomes larger the probabilities of survival across
the simulations converge.

The explanation for this phenomenon can be found in the bank’s dividend and inter-
est rate policy. Since an increase in oy, other things kept equal, constitutes a worsening
of the investment opportunities, banks respond by shifting funds into increased dividend
consumption, which contributes to a lower probability of survival. Furthermore, the in-
crease in the variance of the return on risky projects renders “gambling” more attractive
for small banks who increase the interest offered on deposits, raising more deposits than
before, which contributes to a lower probability of survival.

Thus, overall, when the environment becomes more risky banks respond by becoming
more risky themselves. Instead of acting as a buffer, by adopting sufficiently prudent
policies that offset the increased riskiness of the investment opportunities, individual banks



(especially the small ones) transmit the risk to depositors.

This might lead one to believe that there would be more bank failures the more risky
the environment. However, the cohort simulation reveals an interesting phenomenon. The
size distributions depicted in Figure 8 indicate that when the riskiness of the investment
opportunities increases, the size distribution of the banks becomes less skewed to the left,
since more banks succeed in “making it big.” Although for a given size, banks are less safe
when the riskiness of the investment opportunities is high, the overall riskiness of the cohort
becomes lower after several periods have gone by, as can be seen from the survival function
schedules. The reason for this phenomenon is quite simple. The survival probability at each
bank size is lower in the more risky environment, but the larger variance of the return on
investments increases the probability of “hitting the jackpot.” Consequently, the number
of banks who become very large is bigger when the environment is more risky. Since large
banks are less risky this results in a higher average survival rate for the cohort.

In sum, even though individual banks transmit the increased risk of the investment
opportunities to depositors, the overall riskiness of the banking system gradually becomes
smaller. We can therefore imagine the following scenario. If a bad shock hits the economy,
rendering investment opportunities more risky, we shall have a more risky banking system
in the short run (as the size distribution is unchanged and each bank adopts policies which
are riskier than before), but in the long run we should expect an endogenous change in the
size distribution of the banks (ignoring the possibility of entry of new banks), with a bigger
fraction of large, safe banks, and an overall sounder banking system.

The risk aversion simulation:

In this set of simulations we increase the risk aversion of the bank’s owner-manger
relative to the base case (p = 1) by simulating the model for p = 0.75 and p = 0.50.
As can be seen in Figure 9, a higher risk aversion induces the banks to consume less
dividends. Interpreting higher risk aversion as more concentrated ownership, we have a
testable hypothesis: Banks with more concentrated ownership distribute less dividends.
Consistent with this behavior, higher risk aversion induces small banks to offer a lower
interest rate on deposits. An immediate consequence is that higher risk aversion entails a

higher probability of survival.



The investment decisions of banks of all sizes remain virtually unchanged with respect
to the base case. The results for the interest rate on deposits and the amount of deposits
raised are straightforward: A more risk/ averse bank offers a lower interest rate and raises
less deposits. These results are therefore not shown.

The cohort simulation indicates (figures are omitted) that the size distribution of banks
changes very little when banks are more risk averse. The results do indicate, however,
that the distribution becomes more skewed to the left as risk aversion increases. Also, in
line with the higher probability of survival (Figure 9b), the fraction of remaining banks
in each year is higher when banks are more risk averse, that is when ownership is more

concentrated.
The riskless interest rate simulation:

Interest rate policy, namely setting the riskless interest rate (R® in our model) by
the monetary authorities has always been the subject of heated debates. In this set of
simulations we try to evaluate the effects of changes in RP on the behavior of banks. We
simulate the model for R® = 1.02 and R® = 1.04 (lower and higher riskless interest rates
compared to the base case, RE = 1.03).

The bank’s optimal policy and probability of survival change very little. As the supply of
deposits depends positively on R;— RB, banks are inclined to increase R, when R? increases
in order not to lose depositors. This contributes to a decrease in the probability of survival.
The only meaningful changes that can be observed are the investments practices, as shown
in Figure 10. Note that as the interest on riskless bonds increases banks of all sizes shift
away from the more risky investments (projects) into less risky investments (the market
portfolio). This is a response to the higher cost of raising deposits which, other things
constant, tends to decrease the probability of survival. The net effect of the increase in the
interest rate offered on deposits and the shift away from risky investments is that survival
probabilities remain almost unchanged.

The effect of changes in the riskless rate on the size distribution and the survival function

are minimal (figures are omitted).



