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“.. though the models forecast well over horizons of four to six quarters, they disagree so strongly about
the effects of important monetary and fiscal policies that they cannot be considered reliable guides to such policy
effects, until it can be determined which of them are wrong and which (if any) are right.” Christ(1975, p.54)

Abstract

Impulse response and forecast error variance matrix asymptotics are developed for VAR models
with some roots at or near unity and some cointegration. For such models, it is shown that
impulse responses that are estimated from an unrestricted VAR are inconsistent at long horizons
and tend to random variables rather than the true impulse responses in the limit. The asymmetric
distribution of the limit variates helps to explain the asymmetry of the finite sample distributions of
the estimated impulse responses that is often found in simulations. VAR regressions also give
inconsistent estimates of the forecast error variance of the optimal predictor at long horizons, and
have a tendency to understate this variance. Moreover, predictions from an unrestricted
nonstationary VAR are not optimal in the sense that they do not converge to the optimal
predictors, at least over long forecast horizons. In these respects, the asymptotic theory of
prediction and policy analysis for nonstationary VAR’s is very different from that which applies in
stationary VAR’s. By contrast, in a reduced rank regression the impulse response and forecast
error variance matrix estimates are consistent and predictions from the fitted RRR model are
asymptotically optimal, all provided the cointegrating rank is correctly specified or consistently
estimated. Some simulations are reported which show these findings to be relevant in finite
samples, and which assess the sensitivity of forecasting performance and policy analysis to certain
design features of models in the VAR class.
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1. Introduction

Twenty years ago Carl Christ(1975) published a study that set out to judge the performance of
several well established structural econometric models of the US economy. Christ’s study
appeared as part of a general symposium on econometric model performance that was published
in the International Economic Review during 1974-75. His study compared the post-sample,
post-model building forecast performance of nine different models, using forecast root mean
squared errors ( RMSE’s) to evaluate the results. In addition, Christ considered the multiplier
effects over time of certain monetary and fiscal policy shocks to the models’ exogenous variables.
One of Christ’s key discoveries was that there was great uncertainty across models about the
macroeconomic effects that follow from important fiscal and monetary policy actions. For
instance, in studying the effect of an easing of monetary policy ( measured as an increase of $1bil.
in unborrowed reserves ) on real GNP, Christ found that serious disagreement among the models
set in almost immediately after the policy change. Some models showed only positive effects,
others showed positive and negative effects on real GNP over time; some gave monotonic effects,
others showed cyclical effects; some seemed to converge, others to diverge. Against this
background of disparity among leading econometric models of the US economy, Christ concluded
that the models could not be relied upon as guides to the effects of economic policies even though
their forecasting performance was quite respectable.

Since the 1970°s there has been less reliance, at least in academic research, on large structural
econometric models (of the type studied in Christ’s paper) for policy analysis purposes. Instead,
more attention has been given to small-scale time series models like vector autogressions (VAR’s)
as instruments of policy analysis, and VAR’s and Bayesian VAR’s ( BVAR’s) as tools of
prediction. These models are often regarded by their users as having fewer subjective design
elements than large structural econometric models. Nevertheless, they are far from being objective
tools of prediction or policy analysis and, at least as they stand, they are certainly not automated
modelling devices. Similar remarks apply to reduced rank regression (RRR) models and error
correction models (ECM’s), which are now becoming popular in the analysis of macroeconomic
time series. These models come within the general category of VAR systems but explicity
incorporate certain information about the existence of unit roots and the presence of
cointegrating relations among the variables. Such information can be either specified a priori or
data-based (i.e. determined by the sample data). Either way, it constitutes a design feature that
will certainly affect both forecasts and policy analysis.

The present paper studies how design features of the type just mentioned affect the large sample
behavior of VAR forecasts and policy analyses. Althought they are certainly an important element
in practical VAR modelling and do indeed enter into our simulation exercises, we will not be
specifically concerned in this paper with model selection or model comparison issues. These have
recently been extensively discussed in this context in other work by the author (1994). Instead,
this paper seeks to develop an asymptotic theory for forecasting and policy analysis with VAR’s
that allows for nonstationary elements (specifically, unit roots, near-unit roots and cointegration)
and evaluates how design features in the models that accommodate these elements affects the
asymptotic performance of these model characteristics. We are specifically interested in
comparing unrestricted VAR’s with RRR’s and ECM’s in forecasting and policy analysis, because
these models are the backbone of much ongoing empirical analysis and because they highlight the
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differences that are known to occur in the asymptotic theory of estimation of nonstationary
VAR’s. In that theory, the role of prior information in the asymptotics is substantial and
determines not only whether coefficient estimators are efficient but also whether they are
asymptotically unbiased - see Phillips(1991) for details. This paper examines the role of prior
information ( or data-determined model selection) on asymptotic forecast performance and policy
analysis by considering the limiting behavior of a system’s impulse responses, its estimated
forecast error variance matrices and their associated decompositions.

We start our analysis by showing that impulse responses that are calculated from unrestricted
VAR'’s with roots near unity have long period estimated impulse responses that are inconsistent.
In fact, these estimated impulse responses tend to random variables rather than the true impulse
responses as the sample size increases. Hence, policy analysis that is undertaken from unrestricted
VAR’s using estimated impulse responses can be expected to be inherently uncertain even in large
samples as the horizon increases. Models that explicity determine the presence and number of unit
roots like data-based RRR’s do not suffer from this difficulty, at least asymptotically. However,
these models as well as BVAR’s that are formulated with unit root priors all suffer from the same
problem to a greater or lesser extent in finite samples.

Forecast error variance decompositions are also inconsistent in unrestricted VAR models with
near unit roots. An interesting feature of this finding is that since the estimated prediction error
variance of an unrestricted VAR with some roots near unity is a random variable in the limit, it
turns out that there is an appreciable probability (0.68 in a random walk model) that the estimated
prediction error variance is less than the actual prediction error variance of the optimal predictor.
This means that unrestricted VAR regressions give inconsistent estimates of the forecast error
variance at long horizons, and also have a tendency to understate this variance.

We conduct simulation exercises to assess the sensitivity of forecasting performance and policy
analysis to specific design features of models within the general VAR class. We look at short and
long period ahead forecasts and multiplier effects, and we consider models with and without unit
roots and cointegrating relations. Our general conclusion, like Christ’s, is that, while there are
some notable differences in forecasting performance, the biggest differences occur in policy
analysis. Apparently minor differences in models that seem to have little overall effect on average
forecasting performance can have really substantial effects on policy analyses. This is especially
true when there are unit roots or near unit roots in the fitted model.

2. Impulse Response Asymptotics with Some Roots at, or Near, Unity

In stationary VAR’s the system’s estimated impulse responses and forecast error variance
decompositions are Jn -consistent and, upon appropriate centering and scaling, they have
asymptotic normal distributions. The calculations leading to the limit theory are straightforward
and simply make use of the functional representations of these quantities in terms of the estimated
VAR coefficients, the limiting normal distribution of the latter and the continuous mapping
theorem. Lutkepohl (1994, chapter 3.7) provides derivations along these lines. When there are
some unit roots in the VAR system, the limit theory of the estimated VAR coefficients changes
and has some non-normal components - see Phillips and Durlauf (1986), Park & Phillips (1988,
1989) and Sims, Stock & Watson (1990). In this case the full matrix of estimated regressions
coefficients in a VAR is asymptotically normal but singular to the extent that there are some
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components in the system like unit roots and cointegrating vectors that converge at a faster rate.
Since the estimated VAR coefficients are consistent (and , indeed, converge at faster rates in some
directions) it might reasonably be expected that the impulse responses are also. However, as we
show below, this is not the case for long horizon impulses. Moreover, since the estimated VAR
coefficients have a limit normal distribution, albeit singular, it might also be anticipated that the
impulse responses would be asymptotically normal. Again, we show this not to be the case. There
are therefore some major differences in the limit theory of impulse responses between stationary
and non-stationary VAR’s and these differences do seem to be important in the analysis of
empirical results.

