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Abstract

The paper introduces an estimator for the linear censored quantile regression model when the
censoring point is an unknown function of a set of regressors. The objective function minimized is
convex and the minimization problem is a linear programming problem, for which there is a global
minimum. The suggested procedure applies also to the special case of a fixed known censoring
point. Under fairly weak conditions the estimator is shown to have \/n-convergence rate and is
asymptotically normal. In the special case of a fixed censoring point it is aymptotically equivalent
to the estimator suggested by Powell (1984, 1986a). A Monte Carlo study performed shows that
the suggested estimator has very desirable small sample properties. It precisely corrects for the
bias induced by censoring, even when there is a large amount of censoring, and for relatively small
sample sizes. The estimator outperforms that suggested by Powell in cases where both apply.



1 Introduction

The “Tobit” model has received much attention in the literature since its introduction (To-
bin (1958)), and a variety of parametric and semiparametric estimation methods have been pro-
posed. While the older parametric estimators entail rather stringent distributional assumptions,
the semiparametric estimators considerably relax these assumptions. The more recent estimators
require weaker conditions on the underlying stochastic elements but, in general, impose more direct
restrictions on the implied moments or shapes of the distributions. Although the specific assump-
tions vary greatly from one paper to another, a common feature is that the censoring points are
known (even for non-censored observations) and are not independent of the regressors. We follow
Honoré and Powell (1993) in referring to these models as fixed censoring models.

The most notable papers in the semiparametric literature on censored models—Powell (1984,
1986a), Nawata (1990), and Newey and Powell (1990)—put forward only conditional quantile
restrictions. Papers that apply conditional symmetry restrictions on the distribution of the error
term are Powell (1986b) and Newey (1989). Horowitz (1986, 1988), Honoré and Powell (1993), and
Moon (1989) exploited an assumption of independence between the error term and the regressors
to provide estimators for the underlying linear models. A somewhat different literature on censored
models has been developed in biometrics and statistics, wherein the censoring values are observed
only for the observations that are censored. Honoré and Powell (1993) have recently developed an
estimator for such models that assume a random censoring point.*

The estimation procedure of the Tobit model in the context of quantile regression is motivated
by two main factors: (a)relaxing the assumptions under which the Tobit model can be consistently
estimated, and (b) the growing interest in quantile regression, in which censoring problems seem
frequently to surface.’

The present paper considers the distribution of the dependent variable, conditional on not
being censored, to arrive at a weighting scheme of the residuals that corrects for censoring. We
address the censoring problem in a context similar to that introduced by Powell (1984 and 1986a);
however, we relax the assumptions in the existing literature by allowing the censoring point to be
. an unknown, fixed function of a known set of regressors.

Using the seminal framework of Pollard (1991), we provide proofs, under fairly weak conditions,
for consistency and asymptotic normality for the estimate of the coefficient vector in the linear
quantile regression model. Furthermore, our estimator is shown to be a solution of a linear pro-
gramming problem, which can be solved using a wide variety of linear programming algorithms. A
special advantage of such an estimator is that it is a global minimizer, since the objective function
is convex. Also, convergence to a solution occurs in a finite number of simplex iterations. We
show that for a model with a fixed known censoring value, our estimator has the same asymptotic
distribution as Powell’s (1984, 1986a) estimator.

In a sequence of Monte Carlo simulations we find that our estimator performs very well. It
corrects for the bias associated with a large amount of censoring, even in small samples. The bias
of the suggested estimator is small and the variance is also relatively small. In cases where both
our estimator and Powell’s apply, our estimator performs better in terms of both mean squared

* See Honoré and Powell (1993) for an extensive reference list of work in this area.

 Recent works that involve different aspects of the estimation of quantile regressions include: Buchinsky (1994,
19952, and 1995b), Chamberlain (1991), Hahn (1995) and Powell (1984 and 1986a, 1991), for linear quantile regres-
sion models, and Oberhofer (1982), and Koenker and Park (1994) for nonlinear quantile regression.



error and variance. Furthermore, the performance of our estimator increases faster than that of
Powell’s estimator for larger sample sizes.

The paper is organized as follows. Section 2 describes the model and gives some motivation
and intuition for the proposed estimator. It also provides the notation and definitions that are
used. Section 3 discusses the asymptotic properties. Section 4 compares our estimator with
Powell’s (1986a). In Section 5 we present Monte Carlo experiments designed to investigate the
small sample properties. Section 6 consists of a summary and conclusions. An appendix presents
proofs for several lemmas and a corollary.

2 Description, Definitions and Motivation

The censored regression known as the “Tobit” model can be written (e.g., Powell (1984)) as:
v = max{y’, 8 + &i}.

That is, y; is observed only if it is greater (for left censoring) than some threshold y°; or
yi = min{y°, z{B + &},

for right censored data.5 Powell (1984 and 1986a) suggested an intuitive estimator for the censored
quantile version of the Tobit model: With the quantile restriction Quanty(€g | ) = O for the latent
variable y* = 2’ By + €9, Powell’s estimator is obtained by solving

Inp;insn(ﬁvo) = Inpm {_11; ZPa(yi - max{yovmiﬂ})} ’ (1)
=1
where pg()) is the check function
po(X) = [0 - I(x < O)]A,

and I(-) is the usual indicator function. This estimator is the sample analog of the population
minimization problem given by

. R . o ! )
mﬁmé(ﬂv 9) = mﬁlnE [PG (y. max{y ;‘ﬂﬂ}) I m‘] )
which defines the 6th conditional quantile of y;, conditional on z;, 28, where

s = argmin &(5, 6).

Powell derived the asymptotic properties of the estimator B obtained from solving the problem
in (1) and showed that it is consistent and asymptotically normal.

While Powell’s work has established an ingenious way for dealing with censoring in the context
of quantile regression, his estimator has a few disadvantages due to the form of the objective
function. In the first place the censoring point y? must be known. There are many cases where

® The censoring point §° need not be the same for all § (i =1,...,n), but it needs to be known.
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the only information available to the econometrician is the set of variables that determine the
censoring (or threshold) point. Such a situation arises in eligibility requirements for some social
programs that are set exogenously by the government. Another situation is in using data, say on
wages, that are self selected. For example, in a typical dynamic programming model a decision
about participation in the labor force is made by comparing the value function from not working
against that of a particular wage offered to the individual.

Another problem is that the objective function is not convex so that one is not guaranteed a
global minimizer, 35, for Sn(8, 6) in (1). Lastly, it is not easy computationally to obtain a solution
to the problem in (1). A relatively simple algorithm suggested in Buchinsky (1994) uses a linear
programming (LP) algorithm in an iterative fashion (ILPA algorithm), but does not guarantee
convergence to a solution. A more sophisticated algorithm suggested by Womerersley (1986) also
provides only a local minimum.

Our new estimator improves on Powell’s (1984, 1986a) in all of the above areas. First, we do
not assume that the censoring point is known, but only that it is a fixed function of a known
set of variables. Second, we design an estimator based on an objective function that is globally
convex, so that a global minimum can be found. Finally, it can be shown that the problem is an
LP problem and hence simplifies the solution computationally and guarantees convergence in a
finite number of simplex iterations.

The Model:
The model is most easily described in the latent variable framework
Y* = X'By + @
where Y* is a latent variable which is observed only if above a certain threshold, that is,
_J YY" > po(X)
Y= { 0 otherwise, (3)

with Y the observed dependent variable, and o(X) a fixed unknown function of the regressors
X. We assume, as in Koenker and Bassett (1978), that the conditional quantile of the error term
€g, conditional on X, is

Quantg(es | X) =0, (4)

for some 0 < 6 < 1. Rewriting condition (3) in terms of €5 gives
Y= Y‘I(Ga > ¢0(.X)),

where
do(z) = po(z) — 2'Bs

and I(-) denotes, as before, the usual indicator function.
For simplicity of presentation we define

D=I(Y* > po(X))

and let the vector Z be defined by
Z=(Y,D,X).
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This is the Tobit model except that here po(X) is unknown. The estimator suggested below will
apply also to the case that the censoring point is known.

Motivation:
Denote the probability that D = 1 conditional on X = « by

ho(z) =Pr(D=1|X ==z).

