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Many observed time series display nonstationary characteristics. Some grow in a secular
way over long periods of time, others appear to wander around in a random way as if they have
no fixed population mean. These characteristics are especially evident in time series that represent
aggregate economic behaviour (like gross domestic product), financial time series (such as
indexes of stock prices), and political opinion poll series (such as presidential popularity data).
Any attempt to explain or forecast series of this type requires that a mechanism be introduced to
capture the nonstationary elements in the series, or that the series be transformed in some way to
achieve stationarity. The problem is particularly delicate in the multivariate case, where several
time series may have nonstationary characteristics and the interrelationships of these variables are
the main object of study. Figure 1 graphs the monthly leading economic indicators time series for
the U.S. economy over the period 1948:1 - 1994:1. Also shown in the figure is the regression line
of a linear trend. The time series shows evidence of growth over time as well as a tendency to
wander randomly away from the linear trend line. A successful statistical model of the time series
needs to deal with both these features of the data.

One way of modeling nonstationarity* is to use deterministic trending functions like time
polynomials to represent secular characteristics like growth over time. In this approach, a time
series y, 1s broken down into two components, one to capture trend and another to capture
stationary fluctuations. A general model of this form is
M y,=h+y,, h=y'x, (@=1,..n),
where y; .is a stationary time series* | x, is an m-vector of deterministic trends* and y is a
vector of m parameters. In this case, y, is known as a trend-stationary time series. The simplest

example is a linear trend. Then y'x, =y, +y,f, and the time series y, is stationary about this



deterministic linear trend. A more general example where the trends are piecewise higher order

polynomials is given in equation (10) below.

Figure 1 about here

An unsatisfactory feature of trend stationary models (like the linear trend line in Figure 1)

is that no random elements appear in the trending mechanism and only the stationary component
is subject to stochastic shocks. Models with autoregressive unif roots are a simple attempt to deal
with this shortcoming. In such models the trend is permitted to have both deterministic and
stochastic elements. For example, in (1) the deterministic trend A, can be retained, and the process
y; can be modeled as the nonstationary autoregression
2 y=a,+u, (t=1..n), with a=1.
In this model there is an autoregressive root of unity (corresponding to the solution of the
characteristic equation 1—al = 0), and the shock w, is stationary. Unit root tests usually seek to
determine whether data support this model or a trend stationary alternative. In a unit root test the
null hypothesis is that the autoregressive parameter & =1 in (2). The process y; is then difference
-stationary in the sense that the first differences Ay; = u, are stationary. Unit root tests are
typically one-sided* tests against the alternative hypothesis that |a|<1 . Under the alternative
hypothesis, the process y; is stationary, and then y, in (1) is trend stationary. Unit root tests can
can therefore be interpreted as tests of difference-stationarity versus trend-stationarity.

If the initial condition in (2) is set at t = 0, the output of the model can be written in terms

of accumulated shocks as y; = Z;:lu ; + 5. In view of this representation, y; is often called an

integrated process of order one (written as I(1) ). The terminology stochastic trend is also in
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common use, and is explained by the fact that y; is of stochastic order O, (") under very

general conditions, i.e. the variance of y; is of order O(f) and the standardised quantity ™"?y’

satisfies a central limit theorem* as 1 — o0. The simplest example of a stochastic trend is a random



walk*. In this case, the shocks w, are independently and identically distributed (iid) with zero
mean and constant variance o”. A more general case occurs when the stationary shocks #, in (2)
are generated by the linear process #, = C(L)e,, whose innovations &, are iid(0,0°), and where
C(L) is a polynomial in the lag operator L for which Ly, = y,_,. More specifically, if

()  C(L)y=2L7,c,l’, 27 ¢’ <o, and C(1)#0,

then the process #, is covariance stationary* and has positive spectral density* at the origin, given
by the expression (o> / 27)C(1)*. The latter propery ensures that the unit root in y’ does not
cancel (as it would if the process u, had a moving average unit root, in which case the spectral
density would be zero at the origin). If the summability condition in (3) is strengthened to

270" *|c;| <, then y; satisfies an invariance principle* or functional central limit theorem*

(see Phillips & Solo [31] for a demonstation), and this is an important element in the development

of the asymptotic theory of all unit root tests Thus, #~"*y;, ; = B(r), a Brownian motion with

variance @’ =o’C(1)?, where [nr] signifies the integer part of nr, "=" signifies weak
convergence*, and r € [0,1] is some fraction of the sample data. The parameter @’ is called the
long-run variance of u,.