Let y, be an m-vector time series generated by the following p’th order VAR model
)y, =JDy.,+e, t=l.n

where J(L) = Z}.’;]J,L‘*'. The system (1) is initialiazed at f = -p+1/, ...,0 and we may let these
initial values be any random vectors including constants. It is often convenient to set the initial
conditions so that the I(0) component of (1) is stationary and we will proceed as if this has been
done. The presence of determininstic components in (1) does not affect out conclusions in any
substantive way, so we will proceed as if they are absent just to keep the derivations as simple as
possible. It is also convenient to write (1) in levels and differences format as

Q)  y, =dy_, +¥L)y,_, +¢,, A=JQA), WYL= 8L, ¥ == J,.

h=i+1
To fix ideas for our subsequent analysis it is helpful to be specific about the roots of (1), the

dimension of the cointegrating space and the form of the cointegrating vectors. We therefore
assume the following:

2.1 Assumption (Reduced Rank Regression)

(a) ¢, is iid with zero mean, variance matrix X_>0 and finite fourth cumulants.
(b) The determinantal equation l[ w— (L)Ll = 0 has roots on or outside the unit circle.

(c) A=I+aff’ where @ and B are m x r matrices of full column rank r. Without loss of
generality, it will be assumed that 3 is orthonormal.

(d) o, (Y(1)-1,)B, is nonsingular, where a, and 3, are m x (m-r) matrices of full column
rank that are orthogonal to @ and B, respectively.

These conditions ensure that (2) has a reduced rank regression format and is the error correction
model (ECM) of a system with some unit roots and some stationary components - see Toda &
Phillips (1993) for further discussion. In place of condition (c) above we will also make use of the
following weaker condition, which allows for some roots to be near unity.

(c) A= B exp(n” D), + BB +aff where a and 8 are m x r matrices of full column rank r,
B is normalized to be orthonormal, and T is a constant matrix of dimension s x s with s = m-r.



We write the model (1) in companion form as

@) % =CY,+&, 5=[.0..9, ¥ =[y,y.)

where
lFAl 4, A,J'
@ c:} I 0 0 I
Lo I 0]

Let M'= [1 m,O,..A,O], and then, up to initial conditions and deterministic components, the moving
average (MA) representation of the system is

I -1 t-1
&) Y = Z,':QC E,ory-= Zi:OM C'Me,_, = Ziz()@,s,_i, say

The system’s impulse responses are given by the elements of the sequence of matrices ©, or
certain linear combinations of the components of ©,, depending on the information that is
supplied concerning the ordering of the shocks or structural relations among them. We will not be
concerned with these latter issues as they do not affect the limit theory in any material way
(unless, of course, there is lack of identification in relations among the shocks, in which case we
would need to proceed as in the analysis of partially identified systems - see Phillips (1989) ).
Instead our primary interest is the behaviour of these impulse responses as the lead time i — oo,
and the asymptotic behaviour of estimates of these quantities as n — 0.

2.2 Lemma Under Assumption 2.1 as i — o
(6) 0, - 0= BB, +BE, (- E, XI Q= ﬁlﬂ}’;, Say,

where Q'=[B,H,0,...,0| is m x (m(p-1)+r), and where E, and E,, are submatrices of the

companion matrix I given in (P3) below for the transformed system (2°), i.e. system (2) above
rotated into separate 1(1) and 1(0) subsystems.

According to (6), the limiting impulse responses are non-zero only in those directions where the
model is nonstationary and has unit roots, i.e. B,. The limiting response matrix © lies in the
range of . The fact that this is non-zero has some important implications for inference, as our
next result shows.

2.3 Theorem Let Assumption 2.1 hold and let (:), be the OLS estimates of the impulse response
matrices ©, in the MA representation (5).

(i) For fixed i we have: @, ——0,, n"(6,-0,) = N(O,V,) as n — o, where



V; = NiVaNi" Ni = Z;":IOGFI—]' ®M'C01K—19
V,=%,8G,2,G,.

Here, 3., = E(£¢)), where &, = [ VBB, s AV, | IS the vector of stationary components
in the system; and G, is the matrix

[B 0}
Gf _LO ]rn(p—l) ’

and K is the matrix that transforms (1) into (2). Section P2 below defines these matrices and
details these transformations. The symbol “=" signifies weak convergence and we use the
convention that the matrix normal distribution is written in terms of stacked rows of the matrix
variate.

(ii) Ifi/n = 0 as n,i = o, we have: ©,——© as n — .
(iii) If i = fnwhere f>0 is a fixed fraction of the sample, we have:

@i = p, exp(jU)ﬂ'l + B, exp(fU)E,,(I - E,, )'0= B, eXp(fU)ﬂzls’ say,

where U is random and has a matrix unit root distribution (given explicitly in (P6) below).

(iv) If condition (c’) replaces condition (c) and i = fn with f>0 fixed, then

@i = B, exp(fUr B, + B, exp(fULE, (I - E,, )0 =B, exp(fU; ) B,

where U, is random and has a matrix local-to-unity distribution ( see (P6°) below).

2.4 Remark Theorem 2.3 shows that when there are unit roots or near unit roots in a VAR
system, the long period ahead impulse responses estimated by an unrestricted OLS regression are
inconsistent. In particular, the limits of the estimated responses are random variables rather than
the true impulse responses. This may seem surprising given that the presence of unit roots or near
unit roots accelerates the convergence of the coefficient estimates in an OLS regression - on that
basis one might have anticipated that the impulse responses would, if anything, converge faster in
some directions. The reason for the inconsistency is that the true impulse responses no longer die
out as the lead time increases, i.e the elements of ©, do not tend to zero as i — o, but carry the
effects of the unit roots with them indefinitely. However, the unit roots are estimated with error
and the effects of the estimation error persist in the limit as # — o« when we consider long period
ahead inpulses ©, where i is some fraction ( f) of the sample size ( n ). By contrast, when the
system is stable the elements of ©, tend to zero as i — oo, and the estimation errors have no effect

in the limit. In this case, A, is null, ®=0, and (:),. —— 0. Thus, (ii), (iii) and (iv) cover the
stable case as well.
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2.5 Remark For fixed i we get asymptotic normal distributions for the impulse response matrices
0,, just as we do in the stationary case - see Lutkepohl(1993) for the latter. However, the limit
variance matrix V, of the estimated VAR coefficients that enter the formula is now singular

because only the stationary components of the system contribute to these vn -asymptotics.

2.6 Example To illustrate the formulae, take the special case of the random walk model
y,=ay,,+¢&, a=1, ie set m=1and p=1Iin(1). Then the estimated impulse responses are

a' and when i=fn we have:

a =(1+ n(&n— I)Ji = exp{f(_ESdS)(_[:Sz)_l}, as n — oo, where § = BM(1).