The oy simulation:

Recall that in the supply function of deposits the part related to the interest rate is
vr(Re — RB)*R, where the parameter ay measures the sensitivity of supply with respect
to Ry; the higher oy the stronger is the response of depositors to changes in the offered
interest rate R;.26

A priori, the effect of oy on the bank’s policy and probability of failure is ambiguous. A
higher value of ay means that depositors react more vigorously to changes in the interest
rate on deposits. Banks may respond by behaving more aggressively, raising the rates
offered on CD’s and increasing the share allocated to the high return risky investments
(in order to meet the promised interest payments to depositors). However, banks may
realize that a more aggressive (interest rate and investment) policy reduces the probability
of survival. Since depositors take this probability into account, the bank may choose to
behave more prudently, not more aggressively.

We simulate the model for @z = 0.3 and ay = 0.1 (in the base case ay = 0.5). The
simulation results (graphed in Figure 11) indicate that, typically, the market discipline
effect prevails. As ay increases, banks of all sizes reduce the consumption of dividends
significantly. Although the very small banks (especially those with negative equity) offer a
high interest rate on deposits and exhibit a low probability of survival, as banks become
larger they can afford to reduce the interest rate on deposits, increasing their probability
of survival.

We turn to the cohort simulation. The short run effect of the increase in the probability
of survival for banks of most sizes is a higher survival rate for the cohort. However, as we
saw in the o, (riskiness of investment opportunities) simulation, the endogenous change in
the size distribution of banks may affect the survival rate in the longer run. As ay increases
the size distribution becomes more skewed to the left (see Figure 12). This is a consequence
of the lower investment in risky projects which reduces the number of banks that succeed
in becoming very big. This change in the size distribution contributes to a decrease in the

survival rate, since small banks are less safe than larger ones. However, the effect is not

2®More precisely, the elasticity of the supply of savings with respect to R,, holding g, constant, strictly
increases with ap.



sufficiently strong to overturn the increase in g; for every bank size (Figure 11a), as can be

seen from the survival rates (Figure 12d).
The o, simulation:

Recall that in the supply function of deposits the term that relates to the probability of
survival is 7,qg; *, where the parameter o, measures the sensitivity of supply with respect
to g; the higher a, the stronger is the response of depositors to changes in the probability
of survival ¢.2” Changes in o, have negligible effects on g, R;, and hence on the amount
of deposits raised. The results for the dividend distributions and the investment policies
are depicted in Figure 13. As o, increases, the bank invests less in risky projects and more
in the (less risky) market portfolio. This can be interpreted as a desire on the part of the
bank to avoid increasing the interest on deposits. Had the bank not reduced the riskiness
of the investment portfolio, the probability of survival would have decreased, forcing the
bank to raise the interest rate on CD’s in order not to lose deposits.

The cohort simulations (figures are omitted) indicate that the size distribution changes
very little with changes in a,. The effect on the survival function is also very small, in line

with the small changes in ¢; and in the size distribution.

5 Concluding Remarks

We conclude with a policy note. The finding that small banks take advantage of low
bankruptcy costs by taking large risks suggests that if bank failures constitute a negative
externality for the economy, regulatory policies that differ by size (or by equity capital)
shoulci be considered seriously. For example, the dividend distribution and risky investments
of small, undercapitalized banks can be restricted to a specified fraction of assets. Disclosure
of the banks’ policy is not sufficient. In our model depositors know precisely what the bank
is doing, and they price the risk correctly; nevertheless, a small bank chooses to raise a
large amount of deposits and take big risks despite the high price of deposits.

If, however, bank failures are not viewed as detrimental to the economy then since we

3The elasticity of the supply of savings with respect to g, holding R, constant, strictly increases with
ag.



assume that the bank and depositors have the same information and depositors are rational,
the bank’s risks are priced correctly and there is no room for government intervention. We
should simply be aware of the central prediction of the model—small banks rationally
choose to take large risks and fail more often.



6 Appendix—Proofs of Lemmas and Propositions

Lemma 1  For any state M, and policy ¢;: (i) there is a unigue g; € [0,1] which sal-
isfies equation (3); (ii) the function g = q(Mi,c;) is continuous in ils erguments; and
(1ti) whenever g(My,c;) € (0,1), it is differentiable.

Proof of Lemma 1.