The literature on unit root tests is vast. Most of the research has appeared since 1980, but
an important early contribution came from White [39], who first recognised the vital role played
by invariance principles in the asymptotic theory of time series with a unit root. The first explicit
research on unit root tests dealt with Gaussian random walks and was done by Dickey & Fuller
[4,5]. Solo [37], Phillips [24] and Chan & Wei [3] developed more general limit theories using
invariance principles. Subsequently, an immense variety of tests have been developed, inspired in
large part by the need to allow for more general processes than random walks in empirical
applications. This entry covers the main principles of testing, the commonly used tests in practical
work and the most recent developments.

Under certain conditions, (1) and (2) can be combined to give the regression model



4) Yo =px tay,, +u,

where S is an m-vector of deterministic trend coefficients. This formulation usually involves
raising the degree of the deterministic trends to ensure that the maximum trend degrees in (4) and
(1) are the same, which results in some inefficiency in the regression because there are surplus
trend variables in (4). There is an alternative approach that avoid this problem of redundant
variables and it will be discussed below. Asymptotic theory assumes that there exists a matrix D,

and a piecewise continuous function X(r) such that D, 'x[”] — X(r) as n— o uniformly in

r € [0,1]. X(r) is then the limiting trend function.

The stationary process u, in (4) may be treated in a parametric or a non-parametric way,
leading to two classes of unit root test. One relies on casting the stationary part of the process in
terms of a parametric model (commonly an autoregression). The other is parametric only in its
treatment of the regression coefficient «, being non-parametric with regard to the general
stationary part of the process. The approach is therefore said to be semi-parametric.

The Dickey-Fuller tests and semi-parametric extensions

Let & be the OLS estimator of & in (4). The Dickey-Fuller [4,5] unit root tests are based
on the coefficient estimator @ and its regression t-ratio 7;. The basic idea of the tests is to assess
whether the observed & is close enough to unity to support the hypothesis of the presence of a
unit root in the true data generating mechanism. Classical test procedures require a distribution
theory to deliver critical values for the test statistics @ and 7, under the null hypothesis that
a =1 . The finite sample distributions of these test statistics are complex and depend on unknown
nuisance parameters associated with the stationary process u,. It is therefore customary to rely on
asymptotic theory, where the results are simpler and the parameter dependencies are clearly
understood.

The large sample theory for @ and 7, is most simply obtained using invariance principles

and involves functionals of Brownian motion. In the special case where there is no deterministic



component in (4) and the shocks , are iid(0,c*), the limit theory for the test statistics is as

-1/2

follows: n(&—l):[J;WdW] [J;Wzl_l, and 1, :[I;WdW] [J(:Wz] , where W is standard

Brownian motion. These limit distributions are commonly known as the Dickey-Fuller
distributions, although the Brownian motion forms were not used in [4,5] and were given later in

[3,24,37].

Figure 2 about here

The limit distribution of & is asymmetric and has a long left tail, as shown in Figure 2. It
was computed directly in [9]. In the general case where #, is stationary, the limit has an additional

bias term that depends on the autocovariance* in w, through the nusiance parameter

A= Z';’:l E(u,u;). This parameter and the related nuisance parameter @’ may be consistently

estimated by kernel* techniques, using residuals from an OLS regression on (4). If @* and A are
such estimates, then the following statistics provide general semi-parametric tests of the unit root

hypothesis (Phillips [24]), which correct for possible autocorrelation in #,:

) Zy=n@-D-An? i) =[]

/2

6) 2,=6 a‘f‘t&—i;a*»(n‘z I'=2y§,,-1)m}_l =L w.aw] [EW;]_I :

In these formulae, y,, is the residual from a regression of y, on x,, &7 is the OLS estimator of
ol =var(u,), and W, is the L,[0,1] Hilbert space projection of /¥ onto the space orthogonal to
X, viz. Wy (r)=we) - [wx|[h xx]” x().