Here, the lead time is a fraction of the sample size, and the estimated impulse responses effectively
exponentiate a random variable in the vicinity of unity and therefore tend to an exponential unit
root distribution.. When the lead time 7 is fixed, we get a’ ——> 1 instead, but then

n@ -1)=in(@@-n+0,(n")= i(,[:SdS)(JZ Sz)_l.

and the limit distribution is proportional to a unit root distribution and is again asymmetric. In this
case, G, is a null matrix (there are no stationary components in the system) and 7, =0

in part (i) of the theorem. In both cases, the limit theory is non-normal.

Figure 1(a) shows the limit distributions of 4’ when i = fn for various values of £. The asymmetry
of the distributions of the estimated impulse responses is similar to that of the usual unit root
distribution, but the support of the distribution is the positive half line rather than the whole real
axis. The asymmetry is strongly evident when f = 0.25 and less marked when f = 0.02. The
asymmetry of estimated impulse response distributions has been noted in some simulation work
previously, and is often attributed to the nonlinearity of the impulse responses. This has led to
some research on ways to adjust confidence regions for the impulse responses to take account of
the asymmetry (e.g. Quah & Blanchard, 1993, & Sims, 1994). The above limit theory shows that
in cases where there are unit roots or near unit roots, the reason for the asymmetry in the
distribution is, in fact, the non-normal asymmetric limit theory of the estimated impluse responses.
As theorem 2.3 shows, these non-normal asymptotics dominate the ditributional shape of the
estimated impulse responses even when there are stationary components in the system.

2.7 Example Next consider the AR(2) model y, =ay, , +bAy, | +¢,, a=1,|p| <1. The impulse
responses of this system are 6, =1+b+..+b" — (1-5)"". The estimated responses are

n . A'J—pﬁe,v Jori fixed l
9,.:&’+d"‘b+...+b't:>exp{f(J:SdS)(_[:Sz)"}(l_b)_, fori= fn J asn— .

Again, the impulse responses are inconsistent and have random limits. Note that the stationary
coefficient ( b ) in this system does figure in the limit distribution. Because of the unit root, all of
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the stationary components are accumulated and this leads to the presence of the scaling factor
1/(1-b) in the above limit.

2.8 Reduced rank regression impulse responses

If (2) is estimated as a VAR of reduced rank then the limit theory for the impulse responses is
different. We may assume that the rank of the system is either known a priori to be r or is
consistently estimated (e.g. by the order selection technique in Phillips(1994) and Chao &
Phillips(1994) ). The case where the rank of the system is incorrectly specified can also be
analysed, of course, and the unrestricted VAR regression considered above is one instance of this.
However, as we have seen, in this case the long period ahead responses are inconsistently
estimated. In the case where the rank is correctly specified (or consistently estimated), the fact
that the system has s=m-r unit roots is also known (or consistently estimated) and this
knowledge then becomes part of the model. It turns out to have a pivotal influence on the
asymptotic theory. In a reduced rank regression the matrix product af is estimated in place of
an unrestricted coefficient matrix for the lagged levels variable in (2). In consequence, no unit
roots are estimated (either explicitly or implicitly), and this affects the limit theory for the system’s
estimated impulse responses in a material way.

2.9 Theorem Let Assumption 2.1 hold and let (:),. be the estimates of the impulse response
matrices ©, obtained from a reduced rank regression on (2).

(i) For fixed i we have: ©,——©,, and n"*(©, -0,) = N(0,V;) as n — oo, where
. i-1 o
V,=NV,N,, N,= Z,-=0®,~_1_,- QM C’'K™,

V,=Z,®G,Z;G,
where Z,, = E(§,&)), and &, = {y,’_lﬂ,Ay;_l,..’,Ay;_PH] and G, are as in theorem 2.3.

(ii) If i — o as n — oo with either i = fnor i/n— 0, we have: (:),.—P—)—"(jasn—)oo.

2.10 Remark Theorem 2.9 shows that the estimated impulse responses in a cointegrated VAR
model are consistent when they are based on a reduced rank regression in which the cointegrating
rank is consistently estimated. The result shows that it is important in a reduced rank regression to
estimate the cointegrating rank by a consistent method. Order selection methods like those used in
Phillips (1994) are one possibility here. Another is to use classical likelihood ratio tests, as in
Johansen(1988,1991), that are suitably modified to ensure that the size of the test goes to zero as
the sample size goes to infinity. The consistency of the estimated impulse responses applies to
both short period and long period ahead responses. In the latter case, shocks have a persistent
effect on the system indefinitely into the future. It is these persistent effects that the reduced rank
regression estimates consistently.

2.11 Example As an illustration, consider the model



. . [1 o] ool Ta]
te Y = Ay re, with A=y [=hrafias] (A )

Yu =Vua T &y,
Yu=by,_ t+&,

The impulse responses are ©, = A' = 4, Vi. The estimated coefficient matrix from a reduced
rank regressionis 4 =17+ é,é ', and the associated impulse responses are 4'. Let H = [ ,61" B "]
where the superscript n signifies the normalized vector. Then

1 Ba

ﬁ'ﬁﬁ:L ,A]andasn—)oo(with i — oo such that in™' — 0, or i = fin)
0 1+fa

ﬁ'zfﬁ{l ﬁiﬁzij"(”m]} —*I 1 ﬂia{l_(wra)}_]Hé 4

0 (1+ B G) 0 0
Thus,

Ny 18] T , el s -l 1 0]
A—p—)Hl_O OJH =(1+b%) {ﬂlﬂi+ﬂibﬂ}:(l+b) Lb b2J+Lb3 —bZJ :Lb OJ’

giving consistent estimates of the impulse responses in the limit. The limit of the OLS estimated
impulse response matrix on the other hand is the random matrix

[1 0]
erLb OJ .

2.12 Remark In the above example, the cointegrating coefficient » could be estimated directly
by regression methods, such as fully modified least squares - see Phillips & Hansen(1990). The
limit theory for the estimated impulse responses is the same in this case as it is for reduced rank
regression. More generally, models such as that of example 2.11 are explicit error correction
models (ECM’s), where the number and location of the unit roots and cointegrating vectors is
given as part of the specification of the system. In such cases we get the same asymptotic theory
for ECM estimators like FM-OLS as that given in theorem 2.9 for the reduced rank regression.
Thus, all these procedures share the same advantage over unrestricted VAR regression that they
deliver consistent estimates of the impulse responses.

3. Forecast Error Variance Asymptotics
The limit theory for the estimated impulse response matrices can be used to deliver forecast error

variance asymptotics. From (5), the forecast error of the optimal A-step ahead predictor, y,,,
and its variance matrix are:

2
yt+h - yt,h = =0 ®i6r+h—i 4

, - , h- .
FEV(Y,,) = EGron =Y n)Vien = Vin) = 20a©,2,0, = D @&, = F(h), say,
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where @, = ©,P and P is alower triangular matrix from the Choleski decomposition of
T = PP'. By virtue of lemma 2.2 and Cesaro summation we have

h'F(h) > ©%,0 =F, say, and therefore F(h) ~h®X,0 ash —> .
Let ¢, , bethe jk’th element of ®,. Then

_ 1Nl 2
Tan =N 200,

is the contribution to the A-step forecast error variance of the j’th variable in the system that is
due to the (orthonormalized ) innovations in variable £. Similarly,

12
Dun=Tun =1 ¥ jkh

is the proportion of the overall forecast error variance in variable j that is due to variable £
These quantities are the critical elements in the forecast error variance decomposition of a VAR
model. They are used extensively in empirical work for policy analysis purposes to determine the
effects of unanticipated shocks to one variable on other variables in the system over time. The
following result gives the limit theory for estimates of these quantities obtained from an
unrestricted VAR regression.