Step 1. We first establish the continuity and differentiability of F'(- ; M, ct,q¢) in ge. Fix M,
and c;. By the differentiability of SR, g:) in g; it follows from (1) that M, is differentiable
in g. By the differentiability of A(-) in M1, and the continuity and differentiability of
F(- ; M;,c¢,q:) in its argument, the continuity and differentiability of F( ; My, ¢, g¢) in g¢ is
established. In a similar manner, using the differentiability of M;4; in M; and c;, we have

that F(- ; M;,ct, q:) is continuous and differentiable in M; and c;.

Step 2. We now establish that F(- ; My, cy,q;) is increasing in g;. Rewrite (1) as
My = (Me — d)RE + ai(28,, — R®) + Lu(Z{,1 - R®) - S(Reyq:) (R — RP).

Since S(R:,q:) is increasing in g, and RB < R, we have that M;,; is decreasing in g. By
the assumption that A(-) < 0 and A’() < 0, it follows that M;4; — A(Mg41) is non-increasing
in ¢; and hence its c.d.f. is non-decreasing in g;.
Step 3. Rewrite (3) as

H(M:,c,q) =1, (14)

where H(M;,ci,q:) = F(0; M¢,ct,9) + g Extend the function H(M;,ce,q¢) so that for
g <0, H(M;,ct,q:) = F(0; Mg, ¢, 0) + g, and for g > 1, H(My, ct,q¢) = F(0; Mg, ¢, 1) + e
By step 2, F(0; M;,ct,q:) is non-decreasing in g;. Therefore, holding M, and c, fixed,
H(M,,ct,q:) is strictly increasing in ¢. Since F(0; M, c:,q) is bounded, it follows that
limg, o0 H (Mg, ¢, qt) = 00 and limg, oo H(M;, ¢, q:) = —00. By the continuity and the
strict monotonicity of H(M;,ct,q) in g, there is a unique value of g; for which (1-4) holds.
Since F(0; M, c,q) € [0,1], this value of g must also be in the interval [0,1].

Step 4. Let g € (0,1). By arguments analogous to those in step 2 it follows that
F(0; M, ct, ;) is strictly increasing in g;. As for any ¢ € (0,1) the function H(M;,c;,q) is
differentiable in M;,c;), we can apply the Implicit Function Theorem to (14), obtaining the



continuity and differentiability of (Mg, c:) as desired. By the continuity of F(0; M, ct, q¢),
it follows from (14) that g(Mg, c;) is continuous at any point (Mg, c;) where g( M, ¢¢) equals

one or zero.
Q.E.D.

Proposition 1  Subject to the above assumptions: (i) there is o unigue continuous and
bounded function V() satisfying (10); and (ii) if 6; = 1 then V(.) is sirictly increasing.
Proof of Proposition 1.

When 6; = 0, the functional equation (10) is satisfied by construction.
Let 6; = 1. From the law of motion (1), and the continuity of S(Ry, ¢) and ¢; = g(M;, c¢)

(Lemma 1), it follows that

$(My,ct, Zeyr) = (M — dy)RE

(15)
+ay(Z8; — BB) + 4(Zh; — RP) - S(Ri, oMy, ct))(Be — RE)
is continuous in its arguments. The functional equation takes the form
V(M) = sup {u(de)+BE[V(Mes1)]}- (16)
C¢€I‘(Mg)

Let C(R) be the space of bounded and continuous functions f : R — R, with the sup
norm. Define the operator T on C(R) by

(TF)(M:)= sup {u(d)+BE[f($(Mi,ct, Ze41))]}- (17)
e €T(M;)

The operator T maps C(R) into itself. This can be seen as follows. Fix M;. Us-
ing (5)-(9) it is readily shown that I'(M;)—the set of policy vectors satisfying the
constraints—is closed and convex, and hence compact. For any realization of Z;,;, the
function ¢(-) is continuous in ¢;. Hence, by the continuity of f in its argument and
the continuity of the c.df. of Z;,,, it follows that E [f(¢(M;,ce, Zi41))] is continuous
in ¢. As u is continuous, it follows that the supremum in equation (17), denoted by
u(d; (My)) + BE [f (¢(M, c; (M), Ze41))], is achieved. By the continuity of ¢(-) in M, and
the Theorem of the Maximum (e.g., Stokey and Lucas 1989, p.62) we have that the function
(TF)( M) = u(di (M) + BE [f(d(M¢,c; (M), Ze41))] is continuous in M;. Since u and f
are bounded, (T'f)(M;) is bounded.