The limit variates that appear on the right side of (5) and (6) are free from the nuisance
parameters 3, @*, and A, and are used to construct critical values for the tests. This is typically
done by large scale simulations, since the limit distributions are non-standard. Figure 2 shows how
these distributions change by stretching out the left tail as we move from a regression with no
trend to a regression with a linear trend. Computerized tabulations of the critical values are given

S



in Ouliaris & Phillips [21] for the case of polynomial trends. In the case of the Z, test, for
instance, we reject the null hypothesis of a unit root at the 5% level if Z, < cv(Z,;5%), the 5%
critical value of the test. Both the Z, and Z, tests are one-sided. They measure the support in the

data for a unit root against the alternative that the data are stationary about the deterministic trend

x,. When no deterministic trend appears in the model, the alternative hypothesis is just

-
stationarity. In this case, the limit variates involve only the standard Brownian motion W. The
Z, and Z, tests were developed in Phillips [24] and extend the original unit root tests of Dickey
& Fuller based on the statistics n(¢—1) and 7, . Extensions of these semi-parametric tests were
obtained in [20, 22, 23, 28], and are covered by the above formulae.

To illustrate, model (4) was estimated with a linear deterministic trend for the data shown
in Figure 1. The calculated values of the coefficient-based test statistics are as follows: n(a —1) =
-7.38; Z_, = -13.25. The asymptotic 5% critical value of the limit distribution of the Z, statistic
is -21.21 (c.f. the density given by the broken line in Figure 2). These tests do not reject the null
of a unit root in the time series, while allowing for the presence of a linear trend. The t-ratio test
statistics are: 7, = -1.92; Z, = -2.56. The asymptotic 5% critical value of the Z, statistic is -3.43.
Again, the tests do not reject the null hypothesis of a unit root in the series. Note that the

calculated values of the Dickey-Fuller statistics #(¢ —1)and 7, are further from the critical values
than the semi-parametric statistics Z, and Z,. The semi-parametric corrections in the Z-tests for

autocorrelation in the residual process u, are non negligible, but in this case they do not make a
difference in the outcome of the unit root tests.
The von-Neumann ratio/LM test

The von-Neumann (VN) ratio is the ratio of the sample variances of the differences and
the levels of a time series. For Gaussian data this ratio leads to well known tests of serial
correlation* that have good finite sample properties. Sargan & Bhargava [34] suggested the use

of this statistic for testing the Gaussian random walk hypothesis. Using non-parametric estimates



of the nuisance parameter @’, it is a simple matter to rescale the VN ratio to give a unit root test
for the model (1) and (2). Using a different approach and working with polynomial trends,
Schmidt & Phillips [35] showed that for a Gaussian likelihood the Lagrange multiplier (LM)
principle leads to a VN test, and can be generalized by using a nonparametric estimate of @?.

If y; were observable, the VN ratio would take the form VN = 2., (Ayi)* /20 (¥))2.
The process y; is, in fact, unobserved but may be estimated from (1). Note that, under the null
hypothesis and after differences are taken, this equation is trend stationary, so that by the
Grenander-Rosenblatt theorem [10, ch.7] the trend function can be efficiently estimated by an
OLS regression. Let Ay, = Ay, —A};, be the residuals from this detrending regression and let
P:=2._,Ap" be the associated estimate of y’. Rescaling the von Neumann ratio then leads to
the following test statistic

_ @ 2L,

sy =W

(M) Ry

The limit process VX (r) in (11) is a detrended generalized Brownian bridge*, whose precise
form depends on the trend 4,. In the case of a linear trend, V, (r) = V(r)—JEVis a demeaned
version of the standard Brownian bridge* V(r) = W(r) - riw(1).