3.1 Theorem Let Assumption 2.1 hold and let ©, be the OLS estimates of the impulse response
matrices ©, and 2£ be the OLS estimate of the equation error variance matrix. Denote by F(h)
the corresponding estimate of the forecast error variance matrix F(h).

(i) For fixed hwe have: F(h)—— F(h), n"*(F(h)- F(h)) = N(0,V,) as n — w, where

V,=NuV.N,+NJV,N,, N,=2"[UI®6z)+®z2 Nk, |N N = 20, ., ®MCK,

N,=2"©,®6,D,
V,=%,8G,2,G,, and V,=D"(var(s, ®¢,))D".

The above formulae employ the following notation: D is the duplication matrix for which
vec(A)=Da, where a is the vector of non-redundant elements of a symmetric matrix A; the
matrix D" = (D' D)™' D' is a generalized inverse of D;K,  is the commutator matrix for which
K, vec(X)=vec(X'), where X isan arbitrary m x m matrix. The other notation is the same as
that defined in theorem 2.3. If the errors in (2) are normally distributed, then
var(e, ® €,)=2P, (2, ® L,), where P, = D(D'D)"' D', and the covariance matrix V, is simply
2D (Z,®X,)D".

(ii) If h = fun where f>0 is a fixed fraction of the sample, we have:
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@ HEW= et BT e B =V U, sy,
where U is the unit-root matrix variate given in (P6).
®)  r = LB BRY s,
© @ 2 K Bue? BRI I[P BT pre” Buds
where B, isthe j'throwof B, and P, isthe k’th column of P.
(1ii) If condition (c’) replaces condition (c) in Assumption 2.1 and i = fn with >0 fixed, then

WER) = 7 B BT, Bret B =V, (Uy),

where U is the local-to-unity matrix variate given in (P6’). Similar changes occur in the
limits given in (ii) (b) & (c) above.

3.2 Remark In models with nonstationary elements, we expect the forecast error variance to
grow in a linear way with the forecast horizon. This is precisely what happens with the forecast
error variance matrix of the optimal predictor. As shown above, this matrix F(h)~hOZ_ O as

h — . In contrast, the estimated forecast error variance matrix from an estimated unrestricted
VAR with some roots at or near unity behaves like a random matrix multiple of the lead time A
rather than a constant matrix multiple of A, as shown in part (ii)) (a) of the theorem. The
expression for V. (U) shows that the random matrix is a continuous average of a matrix quadratic
form in the limiting impulse responses. Thus, estimated forecast error variance matrices for long
lead times in unrestricted VAR’s are inconsistent. The same conclusion follows for the
corresponding estimates of the forecast error variance decompositions.

3.3 Example (Example 2.6 continued) This is the scalar random walk case, and when h=fi we
have

et

2u

' E(h) = aj_[)fez""dp = ¢! =v,, say,

-1
where u = (_ESdS)(,ES 2) is the scalar unit root distribution. Note that

P(v, <o) = Pe*® <1) = Plu<0) = P43 < 1) = 068,

Since lim, A7 F(h) = o, it follows that v, underestimates the actual forecast error variance
of the optimal predictor with a probability of 0.68 in the limit as 4 — co. This means that
unrestricted OLS regression estimates not only give inconsistent estimates of the forecast error
variance of a random walk at long horizons, but also have a clear tendency to underestimate this
variance.
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Figure 1(b) shows the limit distribution, v, of the forecast error variance when 2 = fin for various
values of £ The distributions are similar to those of the impulse responses. Again the asymmetry
is strongest when f is largest.

3.4 Theorem Let y,, be the h-step ahead forecast of 'y, from an unrestricted VAR

regression (1), using sample data t <n. Under Assumption 2 and when h=fn we have the
following limit theory as n — o:

@ ny,, =B B:S0);
G n'?$,, = B exp(fU)BSA);
(i) 1Yy — Do) 2 B —exp(fU)BSQ) + B, S, (f).

(IV) n—1/2 (yn+h —yn.h) = ﬂ_LS—e» (f)

In the above formulae, S and S, are independent Brownian motions with the same variance
matrix given by Irvar(u,,). When (c’) replaces (c) in Assumption 2, the matrix U in the above
limits is replaced by U..

3.5 Remark In a stationary VAR the forecast error of the optimal predictor is a random
sequence that converges to a limit random vector as the forecast horizon tends to infinity. When
there are nonstationary components in a VAR, the error in the optimal predictor behaves like a
random walk, is of the same order as the square root of the forecast horizon, and when
appropriately standardised it tends to a Brownian motion process, as shown in part (iv) of
theorem 3.4. Part(ii) of the theorem shows that the feasible predictor obtained from an estimated
VAR does not have the same limit behavior as that of the optimal predictor, but carries with it the
effects of the estimated unit roots (or near unit roots) in the model. In consequence, the error in
the feasible predictor has two independent components in the limit: one component is the same as
that of the error in the optimal predictor; the other component measures the difference in the limit
between the feasible and the optimal predictor and results from the estimated nonstationary
components in the model. Hence, the latter component figures only in nonstationary directions, as
is apparent from the form of the limit shown in part (iii) of the theorem. The upshot of this result
is that prediction from an unrestricted nonstationary VAR regression is not asymptotically optimal
in the sense that the predictions do not converge to the optimal predictors, at least over long
forecast horizons. This result is in direct contrast to that of a stationary VAR, where the
coefficient estimation errors have no effects asymptotically and the difference between the feasible
and optimal predictors tends to zero as 7 — .

3.6 Reduced rank regression asymptotics

As shown in sections 2.8-2.9, the limit theory for impulse responses that are estimated by a
reduced rank regression differs from that of an unrestricted VAR. As a consequence, forecast
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error variance asymptotics also differ. When the cointegrating rank of the VAR is consistently
estimated, then so are the forecast error variances and forecast error variance decompositions.

3.7 Theorem Let Assumption 2.1 hold and assume that (2) is estimated by a reduced rank
regression with cointegrating rank r either known a priori or consistently estimated as n Chao &
Phillips (1994). Let @ be the estimates of the impulse response matrices ©,, and Z be the
estimate of the equation error variance matrix obtained from the residuals of the reduced rank
regression. Denote by F (h) the corresponding estimate of the forecast error variance matrix
F(h).

(i) For fixed h we have: I:“(h)——p—>F(h), n'? (E(h)— F(h)) = N(0,V,) as n —w, where the
variance matrix 'V, is the same as that given in theorem 3.1 (i).

(ii) If h — o as n — o with either h= fn or h/n— 0, we have:

-1 A~ = A~ - —
h F(h)——p—)F, T]kh-——)T and a)jk,h——p—>a)].k.

Here T, = lim, A" Z, O(p, = _fk, and @y =T /Zf:]fjk, where @, is the jk'th element
of ®=0P.