Consider the conditional distribution of Y (i.e., Y*D), conditional on X =z, D =1 and ho(X) >
1-0 for 0 < 8 < 1, as defined in equations (2)—(4). For this distribution, 2’y is the 7(z) quantile

where hol(z) (1 - 8)
z) — (1 -

moe) = ©)
because X'y is the 8th conditional quantile of Y*, conditional on X. This point is illustrated in
the diagram of the conditional distribution of Y*, conditional on X, depicted in Figure 1. Note
from this figure that the conditional probability that Y'* will be left of '3, given that Y* > ¢o(z),
is mg(z). Hence z'By is the mg(z) quantile of the conditional distribution of Y*, conditional on
X =z,D=1and §—(1—-ho(z)) > 0. We use the last condition in the estimation as it insures that
wo(z) < 2'B, in which case '8y is in the part of the distribution that is observed and therefore
can be identified. This leads to the practical conclusion that the observations for which m(z) < 0
cannot be used in the estimation.

Figure 1: Density of Y*, Conditional on X =z
-(1-h

0 -(1-h §x)) A+B= 0

B+C=h,(x)

1-hfx)

P & xp



Thus, the population parameter 8y must solve the problem given by

min B [ro(X)(Y — X'B)* + (1 - me(X)) (Y — X'B) | X,D =1,mp(X) > 0],

where a* = max{0,a} and a~ = max{0, —a}, and Sy can then be written as

Be = a.rgmmE[DI(rg(X > 0) (me(X)(Y = X'B)F + (1 —me(X)) (Y — X'B)7)] . (6)

If the conditional probabilities ho(X) were known, then By could have been estimated using
the sample analog of (6) (see, for example, Manski (1988)), that is,

o = argmin - 3~ Dil (re(X3) > 0) (XY = XIB)* + (1= mo(Xo) (% - XL ). (1)
i=1
The problem we have is that ho(X), and therefore my(X), is not known so that the estimation
in (7) cannot be carried out. One can, however, estimate ho(X) using a nonparametric method.
Denote this estimator by h(X ) and denote the corresponding estimator for e(X) by #p(X) so
that the sample estimator is provided now by

Bo = arg mm—zD I (76(X) > 0) [Fe(X)(Y: — XIB)F + (1 — #9(X)) (Y: — X!B)7] .
=1
For various technical reasons the actual estimator we propose—and which we refer to as the
CQR-UCP (censored quantile regression with unknown censoring point) estimator—is given by

B = argngni:Ds-’(X € X)A(#o(Xy)) [#e(X)(Y: — XIB)* + (1 - #6(X)) (Y - XiB)™], (8)

where A(-) is some smooth non-negative valued “trimming” function A : ® — [0,1]. This function
takes the value O for all values of %y < ¢, for some small positive number ¢, and otherwise 0 <
A(7g) < 1. The trimming of 7y insures that one does not use observations for which s (X;) < 0.7
The additional fixed trimming of X (I(X; € X)) helps in simplifying the proofs.

3 Large Sample Property of the Estimator

In this section we establish the asymptotic properties of the estimator defined in (8). In particu-
lar we show that the CQR-UCP estimator is \/n-consistent and asymptotically normal. We will
extensively use the “convexity” framework established by Pollard (1991). Two main reasons mo-
tivated us to adopt this approach: (a) Unlike the conventional techniques we are able to establish
in a single step consistency, /n-consistency and asymptotic normality; and (b) Pollard’s approach
seems especially appropriate since the objective function minimized in our formulation is globally
convex (and piecewise linear). First, however, we impose regularity conditions which are rather
standard in this literature. Proofs of the Lemmas and Corollary appearing below are given in the
Appendix.

" Note that we do not require that ¢ — 0 as n — oo; the consistency and asymptotic normality is established for
a fixed ¢.



3.1 Assumptions on the Error Term, Regressors and Trimming Function
Consider the latent variable model defined earlier in (2):

Yr=XB+ex (i=1,...,n)
Assumption ER: Error term and regressors

(i) The (k + 1)-dimensional random vectors {(X/,€s)} are independent and identically dis-
tributed.

(ii) The error term € has a continuous conditional density fe,(- | X;) with a unique conditional
0-quantile equal to 0.

(iii) There exists a function Hy(z), such that f.,(0 | ) < Hy(z) and E[H ¢(X;)|X;]?] < oo.
(iv) The regressors X; have a continuous density fx(z).
(v) The trimming set X of X, is a compact set.

(vi) E[IX[*] < co.

Assumption TF: Trimming function

The trimming function A(-) is bounded, with bounded and continuous first and second deriva-
tives.
Assumption PD: Positive definiteness

The matrix
J=E[I(X; € X)A(m(X:)) fep (0 | X)X X]]

is positive definite.

3.2 Kernel Estimation of y(:)

As explained in the previous section, obtaining the estimator in (8) requires the estimation of
mg(X;). Denote the density function of X; by fx(-) and denote the kernel estimator for fx(-) by
f(:). At a point z the estimator takes the form

fo)= 2K (25), ©)

i=1

where K(-) is an appropriately defined kernel function of dimension k (the dimension of X;) and

6 is a suitable bandwidth.
Let h(-) denote the Nadaraya-Watson estimator for the regression ho(-) of D; on Xj, that is

o) = Dt K (= X)/8) Difn* _ AGe)
" K (@ X;)/6) [n*  f(a)’
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where

- 1 & z— X j)
= D;
A((B) n6" Jz=:1 K ( 6 I
is an estimator for
Ao(2) = ho(2)fx (2)
and f(z) is defined in (9). Note that we can rewrite g(-) from (5), using the definition of Fx(-)

and Ag(:), as
© ho(-) —1+86 fx()
ho(-) Ao()’

We have already imposed an assumption on the density fx(-) of X; (Assumption ER). In the
following we impose further restrictions on the function Ag(-) and the kernel function K(-).

mo() = =1-(-xd

Assumption K: Kernel function
The kernel function K(-) satisfies:

(i) K(-) is continuous and is zero outside a bounded set.
(ii) fK(u)du=1.

(iii) There is a positive integer m such that

/uﬁ‘ ...ui"K(u)du:O, for GH+...4 8 <m.

(iv) fx(z) and Ag(z) are bounded away from 0 on X'

(v) There are versions of the functions fx and Ay which are continuous on an open set containing
X.

(vi) n6%* /(logn)? — oo and né*™ — 0.

3.3 Asymptotic Distribution of the Estimator

In this section we show, using Pollard’s (1991) framework, that the estimator B obtained as a
solution to (8), is asymptotxca.lly normal. Theorem 1 below establishes this result, while Corollary 1
computes the specific form of the asymptotic covariance matrix for Bs.

Theorem 1
Suppose that Assumptions ER, TF, PD and K are satisfied. Then
n/?(fs - B) =
“1/23~ 715 7( X ho(X:)
n V2N T XGI(X; € X)A(ma( X)) | Di(me(Xs) — I(esi < 0)) + (1 - o)—(X)—
=1
op(1),

where B is defined by (8) and J is defined in Assumptiion PD.

7



Proof:

Define
Gn(r,m) = f:D;I(X.- € X)A(n(X;))
) [lr(Xi)[(eo; = n 12Xyt — ]+ (1 - m(X0)) (6o — 72 XIT)” -
= é a(r,7), (10)

where

gi(r,m) = Di(X; € X)A(m(X;))
x {W(X,‘)[(Gg,‘ = 02Xyt — ef] 4+ (1 - m(X3))|(eo —n 2 XT)™ - 651-]] :

Note that G,(7,7g) is: (a) a convex function in 7; and (b) is minimized at
T = n'/2(By — fs). (11)

In the following we approximate the function G, (7, 7) by a quadratic function whose minimizing
value, 7,, is arbitrarily close to the value 7, in (11). Furthermore, we show that 7, has an
asymptotic normal distribution. Combining these two facts yields the conclusion that 7, has an
asymptotic normal distribution.