Critical values of the limit variate shown in (7) are obtained by simulation. The statistic is
positive almost surely and the test is a one-sided test. MacNeil [18] and Schmidt & Phillips [35]
provide tabulations for a transformed version of this statistic in the case where h, 1s a linear trend.
The presence of a unit root is rejected at the 5% level if R, > cw(R,,,,5%).

The parametric ADF test

The most common parametric unit root test is based on the following autoregressive

approximation to (4) :

(8) Ay, =ay,_, + Zf=1 (ijy,_i +B'x, +¢,.



As k — o we can expect the autoregressive approximation to give an increasingly accurate
representation of the true process. The unit root hypothesis in (4) corresponds to the hypothesis
a =0 in (8). The hypothesis is tested by means of the regression t-ratio statistic on the coefficient
a. This statistic has the same limit distribution (and critical values) as the Z, test given in (6)
above, provided k — o atan appropriate rateas n —>c [32]. The test is known as the
augmented Dickey-Fuller (ADF) test.
Efficient detrending by quasi-differencing

As discussed above, the von Neumann ratio/LM test R, is constructed using an efficient
detrending regression under the null hypothesis in contrast to tile regression (4), where there are
redundant trending regressors. One way to improve the power of unit root tests is to perform the
detrending regression in a way that is efficient under the alternative hypothesis as well, an idea
that was suggested in [7] in the context of the removal of means and linear trends. Alternatives
that are close to unity can often be well modelled using the local alternative [25]
)] a=exp(n'c)~1+n’'c
for some fixed ¢ =c, say, given the sample size #. Quasi-differencing rather than differencing can
now be used in the detrending regression. Such a regression leads to estimates of the trend
coefficients that are asymptotically more efficient than an OLS regression in levels [16], and this
result justifies the modified test procedure that follows.

Set A,y,=(1-L-n"'cL)y, = Ay, -n"'¢y,,, and run the detrending OLS regression

Ay, =7'A.x, + Ay’ Using the fitted coefficients 7, the levels data are detrended according to

¥,=y,-7'x, and ¥, can be used in the construction of all of the above unit root tests. For

. . . jan-g ~ o -~ n ~ _1
example, the modified semi-parametric Z, test has the form Z, = n(@ - 1)—/1(71 2, y,il) ,
where A is a consistent estimator of A, and & is the coefficient in the regression of y, on y, .

New critical values are needed for the Zz test and the limit theory depends not only on the trend

functions, as it does in (5), but also on the localizing parameter ¢ that is used in the quasi-



differencing. A good default choice of ¢ seems to be the value for which local asymptotic power
is 50% [7, 14].
A point optimal test

When the model for y, is a Gaussian AR(1) with unit error variance, the Neyman-Pearson
lemma can be used to construct the most powerful test of a unit root against a simple point
alternative. This is a point optimal test (POT, [14]) for a unit root at the alternative that is
selected. Taking a specific local alternative with ¢=¢ in (9), using quasi-differencing to detrend,
and using a consistent nonparametric estimate @?of the nuisance parameter @w®, the POT test
statistic for a unit root in (1) and (2) has the form 7, = a?‘Z{E YL () —en'yr } which
was given by Elliot ef al. [7] in the case where there is a linear trend in (1). The test is performed
by comparing the observed value of the statistic with the critical value obtained by simulation. The
presence of a unit root in the data is rejected at the 5% level if 2. < cv(P,,5%), i.e. if P. is too
small. Note that in the construction of 2. , the estimate @ is used and this is obtained in the
same way as in the Z, test, i.e. using residuals from the regression (4).
Asymptotic properties and local power

The above test statistics are asymptotically similar"; in the sense that their limit
distributions are free of nuisance parameters. But, the limit distributions do depend on whether
the data has been prefiltered in any way by a preliminary regression. The tests are also consistent
against stationary alternatives provided that any nonparametric estimator of @* that is used in the
test converges in probablity to a positive limit as # — . The latter condition is important, and it
typically fails when estimates of @® are constructed using first differences or quasi-differences of
the data rather than regression residuals [27].