3.8 Remark Theorem 3.7 shows that fixed period horizon decompositions of the forecast error
variances that are estimated from a reduced rank regression have the same limit theory as
unrestricted VAR estimates. But when the forecast horizon tends to infinity with the sample size,
the reduced rank regression estimates continue to be consistent, whereas those from an
unrestricted VAR are inconsistent and have random limits.

3.9 Theorem Let y,, be the h-step ahead forecast of y,,, from a reduced rank regression on

(2), using sample data t < n. Under Assumption 2 and when h=fn we have the following limit
theory as n — oo:

@) 0y, = B S
(il) 2 (yn+h yn,h )7 n-1/2 (yn+h - j}n,h) = ﬂl S+ (f)

The notation in the above formulae is defined in theorem 3.4.
3.10 Remark Theorem 3.9 shows that forecasts from a correctly specified reduced rank

regression are asymptotically equivalent to the optimal predictor. Again, the same result holds if a
consistent estimate of the cointegrating rank is used in the fitted model.

4. Simulation Evidence

4.1 DGP, Impulse responses and FEVD
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Some small scale simulations were conducted to assess the accuracy of forecasting and policy
analysis of models in the VAR class. We used the following data generating mechanism so that we
could focus attention on the effects of a unit root and cointegration on the forecasts and impulse
responses.

I 1T
1 0 0 lO 0 2 -1 0]
©6) y,=4y_ +¢, & =iidN(0,1;), A=L2 0 OJ:I3+L1 0 1 -1 —IJ'

1 -1 0 0 1

This system has one unit root (in the first equation) and two cointegrating vectors. The impulse
responses are:

Ifl 0 oT'
(7) A=2 0 0, i>2;
Ll 0 oJ

and the forecast error variance matrix is:

M1] 1 2 -1]
Fhy=2, A'4" = | 2J1 2 1], so that h“F(h):l 2 4 2|
}1—1 {—1 -2 1J

The VAR estimated impulse responses, and estimated FEV and the FEVD quantities have the
following limits:

|f1 0 07|
6, >e”p B.=e”2 0 0
{—1 0 oJ
- §—1 2 —ﬂl
A , , e - ,
h—lF(h)D(f_lj‘ofezsuds)ﬂlﬂgzsﬂgﬂl :JIITﬂLﬂL VFlz 4 _2J
-1 -2 1
) v, k=1
Tikn = VFﬂjlglk ={OF . k=1

B @,=> ('Bjiglk)z /(ﬁj )2 ={01 I]::II

Note that the VAR estimated FEVD quantity @, , has a non random limit in this case, and is

consistent. Also, 100% of the FEVD for each of the 3 variables in the model is due to error 1 in
the limit, and this is explained by the fact that the error in the first equation is the only persistent
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error in the model. Finally, note that the VAR estimated FEVD is consistent in this case - the
random component that arises from the estimated unit root in the model scales out of the
numerator and denominator of the FEVD formula.

4.2 Model Classes, model selection and parameter settings

Our simulation experiments employed the range of models listed below for comparative purposes.
In the Bayesian vector autoregression (BVAR) models we used a pre-set trend degree t = 0 (i.e.
an intercept was included in the regression), a uniform prior on the intercept, and Minnesota prior
(see Litterman, 1986, and Todd, 1990) on the AR coefficients with both Litterman (designated as
“lit”) and data-determined (designated as “opt”) settings for the tightness hyperparameter. The
data-determined hyperparameters were selected using the predictive PIC criterion given in
Phillips(1994, equation (45) ) applied to the hyperparameters over the following intervals:
A €[0.01,0.60] for the general tightness hyperparameter; and € € [0.01,1.00] for the cross variable
hyperparameter in the symmetric Minnesota prior. Lag length, trend degree and cointegrating
rank were all data-determined using the predictive PIC criterion in the reduced rank regression
(RRR) model and the error correction model (ECM) - again see Phillips(1994) for details of the
implementation of this model determination criterion. The models are:

1. VAR(p) + Tr(t): A VAR model with trend degree t and lag length p, both determined
by predictive PIC.

2. BVAR(lit & opt): BVAR models with pre-set trend degree t = 0, uniform prior on the
intercept, and a symmetric Minnesota prior on the matrices of AR coefficients using both
Litterman(lit) and data-determined (opt) settings for the tightness hyperparameters.

3. RRR: a VAR + Tr(t) model with lag-one coefficient matrix of possible reduced rank(r)
to allow for cointegration among the variables. Lag length(p), trend degree(t) and cointegrating
rank(r) are all data-determined by predictive PIC.

4. ECM: a VAR(p) + TR(t) model formulated in differences with a coefficient matrix on
the lag-one levels variable that allows for cointegration of the specific form given in the DGP
above (e, the structural component of the model is assumed to be correctly specified). The lag
length (p) and the trend degree (t) are determined by using predictive PIC.

Our settings for the maximum lag length and trend degrees in model classes 1, 4 and 5 above are
as follows: lag length, pmax = 4; trend degree, tmax = 1. In the BVAR models we set the
parameters to p = 4, t = 0. Past experience with BVAR models in forecasting has shown that the
inclusion of a linear trend generally causes a deterioration in forecasting performance - some
recent evidence is reported in Phillips (1992,1995). Our setting of t = 0 in the BVAR models
reflects this experience and is designed to make the BVAR results more realistic from this
perspective. In the other models, the trend degree is selected using predictive PIC, and we
therefore allowed for a search over the cases of no intercept (t=-1), intercept (t=0) and linear
trend (t=1).
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We ran 1,000 replications of 112 sample observations generated by the system (6). For each
replication the parameters of the various models described in the preceding section were estimated
from the first 100 sample observations, forecasts were generated up to 12 periods ahead, and
impulse response coefficients (up to 30 periods) and forecast error decompositions were
calculated.

4.3 Forecasting results

The forecasting results are shown in Figures 2(a)-(c). These figures plot the average forecast root
mean squared errors (RMSE’s) over the 1,000 replications for forecasts of the three variables
obtained by the methods described above. Specifically, we calculated forecasts and performed
policy analyses using: (i) unrestricted vector autoregression (denoted OLS) ; (ii) restricted ECM
estimation (denoted ECM); (iii) reduced rank regression (denoted RRR); (iv) & (v) Bayesian
vector autoregression with Litterman settings for the Minnesota priors (denoted BVAR(lit)), and
optimum data-determined settings for the hyperparameters obtained by the predictive PIC
criterion (denoted BVAR(opt) ). The graphs show the forecast RMSE’s from the simulations with
these estimted models against those of the the optimal predictor (which is calculated analytically
for the above system (6) with the true parameter settings). The latter graph (shown as the solid
line in the figures) represents the optimal forecast envelope for this system. The conclusions to
emerge are as follows:

(i) The data-determined RRR and ECM models produce better forecasts on average than the
BVAR'’s and the unrestricted VAR. This is so uniformly over the full forecast horizon and for all
variables in the system. There is a tendency for the dominance of these methods to increase as the
forecast horizon increases, again for all variables in the system.

(ii) For the cointegrated variables (Figures 2(b) & (c)), the BVAR(lit) forecasts are poor relative
to the other methods, especially for the first few periods ahead, where the forecast RMSE is 50%-
100% greater than that of the other methods. For these contegrated variables, there is a clear
advantage to using data-determined hyperparameters, as the BVAR(opt) model does, to allow for
the effects of other variables in the system.