Let

Ln(r,7) = E[Gn(r,7)].
Note that the function '
(¢, 76) = Elgi(t, m)]
is minimized, as a function of t, at t = 0 and with a second order derivative given by

M =J=E [I(X; € X)A(me(X)) o (0 | X)X X]]
ater | _,
It follows that for fixed 7 we have
Cp(r,mg) = %T’JT +o(1). (12)
In order to simplify the proof we define the following three quantities:

Cal(Zi,7) = 0~ Y23(x(X:) — I(egs < 0))Xi, (13)
Wa(r) = zn:D,-I(X.' € X)A(7(X:))en(Z;,7), (14)

=1

RolZum) = Dd(X: € DA (7(X) [(eo — n /X0 ~ ]
+ (1 - 7(X:)) [(ews — n72XIT)" - €] + T'(,,(Z.-,W)) : (15)

8



Since
E[(n(Zi,m)| X, mg(X;) > 0,D; = 1] =0,

we can write Gy (7, T) from (10), using the notation in (13)-(15), as

Gn(1,m) = Lp(1,m) — T Wy(m) + i(R,,,(Z,-,w, 7) — E[Rn(Zi, 7, 'r)]) . (16)

=1

We now state two lemmas (proofs given in the Appendix) which will allow us to write G (7, )
as

Gn(1,79) = %T’JT — 7'Wa(#e) + 0p(1),

and which will then enable us to directly apply Pollard’s Convexity Lemma.

Lemma 1
Suppose that Assumptions ER, TF, and K are satisfied. Then,

Walis) = n/2 30 XI(X: € X)A(ma(Xe)) (D - (mo(X:) — I(ews < 0)) + (1 - O)D;’;&E)in))

i=1

+ 0p(1).

From Lemma 1 and the Central Limit Theorem it follows that Wy,(#s) has an asymptotic
normal distribution. The arguments below also show that 7, lies close to J~!W,(#g), that is,

Tp = J—IWn(il'g) + Op(l),

and therefore that 7, = n'/2(8p — fp) has an asymptotic normal distribution.

Lemma 2
Suppose that Assumpiions ER(i)—(v), TF, and K are satisfied. Then for a fized 7

3 (Ra(Ziym,7) — E [Ba(Ziy 70, 7)]) = 05(1).

1=1

Lemma 2 and equation (12) imply that G, from (16) can be rewritten as
Gu(7, %) = %’T’J’T — 7'Wa(#e) + 0p(1),

for each fixed 7.



Pollard’s Convexity Lemma (Pollard (1991, p. 187)) strengthens the pointwise convergence
into uniform convergence on compact subsets 7' C R*. That is, letting 7, = J~'Wn(#s), we may
write the resulting convergence as

Ga(r,9) = {7 = 1) J(7 = ) = 370 + (), a7)
where for each compact set T C R"
sup Ira()] = op(1). (18)
The argument to establish Theorem 1 will be complete if we show, as in Pollard’s case, that
Tn = J T Wa(#s) + 0p(1).

This is achieved in the following lemma (proof in the Appendix):

Lemma 3

Suppose that (17) and (18) are satisfied. Then for each € > 0, |7n — Na| < € with probability

tending to 1.
Q.E.D.

It remains to derive the asymptotic covariance matrix for the estimator Be. This is provided
in the following corollary (proof in the Appendix):

Corollary 1

Given the assumptions stated in Theorem 1,

\/7_1(&0 - ﬂa) "L':"’ N(01 QO)! s n — OO,
where
Qp=06(1-6)J7AJ7",
A=E [I(X,' € X)A(Wg(Xi))X;X:)] ,

and J is given in Assumption PD.

4 Comparison of the Estimator with Powell’s Estimator

The estimator suggested by Powell (1984 and 1986a) applies only to the case where the censoring
points are known for all observations, both censored and non-censored, that is, wo(X;) = 3?2,
i=1,...,n. Our CQR-UCP estimator works for this case, as well as for the more general case
where @o(X;) may not be known.

There are two main theoretical differences between the two estimators. Firstly, Powell’s es-
timator does not require an estimate of the probability that an observation be in the sample,
whereas our CQR-UCP estimator does require such an estimate. Secondly, the objective function

10



used in obtaining the CQR-UCP estimator is globally convex while that for Powell’s estimator is
not. Consequently, Powell’s estimator is guaranteed to be only a local minimizer. In contrast,
the CQR-UCP estimator is a global minimizer. Also, since our problem is formulated as a linear
programming problem, the solution is reached in a finite number of simplex iterations.

We compare the asymptotic properties of the two estimators when both apply, i.e., for known
censoring points implying ¢o(X;) = 9. It turns out that the two estimators have (almost) the
same asymptotic distribution, for suitable choices of X and A(-). In the next section we examine
the small sample properties of the two estimators by way of Monte Carlo experiments.

Powell’s (1986a) quantile regression estimator, say ﬁg , is known to have the asymptotic repre-
sentation

VAU — Bs) = VA S B (X!0 > 47) (68— I (e < 0) X,
=1

where
H=E[I(X!85 > 1) fe0(0 | Xi)X:X1].

Thus the asymptotic covariance of [3;’ is given by
QF =001 - 0)H 1ApH,

where
Ap =E [I(Xipo > 4f) XiX]].

The asymptotic distribution of our CQR-UCP estimator, say B; depends on the choice of A(7g)
and the trimming of X, I(X € X). Thus the two estimators can be compared only when: (a) A(mp)
is very close to I (mg > 0); and (b) & contains the support of X;. Putting A(7s) = I (7 > 0) and
X = R*, we can compare the asymptotic variance of ﬁ; with that of ﬁg . For this particular model
we have

m9(X;) >0 ifand only if X!Bs > 0.
Thus,
J = E[I(m(X;) > 0) feo (0 | Xi)X:iX]]

= B[1 (X80 > ) 1 (0] XOX:X]
= H. (t9)

Similarly it follows that

A = E[I(m(X;) > 0)f, (0] X)X X]]
= E [I(X,’ﬁa > y?)f;,(o | X:)sz:]
= Ap. (20)

We conclude therefore, from (19), (20), and Corollary 1, that the asymptotic covariances of Powell’s
estimator and CQR-UCP estimator are close if A(7) = I (7 > 0), and Pr(X; € X) ~ 1.

11



5 Finite Sample Properties of the Estimator

Section 3 provided the large sample properties of the proposed estimator. The CQR-UCP esti-
mator has an asymptotic normal distribution, even though the reweighting scheme incorporates
a nonparametric estimate for the probability of not being censored, conditional on the observed
regressors. In practice, since including a nonparametric estimate when the sample is small can lead
to severe bias in the estimate, it is important for empirical applications to evaluate the performance
of the estimator for small samples.

This evaluation has been done in a Monte Carlo study which examines the small sample
performance in two ways:

a. Comparing the Monte Carlo results for the CQR-UCP estimator with two alternative unad-
justed quantile regression estimates, when the censoring point is a function of the regressors;
and

b. Comparing Powell’s (1986a) and the CQR-UCP estimators when the censoring values are
known.

Two concerns that have affected the design of the Monte Carlo simulations carried out here
are: the similarity with real data problems, and the feasibility of the Monte Carlo experiment,
i.e., the examples need to be simple enough to perform a satisfactory Monte Carlo study. Some
elements were kept unchanged throughout the experiment, while others were varied and the results
are reported here in detail.

The model outlined in Section 2 was used:

Y = a0+ BoXi + e,

Y =YI(Y? > po(X)), (21)
where the X; are drawn from a standard normal distribution. For the error term, €, a multiplica-
tive heteroskedasticity formulation was adopted:

€g; = u.-'v(X.-)
where

v(X;) = ao + a12; + azz?,

with ap =1, a1 = .5, and a3 = .5. The u; term was drawn from a normal distribution with zero
mean and with a variance o? that was varied, with 0 = 1,2,3,4,5.

Two sets of experiments were carried out for the model in (21). In the first set (z) was
calculated for each observation according to the formula

po(2) = bo + b1z + va2?

with by = .5, by =.5, and by = —2. The aim was to compare the performance of the CQR-UCP
estimator relative to quantile regression estimates that did not take the censoring into account.
Two unadjusted quantile regressions were considered for this part: one that did not use the
censored observations (reported as 0), and one that used them with the value 0 assigned to the
dependent variable Y.