It is easy to show that (T'f)(M;) satisfies monotonicity and discounting (e.g., Stokey
and Lucas, 1989, p.54), and hence, by the Contraction Mapping Theorem, is a contraction
with a unique fixed point. This completes the proof of (i).

Since u(-) is strictly increasing, part (ii) of the proposition follows from the fact that a

plan that is feasible for M, is also feasible for M{ > M;.
Q.E.D.

Proposition 2  If Assumptions D, S, and R are satisfied, then for any oy € (0,1] there
is an open region of a,, g, and vy such that for every M; the optimal policy is unique and

18 ¢ conlinuous funciion of M;.
Proof of Proposition 2.

We start by proving several auxiliary results.

Lemma 2 If (i) Assumption D is satisfied; and (i) S(Re,q:)(RP — R:) is sirictly concave
in Re and g;, then (i) 1 — F(0; My, ce, i) is sirictly concave in (Mg, c,q:); and (i) g(Me, )

is sirictly concave in (M, c;).

The concavity of the supply of funds function in the interest rate on deposits, and its (strict)
convexity in the probability of survival can be interpreted as follows. For a given probability
of survival it is becoming increasingly harder to induce depositors to supply funds through
increases in the interest rate. On the other hand, for a fixed interest rate, equal increases
in the probability of survival result in increasingly larger increments in the supply of funds,

reflecting the importance depositors attribute to the bank being “very safe.”

Proof of Lemma 2.

Step 1. Let (M, ¢t qe) = (My—di)RB+a,(Z2,, — RB)+4:(Z¢,, — RB)— S(Ry, q:)(Re - RE).
Let M{ = OM,+(1-6) M/, ¢ = 6c;+(1-6)c}, ¢} = 0g:+(1-0)q}, and R = 6R,+(1-0)R;.
Then, for any 6 € (0,1) we have that

¢(Mta! Cf, Qta) = 0¢(Mh Ct, qt) + (1 - 0)‘»(’( tli C‘JJ‘) +A,
where

A = S(R{,¢/)(R® ~ R}) ~ [0S(Re, qt)(R® — Re) + (1 - 0)S(Ry, )(R® - Ry)| > 0



by the strict concavity of S(Re, g:)(RZ - Ry). .
Step 2. Using by the strict concavity of S (R:,q:)(R® — R:), the properties of A(-), and

Assumption D, we have that

1- F(0;M{,cf,qf)

=1-Pr{$(M{,of,qf) — AlY(M!, ¢/, 7)) < 0}

> 1 - Pr{6y(M;, i, ) + (1 = )y (M, i, q1)
— AlBp(Me, c1,q:) + (1 — )% (M, ¢, q)] < 0}

> 1 - Pr{0y(M;,ct, ) + (1 = 0)9(M;, ¢t 1) (18)
— 0A[Y(My, 1, 9:)) — (1 - 6) Al (M, ¢, )] < 0}

> 1 - 0Pr{$(Mi,c1, ¢) — Alp(Me, e, 4)] < 0}
- (1 - 6)Pr{y(M;, i, q}) — Al¥ (M, ¢, q1)] < 0}

= 0[1 — F(0; My, ¢, ¢0)] + (1 — 6)[1 — F(0; MY, ¢, )],

which completes the proof of part (i).
Step 3. Using part (i) of this lemma, we have
0g(Me,ce) + (1 - 0)g(M;,ct)
= 0[1 - F(0; My, ct,q(My, )l + (1 - 0)[1 — F(O; M, ¢}, q(M{, )] (19)
<1-F (0;Mf,df,6q(My, ) + (1 - 8)a(M],ch) -

Since 1 — F(0; M;, ct,q;) is decreasing in ¢; (see the proof of Lemma 1) it follows that the
value of g¢ which solves equation (3) must satisfy g(M¢,cf) > 89(Mz,c:)+ (1 - 0)q(M{,d})).

Q.E.D.

Lemma 3 If g(M;,c;) is strictly concave in (Mg, c;), then there ezists &, > 1 such that for
all a, € (1,8,], lg(Mz,c)]®e is sirictly concave in (M, ct).