(iii) For the random walk variable (Figure 2(a)), the BVAR(opt) forecasts are marginally superior
to the BVAR(lit) forecasts. This is explained by the fact that the data-determined hyperparameters
allow for a choice that can shrink the coefficients closer to those of a random walk, and this tends
to produce slightly better forecasts on average than those with the Litterman settings.

(iv) Overall, these figures show that there is a benefit to the use of data-determined procedures in
forecasting. Not only is the use of a consistent cointegrating rank model selection method like
PIC useful in forecasting from a reduced rank regression, but it is also clear that BVAR forecasts
are improved by the use of data-determined selection of the hyperparameters.
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4.3 Policy analysis results

The impulse response results are shown in Figures 3(a)-(d). These figures graph the median (of
the 1000 replications) impulse responses 1-30 periods out for the BVAR, RRR and ECM models
against the true impulse responses (the solid line in each figure, as given in equation (7)). The
median (rather than mean) responses are used so that the results are less affected by occasional
very large responses that occur in the simulations. The impulse responses calculated from the
unrestricted VAR regression had so many large responses that the graphs cannot be shown on the
same figures without so distorting the scale that the graphs for the other models are
indistinguishable. Instead, Figures S(a)-(b) show the full sampling distributions of the OLS
responses 5 and 10 periods out. The dispersion of these distributions is enormous and the figures
clearly show how unreliable the impulse responses calculated from an unrestricted VAR
regression are, at least when there is a unit root in the system. We must conclude that in such
cases the unrestricted OLS estimated impulse responses seem to be so unreliable that no
meaningful inferences about policy effects can be drawn from them.

The results shown in figures 3(a) -(d) for the other methods of estimation seem much more
reasonable. The main points to emerge are as follows:

(1) The median ECM responses are highly accurate. This is explained by the fact that in the ECM
model, the form of the cointegrating links between the variables and the presence of a unit root in
the first equation of the model is part of the prior specification. (Note that the cointegrating
coefficients and the stationary dynamics, including lag order, are estimated in the ECM system).
Thus, it is apparent that accurate structural knowledge pays off handsomely in delivering highly
accurate impulse responses.

(ii) The median RRR impulse responses are also very accurate. Again this is explained by the fact
that the correct cointegrating rank is selected in a large number of the simulations. In those cases
the fitted model correctly incorporates a single unit root, and the estimated impulse responses
then exhibit the persistence of shocks to the first equation on the first and second variables - see
Figures 3(a) & (c). Since the figures give median responses, they do not show that when the
cointegrating rank is chosen incorrectly, the estimated impulse responses from the RRR tend to
suffer from the same problem as those of an unrestricted VAR , viz. that some impulse response
paths can be poorly estimated and even diverge if there is an explosive root. Nonetheless, the
RRR responses are decidedly superior to the unrestricted VAR responses in general.

(iii) The median BVAR(opt) impulse responses appear to be more accurate for the first few
periods than than those of the BVAR(lit) - see figures 3(c) and (d) especially - but also seem to be
more variable for the longer period responses. The most likely explanation of this phenomena is
that the BVAR(opt) estimates are more influenced by cross equation effects because the data-
determined tightness hyperparameter is generally larger than the Litterman setting (due to the
presence of two cointegrating vectors in the true system).

Figures 4(a)-(d) graph the mean simulated forecast error variance decompositions (FEVD’s)
against the true FEVD’s as given in equation (8). As discussed earlier, for this system the FEVD’s
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estimated by an unrestricted VAR are consistent because the random component in the forecast
error variance is a scalar and scales out in the FEVD calculation - see (8) above. So this is a case
where we may expect unrestricted VAR’s to perform satisfactorily. The main results can be
summarised as follows.

(i) The unrestricted VAR estimated FEVD’s display the most bias, especially with respect to the
effect of shocks on the first variable.

(ii) The BVAR(lit) estimated FEVD’s are also biased, especially with respect to the effect of the
shocks in the first equation on the second and third variables.

(iii) The other methods generally seem to perform well in estimating the FEVD’s, both in cases
where there is shock persistence ( figures (), (c) & (d) ) and where there is not ( figure (b) ).

(iv) In general, these simulations suggest that unrestricted VAR regression and BVAR(lit)
regression are the least reliable methods for estimating FEVD’s, at least when some unit roots and
some cointegrated variables are present in the system.

Obviously, it is of interest to extend the simulations reported here to cases of different
cointegrating rank, different cointegrating vector configurations, near unit roots and completely
stationary systems. However, provided consistent model selection techniques that allow for the
presence of some unit roots and cointegration are employed, it seems reasonable to expect that
such automated methods of model-based policy analysis will generally perform better than the
unrestricted VAR regressions that are now heavily used in applied research.

5. Conclusion

Unrestricted VAR’s have been extensively used in recent empirical research to assess the evidence
in support of central propositions of macroeconomics, such as the role of money in the
determination of aggegate output. Estimated impulse responses and forecast error decompositions
have played a key role in these exercises. The calculation of long horizon impulse responses are
now routine in this type of research and stem from the desire to learn about the long run effects
of shocks on the system. The approach has been vigorously pursued, for example, in studying the
long run effects of unanticipated monetary shocks on output, following the research of Sims
(1980).

This paper raises some important issues about what we can expect to learn from this line of
empirical research. Our asymptotic analysis shows that in nonstationary VAR models with some
roots at or near unity the estimated impulse response matrices are inconsistent at long horizons
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and tend to random matrices rather than the true impulse responses. Thus, even in very large
samples, we must inevitably expect uncertainty about policy analyses that are conducted using
impulse responses that are estimated by unrestricted VAR’s. Our simulations indicate that there is
also substantial sampling variation in these estimated responses in finite samples.

Some previous research (eg Spencer, 1989, and Todd, 1990) has shown that estimated impulse
responses and FEVD’s can be very sensitive to changes in VAR model specification, such as the
inclusion of trends and additional variables; and there has been debate about the robustness of the
empirical findings in this line of research (see Todd, 1990, for an overview of the debate and some
simulation analyses of sensitivity). Our results corroborate these earlier findings about unrestricted
VAR impulse responses, give clear analytical reasons why impulse responses and FEVD’s from
unrestricted VAR’s are unreliable even in very large samples, and show that different models in
the VAR class produce impulse responses and FEVD’s with very different behavior. Some
models, like unrestricted VAR’s and Bayesian VAR’s, produce inconsistent impulse responses
and FEVD’s. Others, like reduced rank regressions that employ consistent estimates of the
cointegrating rank, and correctly specified error correction models produce consistent estimates
of impulse responses and FEVD’s. It is particularly important that the number of cointegrating
relations in a system (and hence the number of unit roots) be estimated consistently. Model
selection methods are important in achieving this.

In general, our results echo the earlier findings of Christ (1975) for structural econometric
models. While there certainly are differences in forecasting performance in linear time series
models, the most serious disagreements between time series models arise in policy analyses. Our
main conclusion is that differing treatments of nonstationarity in the models plays a big role in
affecting the outcomes of policy analysis. Although this issue was not investigated by Christ, it
seems likely (by analogy to our results for reduced rank regressions and error correction models)
that similar effects to those we have discovered come into play in structural econometric models
when unit roots or near unit roots are estimated.
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P. Model Formulations and Proofs
P.1 The I(1)/1(0) VAR representation

Construct the orthogonal matrix H = [ B ﬁ], and define z, = H'y,. The system (2) transforms to
(2)) z, =Bz, +Fw, +n, withB=HAH F=H[Y¥,..%,,|U, ©H), 1,=He,

and where w, =(Ay,_,,...,Ay,_,,,JU®H) is the vector of transformed difference regressors.
Partitioning z, , 77, and F conformably with the partition of H, and noting that B has the explicit
partitioned form

I—Is B.a 1
3) LO I +pfal

we can write (2°) as

z, =2, + Bz, +EW, 0, =2y, +uy,, say

7, =, +ﬂia)zzr-1 + Fyw, +1,,.