Rates of divergence of the statistics under the alternative are also available. For instance,

when |a|< 1, Za,Z,,RW =0,(n), and Z,,6 ADF = Op(n”z) as n — oo [27]. Thus, coefficient-

based tests that rely on the estimated autoregressive coefficient and the von Neumann ratio/LM



tests diverge at a faster rate than tests that are based on the regression t-ratio. We may therefore
expect such tests to have greater power than t-ratio tests, and this is generally borne out in
simulations. Heuristically, the t-ratio tests suffer because there is no need to estimate a scale
parameter when estimating the autoregressive coeflicient « .

Under the local alternative (9), the limit theory can be used to analyse local asymptotic
power. When (2) and (9) hold, y; behaves asymptotically like a linear diffusion rather than

Brownian motion, i.e. n”2y’ = J (r) = [ e""*dW(s). The limit distributions of the unit root
y[nr] ¢ 0

test statistics then involve functionals of J_(r) [25]. The local asymptotic theory can be used to
construct asymptotic power envelopes for unit root tests by taking‘ the limit distribution of the
POT statistic under the local alternative ¢ = ¢, and then varying the parameter ¢ .
Finite sample properties of unit root tests

Extensive simulations have been conducted to explore the finite sample performance of
unit root tests. One general conclusion to emerge is that the discriminatory power in all of the
tests between models with a root at unity and a root close to unity is low. For instance, power is
less than 30% for « €[0.90,1.0) and »=100. Power is reduced further by detrending the data.
Both these features mirror the asymptotic theory. One interesting finding from simulation studies
is the extent of the finite sample size distortion of the tests in cases where the true model is close
to a trend stationary process. For example, if u, in (2) follows a moving average process
u =¢ +0c_, with @ large and negative, then the sample trajectories of y; more closely
resemble those of a stationary process than a random walk. In such cases there is a tendency for
all of the tests to overreject the null of a unit root. Tests that are based directly on autoregressive
coefficient estimates, like Z, tend to be more affected by size distortion than the other tests. This
is because the bias in the first order autoregressive estimator is large in this case, not only in finite
samples but even in the asymptotic distribution (7), where the miscentering is measured by the

bias parameter A = 8. Good estimates of the bias parameter are needed to control the size
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distortion. Since A is estimated in a nonparametric way by kernel methods, it is usually not
estimated at a vn rate. Recent attempts to improve the estimation of this parameter using data-
determined bandwidth choices [1], prefiltering [2] and data-based model selection and prefiltering
[16] offer some promise, the latter reference showing that Jn rates of estimation are achievable
in these estimates when consistent model selection* techniques are used to determine the prefilter.

The parametric ADF procedure is less affected by size distortions when the true model is
close to stationarity, but generally has much less power than the other tests. With this test, power
is further reduced by the inclusion of additional lagged dependent regressors in (4). Again, use of
model selection methods like BIC [36] are useful in this respect and these provide some increase
in the finite sample power of the ADF test.

Since detrending the data reduces power, surplus trend variables in regressions like (4)
will do so also. Hence, efficient detrending procedures can be expected to benefit all the tests.
Simulations confirm [38] that detrending by regression in quasi-differences seems to be the most
successful method so far for increasing finite sample (and asymptotic) power.

Trends with structural breaks
Breaks in deterministic trend functions are often employed to capture changes in trend.

This possibility is already included in the specification of A, in (1). For instance, the trend function

0 tef{l,.. m}
(t-m)  te{m+1,...n}

(10) A, = Zfzofjtj +Zf=0fm,].t,{;, where 1), ={
has a time polynomial of degree p (the first component) and a similar time polynomial with
different coefficients (the second component) that initiates at the point #=m+1. This trend -
function therefore allows for the presence of a structural change in the polynomial trend at the
data point #=m+1. Suppose u=lim,_ (m/n)>0 is the limit of the fraction of the sample
where this structural change occurs. Then the limiting trend function X (r) corresponding to (10)

has a similar break at the point . The unit root tests given above, including those that make use

of efficient detrending procedures, continue to apply for such broken trend functions. Indeed, (10)
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may be extended further to allow for multiple break points in the sample and in the limit process
without affecting the theory.