12



The second set of experiments was devoted to comparing Powell estimator and our CQR-UCP
estimator for the special case that they both apply, namely, p(z) set equal to -1, and assumed to
be known. For Powell’s estimator we used the Iterated Linear Programming Algorithm (ILPA).2

For the solution of the CQR-UCP estimator, a few more choices were needed. In estimating
E[D; | X;] nonparametrically we used the Epanechnikov kernel given by

K. (t/hn) = 2 (1= (t/Rn)?) I ((t/a)? <1).

The bandwidth of the kernel h,, was selected using the likelihood cross validation procedure (see,
for example, Silverman (1986)).? For the Ag() trimming function we used

_ exp(r—2c)  exp(-—c) 2 + exp(c) + exp(—c) e x <8
Ao(m) = (1 +exp(r—2c) 1+ exp(—c)) ( exp(c) — exp(—c) ) le<m<3)
+I(7 > 3c), (22)

with ¢ = .005. This function has more than two bounded derivatives (as required by Assump-
tion TF). Varying the trimming value ¢ has no effect on the results. In fact, eliminating the
function Ao(7) entirely from the estimation also has no effect. This suggests that in practice it
can be omitted. For purpose of internal consistency with our proofs we kept Ag(7) in the form
of (22).

a. Monte Carlo Ezperiments with Unknown @o(z)

The results for these Monte Carlo experiments are reported in Tables I through V, for o =
1,2,3,4 and 5, respectively. For the larger values of o more observations are affected by censoring
since Pr(D; = 1| X;) declines. Each table reports four statistics for the constant and slope: root
mean squared error (RMSE), mean bias, median absolute error (MAE), and median bias. Three
alternative solutions are considered in each of the five experiments: (a) Using all observations,
ignoring the fact that some observations are censored; (b) using only the observations which are
not censored, i.e. ¥; > 0; and (c) using the CQR-UCP estimator. Each table reports the number
of observations used, in effect, by these three methods (i.e., the number of observations estimated
to be above the censoring point).

Each Monte Carlo experiment was repeated for 3000 times and for five sample sizes: 50, 100,
200, 300, and 400. The results for 0 = 1 (Table I) indicate that when only a few observations are
censored, it does not matter significantly whether one corrects for the censoring or merely uses all
observations at their reported values. Using only the uncensored observations (as is currently the
most common practice) does yield slightly larger values of RMSE, MAE, and mean and median
bias than for the CQR-UCP estimator, even for the very small sample sizes, for both the constant
(columns 1-3) and the slope (columns 4-6).

® See Buchinsky (1994) for a detailed description. We also tried using the Nelder-Meade algorithm in solving for
Powell’s estimator. The results were virtually the same as for the ILPA algorithm and are therefore omitted from
the following discussion.

® Other experiments using a normal kernel and/or the least-squares cross validation procedure yielded almost
the same results and are also omitted.
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For larger o, where there is more censoring, there is a greater need for the correction. For
example, for o = 2, with approximately 20% of the observations censored, a very large bias occurs
in the estimated slope, if one does not correct for censoring. This bias vanishes almost completely
when the CQR-UCP estimation procedure is applied, even for very small samples. Increasing the
sample size from 50 to 400 observations, for example, improves the performance of the CQR-UCP
estimator, while for the unadjusted estimates the RMSE, MAE, and the mean and absolute biases
do not change.

When 40% of the data is censored (see Table V for 0 = 5)—not uncommon in empirical
studies—the need for correction using the CQR-UCP estimator becomes crucial. For a sample
size of 50 observations there is an extremely large bias induced by censoring, which is not fully
corrected by the CQR-UCP estimator. A significant improvement occurs with larger sample sizes.
For example, for sample size of 200, when all the data is used, the mean bias for the slope is about
40%, and is 120% when only the censored observations are used. It is only 12% for the CQR-UCP
estimator, which decreases to 5% for a sample size of 400; no significant changes are observed for
the other two alternatives.

It is important to note in Tables I-V that the number of observations used by the CQR-UCP
method is on average very close to the number of uncensored points. That is to say, the reweighting
of the positive and negative residuals is very effective using CQR-UCP. Furthermore, estimating the
probability that an individual observation will be uncensored introduces no practical difficulties,
even for relatively small sample sizes. This implies that the CQR-UCP estimator does not need
large data sets in order to obtain good approximations to the asymptotic distribution.

Note that the traditional measures of precision—RMSE and mean bias—as well as the robust
measures—MAE and median bias—provide essentially identical evaluations. Although the cases
considered here are relatively simple, they do appear to be fairly typical in applications.

b. Monte Carlo Ezperiments with Known @o(X)

In this part of our Monte Carlo study we consider the case when ¢o(X;) = y? are known, so
that both Powell’s estimator (CQR) and our CQR-UCP estimator apply and are asymptotically
equivalent. The results are reported in Tables VI-X for o = 1, 2, 3, 4, and 5, respectively, for five
different sample sizes: 50, 100, 200, 300, and 400. The tables are organized similarly to Tables I-V.

The performance of the two estimators is comparable for small 0. For large o, however (see
Tables IX and X), the RMSE and the MAE are much larger for the CQR estimator than for the
CQR-UCP estimator. These differences become smaller for larger sample sizes (see the bottom
part of Tables IX and X). While the larger RMSE can be attributed mostly to a larger variance,
the bias of the CQR estimator is also larger than the bias of the CQR-UCP estimator.

The number of observations used is noticeably different for the two estimators. The CQR
estimator clearly tends to use far more observations than the CQR-UCP estimator. For example,
for ¢ = 5 and a sample size of 400, the CQR estimator uses an average of 382 observations while
the CQR-UCP estimator uses only 250 observations. This is to say that the CQR-UCP method
selects, on average, the correct number of censored observations, while the CQR estimator uses
too many. We do not attempt to investigate here why this phenomena occurs, but merely point
out that the CQR-UCP estimator does not exhibit this distortion and hence yields, in general,
more accurate results.
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Finally, we note that the performance of the CQR-UCP estimator does not change much in
these experiments relative to the previous experiments with an unknown @o(z). All the measures
of accuracy are very similar for the two simulations.

Overall, we have shown the importance of correcting the estimation for censoring especially
when the censored observations are a large fraction of the available data. Moreover, we have
demonstrated the suitability and accuracy of the CQR-UCP estimator.

6 Summary and Conclusions

This paper introduces a new estimator for the linear quantile regression model when censoring of
an unknown form exists. As other studies in this area have also shown, there is a close relationship
between the censoring point and the regressors, and this is true when the censoring point may be
an unknown function of a known set of regressors.

We have developed an estimator that takes into account the probability of observing a non-
censored observation, conditional on the regressors. We do this by adjusting the weights on the
positive and negative residuals, based on the conditional probability of the observed dependent Y.
The new estimator solves the problem (equation (8)):

min3 " DiI(X € X)A(30(X0) |70 (X)(¥; ~ XLB)* + (1~ #(X))(¥: - XI6)" .

1=1

Minimization of this function requires a consistent estimate for the probability of being observed,
E(D; = 1| X;), in order to form a consistent estimate for mg(z) = (ho(z) — 1 +6)) /ho(z). We
obtain h(z) as a kernel estimate for ho(z).

The estimator fp is unaffected by the preliminary estimation of ho even though A does not
have \/n-convergence rate. Our estimator is shown to have the desired /n-convergence rate and
is asymptotically normal. Specifically,

V(s - Bs) - N(0,8(1 - 0)J 1 AJ7Y),

where

J =E [I(Xi € X)A(me(X:))fee (0 | Xi)XiX]]

and

A =E [I(X; € X)A(me(X:)) X X]) -

While the new estimator is suited to deal with unknown censoring point, it also applies to the
case considered by Powell (1984, 1986a), namely, fixed and known censoring values. We show that
our estimator has (almost) the same asymptotic distribution as the estimator suggested by Powell.

There are several advantages to the new estimator. First, it minimizes a globally (piecewise
linear) convex function; consequently, the estimator obtained provides a global minimum. Second,
since the minimization problem is, in fact, a linear programming problem, a solution is obtained
in a finite number of simplex iterations. Third, the technique is extremely easy to use, as cross-
validation techniques are readily available for the estimation of hq(z).

