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ABSTRACT

This paper develops a general theory of instrumental variables (IV) estimation that allows for
both I(1) and I(0) regressors and instruments. The estimation techniques involve an extension
of the fully modified (FM) regression procedure that was introduced in earlier work by Phillips-
Hansen (1990). FM versions of the generalized instrumental variable estimation (GIVE) method
and the generalized method of moments (GMM) estimator are developed. In models with both
stationary and nonstationary components, the FM-GIVE and FM~GMM techniques provide effi-
ciency gains over FM-IV in the estimation of the stationary components of a2 model that has both
stationary and nonstationary regressors. The paper exploits a result of Phillips (1991a) that we
can apply FM techniques in models with cointegrated regressors and even in stationary regression
models without losing the method’s good asymptotic properties. The present paper shows how
to take advantage jointly of the good asymptotic properties of FM estimators with respect to the
nonstationary elements of a model and the good asymptotic properties of the GIVE and GMM
estimators with respect to the stationary components. The theory applies even when there is no
prior knowledge of the number of unit roots in the system or the dimension or the location of the
cointegration space. An FM extension of the Sargan (1958) test for the validity of the instruments

is proposed.
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1. Introduction

In models with nonstationary regressors it is generally not necessary to utilize GLS-type trans-
formations in order to achieve asymptotically efficient estimation of the nonstationary componeats.
Grenander and Rosenblatt (1957) established an important early result of this type showing, in
effect, that OLS is asymptotically equivalent to GLS in detrending a time series that is stationary
about a deterministic trend. Phillips and Park (1988) showed that this result continues to apply
in the case of trends that are I(1) or stochastically nonstationary in the sense that they have
an autoregressive unit root in their generating mechanism. There is a more fundamental way of
thinking about this result. In models where the parameters may appear as coefficients of I(1) re-
gressors and as part of the stationary (or I(0)) dynamics, the information matrix is asymptotically
block diagonal between the I(1) and the I(0) elements, so that asymptotically optimal estimates
of the 1(0) parameters are not needed for optimal estimation of the I(1) coefficients. This result
was shown in Phillips (1991b) and it is helpful in explaining why semiparametric approaches to
estimation are efficient in models where the I(1) coefficients are treated parametrically and the
1(0) components nonparametrically.

Most econometric models for time series involve both trending mechanisms and stationary
(or tramsient) dynamic effects often without distinguishing them as separate components. In
such cases, there would seem to be scope for the use of some of the estimation methodology
that was developed originally for stationary systems, such as generalized instrumental variable
estimation (GIVE) and generalized method of moments (GMM) estimation. The GIVE and
GMM procedures are well known to deliver efficient estimates in certain stationary regression
contexts — see Sargan (1958, 1959, 1988) and Hansen (1982). However, like least squares (OLS)
and crude instrumental variables (IV) estimation, these methods do not have good asymptotic
properties in nonstationary regression models because estimates of the nonstationary components
generally suffer from second order bias problems, as explained in the papers by Phillips {1991b)
and Phillips-Hansen (1990). Thus, in order to achieve optimality in the estimation of both the
stationary and the nonstationary components in such models, both GIVE and GMM procedures
need to be modified to adjust for the presence of nonstationarity, Since the directions in which the
data are stationary are not always known a priori and often need to be empirically determined,

the modifications to GIVE and GMM that will achieve optimality are by no means obvious.



The present paper seeks to explore this problem in detail. For the case of the OLS and crude
IV methods, Phillips~Hansen (1990) showed how to construct fully modified (FM) estimators
that adjust for nonstationarity and deliver asymptotically optimal estimates of the nonstationary
components. The FM~OLS and FM-IV estimators in the Phillips—Hansen paper were developed
for the case where the regressors form a set of full rank I{1) processes, i.e. where there are no
stationary regressors and there is no cointegration in the regressor space. The present paper deals
with a much more general set up. The line of approach we adopt exploits a rather fascinating result
discovered recently by one of the authors (Phillips, 1991a) that we can apply the FM procedure in
models with cointegrated regressors, I(1) + I(0) regressors and even models with only stationary
regressors without losing the method’s good asymptotic properties. We develop here FM versions
of both the GIVE and the GMM procedures which are applicable in models where the regressors
are possibly nonstationary but neither the number nor the location of the unit roots need to be
known @ priori. In addition, we allow for stationary and nonstationary instrumental variables
and for the potential of cointegration among the instruments. The resulting estimators, FM-
GIVE and FM-GMM, are therefore applicable in rather general regression models with possibly
nonstationary regressors and instruments. Under conditions that broadly correspond to those in
the literature on the stationary components of the regressors and the instruments, these estimators
have asymptotic properties that are analogous to those of conventional GIVE and GMM with
tespect to the stationary components and yet are also optimal with respect to the nonstationary
components. The FM~GIVE and FM~GMM estimators both have a limit theory that is normal for
the stationary components and mixed normal for the nonstationary components. This means that
conventional asymptotic chi-squared criteria can be used to test hypotheses about the parameters
in the model. In addition, we show how to construct an FM version of the Sargan test for the
validity of the instruments which is also asymptotically chi-squared. Thus, all of the essential
features of the GIVE and GMM procedures which make these estimators appealing in stationary
regression models are embodied in our theory for FM-GIVE and FM-GMM. Since this theory
allows for stationary and nonstationary regressors and instruments, the framework is broad enough
to be useful in much empirical research, while at the same time placing no requirements on the
investigator to pretest the data for the presence of unit roots or cointegration.