In this representation of the VAR system, z,, is I(1), z,, is I(0), there are s unit roots in the first
subsystem, and the second subsystem is stationary.

Define x, =(z,,_,,w,) the transformed stationary components in the sytem, and then

I 2y rﬂ Yia 1

{ Ay 0 —'5 Ay (T1 0 ]
x':[o 1® H'I 0 I®H'J[ J=[o rem | %

| &y, ,,HJ B,y

P.2 Alternate companion forms

It will be helpful in subsequent derivations to use alternate companion forms of the VAR model
(1) that correspond directly to the model in levels and differences -see equation (2)- and the
model in partitioned I(1)/1(0) format. We start by transforming (4) into the companion form for
the model (2). This can be accomplished using the matrices

(17 o .. o] (1T o .. 0
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giving the new companion form coefficient matrix

[T+ep ¥ .. %]
o Y, ... ¥

- o
Lo .. 1 o]

Now define the orthogonal matrix

(1) D=K"'CK

8B 0|
G=1,®H=| 1=[6..6.]. 6. =[p.9],
Lo o I,,®H]

which we use to transform the companion matrix D again so that it corresponds with model (2°)
where the variables are partitioned into I(1) and I(0) components.

Specifically, the matrix E = G'K'CKG = G' DG is the coefficient matrix in the companion form
of (2°). Note that it has the same eigenvalues as C and can be written in the partitioned form

r -

I, Ba _ —
0 I +fa 4 F
0 fea g |1 E
®2) E=GDG=|0 [ +pq O T :Los E'ZJ
0 I, . 0 2
‘ 0
Lo I, 0 |
where -~ -
L+p
,+'ﬂa : §
fa o - o
L . I+fa T
E,=|pa ¥ .. ¥,.| ad E,= 7% o |
[0 0 I, 0|

and where ¥, = 8, ¥, H, ¥, = S, H, and ¥, = H'Y,H. When we take powers of E we get

I, E,(I+.+E;"] [15 E,(I-E,)™"]
_)

3 E'= GDG= ,
®3) ¢ [o E, 0 o

since E,, has stable roots. The impulse response matrices can be rewritten in terms of the new
companion form involving the matrix £ as follows:
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E,(I+. +E}

J
E;, '

, [1
(P4) ©,=M'C'M=MEKDK'M= M'KGL 5

P.3 Proof of Lemma 2.2

From (P4, we have ®, — ©, where

B,
r 1 (7 E U-E 17

= I E12 I_Ezz - -1 s IPACEENES) ] -
@:M‘KG\.Ox ( 0 ) JG‘K M:[,Bl,,b’,o,...,o]to ( 0 ) J’é"
o]

= ﬂlﬂl_ +BE, (- Ezz)_IQ = ﬂiﬂ;f’

as required.

P.3 Proof of Theorem 2.3
When (1) is estimated by unrestricted least squares we can write the estimated impulse response

matrices in a form that is similar to the representation (P4) above for the true impulse response
matrices, viz.

0, =MCM=MEKDK'M=MKGE'GK'M.

In this expression E is formed from the unrestricted OLS estimate of the coefficients in the
system (2’). Specifically,

| BE e R
E:I B-1 1 p-2 Fp—l i
L 0 0 I 0 J

Now E——;—) E, and, for fixed i, E ——>E' as n— 0. In this case, the estimated impulse

responses (:),. are consistent, proving the first part of (i) of the theorem. The limit given in part (ii)
follows using lemma 2.2, as shown below.

The limit distribution of ©, for fixed i is obtained as follows. We take differentials of these
impulse response estimates with respect to the coefficient estimates giving

d®, = MdC'M = M KGdE'GK'M = MKGY, | E"™dEE*G'K'M.
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Note that

>

dE =| o |[dB.dF,,....dF,,.| = K M|dB,:dB, dF;,....dF, || = K" M|dB,:dB,] , say,

=K"'G'GM|dB,:dB,] = KG MH[dB,:dB,]| = K'G M[d4,a¥|G = G k' M[d4,d¥|G

in the original coordinates of system (2). The partition [dEIEdEx] above corresponds to the

nonstationary and stationary coefficients in the transformed system (2’). From theorem 5.7 and
remark 5.8 of Phillips(1995), we have

n"[4- £9-¥] = N(0,Z, ®G,21G.) = N(0,Z, ®G,ZG,),

Where’ Exx = E(xrx;)’ Z{; = E(gtft')’ and ft = [y;-lﬂ’ Ay;_[,~-~,Ay;_p+1] and

g o
G{ :LO I"l(P—l)J.

It follows that dC:),. = Z

k=0 ~ i-1-k

0, [dA,dYGE* G K M=, 6, ,[d4,a¥|K'C* M, and

k=0 — i-1-k
n'"*(©,-0,)= N(OV),

where V, = N,(Z, ® G,2G.)N,= N,(2, ® G,Z\G;)N,, and N,=2, ©_ ,@MCK".
This completes the proof of part (ii) of the theorem.

When i = fin, where f = 1/c is a constant, the consistent limit for £’ is no longer valid. Instead, the
asymptotic distribution of the nonstationary components of B figures in the limit, as we now
demonstrate.

Working in the transformed system (2’), we note that the limit distribution of those components
of B which relate to the I(1) elements of the system (viz. the first s columns of B) is given by

®s5) (B -8)=([as,s)([s5) ",

where §, is vector Brownian motion with covariance matrix = lrvar(u,,), and S, is vector
Brownian motion with covariance matrix = Irvar(7,) - see Phillips(1995, theorem 5.5) for the
derivation of (5). Note that S, and S, are correlated Brownian motions because 7, is a
component of #,. From (3) we see that B, = [I s ,O] = [B11 ,B,z], say, so that when we partition B
in the same way as B we get
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-1

®6) n(B, -1,)=(hds,s)[S.S) =V, say, B,=0,0™.

Thus,

®7) Ei Bi Ba] g g Bar00M X, Bi*E,BL +0,0r)]
Op(n_l) EzzJ’ [ Op(n_l) E;2+Op(n_l) J

The eigenvalues of E,, converge in probability to the eigenvalues of E,,, which are the stable
roots of the system. Therefore, E;z converges in probability to a zero matrix as n — . On the
other hand,

®8) B, =[1,+@B,-1) =1, +nB, -1, 11" = exp(fU),

asn— . Leti® — o be such that i’n™" — 0. Then,

i A._kA Ak ~ . A_kA Ak A,_kA Ak
®9) > BFEEL =B, BYEEL+D., .Bi*E,E

Now for k <i* we have E{l" ——>1, and the first term on the right side of (P9) converges
weakly to exp(fV)E,,(I - E,,)”". The second term converges in probability to zero since the
roots of E,, are stable, and Bj;* = O, (1). Thus

| E,(I-E,;)"
£ DLexpf)fU) exp(fU) O( ) J: E,. say.

and so ©. = M'KGE,G'K™'M = B, exp(fU) B, + B, exp(fU)E,,(I - E,;)™ Q, as required for
part (iii) of the theorem.

