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A MODEL OF MIGRATION

Thomas Quint and Martin Shubik

ABSTRACT

A simple game-theoretic model of migration is proposed, in which the
players are animals, the strategies are territories in a landscape to which
they may migrate, and the payoffs for each animal are determined by its
ultimate location and the number of other animals there. If the payoff
to an animal is a decreasing function of the number of other animals
sharing its territory, we show the resultant game has a pure strategy Nash
equilibrium (PSNE). Furthermore, this PSNE is generated via “natural”
myopic behavior on the part of the animals.

Finally, we compare this type of game with congestion games and poten-
tial games.

1 Introduction

In this paper we consider a special class of noncooperative games, in which space —
the ability of individuals to see and to move distances — influences players’ strategies,
and crowding on the same piece of land influences their payoffs. The class of games we
propose is somewhat related to, but different from, the congestion games/potential
games ([1], [2]), which have already been studied. We first present a heuristic sketch
and then the formal model.

We begin with a landscape consisting of a set of territories, together with a popu-
lation of animals. Each animal’s movement is limited to some subset of the territories.
The payoff obtained by any animal is a nonincreasing function of the number of ani-
mals in the territory to which it finally migrates. Intuitively, it would seem possible
that the animals could keep moving without ever achieving an equilibrium state.
However, we are able to show that even under these mild assumptions a pure strat-
egy Nash equilibrium (PSNE) exists, and that it can be achieved by a best response
sequence of moves by the animals.

As we regard many of the more interesting questions concerning the spread of
population as involving dynamics, we are concerned with the possibility of isolating
classes of games for which one can show that there is a reasonably natural disequilib-
rium dynamic which converges to an equilibrium. In Remark 2 of Section 4, we argue



that our model is such a class. So far as we know, the only other such class is the
aforementioned Monderer—Shapley potential games. Hence we devote a significant
portion of the paper (Section 5) toward comparing the two classes of games. We find
there is overlap, but that neither class contains the other.

Finally, we remark that at the level of generality utilized here, we are essentially
treating space as a network of nodes connected by arcs. However, we do not yet
impose a distance metric. On the other hand, our main result is concerned with situ-
ations in which more crowding is always less desirable than less crowding, and there
is only one species. Certainly, models of interspecies competition, especially those
involving predator—prey relationships, would violate these assumptions. Perhaps re-
sults concerning such models could be obtained if one limited oneself to games where
some distance metric is present.

2 Background: Potential games and congestion games

We first review the theory of potential games as presented in Monderer and Shapley
[1]. Let T' = (N,{X%}, H) denote a game in strategic form with the finite player
set N = {1,...,n}, pure strategy sets X%, i € N, and payoff functions H* : ¥ — R,
i=1,..,n. Let ¥ = 3! x ... x ¥, o denote a generic element of ¥, and define the
notation ol;d to mean the element of ¥ in which the players play according to o,
except i@ plays d. A pure strategy Nash Equilibrium (PSNE) is an element o € ¥ for
which H*(¢) > H%(o|;d) for all i € N and d € X°.
An ezact potential for I' is a function P : ¥ — R in which

P(olid) — P(o) = H'(0]id) — H'(0) (1)

holds for all ¢ € ¥, i € N, and d € ¥*. An ordinal potential for T is a function Pin
which

sgu[P(cid) — P(0)] = sgn[H'(c|id) — H'(0)]

holds for all 0 € ¥, i € N, and d € X¢, where sgn(z) denotes the sign of x, namely,
+1, —1, or 0.

A game admitting an exact (resp., ordinal) potential function is called an ezact
(resp., ordinal) potential game. Tt is clear that the class of exact potential games is
a proper subset of the class of ordinal potential games.

Given game I', an improvement path is a sequence o1, ..., 0, of elements of X, in
which one player at a time (in any order) changes to a better strategy. Thus, if o,
and 0,1 are consecutive in the sequence, then,for some i € N and d € X,

Opi1 = (04id), and H' (04y1) > H'(0).