The paper proceeds as follows. Section 2 gives a preliminary outline of the problem and



explains the general idea behind FM estimators. Section 3 details the general model that will
concern us, lays out some of the key assumptions and gives a lemma whose results are important
in motivating the construction of our estimators. Section 4 develops a general theory for FM-IV
estimators that allows for cointegrated regressors and cointegrated instrumental variables. Section
5 shows how to extend this theory to FM-GMM and FM-GIVE estimators. Section 6 gives
asymptotic chi-squared tests for the validity of the instruments in GMM and GIVE estimation.
Section 7 concludes the paper with a brief summary of our main formulae and results so that
these are more accessible to empirical researchers. Derivations and proofs are given in a technical
appendix in Section 8. A table of the main notation that we use to distinguish the variables and
the estimators in the paper by the various affixes is included in Section 9.

A summary word on notation in the paper which is not explained in the table in Section 9. We
use vec(A) to stack the rows of a matrix A into a column vector, P4 to signify the projection ma-
trix onto the space spanned by a matrix A, and [z] to denote the smallest integer < z. We use the
symbols “L,” «P, » and “=" to signify convergence in distribution, convergence in probability,
and equality in distribution, respectively. The inequality “> 07 denotes positive definite (p.d.)
when applied to matrices. We use I(d) to signify a time series that is integrated of order d, BM(Q)
to denote a vector Brownian motion with covariance matrix . We write integrals with respect
to Lebesgue measure such as fol B(s)ds more simply as fol B to achieve notational economy. The
symbolism M N (0, V) signifies the mixture normal distribution MN(0,V) = Jvso N(0,V)dP(V).
Finally, all Limits given in this paper are taken as the sample size T tends to co unless otherwise

stated.

2. Some Preliminary Discussion of the Problem

In this section we present some informal arguments that use a simple model to illustrate the

problems discussed in the paper. We consider the regression

Yo = Bzt + uoe (1)

where {ugs} is a stationary time series, and {z,} is a vector time series which is either I{1) or 1(0).
In either case, we allow for endogeneity in the regressors: when z, is I(0), some elements of z; can

be correlated with ugs, and when z; is 1(1), some elements of Az, = uz can be correlated with



ug, for some 8. For the time being, in the I(1) case we assume that z; is a full rank I(1) process,
i.e. the number of unit roots in the stochastic process z; is equal to the dimension of z, (and thus
the elements of z, are not cointegrated). When y; and z; are I(1) equation (1) is usually called a
cointegrating regression.

In the I{0) case, the use of OLS generally yields an inconsistent estimator of 3, and the
instrumental variable (IV) method is commonly employed to deal with this problem. In order
to apply IV methods successfully, we need valid instruments, and we can test the validity of the
instruments that we use by following the approach of Sargan (1958, 1959). On the other hand,
nowadays it is well known that OLS estimators are T-conmsistent in cointegrating regressions,
though they do involve nuisance parameters and are not asymptotically unbiased. In the I(1)
case, as in Phillips and Loretan (1991), the asymptotic distribution of the OLS estimator of /3

(denoted by E, say) is given by
13- 8) % (J} BrBY) - ([ Brd(Bos +wor 051 B)] + 6 )

where § = L2, E(uokt10), (Bo, BY) = BM(Q), Bo.y = Bo - w127y By and 9 is the “long run
variance” matrix of u; = (ugq, ¥},)’ and is partitioned conformably. Observe that the second term
in the parentheses involving the coefficient w277 and the term involving 6 both induce bias,
asymmetry and nujsance parameters (i.e. 11, «o1, ) into the limit distribution.