In a sequence of Monte Carlo simulations it is shown that the suggested estimator has very
desirable small sample properties. The estimates are very precise even for relatively small sample
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sizes and for data contaminated by a large amount of censoring. The root mean squared error and
the median absolute error are quite small even for small sample sizes, and they rapidly decrease
as the sample size increases. The bias of the estimates is also minimal. Thus, the the estimator
should be a useful tool in empirical applications that require the use of quantile regression with
censored data, especially when the censoring values are unknown.
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TABLE 1

Monte Carlo Simulation for .50 Quantile Regression
Unknown Censoring ¢o(X), o0 =1

Non Non
AP Cens® UCF AP Cens® UCP
Consiant Slope

50 Observations:
RMSE 0.241 0.266 0.245 0.353 0.362 0.352
Mean bias 0.001 0.123 -0.008 0.003 0.062 0.006
Median abs. error 0.161 0.179 0.164 0.235 0.235 0.236
Median bias 0.011 0.121  0.002 0.004 0.063 0.004
Observations 50.0 46.5 46.6 50.0 46.5 46.6
100 Observations:
RMSE 0.173 0.207 0.175 0.257 0.255 0.257
Mean bias 0.001 0.124 -0.006 0.001 0.051 0.003
Median abs. error 0.119 0.147 0.119 0.174 0.169 0.176
Median bias -0.000 0.124 -0.007 0.003 0.050 0.005
Observations 100.0 93.1 93.1 100.0 93.1 93.1
200 Observations:
RMSE 0.121 0.166 0.122 0.173 0.184 0.173
Mean bias 0.002 0.118 -0.004 -0.002 0.055 -0.000
Median abs. error 0.081 0.122 0.082 0.116 0.125 0.116
Median bias 0.002 0.118 -0.004 -0.000 0.058 0.002
Observations 200.0 186.0 186.1 200.0 186.0 186.1
300 Observations:
RMSE 0.097 0.151 0.097 0.148 0.149 0.149
Mean bias 0.001 0.119 -0.004 -0.005 0.051 -0.005
Median abs. error 0.066 0.119 0.066 0.103 0.099 0.103
Median bias 0.002 0.118 -0.003 -0.005 0.052 -0.003
Observations 300.0 278.9 279.1 300.0 278.9 279.1
400 Observations:
RMSE 0.085 0.146  0.086 0.123 0.135 0.123
Mean bias 0.001 0.121 -0.003 -0.004 0.054 -0.004
Median abs. error 0.059 0.121  0.059 0.081 0.091 0.081
Median bias 0.001 0.121 -0.002 -0.004 0.055 -0.003
Observations 400.0 372.0 372.2 400.0 372.0 372.2

Note: The true value of the constant is 1, and the true value of the slope is 1. The
simulation is performed for 3000 repetitions.

* Using all observations including the censored observations.

® Using only non-censored observations.

¢ Using CQR-UCP estimator.
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TABLE II

Monte Carlo Simulation for .50 Quantile Regression
Unknown Censoring ¢o(X), 0 =2

Non Non
AP Cens® UCF AP Cens® UCF
Constant Slope

50 Observations:
RMSE 0.462 0.850 0.498 0.647 0.765 0.697
Mean bias 0.046 0.715 -0.018 -0.088 0.331 0.023
Median abs. error 0.317 0.698 0.332 0.427 0.503 0.453
Median bias 0.022 0.698 -0.033 -0.093 0.325 0.008
Observations 50.0 39.9 39.8 50.0 39.9 39.8
100 Observations:
RMSE 0.328 0.767 0.339 0.455 0.588 0.488
Mean bias 0.034 0.698 -0.019 -0.082 0.333 0.015
Median abs. error 0.218 0.689 0.223 0.315 0.398 0.333
Median bias 0.031 0.689 -0.023 -0.087 0.313 0.012
Observations 100.0 79.7 79.9 100.0 79.7 79.9
200 Observations:
RMSE 0.237 0.744 0.242 0.332 0.476 0.354
Mean bias 0.030 0.708 -0.015 -0.076 0.332 0.015
Median abs. error 0.160 0.706 0.163 0.220 0.353 0.235
Median bias 0.026 0.706 -0.015 -0.082 0.335 0.013
Observations 200.0 159.7 159.9 200.0 159.7 159.9
300 Observations:
RMSE 0.195 0.731 0.198 0.266 0.436 0.282
Mean bias 0.026 0.707 -0.016 -0.073 0.338 0.013
Median abs. error 0.134 0.702 0.134 0.181 0.342 0.188
Median bias 0.027 0.702 -0.013 -0.081 0.338 0.014
Observations 300.0 239.7 239.4 300.0 239.7 2394
400 Observations:
RMSE 0.171 0.721 0.173 0.237 0.412 0.249
Mean bias 0.029 0.704 -0.010 -0.074 0.332 0.009
Median abs. error 0.111 0.704 0.113 0.167 0.330 0.175
Median bias 0.024 0.704 -0.012 -0.075 0.328 0.008
Observations 400.0 319.3 3193 400.0 319.3 319.3

Note: The true value of the constant is 1, and the true value of the slope is 1. The
simulation is performed for 3000 repetitions.
* Using all observations including the censored observations.

b Using only non-censored observations.
¢ Using CQR-UCP estimator.
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TABLE III

Monte Carlo Simulation for .50 Quantile Regression
Unknown Censoring ¢o(X), 0 =3

Non Non
AlP  Cens® UCP AP Cens® UCPF:
Constant Slope

50 Observations:
RMSE 0.674 1.662 0.752 0.846 1.185 1.015
Mean bias 0.161 1.522  0.046 -0.204 0.648 0.075
Median abs. error 0.465 1.513 0.479 0.616 0.798 0.679
Median bias 0.113 1.513 0.054 -0.235 0.642 0.069
Observations 50.0 36.0 35.6 50.0 36.0 35.6
100 Observations:
RMSE 0.497 1.570 0.527 0.625 0.946 0.725
Mean bias 0.085 1.500 -0.015 -0.213 0.647 0.067
Median abs. error 0.337 1.483 0.335 0.434 0.681 0.489
Median bias 0.069 1.483 -0.015 -0.221 0.631 0.051
Observations 100.0 71.9 714 100.0 71.9 71.4
200 Observations:
RMSE 0.360 1.5621 0.360 0.469 0.803 0.513
Mean bias 0.063 1.484 -0.019 -0.228 0.632 0.033
Median abs. error 0.244 1.474 0.242 0.327 0.633 0.350
Median bias 0.057 1.474 -0.028 -0.239 0.627 0.033
Observations 200.0 143.9  143.7 200.0 143.9  143.7
300 Observations:
RMSE 0.303 1.493 0.299 0.402 0.748 0.429
Mean bias 0.058 1.468 -0.018 -0.218 0.636 0.026
Median abs. error 0.205 1.464 0.205 0.287 0.627 0.294
Median bias 0.062 1.464 -0.022 -0.228 0.627 0.027
Observations 300.0 215.5 215.5 300.0 215.5 215.5
400 Observations:
RMSE 0.258 1.495 0.257 0.357  0.722 0.366
Mean bias 0.049 1.476 -0.024 -0.219 0.633 0.026
Median abs. error 0.181 1.471 0.176 0.257 0.632 0.249
Median bias 0.052 1.471 -0.025 -0.220 0.632 0.025
Observations 400.0 287.5 287.3 400.0 287.5 287.3

Note: The true value of the constant is 1, and the true value of the slope is 1. The
simulation is performed for 3000 repetitions.

* Using all observations including the censored observations.

b Using only non-censored observations.

¢ Using CQR-UCP estimator.
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TABLE IV

Monte Carlo Simulation for .50 Quantile Regression
Unknown Censoring ¢o(X), 0 =4

Non Non
AlIP  Cens® UCPF AlP  Cens® UCF
Constant Slope

50 Observations:
RMSE 0.878 2.553 1.252 0.991 1.591 1.426
Mean bias 0.263 2.386 0.124 -0.258 0.906 0.214
Median abs. error 0.613 2.341 0.650 0.761 1.110 0.895
Median bias 0.208 2.341 0.178 -0.369 0.885 0.198
Observations 50.0 33.5 32.3 50.0 33.5 32.3
100 Observations:
RMSE 0.633 2.439 0.689 0.728 1.306 0.937
Mean bias 0.119 2.356 0.008 -0.333 0.926 0.102
Median abs. error 0.440 2.350 0.436 0.547 0.984 0.621
Median bias 0.099 2.350 0.020 -0.378 0.940 0.105
Observations 100.0 67.1 65.7 100.0 67.1 65.7
200 Observations:
RMSE 0.487 2.349 0.483 0.580 1.106 0.686
Mean bias 0.090 2.307 -0.001 -0.333 0.905 0.075
Median abs. error 0.332 2.293 0.333 0.424 0.906 0.464
Median bias 0.091 2.293 0.010 -0.353 0.902 0.100
Observations 200.0 134.1 133.4 200.0 134.1 1334
800 Observations:
RMSE 0.406 2.349 0.397 0.505 1.051 0.554
Mean bias 0.078 2.321 -0.007 -0.332 0.918 0.044
Median abs. error 0.274 2.311  0.275 0.373 0.922 0.367
Median bias 0.079 2.311 -0.013 -0.343 0.922 0.039
Observations 300.0 201.4 200.9 300.0 201.4 200.9
400 Observations:
RMSE 0.342 2.326 0.336 0.470 1.015 0.490
Mean bias 0.066 2.305 -0.018 -0.335 0.907 0.040
Median abs. error 0.237 2.302 0.228 0.355 0.907 0.330
Median bias 0.071 2.302 -0.012 -0.340 0.907 0.045
Observations 400.0 268.1 267.8 400.0 268.1 267.8

Note: The true value of the constant is 1, and the true value of the slope is 1. The
simulation is performed for 3000 repetitions.

