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Abstract

We prove that a “nondegenerate” m X n coordination game can have at most 2™ —1
Nash equilibria, where M = min(m,n).

1. Introduction.

In Quint-Shubik (1994), we conjectured that a “nondegenerate” n X n bimatrix game
could have at most 2® — 1 Nash equilibria. In this paper we prove a generalization of this
result for a special class of bimatrix games. In particular, we show that a “nondegenerate”
m X n coordination game (i.e., a bimatrix game in which the payoff matrices for the two

players are identical) can have at most 2™ — 1 Nash equilibria, where M = min(m,n).?

2. Background.

Let there be two players in a game, denoted by I and II. Player I has m pure strategies

at his disposal, denoted by I = {1,...,m}, while II has pure strategy set J = {1,...,n}.

A mixed strategy for player I is a row-vector p of the m — 1-dimensional simplex P, in

which p; is interpreted to be the probability that he plays pure strategy 7. Similarly, the
set of mixed strategies for II are the column-vectors ¢ of the n — 1-dimensional simplex Q.
Given p € P, define the support of p, or supp(p), to be the set {i € I : p; > 0}, and define
supp(g) for ¢ € Q similarly. Finally, denote by €' the mixed strategy in which I plays &
with probability 1, and by e’ that in which II plays j with probability 1.

We are also given two m X n matrices A and B, where a;; and b;; represent the payoffs

! The authors wish to thank Dicky Yan for supplying a2 missing step in one of the proofs.

? When we consider the class of all bimatrix games, there are two extreme cases. They
are games of coordination (where payoffs for the two players are identical) and zero-sum
games (where they are diametrically opposed). It is well known that any “nondegenerate”

zero-sum game has exactly 1 Nash equilibrium.
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for players I and II respectively, if I plays mixed strategy e and II plays e’. Hence, if I
chooses mixed strategy p € P and II chooses ¢ € Q, the expected payoff for I is pAg, while
that for II is pBq. Since the two payoff matrices are sufficient to define a bimatrix game,
we shall use the terminology “bimatrix game (4, B)”.

Given ¢q € Q, p* is a best response for I against ¢ if p* Ag > pAq Vp € P. Similarly, ¢*
is a best response for II against p if pBg* > pBq Vg € Q. Denote by R;(g) the set of all

best responses for I against ¢, and by R;;(p) the set of all best responses for II against p.

A Nash Equilibrium (NE) (Nash, 1950, 1953) is a pair (p*,¢*) € P X Q where p* € R;(q)
and ¢* € R/ (p*).

In order to aid us in finding NEs, let us define the sets R;(g) and R;;(p) as follows:
Ri(g) ={i€l:eAqg> e AqVke I} and R;;(p) = {j € J : pBe’ > pBe* Vk € J}.
In words, R;(g) is the set of best pure strategy responses for I against ¢, while 2 similar
interpretation holds for R;;(p). The following Lemma is then readily apparent (see, e.g.,
Shapley (1974) or Jansen (1981)):

Lemma 1: A mixed strategy pair (p,q) is a NE of bimatrix game (A, B) iff supp(p) C

R:(q) and supp(q) € R::(p)-

In our upcoming analysis we will want to avoid having to consider the “degenerate”
class of games in which there is an infinitude of NEs. To this end, we mention a version

of the nondegeneracy assumption from Quint-Shubik (1994):

Nondegeneracy Assumption (NA): If p € P satisfies |supp(p)| = z (the | | notation

denotes the cardinality of a set), then there are no more than z pure strategy best reponses
for II against p. Similarly, if |supp(q)| = 2z, we have |R;(¢)| < 2.

Not only does the NA assure the existence of only a finite number of NEs, but we also
have the following:

Lemma 2: Suppose the NA holds, that (p, ¢) is a NE, and that |supp(p)| = z. Then

a) [supp(g)| = 2



b) supp(p) = R:(qg)

c) supp(q) = Rr:(p)
d) For any other NE (p?, ¢%), either supp(p?) # supp(p) OR supp(q?) # supp(q).