Several ways have been proposed to resolve these problems: see Johansen {1988), Park (1992},
Phillips {1991b,c), Phillips and Hansen {1990), Phillips and Loretan (1991}, Saikkonen (1991)
and Stock and Watson (1992). Among them, the fully modified (FM) estimator proposed by
Phillips and Hansen seems to be particularly useful in practice because it enabies investigators
to run regressions much like least squares that yield asymptotically efficient estimates of the
cointegrating coefficients. The procedure eliminates nuisance parameters in the following way.
First, we modify y, using the transformation 5 = y — Ge: Q5! Az, and the error in (1) also,
giving a;; = Upt — 501§[11A:ct. This is a correction for endogeneity. Next we construct a serial
correlation correction term 4+, which is a consistent estimator of 6+ = I3 E(ud u),) where
ug} = ug — Wop Q;}Az,. The FM estimator combines these two corrections in the least squares

regression formula and is given by

B = (2Tz2l) (ST o - T6Y),



which is asymptotically-median unbiased and nuisance parameter free.

Now, what if we allow for cointegration in the regressor variables z;? This means that there are
some stationary components in z;, and therefore, a natural strategy might be to use IV estimators
for the stationary components and FM estimators for the I(1) components. If the cointegrating
vectors for z; were known, or the location of the unit roots were specified a priori, the stationary
components and the I(1) components would be identified and the above strategy would clearly
work. However, such vectors are usually unknown and need to be determined empirically unless
prior economic knowledge is sharp and very informative. Moreover, a simple and important ex-
ample in practice is the case where we do not know whether some individual regressors are either
I(1) or I{0). If some of the regressors are 1(0), we sometimes say that the regressors as a whole
are “trivially cointegrated,” since any vector which puts non-zero weights on the I{0) components
and zero weights on the I(1) components is a cointegrating vector. In the following, we explore
a methodology that allows us to deal with systems of this type that have possibly nonstationary
processes without using prior information about the location of uxit roots or even the full dimen-

sion of the cointegration space.

3. The Model, Conditions and a Useful Lemma
Let {y;} be an n-dimensional time series generated by
ye = Az + Uor, (3)

where A is an n X m coefficient matrix and z, is an m = (m; + my)-dimensional vector of

cointegrated regressors specified as follows:
Hizg=zyi =1y : my X1 (4a)

HiAz, = Azge = upy : max 1 (4b)

where H = (H,, Hy) is an m x m orthogonal matrix. Using the rotations prescribed in (4},

equation (3) can be rewritten as

ye = A1Z1c + A272: + toe (3')



where A; = AH, and A; = AH,. We let z; denote a g-vector of instruments driven by
G;Zt =21t = Uzt - @1 X 1 (5&)

G;z; = AZgg = Ugot Q2 X 1. (5b)

We will use the notation uy; = Az; and u, = Agz. This partition of the regressors and the
instruments will be instructive in the development of our theory. However, as will become clear
peither our methods nor our results are contingent on the knowledge of or the nature of these
partitions.

We now impose assumptions on the random variables w; = (ufy, 4}, U3 U1, Uiz) that drive

the system (3)-(4) and the instrument set z;.

AssuMpPTION EC (Error Condition)

(a) {w/}{° is fourth order stationary with absolutely summable fourth cumulant function;
(b) E(w) = 0;

(¢) Elwigl® < 00 (i=1, .., n+m+gq) for some 4 < § < o0;

(d) {w,}° is either p-mizing with mizing coefficients pm such that £ 1{,9,1,1_1/’3 < @ or

G-Jm=
a-mizing with mizing coefficients am such that E§=1a3n_2/ F < 0o,

(e) The long run variance matriz of wy, ) = TI® E(wew)) (= TIZT(E), say) is positive

definite.

Assumptions EC(a), EC(b) and EC(c) imply that the regressor z, is cointegrated and that
each column of H, is its cointegrating vector. Assumption EC(e) also ensures that zg, is I{1),
but it excludes cointegration among the elements of 23, and between z2, and zy;. It also excludes
the possibility of “multicointegration” of y; and zg, as defined by Granger and Lee (1989). The
assumption of no cointegration between zy and z; will be relaxed later on in the paper. For

subsequent use, we decompose the long run covariance matrix given in (e) as follows

Q=X +A+A,



where £ = E(ww;) and A = £2, E(weiwy) = L2, T(4); and we define the “one sided long run
covariance matrix”

Under Assumption EC, a multivariate invariance principle (IP) for {w;} holds, viz.