In order to construct unit root tests that allow for breaking trends like (10) it is necessary
to specify the break point m. (Correspondingly, the limit theory depends on limit processes that
depend on the break point x). In effect, the break point is exogenously determined. Perron [23]
considered linear trends with single break points in this way. An alternative perspective is that any
break points are endogenous to the da ta and unit root tests should take take account of this fact.
Alternative unit root tests have been suggested [40] that endogenise the break point by choosing
the value of m that gives the least favourable view of the unit root hypothesis. This has been
done for the parametric ADF test and for linear trends with breaks. If ADF(m) denotes the ADF
statistic given by the t-ratio for @ in the ADF regression (4) with a broken trend function like
(10), then the trend break ADF statistic is
(11)  ADF(m) = min

ADF(m), where m=[ni], m=[ng] and O<j<pu<]l.

m<ms<m

The limit theory for this trend break ADF statistic is given by

-1/2

(12)  ADF(i) = inf, [ b weaw] [hw2]

where the limit process X () that appears in this functional on the right side is now dependent on
the trend break point 4 over which the functional is minimised. Critical values of the limiting test
statistic (12) are further out in the tail than the those of the exogenous trend break statistic, so it is
harder to reject the null hypothesis of a unit root when the break point is considered to be
endogenous. Simulations indicate that the introduction of trend break functions leads to further
reductions in the power of unit root tests. Sample trajectories of a random walk are often similar
to those of a process that is stationary about a broken trend for some particular breakpoint (more

so when several break points are permitted in the trend). So reductions in the power of unit root

tests against competing models of this type should not be unexpected.
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Seasonal unit root tests

The parametric ADF test has been extended to the case of seasonal unit roots. In order to
accommodate fourth differencing the autoregressive model is written in the new form
(13) Ay, =y + O Ya, +OYss +Q Vs, T 20 @, +E,
where A, =1-L*, y, = A+ L)1+ L*)y,, y,, === L)A+ L})y,, y,, =—(1-L*)y,. The data
Yi»>Yar» Vs, Tetain the unit root at the zero frequency (long run), the semi-annual frequency (two
cycles per year) and the annual frequency (one cycle per year), respectively. When
a, =a, = a, = a, =0, there are unit roots at the zero and all seasonal frequencies. To test the
hypothesis of a unit root (L =1), a t-ratio test of «, =0 is used. Similarly, the test for a semi-
annual root (L = —1) is based on a t-ratio test of a, =0, and the test for an annual root on the t-
ratios for @, =0 or a, =0. Details of the implementation of this procedure are given in
Hylleberg et al. [12]. The limit theory is developed in Chan & Wei [3].
Bayesian tests

While most practical work on unit root testing has utilised classical procedures of the type
discussed above, Bayesian methods offer certain advantages that are useful in empirical research.
Foremost among these is the potential that these methods offer for embedding the unit root
hypothesis in the wider context of model specification. Whether or not a model such as (4) has a
unit root can be viewed as part of the bigger issue of model determination. Model comparison
techniques like posterior odds and predictive odds make it easy to assess the evidence in the data
in support of the hypothesis @ =1 at the same time as decisions are made concering other
features of the model, such as the lag order in the autoregression (4), the degree of the
deterministic trend component and the presence of trend breaks. Phillips & Ploberger [29, 30]
explore this approach to unit root testing and give an extension of the Schwarz [36] criterion that