3. Coordination Games and the Theorem.

A coordination game is a bimatrix game in which A = B. Since in this case only one

matrix is needed to define the game, we use the terminology “coordination game A”.
Theorem: Suppose a coordination game satisfies the NA. If (p',¢') and (p?, ¢?) are

distinct NEs of the game, then a) supp(p') # supp(p®) AND b) supp(q*) # supp(q®).
Remark 1: We remark that the Theorem is not necessarily true for bimatrix games

which are not coordination games. For instance, in the game

((4,4) (0,3) (2,2) (0,1)>
0,00 (2,1) (0,3) %))’

there are three NEs in which Player I uses both pure strategies with positive probability:

pl = (%’7%)aql = (é,gaoso)'
P2 = (;_) %)aq‘z = (0) ;_) %,0).
ps = (%’%)’ q3 = (any g’%)'

Next, since there are only 2™ — 1 possible “supports” for a mixed strategy p, and
2" —1 for ¢, we haye the following:

Corollary: Suppose an m X n coordination game satisfies the NA. Let M = min(m,n).
Then the game has no more than 2 — 1 NEs.

Remark 2: It is easy to construct examples of coordination games A which achieve
the bound expressed in the Corollary. Indeed, if m < n (so M = m), define A by letting its
first m columns define an identity matrix, and then judiciously add dominated strategies®

to fill in the last n —m columns. Likewise, if m > n, again place an M X M identity matrix

in the upper left, but now add m — n dominated rows.

3 This must be done so as not to violate the NA.



Remark 3: In Eaves (1971), it was shown there is a one-to-one correspondence between

NEs of coordination game A and solutions to the linear complementarity problem (LCP)

0 A+ Kk E —1,,
Iz_(AT—kgE +01 >y=(1 )amy:O,m,yZO-

[I is the identity matrix, E is the matrix of all 1’s, k; and k, are constants so that
A+kiE>0and AT —k, E <0, and 1,, (1,) is the m-vector (n-vector) of all 1’s.] Hence
our Theorem places an upper limit of 2 — 1 on the number of solutions to LCPs of a

certain class in which the “M-matrix” is of dimension (m + n) x (m + n).

Proof of Theorem: We prove conclusion a) of the Theorem (the proof of part b)
is similar). So suppose a) were false for some coordination game A. Since raising all
coefficients of a bimatrix by the same amount does not change the set of NEs, we may
assume A > 0. Let A; denote the jth column of A, and A’ the ith row. Since we
are assuming the Theorem false, there exist two NEs, (p',q¢') and (p?,¢?), for which
supp(p') = supp(p®). WLOG assume |supp(p*)| = |supp(p®)| = 2. By relabeling if
necessary, assume supp(p') = supp(p?) = {1,..., 2}, i.e., both NEs “use” the first z rows.

From the NA, the fact that (p',¢') and (p?, ¢°) are NEs, and the fact that A > 0, we

know that there exist positive constants s,¢,u, and v satisfying

p'A; = sif 5 € supp(q') (3.1)
p'A; <sif 5 ¢ supp(q') (3.2)
p’A; =tif j € supp(q?) (3.3)
PPA; <tif j & supp(q®) (34)
Ag =uforiel,..,z (3.5)
Agd =vforiel,..,z (3.6)

Next, we note that the NA implies that |supp(q')| = |supp(¢®)| = 2. By relabeling

columns if necessary, assume supp(q') = {1,...,z} and supp(¢®) = {w+1,...,w+2}. [The
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index w cah take on any value from 1 to n — z, but cannot take on the value 0 because
of the NA.] Define the z X z matrix C as the submatrix of A defined by rows {1,...,2}
and columns {1, ..., 2}, i.e, the submatrix defined by the rows in supp(p') and the columns
of supp(q'). Similarly, define the z X z matrix D as the submatrix of A defined by rows
{1,..., 2z} and the columns of supp(¢g?). Note that C and D will share exactly z—w columns
if w < 2z, and none otherwise.

We denote by C; the jth column of C, i.e., the first z elements of A;. Similarly, D;
denotes the jth column of D, i.e., the first z elements of A, ;. Hence, if w < 2, we have
Cuo+j=D;forj=1,..,2—w.

Claim: Matrices C and D are nonsingular (hence, C~! and D~ exist).

Proof of Claim: We prove the Claim for C; the proof for D is similar. Suppose C were

singular. Then there exist constants a;,..., a,, not all zero, such that «; C; +...+a,C, = 0.
Furthermore, since C > 0, at least one of the «;’s is positive and at least one is negative.