A game in which all improvement paths are finite in length is said to have the
finite improvement path (FIP) property.

Theorem 1 (Monderer—Shapley) FEvery ordinal (and hence every exact) potential
game a) has the FIP property, and thus b) has a PSNE.



Finally, a congestion game [2] is defined as follows: There are given a finite player
set N and a finite set F of facilities. Associated with each facility f € F' is a real-
valued function ¢y, depending only on the number u; of users of f, and interpreted
as the benefit per user of the facility. No requirements are placed on the functions
cy.

The strategy set for each player is a given set of elements of 2f, i.e., each player i
chooses a set F*(C F) of facilities he will use. Given F!, ..., F™ the number of users
of facility f is given by

up(F, ..., F")=|i€ N: f € F|.

Hence, the payoff for player i, given strategies F', ..., F™ are chosen, is

HY(F',. F*) = cp(up(F', ..., F™).
fEF!

Theorem 2 (Monderer—Shapley) The class of congestion games coincides with
the class of exact potential games.

3 The migration model

Consider a landscape on which live a set N = {1,....,n} of animals. The landscape
itself is partitioned into a group of territories T = {T'1,...,T¢}. Due perhaps to its
initial location (or other physical factors), animal ¢ has a set m(i) C T of feasible
territories to which it may migrate. These will be its strategies in a game theoretic
sense. Define 7 = m(1) x ... x m(n), and let 7 be a generic element of 7.

The object for each animal is to try to migrate to a feasible territory it thinks
“best.” Two factors determine the desirability of a territory: physical features of
the territory and the number of other animals present there. To this end, define the
payoff function h by: h(i,t,k) is the payoff to animal ¢ if it migrates to territory ¢,
and there is a population of k animals there (including itself).

Given 7 = (t!,...,t") (for which #' € m(i) for all i), we define the integer-valued
function u(7) by w(1) = |i € N : t* = t|, t € T. Hence, the t-th component of u
gives the number of animals that migrate to territory ¢, given that the animals use
strategy vector 7. It follows that if strategy vector 7 is chosen, the payoff to animal
i is then HY(7) = h(i,t*,uy(1)).

The quantities (N,7,m,h) are sufficient to define a migration game. This is a
noncooperative game in which the player set is IV, the strategy set for each animal
is its set of feasible territories, and the payoffs are given by H.

A pure strateqy Nash equilibrium (PSNE) is a strategy vector 7 = (¢!, ...,t") for
which HY(1) > H'(7|;t) for all i € N and t € m(i), where the strategy vector 7|;t is
defined as T, except that i moves to ¢ instead of ¢*. This corresponds to the usual
definition of PSNE for a noncooperative game, with the usual justification in terms
of stability.



4 The theorem

Theorem 3 Suppose that in a migration game the function h(i,t, k) is nonincreasing

in k for all i,t. Then the game has a PSNE.

Remark 1 The assumption concerning A is natural if the animals are competitors
— the more competitors there are on a particular piece of land, the worse it is for
each particular one of them. For this reason, we call a migration game which satisfies
this assumption a competitive migration game (CMG).

Remark 2 We feel that the proof below gives a process by which animals might
naturally arrange themselves so as to forma PSNE: The animals arrive into the land-
scape one by one. Each time an animal is introduced, it immediately heads for its
most desired territory, given the distribution of “older” animals. This perhaps pro-
duces a “ripple effect,” by which the older animals adjust to the new arrival, until a
new PSNE is reached. The situation is then stable until the next animal arrives, etc.

Remark 3 We remark that since the result is concerned with pure strategy Nash
equilibria, the function h need only be defined ordinally in order for the PSNE ex-
istence result to hold. In this case, the “competitive” assumption is simply that, if
k1 < ko, any animal ¢ prefers going to territory ¢ with k; animals there over going to
territory t with ks animals there.