* Using all observations including the censored observations.

b Using only non-censored observations.

¢ Using CQR-UCP estimator.
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TABLE V

Monte Carlo Simulation for .50 Quantile Regression
Unknown Censoring ¢o(X), 0 =5

Non Non
AP Cens? UCP AlP  Cens?® UCP
Constant Slope

50 Observations:
RMSE 1.041 3.414 2.159 1.089 1.990 2.234
Mean bias 0.304 3.236 0.173 -0.366 1.184 0.287
Median abs. error 0.721 3.171  0.763 0.925 1.395 1.094
Median bias 0.187 3.171  0.249 -0.582 1.156  0.259
Observations 50.0 31.8 29.4 50.0 31.8 29.4
100 Observations:
RMSE 0.771 3.285 0.921 0.829 1.653 1.130
Mean bias 0.188 3.190 0.089 -0.403 1.218 0.158
Median abs. error 0.532 3.144 0.525 0.628 1.251 0.756
Median bias 0.150 3.144 0.098 -0.459 1.210 0.164
Observations 100.0 64.1 61.6 100.0 64.1 61.6
200 Observations:
RMSE 0.588 3.242 0.604 0.655 1.453 0.820
Mean bias 0.127 3.195 0.039 -0.395 1.217 0.118
Median abs. error 0.407 3.194 0.403 0.470 1.216 0.572
Median bias 0.114 3.194 0.044 -0.399 1.214 0.133
Observations 200.0 128.0 125.8 200.0 128.0 125.8
800 Observations:
RMSE 0.497 3.204 0.492 0.581 1.320 0.675
Mean bias 0.094 3.172  0.008 -0.395 1.157 0.091
Median abs. error 0.335 3.163 0.321 0.440 1.143 0.438
Median bias 0.079 3.163 0.011 -0.410 1.143 0.081
Observations 300.0 191.9 190.3 300.0 191.9 190.3
400 Observations:
RMSE 0.422 3.189 0.416 0.549 1.307 0.599
Mean bias 0.069 3.165 -0.015 -0.411 1.179  0.053
Median abs. error 0.286 3.161 0.284 0.417 1.180 0.398
Median bias 0.071 3.161 -0.015 -0.405 1.180 0.071
Observations 400.0 255.9 254.1 400.0 255.9 254.1

Note: The true value of the constant is 1, and the true value of the slope is 1. The
simulation is performed for 3000 repetitions.

* Using all observations including the censored observations.

b Using only non-censored observations.

¢ Using CQR-UCP estimator.
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TABLE V1

Monte Carlo Simulation for .50 Quantile Regression
Fixed Censoring (po(X) =13°), 0 =1

CQR* UCP® CQR* UCP

Constant Slope

50 Observations:

RMSE 0.244 0.244 0.415 0.369
Mean bias -0.015 0.017 0.019 -0.062
Median abs. error 0.167 0.164 0.256 0.244
Median bias -0.016 0.012 -0.023 -0.067
Observations 48.2 44.7 48.2 44.7
100 Observations:

RMSE 0.172  0.173 0.267 0.249
Mean bias 0.004 0.024 0.013 -0.041
Median abs. error 0.116 0.115 0.176  0.172
Median bias 0.003 0.023 0.001 -0.043
Observations 97.1 89.4 97.1 89.4
200 Observations:

RMSE 0.116 0.117 0.184 0.178
Mean bias -0.004 0.011 -0.004 -0.044
Median abs. error 0.076  0.077 0.117 0.117
Median bias -0.002 0.013 -0.008 -0.044
Observations 195.0 178.5 195.0 178.5
800 Observations:

RMSE 0.099 0.099 0.153 0.150
Mean bias -0.000 0.013 0.002 -0.034
Median abs. error 0.066 0.066 0.101 0.102
Median bias -0.000 0.013 -0.002 -0.037
Observations 292.5 267.8 292.5 267.8
400 Observations:

RMSE 0.083 0.084 0.127 0.126
Mean bias 0.001 0.012 0.000 -0.031
Median abs. error 0.056  0.057 0.085 0.086
Median bias 0.000 0.012 -0.004 -0.034
Observations 390.5 356.9 390.5 356.9

Note: The true value of the constant is 1, and the true value of the
slope is 1. The simulation is performed for 3000 repetitions.

* Powell estimator.

b CQR-UCP estimator.
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TABLE VII

Monte Carlo Simulation for .50 Quantile Regression:
Fixed Censoring (po(X) = 3°), 0 =2

CQR* UCP® CQR* UCP®

Constant Slope

50 Observations:

RMSE 0.768 0.461 1.007 0.717
Mean bias -0.071  0.068 0.128 -0.040
Median abs. error 0.324 0.304 0.506 0.465
Median bias -0.039 0.075 -0.002 -0.084
Observations 46.7 37.5 46.7 37.5
100 Observations:

RMSE 0.350 0.337 0.611 0.486
Mean bias -0.022 0.053 0.066 -0.047
Median abs. error 0.236 0.224 0.365 0.326
Median bias -0.012 0.054 -0.003 -0.066
Observations 95.2 75.0 95.2 75.0
200 Observations:

RMSE 0.247 0.244 0.401  0.350
Mean bias 0.001 0.045 0.025 -0.047
Median abs. error 0.165 0.164 0.243 0.232
Median bias 0.003 0.047 -0.003 -0.056
Observations 193.0 1504 193.0 150.4
300 Observations:

RMSE 0.193 0.196 0.314 0.281
Mean bias 0.006 0.042 0.013 -0.047
Median abs. error 0.133 0.133 0.202 0.191
Median bias 0.004 0.038 -0.007 -0.054
Observations 290.9 226.0 290.9 226.0
400 Observations:

RMSE 0.167 0.168 0.269  0.247
Mean bias -0.002 0.029 0.003 -0.044
Median abs. error 0.111  0.113 0.170  0.167
Median bias -0.004 0.031 -0.016 -0.049
Observations 388.8 300.7 388.8 300.7

Note: The true value of the constant is 1, and the true value of the
slope is 1. The simulation is performed for 3000 repetitions.

* Powell estimator.

b CQR-UCP estimator.
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TABLE VIII

Monte Carlo Simulation for .50 Quantile Regression:
Fixed Censoring (po(X)=1%°),0=3

CQR* UCP° CQR* UCP

Constant Slope

50 Observations:

RMSE 2.416 0.733 2.049 1.123
Mean bias -0.266 0.118 0.307 0.010
Median abs. error 0.498 0.461 0.764 0.621
Median bias -0.076 0.115 -0.020 -0.093
Observations 449 33.1 44.9 33.1
100 Observations:

RMSE 1.487 0.502 1.164 0.715
Mean bias -0.108 0.085 0.136 -0.040
Median abs. error 0.348 0.339 0.529  0.450
Median bias -0.049 0.081 -0.015 -0.083
Observations 93.3 66.8 93.3 66.8
200 Observations:

RMSE 0.379 0.357 0.665 0.510
Mean bias -0.035 0.059 0.058 -0.051
Median abs. error 0.242 0.242 0.375 0.332
Median bias -0.032 0.056 -0.016 -0.066
Observations 190.2 133.9 190.2 133.9
300 Observaiions:

RMSE 0.297 0.288 0.514 0.416
Mean bias -0.009 0.058 0.036 -0.045
Median abs. error 0.201 0.197 0.306 0.287
Median bias -0.004 0.059 -0.007 -0.067
Observations 287.7 201.6 287.7 201.6
400 Observations:

RMSE 0.251  0.253 0.419 0.365
Mean bias -0.004 0,051 0.015 -0.051
Median abs. error 0.165 0.169 0.258 0.249
Median bias 0.004 0.052 -0.020 -0.065
Observations 386.0 269.1 386.0 269.1

Note: The true value of the constant is 1, and the true value of the
slope is 1. The simulation is performed for 3000 repetitions.