can be used for this purpose in models with nonstationary data.
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A second advantage of Bayesian methods in models with unit roots is that the asymptotic
form of the posterior density is normal [13, 30] a result that facilitates large sample Bayesian
inference and contrasts with the non-standard asymptotic distribution theory of classical
estimators and tests. Thus, a large sample Bayesian confidence set for the autoregressive
parameter & in (4) can be constructed in the conventional way without having to appeal to any
nonstandard limit theory. In this respect, Bayesian theory (which leads to a symmetric confidence
set for a) differs from classical statistical analysis where the construction of valid confidence
regions is awkward because of the discontinuity of the limit theory at a =1 (but may be
accomplished using local asymptotics). This divergence can lead to quite different inferences
being made from the two approaches with the same data. This is so even when the influence of the
prior is negligible, as it is in very large samples. In small samples, the role of the prior is
important and time series models raise special concerns about the construction of uninformative
priors, primarily because a great deal is known about the properties of simple time series models
like autoregressions and their characteristic features in advance of data analysis. How this
knowledge should be used or whether it should be ignored is a matter on which there is ongoing
debate (Phillips [26] and two recent themed issues of the Journal of Applied Econometrics, 1991,
and Econometric Theory, 1994).

Third, Bayesian methods offer flexibility and convenience in analysing models with
possible unit roots and endogenous trend breaks. In such cases a prior distribution of break points
is postulated (such as a uniform prior across potential break points), the posterior mass function is
calculated, and the Bayes estimate of the break point is taken as the one with highest posterior
mass [41]. This approach makes the analysis of multiple break points straightforward, a problem
where classical asymptotic theory is much more complex.

Testing Stationarity

Adding a stationary component v, to (1) and (2) gives the model
(4)  yo=h+y +v, y =y, tu,

14



which decomposes the time series y, into a deterministic trend, a stochastic trend and a stationary
residual. The stochastic trend in (14) is annihilated when o> = 0, which therefore corresponds to a
null hypothesis of trend stationarity. Under Gaussian assumptions and iid error conditions, the
hypothgsis can be tested in a simple way using the LM principle, and the procedure is easily
extended to more general cases where there is serial dependence, by using parametric [17], or
semiparametric methods [15]. Defining w, =y, +v, and writing its differences as
Aw, = (1-6L)y, where n, is stationary, it is clear that o = 0 in (14) corresponds to the null
hypothesis of a moving average unit root @ =1. Thus, there is a correspondence between testing
for stationarity and testing for a moving average unit root [33].
Applications, empirical evidence and future prospects

Most empirical applications of unit root tests have been in the field of economics.
Martingales* play a key role in the mathematical theory of efficient financial markets [6], and in
the macroeconomic theory of the aggregate consumption behavior of rational economic agents
[11]. In consequence, economists have been intrigued by the prospect of testing these theories. In
the first modern attempt to do so using unit root tests, Nelson and Plosser [19] tested fourteen
historical macroeconomic time series for the United States by the ADF test and found empirical
evidence to support a unit root for thirteen of these series (the exception being unemployment).
Since then, these series have been re-tested with other methods, and hundreds of other time series
have been examined in the literature. While it is recognised that the discriminatory power of unit
root tests is often low, there is a mounting body of evidence that many economic and financial
time series are well characterised by models with roots at or near unity, as in the case of the
leading economic indicators data graphed in Figure 1.

In empirical applications to multiple time series, the ADF and semi-parametric Z tests have
been extensively used to test for the presence of cointegration* (or co-movement among variables
with unit roots). The tests are used in the same way as unit root tests and have the same null

hypothesis, but the data are the residuals from an OLS regression among the variables, and the
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alternative hypothesis (of cointegration) is now the main hypothesis of interest [8, 27]. The model
is analagous to (1), but both variables y, and x, have unit roots and y; is stationary.

Unit root models, testing procedures, and unit root asymptotics now occupy a central
position in the econometric analysis of time series. This is partly because of the growing empirical
evidence of stochastic trends in economic data, and partly because of the importance of the notion
of shock persistence in economic theory. The scope for the use of these methods in empirical
research in other fields like political science and communictions seems substantial. Advances in
computer technology will continue to facilitate the use of simulation methods in dealing with the
non standard distributions that unit root methods entail. The explosion of research over the last
decade in the field of nonstationary time series and unit root methods shows no sign of abating
The field is full of potential for future developments in statistical theory, in modeling and in

empirical applications.
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