Proof of Lemma 3.
Step 1. In the proof of Lemma 1 the continuity and differentiability of q(M;,c) were

established by applying the Implicit Function Theorem to (14). For instance,

8q(My,ct) _ OF(0; My, ct,q:)/0R:
OR; 14 8F(0; My, ce,4:)/0q:

(20)



By our assumptions on F(0; Mg, c¢, g¢) this derivative is bounded. Furthermore, since, by as-
sumption, F(0; M, ct, q¢) is twice continuously differentiable with respect to its arguments,
the derivatives of the derivative in equation (20) exist and are continuous. Analogous
properties hold for the other derivatives of g(M;, c;).

Step 2. Let h(-) = q(-)*, o, > 1, where (-) stands for (M;,c;). Taking derivatives we
get hiy(-) = ayg()%~1gx(), and hix() = olq(-)* qu () + (@ — 1)au(-)?q(-)+ %], where
the subscripts k¥ and kk denote first and second partial derivatives with respect to k =
M, Ry, dg, a4, €. As the first derivatives of g(+) are bounded (step 1), we have that for a,
sufficiently close to 1, hix(-) and gxi(-) are of the same sign. An analogous reasoning holds

for minors of higher dimension.
Q.E.D.

Lemma 4 Let S(R:,q:) satisfy Assumption S. Then, for any a, > 1 and any ay € (0,1],
there is an open region of the parameters v and 7, such that S(Re,q:)(RP — Ry) is strictly

concave in (Ry,q:).

Proof of Lemma 4.

Define p(Re, ¢:) = S(Re, ¢:)(RE — Ry). Using (-) to denote (M, c:), and subscripts to denote
partial derivatives, we get

Pra(-) = —ax(ar + 1)7a(R: - RB)*2~1 <0,

pqq(‘) = —a,(aq - 1)'7q‘1?q-2(Rt - RB) <0,
and
Pra() = G Ygagan(an +1)(e, — 1)7a(Re — RB)®R — ayy,qp)
> g e lan(an + 1), — 1)7a(R(1) - RB)*® — a,9,),
which is strictly positive if and only if

= _ ar(ar+1)(a, —1)
Y% g o (R(1) - RB)=r ° (21)

For any ax and a, satisfying the assumptions of the lemma, the inequality in (21) holds

for an open region of the parameters yx and 7.

Q.E.D.



Lemma 5 If Assumptions D, S, and R are satisfied, then there is &, > 1 such that for all
a, € (1,a,], the correspondence I'(-) is convez in the following sense: Let My, M; > M*,
where M* is the solution to My = A(M;) (see Figure 2), and letc; € I'(M,;) and c; € T'(M]).
Then cf € D(M§) for all 8 € (0,1), where ¢ = 0c; + (1 — 6)c, and Mf = 0M, + (1 - 6)M].

Proof of Lemma 5.
We consider each of the constraints defining the correspondence of feasible policies I'(:).

Dividend constraint. Let 0 < dy < M; — A(M; — d) and 0 < df < M{ - A(M] - d}).
Obviously, df > 0. Using the fact that A(-) is negative and convex, we have

& < (M, — A(M; — di)] + (1 - 6)[M] — A(M; — d})] < MY - A(M! - &).

Stock market constraint. Let a; > A(My—d;) and a} > A(M;~d;). Again, by the convexity
of A(‘):
af > 0A(M; — de) + (1 — 0)A(M] — d}) > A(M - ).

Projects constraint. Since £, > 0 and £ > 0 it follows that £ = 6£, + (1 — )£, > 0.
Reserve requirement consiraint. Since S(Ry,q:) satisfies Assumption S, it follows from
Lemma 4 that for any a, > 1 there is an open region of the parameters 7z and 74 such that
S (Rg,Q‘)(RB — R;) is strictly concave in (R;,q:). As Assumption D also holds, it follows
from Lemma 2 that g(Mi,c,) is strictly concave in (Mg, ;). By lemma 3 there is &, > 1
such that for all a, € (1,&,), [g(Mi,ce)]* is strictly concave in (My,¢). Recalling that
ar € (0,1], it follows that for o, € (1,&,], S[R:, (M, ct)] = Yr(Re = RB)*R + yoq(Me, ¢t )¢
is strictly concave in (Mg, c;), implying that

S[Rfi Q(Mtoi cto)] > GS[Rh Q(Mh cf)] + (1 - 9)S[R:: Q(Mt’, c‘)]

It is then straightforward to verify that if condition (8) is satisfied for (Mg, ¢;) and (M{,d}),
then it is also satisfied for (M, cf).