* Powell estimator.

® CQR-UCP estimator.
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TABLE IX

Monte Carlo Simulation for .50 Quantile Regression:
Fixed Censoring (po(X) =1°), 0 =4

CQR* UCP CQR* UCP®

Constant Slope

50 Observations:

RMSE 2.847 1.506 2.979 1.878
Mean bias -0.401 0.201 0.466 0.125
Median abs. error 0.667 0.634 1.000 0.816
Median bias -0.061 0.244 -0.046 -0.046
Observations 43.7 30.3 43.7 30.3
100 Observations:

RMSE 1.785 0.663 1.858 0.978
Mean bias -0.220 0.149 0.271  0.020
Median abs. error 0.465 0.446 0.751 0.608
Median bias -0.065 0.126 -0.047 -0.069
Observations 90.9 61.6 90.9 61.6
200 Observations:

RMSE 0.568 0.469 0.958 0.669
Mean bias -0.041 0.109 0.129 -0.024
Median abs. error 0.329 0.317 0.505 0.427
Median bias -0.012 0.100 0.012 -0.057
Observations 187.5 1244 187.5 124.4
300 Observations:

RMSE 0.433 0.391 0.716 0.536
Mean bias -0.029 0.081 0.065 -0.048
Median abs. error 0.266 0.262 0.404 0.353
Median bias -0.019 0.076 -0.003 -0.065
Observations 284.7 187.2 284.7 187.2
400 Observations:

RMSE 0.360 0.332 0.590 0.471
Mean bias -0.026 0.063 0.049 -0.042
Median abs. error 0.226 0.220 0.347 0.308
Median bias -0.026 0.066 -0.012 -0.057
Observations 381.9 249.5 381.9 249.5

Note: The true value of the constant is 1, and the true value of the
slope is 1. The simulation is performed for 3000 repetitions.
* Powell estimator.

b CQR-UCP estimator.
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TABLE X

Monte Carlo Simulation for .50 Quantile Regression:
Fixed Censoring (po(X)=14°%), 0=5

CQR* UCP® CQR* UCP

Constant Slope

50 Observations:

RMSE 4,667 3.187 4,140 3.126
Mean bias -0.685 0.238 0.555 0.294
Median abs. error 0.831 0.800 1.209 1.091
Median bias -0.110 0.386 -0.069 -0.002
Observations 42.3 28.0 42.3 28.0
100 Observations:

RMSE 3.455 1.075 2.587 1.351
Mean bias -0.321 0.217 0.311 0.068
Median abs. error 0.593 0.540 0.914 0.784
Median bias -0.083 0.204 -0.060 -0.074
Observations 89.2 57.6 89.2 57.6
200 Observaiions:

RMSE 2.107 0.591 1.757 0.832
Mean bias -0.201 0.141 0.175 -0.009
Median abs. error 0.422 0.409 0.647 0.537
Median bias -0.054 0.142 0.010 -0.062
Observations 183.6 117.2 183.6 117.2
300 Observations:

RMSE 0.619 0.482 0.983 0.679
Mean bias -0.069 0.105 0.082 -0.049
Median abs. error 0.344 0.331 0.527 0.464
Median bias -0.040 0.099 -0.054 -0.102
Observations 281.5 176.9 281.5 176.9
400 Observations:

RMSE 0.513  0.420 0.858 0.607
Mean bias -0.036 0.101 0.095 -0.028
Median abs. error 0.295 0.294 0.465 0.407
Median bias -0.019 0.110 -0.026 -0.073
Observations 377.1 237.7 377.1 237.7

Note: The true value of the constant is 1, and the true value of the
slope is 1. The simulation is performed for 3000 repetitions.

* Powell estimator.

® CQR-UCP estimator.
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Appendix—Proofs of Lemmas and Corollary

Proof of Lemma 1
Let

E(Zafyd) = DXI(X: € XA (r(X:) ((X) — Iew < 0)
Al(ﬂ'(Xg))D,'X,'I(X.' EX)- Az(w(m))D;X;I(X,' € X)I(eg < 0),

where A\ (7) = A(m)m, dy(w) = A(x), and # = 1 — (1 — 0)fx/A. We consider the asymptotic
distribution of

n"123 (2, f, )
=1
using Newey and McFadden (1994, Theorem 8.11). Because Assumptions ER and K are satisfied,

it suffices to show the existence of a vector of functionals Z(z, f, A) which is linear in f and A such
that:

A. For f and A with ||(f, 4) — (fx,Ao)|| small, there exists some b(z) such that
If(-’-,fa A) - E(Z,fX1A0) - E(Z,f - fX’A - AO)l = b(Z)"(f,A) - (szAO)Hz
with E[b(Z;)] < oo, where the norm ||y|| of v is defined as

[l7]l = sup |¥(=)|.
zeX

B. There exists ¢(-) such that
E(z, £, A)I < (NS D,

with E[|c(Z;)|?] < oo.

C. There exist 11 (z) and v;(z) with
EE(Zuf, 4] = [ (m(@)f() + n(2)A())da.

D. v; is continuous almost everywhere, [ |vj(z)|dz < oo, and there is € > 0 such that

E[sup |y;(X; +v)[*] <00, j=1,2.
bvi<e

If Conditions A-D are satisfied then we can write
n -~ -~
n2Y"¢(Z;,f, A) =
=1

n=/2 Y (€(Z, s o) + 14(X3) + 1a(X) Di — B () + 12(X:) D) + o5 (1)

=1
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To verify Condition A, we note that for a fixed Z;,
A = me) = (1= 0)te) (U — )+ (4= Ao)
s o (150) v sy
+ (A;-o-r) -0 8 ) (- s - a0

-6 n 1-6)*f2 2
+2(2A'(>‘ 2 A()( A—)")(»Ao),

for (f,A) on the line segment adjoining (fx,Ao) and (f,4), and 7 =1 - (1 - 6)f/A. Using the
fact that the first and second derivatives of A(-) are bounded and Ao is bounded away from zero
on X, we obtain

16(Z:, £, 4) = €(Zis Fx, Ao) — B(Zi, f — fx, A= Ad)| < CIXAll|(£, 4) — (fx, Ao)|?
for some constant C, and
E(z,f - fx,A—-Ao) =
—(1 - 0)Di X;I(X; € X) (M(ma(Xi)) — I(eas < 0)Xz(mo(X5))) E(l—)‘(:j (f(X:) - fx(X:))

fx(Xs)
A(X;) — Ao(X)))) -
L (4 - 40(X))
Since the first derivative of A(-) is bounded, Condition B is also satisfied.
To verify Condition C, notice that

+ (1 -0)D;X;I(X; € X) (Xl (7o (X3)) — I(es < O)Afo_ (me (X,)))

E[DiI(X; € X)X; (X, (mo(X5)) — I(ess < 0)X(mo(X2))) | X i =1

I(z € X)ho(2)X] (ms(z))z — I(z € X)X3(ms (<)) (ho(w) ~1+6)=
zl(z € X)ho(z)A(me(2))

p(=).

From the fact that

Bl(Z0 1, 4) = [ (-1~ ua) @ a) + (- O 2D

A3(=)

A(z)fx (z)) dz,

we obtain that

n(X;) = -(1-46) :(())({)) -(1- 0)X:I(X; € X)A(?i‘g(X.'))

and
pXs) o ,
) - ¢ ey

Consequently Condition C follows.

n(X:) = (1-6)

i))-
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Notice that Condition D is satisfied because X; has a finite fourth moment (Assump-
tion ER(vi)), A(-) is bounded, and ho(-) is bounded away from zero.
Note that since

D; — ho(X;)

E [1(X:) +»(X:)Di] = (1 - 6)E ho (X:)

X:I(X; € X)A('zra(X.'))] =0
we obtain that

n—1/2 zn:g(zu fa “i) =

=1
12y D; — ho(Xi)
1/2 ] o Di—ho(Xi) . .
n ;1 (f(Zufx,Ao) +(1-96) Fo (%) X;I(X; € X)A(qra(X,)) +0p(1),
from which the lemma follows. Q.ED.