1

Part (ii) follows by noting that, in place of (P8), when in™ — 0 as n — o we get ]_A?I’l ——1,

and hence £' ——E,. Then, 0, ——©, as required.

To prove part (iv) we note that when the model (1) has near unit roots rather than unit roots, i.e.
when assumption (¢’) holds in place of (c), then we have the new coefficient matrix
A= p, exp(n'T) B, + B +af in (2) rather than 4 =7 +ap". Then, in place of (P5) and (P6)
above, we have the alternative limit theory

(PS’) n(B,-B,) :,,(I; dS,,J;.)(I; JYJ{_) ,
and

(P6) n(En -B,)= (J’(:dSr],‘];')(J.(: JI‘JI") =Ur, say,
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where J.(7) = _[:exp{(r—s)I'}dSl is a vector diffusion process - see Phillips (1988) for similar
derivations. Part(iv) now follows upon appropriate redefinition of U.

P.4 Proof of Theorem 2.9

We proceed in the same general way as the proof of theorem 2.3. As before, we can write
©, = M KD'K™' M and now

RECN R
n l &ﬂ lIJl \Pp—l
D=| 0 ] s

L o I 0|

where @ and ,5’ are the reduced rank regression estimates of a and f. We can take it here
that B is normalized in such a way that its components are identified. Thus, we can set
yia =[I,,—Aﬁ], and require /3’ to be normalized in the same way. These matrices can

subsequently be orthonormalized by using the transformation 8 — B(8 B)™"*. In the same way,

we can define the coordinate system for the orthogonal complement space in such a way that
B = [A'ﬂ,I,H] and orthonormalize the matrix with the transformation S, — B, (8,8,)"7,

doing the same thing for /31- Then, ;1/}_7_)/1/” and, in consequence, /3’~——;——> p and

ﬂA_L _—;_)ﬂr

As in the proof of theorem 2.3, we find that d(:),. = ;jo(:)i_l_k [dﬁ,d‘i’]K"C"‘M , but now
dd=d(@B)=dép +édp . Since B is O(n™) - consistent for B (recall that the components
of f are identified) , the dominant contribution to the limit distribution comes from [d&ﬁ',d‘i’].

If we define @ =[a,¥], then the asymptotic distribution of the reduced rank regression estimator
of @ is(see Ahn & Reinsel ,1990, theorem 2)

n"*(&-®) = N(0,2, ®L}),

where T, = E(£&) and & =[y,. A1, Ay, | as before. Next, write dd=[dd,a9]
and then

(P10) n"*[(@-a)F ,¥-¥ = N(O,Z, ®G,Z]G,)
It follows that

n"*0,-0.)= N©OV,)
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where ¥, =N,(Z,,®G,Z,,G,)N, and N, has the same form as before. This proves part (i)
of the theorem.

Define ﬁz[/?l,/?], and G=Ip®f[. Let

I, Bé& . -
5 ﬂlq,,\ \I;l ] \P_]
0 I +pa d
0 Ba 7 1 E.]
E=GDG=|9 J +/§,& b A A =[s vlzJ,say.
r 0 E,
0 1, 0
. . 0
L 0 I, 0

where ¥, = H'Y,H,k=1,...,p—1. Then

(1, E,d+E,+. E;H] |1, E,0-E,)"
0 E;, o o

It follows that

e I E,a-Ent) L
®,= MKD'K'M=MKGE'GK M—I,)MKGLO . JGK M

= ﬂ_Lﬂ.L + ﬂJ.Elz(I - Ezz )_] Q = 6a
giving the required result (ii).
P.5 Proof of Theorem 3.1

Taking differentials of F we have dF = Ztol{d(:)ii(:); +(:),d§l(:), +©.5d0'}, and vectorizing
yields

vec(dF) = 2’;}[{(1 ®0, A) + ((:) ® I)Kmm }vec(d(:),.) + ((:), ® (:),.)vec(di)]
K, }ec(d®,)+(6, ®6,) Dd6]
K, | N vec(d] 4,%])+(6, ® 6,)Dds] .

Here 4, ¥ are the OLS estimates of the coefficient matrices in (2), N, = > ©,_,_, ® M'C*K"
vec(Z)= Do, o is the vector of non-redundant elements of X and D is the duplication matrix.

The limit distributions of the coefficient matrices and the covariance matrix estimates are
independent and are given by
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n[A- 4¥-¥ =n"[(G-a)f ,¥-¥] = N(©,Z, ®G.Z.G,),
n'"*(6-o0) = N(0,D" var(e, ®¢,)D"),

where D' = (D'D)™" D' is a generalized inverse of D. If the errors in (2) are normally distributed,
then var(¢, ® £,)=2P, (2, ®ZX,), where P, =D(D'D)"' D', and the covariance matrix in the
second limit distribution is simply 2D* (2, ® £,)D" . Part (i) of the theorem follows directly.

To prove part (i), we first write b E(h)=h™' 20 [G) Z G) =f 'IZHJ‘(',/"I)/”QZEst From the
proof of theorem 2.3, (9,. = M'KGE'G'K™'M , and for i = ns, we have as in (P7) -(P9)

N BAfl +Op(n“‘) BA{, EAIZ(I—EAZZ)—I +0,(D) R
P = ~. B =
{ o, (n™") E,+ Op(n‘l) , B, = exp(sU)

and O, = B, exp(sU) .. It follows that

~

HEmy= 0l 6.2.6ds= 1 B exp(sU) B2, By exp(sU') B, dis

giving the stated result (a). Result (b) follows in a similar way. We have
A~ - ~ - iln -1t/ sl
Fan =W TG0, S TR ©, P, = 120N, O, ) ds = 7] (B.e prPds

giving the stated result. Part (c) is a direct consequence of part (b). Part(iii) follows in a
straghtforward way using the near integrated asympotics, and then the random matric U is
replaced with U} in the above formulae.

P.6 Proof of Theorem 3.4

From (5) the optimal predictor is y,, = Z:'::"@iam,,_,.. When h= fn and n > o, we deduce
from Lemma 2.2 that

—sznh O,n o ?:1 & = 6S(l) = ﬂlﬁ;fS(l),

as required for part (i). In a similar way, since (3),, = f, exp(fU) B, we obtain part (ii). Parts (iii)
and (iv) are immediate.

P.7 Proof of Theorem 3.7

The proof of part (i) is the same as that of theorem 3.2 (i) in all key respects. However, RRR
rather than OLS estimates of the coefficients in (2) are used. We then have [/Ai,\i‘] = [&/3", ‘i’], and
we use the limit theory (P10) for the RRR coefficient estimates. The stated result follows in the

same way as theorem 3.2 (i). Part (i) of the theorem is a consequence of the consistency of the
RRR impulse responses for long horizons that was shown in theorem 2.9 (ii).
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P.8 Proof of Theorem 3.9

The stated results follow in the same way as theorem 3.4, but rely on the consistency of the RRR
impulse responses.
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Figure 5(a): Sampling Distribution
S=-period ahead OLS Impulse Responses
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Figure 5(bJ: Sampling Distribution
10-period ahead OLS Impulse Responses
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