Proof of Theorem 3 We consider an induction on the number of animals n (for
any ¢). If n = 1, the conclusion is obvious. For arbitrary n, the induction hypothesis
tells us that we may place animals 2,...;n so as to form a PSNE. Do this. Suppose
this PSNE places k; animals in territory ¢, t = T1,...,7¢. Now place animal #1
so as to maximize its payoff, i.e., into the territory which maximizes h(1,¢,k; + 1)
over t € m(1). Call this territory t'. Now, for animals not in ¢!, the placement of
animal #1 in this way has only the effect of making t' seem no more desirable to
them (because h is nonincreasing in k). Hence, if the n-animal arrangement is not a
PSNE, it must be that some animal (not #1) in ¢! has incentive to move. Pick any
such animal, and label it as #2.

Since #2 has incentive to move, it must be that the argmax of h(2,¢,k; + 1)
over t € m(2) is not t!. WLOG suppose that it is t2, and now move #2 from t!
into t?, creating a new arrangement of the n animals. Is this new arrangement a
PSNE? First, it is clear that any animal not in ¢! or #* will have no reason to move.
Second, no animal left behind in ¢! will have reason to move — #1 because it chose
t! and #2’s departure only strengthens that choice, and all other animals because
the original n — 1-player game PSNE has essentially only been altered by adding an
extra player to t2. Hence, if the arrangement is not a PSNE, it must be that some
animal (not #2) in #2 now has incentive to move. Pick any such animal, and label it
as #3.

Continuing this process, we see that in each iteration there is one animal that
moves, and that in each case the “mover” i moves so as to maximize h(i,t,k; + 1)



over m(i). Hence it is impossible for any player to be the “mover” more than once.
Because Nis finite, this in turn implies that the process must terminate. Since the
process can terminate only at a PSNE, the Theorem is proven. O

5 Comparison with potential games

It seems apparent that the class of CMGs should be intimately related to that of
ordinal/exact potential games. Our first result reflects the fact that the only sense in
which CMGs are more general than congestion games is that players are permitted
to have different utility functions:

Lemma 1 Suppose in a CMG that h is invariant under changes ini. Then the game
18 a congestion game.

Proof Follows from the definitions.

A different class of CMGs are those in which h is invariant as a function of ¢; this
is the situation in which the territories themselves are, for all intents and purposes,
identical. In this case, it is easily seen that the set of PSNEs will be a symmetric set,
consisting of all strategies which send to each territory either |%] or ||+ 1 animals.
In particular, there will be a unique PSNE payoff! in the case where n is divisible by
L.

Next, we move back to the study of general CMGs. We show via three examples
that there is no obvious relation between CMGs and potential games.

Example 1 An ezample of a congestion game which is not a CMG. Let N = {1, 2},
and let F' = {a,b,c,d}. Player 1 has two strategies, namely to use facilities a and b,
or to use facilities ¢ and d. Player 2 also has two strategies, using facilities a and d,
or using b and c. The benefits are given by:

Facility a Facility b Facility ¢ Facility d
1 User 6 5) 4 6
2 Users 2 0 2 4

This gives rise to the strategic form game

Strategy a—d Strategy b—c
Strategy a-b (7,8) (6,4)
Strategy c¢—d (8,10) (8,7)

!There will be n!/[(n/£)']¢ such PSNEs, each with the same payoffs.



Is this a CMG? Well, we have 2 players and 2 strategies for each player. Suppose
WLOG that animal #1’s strategies (in an equivalent CMG) are to go to Territory 1
or Territory 2. Then it must be that #2’s strategies must also be to go to Territory 1
or 2 — otherwise, if #2 could go to some third territory (say Territory 3), its payoff
would be the same no matter what #1 did. But this is impossible because all 4 of
its (= #2’s) payoffs are different.

Hence, if this is to be a CMG@G, it must be that there are two territories, call them
T1 and T2, and both animals may migrate to either territory.