Proof of Lemma 2

We first consider Y-, [Rn(Zi, %6, 7) — Ra(Zi, 76, 7))

Observe that

DI(X; € X) (W(Xg)[(eg,- —nY2xiryt ek (1 - 7(X:))[(eas —n V2 X!T) T — €] +T'C(Z,-,7r))
= DI (X; € X) (02 X7 — ) (I (0 < ess < n™1/2X[7) = I (n™2/2Xr < €6; < 0))
does not depend on 7, and is bounded by
n~Y2| X711 (|€oi| < n‘1/2|X£'r|) .
Thus, we may write
R,(Z;, %9, T) — Ru(Z:i, 79, T) = Sp(Z:, 7) [A(Fe(X:) — A(me(X5))],

where

Sn(Ziy7) = Dil (X; € X) ('n"l/zX,{'r - eg,')(I (0 < €g; < n'l/zXf‘r) -1 ('n“l/zXf'r < €g; < 0))

‘We then have
> [Ra(Zfa,7) — Balima, )| < Z 18a(Z2 )] - 1A (0(X3)) — Almo( X))
< sup[A(he) - A(me)] ; 154(Zi,7)]

IA

n
C sup |#g — 7] - E 15n(Z;i, 7)),
zeX

=1

where C is the bound of the first derivative of A(-).
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Note now that because
sup I'ira - 'n'al = Op(l),
z€X

by Newey and McFadden (1994, Lemma 8.;0), and because
|(Zi,7)| < n7V3 X (|€of| < n‘l/le,-"rl) )
it suffices to establish that
7/ ’Xﬂ: X711 (Jeas] < n=2/21X!r]) = Op(1).
=1

Let U; = | X!7| and let a,, = n~1/2, Then it suffices to show that

n—l/zzU;I (lesi] < anli) = Op(1).

=1

Notice that the family of functions UI(|e| < aU) indexed by a satisfies Pollard’s entropy con-
dition (See Andrews (1989)), and thus satisfies stochastic equicontinuity:

n"Y2 Y UL (Jes] < anlUil) = n2E(UL (Jesi] < anlUsl)] + 0p(1).

=1

Letting F,,(-|z) denote the conditional cumulative distribution function of € given X; = z, we
have

n 2SO (leail < enlUi]) = /B [|UL|[Fey (anlUi

i=1

Xi) - Feo("anIUil

Xi)]] + opl1)

= n'2a,9B[£,, (01X:)|X:| |Uil] + 05(1)
= 0p(1).
It follows then that the term
E [Rn(Ziv gy T) - Ru(Zh 7"017')]
=1

contributes 0p(1) to G, (T,7g).
Consider now the sum Y} %, Tn; = Y%, [Rn(Z;, 79, T) — E[{Rn(Z;, 7, 7)]]. Because of the can-
cellation of cross-product terms, we get

E[(ET) ] < 3 ElRa(Z e,

=1

IA

E [|x‘,br|21 (leail < n-1/2|x,!r|)]
= o(1).

Thus, the term Y%, T,,; also contributes 0,(1), and the conclusion follows. Q.E.D.
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Proof of Lemma 3

The arguments made in this Appendix are similar to Pollard’s arguments in Pollard (1991,
Theorem 1, p.192)). We present this lemma for completeness since minor changes are made.

The proof uses the following definition of norm || - ||:

Definition (norm): Let t € R* and let J be a matrix of suitable dimensions. Then, || ¢ ||= t'Jt.
Given this definition we can write

. 1
Gu(r®) =5 |7~ |* =5 | 2a ¥ +ra(7),

[T

where for each compact set T C R¥,
sup || ra(7) [|= op(1).
T€T
We need to show that for each € > 0
Pr{|| n —mm ||> €} — 0.

This is a consequence of two elements: (a) the convexity of Gy; and (b) the behavior of 7, in a
small close neighborhood of 7,.

Let B(n) denote the closed ball (with respect to the norm || - ||) with center 7, and radius
€. Because 7, converges in distribution, it is stochastically bounded. The compact set T can be
chosen to contain B(n) with probability arbitrarily close to one, thereby implying that

Ap= sup || ra(7) ||= 0p(1).
T€B(n)

Now consider the behavior of Gy, outside B(n). Suppose 7 = ny, + pv, with 4 > € and v a unit
vector (with respect to the || - || norm). Define 7* as the boundary point of B(n) that lies on the
line segment from 7, to 7, that is, 7* = 5, + ev. The convexity of G, and the definition of A,
imply

% (7) + (1-%) Ga(tn) 2 Galr")

1 2 1 2
> = -—— -—
1 2
Z 56 - Gn(‘!],‘) . 2An.

This last expression does not depend on 7. It follows that

. . . Bl ]
> n +=|= _ 2A .
Ilr_ln,.nf]bc Gn(7:%6) 2 Gn (1, 7o) € [25 "

When 24, < %ez, which occurs with probability tending to one, the minimum of G,, cannot occur
at any 7 with || 7 — 9, ||> €; thus with probability tending to one, || T — 7, ||< € as required.
Q.E.D.
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Proof of Corollary 1 i
It follows from Theorem 1 that the asymptotic covariance for 4 is given by

Qg = Va(3) = JTIE(W:W})J !,

where

D; — ho(X5)

Wi = I(X: € X)A(me(X:)) [D.- (me(X:) — I(€es < 0)) + (1 - 6) Fo(X:)

x
and
J=E[I(X; € X)A(me(X:))feo (0| Xi)XiX]]
Note that by the law of iterated expectation
E(W;W]) =E [E (W;W] | Xi,7(X:) > 0)] .
We will first compute the inner expectation in (24):
E (W,;W! | X;,me(X;) > 0)
= X;X!I(X; € X)A(me(X5))

E [(D{ (7 (Xi) — I(egi < 0))+ (1 — G)P:;M

ho(X:)
= X;X!I(X; € X)A(me(Xi)) [Va.r (D; (me(X:) — I(eai < 0)) | Xi, ma(X5) > 0)

D; - ho(X3)
ho(X;)

)2 | X, me(X:) > o]

+Var ((1 _6) | Xi,me(X:) > o)

D; — ho(X)

+2Cov (D,' (me(X;) — I(eqi < 0)),(1-9) ‘ho(X,') X, me(Xi) > O)]

= X:X!I(X; € X)A(me(X:)) (Vi + Vo + 2CV),

where
V1 = Var (Di (me(Xi) — I(ess < 0)) | X, me(X5) > 0) ,
V; = Var ((1 - o)-’i‘-h‘;(";é—)x‘) Xiyme(Xi) > o)
and
CV = Cov (D,- (me(X;) — I(es; < 0)),(1 - O)Pﬁ%sx—’) X, me(X;) > 0) .
Recall that

ho(X:)=Pr(D; =1| Xi = X;)

and note that
76(X;) >0 if and only if ho(X;)>1-6.
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(24)

(25)

(26)

(27)

(28)



Using these facts, V4 in (26) can be rewritten as

Vi = E[D;(me(X:) - I(eai <0))*| Xirho(X:) >1- 6]
= E|(me(X:) - I(eo: < 0))* | Xiyho(Xi) >1-6,D; = 1] Pr(D; =1 X, ho(X:) > 1-6)

= Var(I(eg < 0) | Xiyho(Xi) >1-60,D; =1) ho(X:)
ho(Xs) — (1 -6)

Similarly V3 in (27) can be rewritten as
_ -y | X 3 >1—
Vo = (ho(xi))ZVar (D; | Xiy ho(X3) >1-6)
_ _ 2 1- hO(Xt)
= (1-6) (X)) (30)
For the term CV in (28) we have
OV = E[(1-8)D:(me(X:) = I(eos < 0)) 2P )y x> 1- o]
ho(X;)
x Pr(D; =1| X;,ho(Xi) >1-6)
= (1- G)ME[W (X:) — I(egs < 0) | Xi,ho(X;) > 1 — 6] ho(X:)
ho(X,) 6\ A 61 1) ! i
= 0. (31)
Substituting equations (29), (30) and (31) into (25) yields
E [W‘W: | Xi,me(Xi) > 0] =0(1 - G)X;X,!I(Xg € X)A (m(Xi))
and therefore for E(W;W]) in (24) we have
E(X;X!) = 6(1 - 0)E [ X; X[I(X; € X)A(me(X;))] = 6(1 — 0)A,
where
A=E [I(X; € X)A(WQ(X"))X;X:] .
For the variance of Jg in (23) we have finally
Q=001-6)J1AJ7L.
Q.E.D.
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