Supply of funds comstraini. By Assumption R, Rlg(M;,c)] is concave in (My,c), and
R[q(M;,c:)] is convex in (My,c;). Therefore, if condition (9) is satisfied for (M,c;) and



(M}, c,), then it is also satisfied for (M7, cf).
Q.E.D.

We turn to the proof of the Proposition: Step I. Since S(R:,gq:) satisfies Assumption

S, we know by Lemma 4 that for any a, > 1 and ay € (0,1] there is an open re-
gion of the parameters 75 and 4, such that S(R:,q)(RE — Ry) is strictly concave in
(Reyg¢). By Lemma 2 and Assumption D, g(My,c;) is strictly concave in (M, ¢;). Con-
sequently S(R:,q(M:,c:))(RP — Ry) is strictly concave in (My,c;), which in turn implies
that ¢(My, ¢ty Zs41) is strictly concave in (Mg, c;). Step 2. Consider the operator in (17),
and let f(-) be a concave function. Then, f(¢(M?,cf,Z:+1)) is concave, and hence so is
E [f (p(ME, ,Zg+1))] . Since u(-) is strictly concave we have

(TH)ME) > u(d)+BE [f(o(M,cf, Zuys))]
> Ou(ds) + 0BE [f(¢(M, ¢ty Ze1))]
+(1 = 8)u(dy) + (1 - O)BE [f($(M{, ), Zes1))]
= O(Tf)(M:) + (1 - O)(TF)(M),

(22)

where ¢! = 8¢, + (1 — 6)c, and M? = OM, + (1 — )M]. Therefore, (Tf)(:) is a strictly
concave function, which implies that the fixed point V(-) must also be strictly concave.
Step 3. Fix M;. Since I'(M,) is compact, the supremum in equation (16) is achieved. By
the strict concavity of ¢(-) in ¢, and of V(-) in its argument, it follows that there is a
unique ¢; which achieves the maximum.

Step 4. By the Theorem of the Maximum, the maximizing policy vector c; is a continuous

function of M;.
Q.E.D.
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Figure 1: Supply function of CD deposits
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Figure 3: Density function under Assumption D
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Figure 4: Base Case Simulation
a. Probabliity of Survival (q)
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Figure 4 (Continued)
d. Dividend Distribution (d)
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Figure 5: Base Case—Cobhort Simulation
a. Banks Distribution by Periods
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Figure 6: Reserve Requirement Simulation
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Figure 7: Riskiness of Investment in Project Simulation
a. Probabillity of Survival (q)
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Figure 7 (Continued)
d. Dividends Distribution (d)
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Figure 8: Riskiness of Investment in Project

Cohort Simulation
a. Banks Distribution by Periods (Sigma=1)
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Figure 8 (Continued)
c. Banks Distribution by Periods (Sigma=3)
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Figure 9: Risk Aversion (of Manager) Simulation
a. Dividends Distribution (d)
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Figure 10: Riskless Interest Rate Simulation
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Figure 11: Deposits Sensitivity to CD Rate Simulation
a. Probabllity of Survival (q)
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Figure 11 (Continued)
d. Dividends Distribution (d)

L B
B P
=N 4
d
- r
) '
- 7
ld
R . .
: 27 e — dph. Re.50
- = alpha_R=10

i wese glpha_Re.30

0.8 42 9.2 14.2 19‘.2 212 20.2 342 382 442 492

Bank size
e. Investment In Market Portfolio (a)

L
L
-
-
.
I~ ~—— alpha_R=.50
- == alpha_R=.10
e = alpha_R=.30

0.8 42 0.2 142 19:2 24.2 21;.2 3;.2 39..2 44.2 49..2

Bank size
1. Investment in Projects (i)
L P
- - 'I
- '
d”

: rad -
L
A S
[ L7
R 7/ o alpha_Re=.50
- ~ = alpha_R=.10
L 7 et T e aipha_R=.30

0.8 42 92 142 102 242 2902 342 302 442 40.2
Bank size




Figure 12: Deposits Sensitivity to CD Rate—Cohort Simulation
a. Banks Distribution by Periods (alpha_R=.10)
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b. Banks Distribution by Periods (alpha_R=.30)
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Figure 12 (Continued)
c¢. Banks Distribution by Periods (alpha_R=.50)
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Figure 13: Deposits Sensitivity to Survival Probability Simulation
a. Dividends Distribution (d)
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b. Investment in Market Portfolio (a)
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c. Investment in Projects (i)
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