In addition, since “10” is the highest payoff for #2, it must be that this occurs
when #1 goes to one territory (say 7'1) and #2 goes to the other (72). Hence
h(1,71,1) =8 and h(2,72,1) = 10. This partial knowledge concerning h is displayed
diagramatically as:

T1 (k=1) T1(k=2) T2(k=1) T2 (k=2)
Animal #1 8
Animal #2 10

Now, when #2 switches strategies, the payoff is (8,7). Hence we have

T1 (k=1) T1(k=2) T2(k=1) T2 (k=2)
Animal #1 8 8
Animal #2 7 10

And, if instead #1 switches strategies, the payoff is (7,8). So we have

Ti(k=1) Ti(k=2) T2(k=1) T2 (k=2)
Animal #1 8 8 7
Animal #2 7 10 8

Finally, if #1 goes to T2 and #2 to T1, the payoff is (6,4), giving

T1 (k=1) T1(k=2) T2(k=1) T2 (k=2)
Animal #1 8 8 6 7
Animal #2 4 7 10 8

This is a contradiction because the nonincreasingness of h as a function of k is
violated.

Example 2 An example of a CMG which violates the FIP property. Let n =0 = 3,
with m(z) = {T1,72,T3} fori = 1,2,3. The function h is given by:
T1 T2 T3
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

Animal #1 1 1 0 4 1 0 3 2 1
Animal #2 | 4 2 1 3 3 0 2 2 2
Animal #3 | 5 4 0 3 2 0 6 3 2

This gives rise to the game in strategic form below:



=T1 t*=T2 t*=T3

tt=T1[ (0,1,0) (1,3,4) (1,2,4)

B3=T1 t'=T2| (42,/4) (1,35) (4,2,5)
tt=T3| (3,24) (3,3,5) (2,2,5)

=T1 t*=T2 3=1T3
tt=T1 (1,23) (1,3,2) (1,2,3)
t?2=T2 t'=T2| (14,2) (0,0,0) (1,22
tt=T3| (343) (3,3,2) (2,2,3)

=T1 t*=T7T2 t3=T3
=T1| (1,2,6) (1,3,6) (1,2,3)
t3=T3 t'=T2| (44,6) (1,3,6) (4,2,3)
=T3| (24,3) (2,3,3) (1,2,2)

Note that there are two PSNEs here, which pay off (4,4,6) and (3,3,5). But
suppose we start at the outcome in which Animals #2 and #3 choose to migrate to
T'1, while Animal #1 goes to T2. This gives a payoff vector of (4,2,4). Now consider
the following improvements in order:

a) Animal #2 switches to T2 (from T'1), yielding payoffs (1, 3,

b) Animal #3 switches to T3 (from T'1), yielding payoffs (1,3

¢) Animal #1 switches to T'3 (from 7'2), yielding payoffs (2,3

d) Animal #2 switches to T'1 (from 7'2), yielding payoffs (

e) Animal #3 switches to T'1 (from 7'3), yielding payoffs (3

f) Animal #1 switches to T2 (from T'3), yielding payoffs (4,2 4)

It is easily seen that this cycle repeats endlessly, and so we have violated the
FIP property. Furthermore, we note that at each stage of the cycle, the switching
animal is playing a best response against what the others are doing — so in fact
this example violates a weaker version of the FIP property, which we would call the
“Finite Best-Response Improvement Path” (FBRIP) property.

Example 3 An example of a CMG which is an ordinal potential game but is not
an exact potential game. Let n = ¢ = 2, with m(i) = {T'1,T2} for i = 1,2. The
function h is given by:

1(k=1) Tl1(k=1) T2(k=1) T2 (k=2)

Animal #1 5 2 7 2
Animal #2 2 2

W
ot

This gives the strategic form game

=T1 (2_,2) (
t2=T2| (74) (2,2)




If we define P by: P(T1,T1) =0, P(T1,72) =1, P(T2,T1) = 1, and P(T2,12) =
0, we find that P is an ordinal potential,and so the game is an ordinal potential game.
However, suppose there is an exact potential P for this game, given by P(T1,71) = w,
P(T1,T2) =z, P(T2,T1) =y, and P(12,72) = z. Using (2.1) four times, we have
r—w=3,y—w=2>5,y—z=2,and x—z = 3. These four equations are inconsistent.