Given NE (p',¢'), define a new mixed strategy ¢'* by

s _ { 3’—;—*'5 if 5 € supp(q') = {1,...,2};
% = .
0 otherwise,

where N is a large finite number, and Z =3, ou (@} + %) =1+ ;’—E—‘I’%il—ﬁ’— is a
normalizing constant. Since at least one «; is positive and at least one «; is negative, we
note that (o, ...,,) is not a multiple of (g?,...,q!), and so ¢** is distinct from ¢*.

Now considler the pa.ir (p',¢'*). The support of ¢'* is the same as that for ¢!, so, since
supp(q') € Ry (p'), we have supp(q**) C R;;(p'). Furthermore, by the construction, all
pure strategies iré supp(p') pay off the same for Player I against ¢'*, so, if N is sufficiently
large, they all will be elements of R;(g'*). [This holds because they all were elements of
R:(g'), and, if N is large, ¢'* is very close to ¢*.] Hence, (p*,¢**) is also a2 NE.

However, the:fact that (p',¢') and (p',¢'*) are both NEs is a contradiction of the

NA, because of Lemma 2, part d).

Define §* as the z-vector consisting of the 2 (nonzero) components of p!, i.e., p! =
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(pt,...,p!). Define §? similarly. Finally, define §* and §* as the z- vectors consisting of the
z nonzero components of g' and ¢* respectively.

Using the notation described above, we may rewrite conditions (3.1)-(3.6) as follows

P1C = (s,...,8) = ' =(5,...,8)C™* (3.7

. = if 7 2 — d w < 2);
‘D-{ s ifjel,.,z—w(an ; 38
PYi1<s  otherwise. (3-8)
P°D=(t,..,t) =P = (¢t,..,t)D"! (3.9)

R = if 5 dw < 2);
QC'{ t fjew+1,..,2(an ; 3.10
Pt <t otherwise. ( )
C§ = (t,eyu)” = §' =C 1 (u,...,u)” (3.11)
D@ = (v,...,v)" = §® =D *(v,...,v)" (3.12)

Now, since ¢! is a positivé probability vector, we have §; € (0,1] for y € 1,...,2.
Substituting using (3.11), we have that C; *(u,...,u)” € (0,1] for 7 = 1,..., 2. Since u > 0,
this implies that the row sums of C~! are all positive. A similar argument using §* tells
us the same thing about D~!; hence we have shown

Proposition: The row sums of C~! and D~! are all positive.

Next, substituting in (3.8) using the expression for ' found in (3.7) gives

(s, ..., 8)C~* D; {= s Hj€l.,z—w (and w < 2);
< s otherwise.

This in turn implies (I represents the identity matrix)

~cip_m [=0 ifjel,.,z—w (and w < 2);
[(s, ..., 8)(C™D D), {< 0 otherwise.

Finally, since s > 0, this gives

- =0 ifjel,..,z—w(and w < 2);
'D-1T { JE L ; 3.13
(3, 1)(C )l <0 otherwise. (3.13)
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Similarly, substituting (3.9) into (3.10) gives

=t fjew+1,..2(and w < z);

i ... -1 {
(..} D77 C; <t otherwise.

which implies

cip oy [=0 ifjew+1,..,z (and w < 2); 314
(T, 1)(D77C I)]’{<0 otherwise. (8.14)

Note that in both (3.13) and (3.14), the strict inequality holds for at least one j, because
w # 0.

The Theorem will now be proven if we can show that (3.13) and (3.14) are inconsistent.

To this end, we note that (3.13) implies that

=0 ifj€el,.,z—w(and w < 2);

1-[(1,..,1)C~'D { ;
| ) l >0 otherwise.

Next, by the Proposition we know that the row sums of D~ ! are positive; hence, the vector

D~1(1,...,1)7 has all positive components. Hence
(,..,1)—(@,..,1)C"'D] x D™(1,...,1)T >0,

which gives
(1,..,1)D7'(1,..,1)" —(1,..,1)C(1,...,1)" >0. (3.15)
Similarly, starting with (3.14), we have

1-1(,...,1)D"1C], { =0 ifje W1z (and w < 2);
>0 otherwise.

Again, by the Proposition we know that the row sums of C~! are positive; hence, the

vector C~1(1,...,1)7 has all positive components. Hence
a,...,1) - (1,..,1)D-'C] x ¢ (1,..,1)T >0,

which gives

(1,..,1)C7*(1,..,1)T —(1,..,1)D"'(1,...,1)T > 0. (3.16)
Indeed, inequalities (3.15) and (3.16) are inconsistent.
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