6 A question of order

We might wonder whether or not all PSNEs of a CMG can be found in the manner
described in Remark 2 of Section 4, possibly by introducing the animals in different
orders. The answer turns out to be negative. For instance, in Example 2 we may
verify that the procedure produces the PSNE paying off (4,4,6) no matter which of
the six orderings of animals is used. [The equilibrium paying off (3,3,5) is never
reached.] On the other hand, lest we believe that the same PSNE is always reached
using any ordering, consider Example 3. Here, if the ordering is (Animal #1, Animal
#2) we get the PSNE paying off (7,4); while, if the ordering is (Animal #2, Animal
#1), the other PSNE (paying off (5,5)) is attained.

We further note in this last example that Animal #1 gets a payoff of 7 from
the PSNE when it is first in the ordering, and a payoff of only 5 if it is second.
Similarly, #2 earns more in the case where it is first. This may cause us to wonder
whether there is a theorem stating that an animal’s payoff from a resultant PSNE
is a nonincreasing function of its “lateness” in the ordering.? This is in fact true in
the case where h is invariant as a function of ¢, if we assume that animals randomly
choose among territories that appear equally attractive to them. In expectation,
the first [ * int(n/¢) animals all do equally well, and better than the last n (mod ¢)
animals in the ordering. In general, as the following example shows, the answer is
again negative:

Example 3 n=/{¢=3, m(i) = {T1,72,T3} for i = 1,2,3, and h is given by:

T1 12 T3
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
Animal #1 | 3 1 0 0 0 0 2 0 0
Animal #2 | 3 1 0 2 0 0 0 0 0
Animal #3 | 3 1 0 2 0 0 0 0 0

If the animals are introduced in the order (Animal #1, Animal #2, Animal #3),
we can see that the PSNE generated is the one which places Animal #1 in T'3, Animal
#2 in T2, and Animal #3 in T'1. On the other hand, if the ordering is (Animal #1,
Animal #3, Animal #2), the procedure generates the PSNE where Animal #1 goes
to T'3, Animal #2 to T'1, and Animal #3 to T2. Hence, as far as Animals #2 and #3

?This is in fact true in the case where h is invariant as a function of ¢ , if we assume that animals
randomly choose among territories that appear equally attractive to them. In expectation, the first
£ xint(n/f) animals all do equally well, and better than the last n (mod ¢) animals in the ordering.



are concerned, (given Animal #1 is to be first), it is better to be last in the ordering
rather than second.

7 Some thoughts on generalizing the model

One might envision a dynamic generalization of the model as follows. Again, the set
of animals is N = {1,...,n}, and the set of territories is T' = {T'1,...,T¢}. Initially,
animal 7 is located in territory I(i), ¢ € 1,...,n.

Given it is in Territory ¢, the set of territories to which animal i is able to move,
in one time period, is given bym(i,t). We assume ¢t € m(i,t) for all 7 and ¢, as it is
always feasible for an animal to stay put. In addition, we would define the function
s: N xT — T, where s(i,t) gives the set of territories that animal ¢ can “see,”
given it is in territory ¢. The idea is that an animal might see a particularly desirable
place, to which it can’t migrate in one period,but to which it can plan to arrive after
a longer spell. In general, we might expect m(i,t) C s(i,t) for all i and ¢.

The payoffs for animal i are given by the sum Y, h(i, 1%, ki ), where t} is the
territory ¢ is in during time period x, kg is the number of animals there at that
time, and the summation is taken over all x.

In general, we anticipate the analysis of such dynamic (competitive) migration
games to be difficult, but in one case as easy result is obtained:

Lemma 2 Suppose m(i,t) = m(i, (i) for alli andt € m(i,I(7)). Then the dynamic
CMG has a Nash equilibrium in pure strategies.

Proof We may consider the animals to be playing a CMG in each period. Taking
a PSNE from each period in this case gives a Nash equilibrium for the entire game.
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