(Tr]
T2y w; -5 B(r) = BM(Q), 0< r < 1, (6)
=1
as shown in Phillips and Durlauf (1986). We partition B and € conformably with w, as

-

- -

By(r) ] Qo Qo Qo2 Doy Qoz
Bi(r) Qo D Q2 Q. Qs
B(r)=| By(r) {» 2= Qa0 Qu N2z Q25 Q2 |>
B, (r) Qoo Qe Q2 Qs Qi
| Baa(r) | | o Q1 Rz Qagzy Doy |
and define the ng;-vector
Gzt = uoe ® 21. (7)

We now state some additional conditions that are important for the analysis of the stationary

components of the model.

AssuMPTION IV (Instrument Validity Conditions)
(a) E¢.¢ = E(ug: ® 21) = 0 for all t [orthogonality condition];
(b) Elz1:2le) = K., is of full row rank (rank m,) [relevance condition];
(¢) Elz1t2;,] = M,, is nonsingular [nonsingular second moment/;

(d) {¢:,)5° satisfies the same conditions as Assumption EC(b), (c), (d), (e) [regularity condi-

tions];

(e) mg < go forder condition on I(1) instruments].

In conventional IV estimation, we choose instruments satisfying (a) whose dimension is equal

to or greater than the dimension of the regressors. In our case, we wish to maintain m; < qi,
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which is a necessary condition for part (-b), but m, is unknown a priori. Therefore, in the above
model specification the set of instruments is required to be “large enough™ so that m < ¢ and
the necessary order condition in terms of dimension is satisfied. Part (d) (given part (a)) allows
for the use of a central limit theorem (CLT) with respect to ¢,,;. Other sets of conditions, are
possible in place of (d), of course, and are explored elsewhere, e.g. in White (1984). Part (e) is a
nonstationary counterpart of part (b). Note that it suffices to impose an “order condition” here,
since the sample moment matrix T~25z4z}, converges in distribution to a random matrix that
is of full rank almost surely as long as both z5; and 2z carry full rank stochastic trends. This
point arises from the asymptotic theory of spurious regression and has been shown by Phillips
and Hansen (1990, Lemma A3).

Define the data matrices Uy = {up1, .., oz}, X = [21, ...y 7], a0d Z = [z, ..., z7). Simi-
larly, we write XH = [X1, X;] = Xy and ZG = [Z,, Z3] = Zg, where the subscripts “H” and
“G” signify that rotations by H and G have been performed. We also define the ng x ng matrix
S, = E?’:mezl(i), where

R (3) = E{uotuges; ® 2’1:2:’11'-;-:)-
Then, under mild regularity conditions such as Assumption IV (a) and (d), we have the central
limit theorem (CLT)
T2yt 7, 24 N(G, S,y). (8)

Next define a sequence of n X m random matrices {Cr}, which will be used to illustrate some

properties that are common to all IV estimators in this paper, by
Cr = (U}P; - ¥1)X(X'P,X)~". (9)

The matrix Cr represents a generic form of the matrix of IV estimation errors for the parameter
A. In (9), ¥r is an n X T random matrix of abstract correction terms. It is convenient for us
now to impose the following conditions on the asymptotic behavior of ¥7 and later we will justify

them under more primitive conditions.
ConpiTioN CT (Correction Term Conditions)
(C1) ¥1X; = 0,(vT)

(C2) T-1¥7X,; = ¥,, say



where ¥, may be a random matriz.
The following lemma is fundamentally important in our subsequent theory.

LEMMA 3.1: Suppose Assumptions EC, IV and Condition CT hold. Then
() VTCrHy = VTUJP, X1 (X{Pyy X1)™" + 0p(1)
2. N0, 7., 5.,7L),
(b) TCrH; = T(U P, — ¥T)X2( X3P, X2)71 + 0,(1)

~ -1 ~ o~y =1
(12 4BoBy + B0 (13 B B) S BBy - W) (3 BuBE)

where J,, = [I, ® (K, M 'K, )7 K; M l] K., and M, are as defined in Assumption IV (b)
and (¢) and By = [} BB ([ B:, B.,)?

Part (a) of Lemma 3.1 shows we can add any correction terms that satisfy (C1) and (C2) with-
out affecting the asymptotic behavior of CrH;. Moreover, CrH, is asymptotically equivalent to
the estimation error that obtains when we apply the conventional IV estimator to a stationary
regression model with the regressor vector zy; and the instrumental variable vector z;;. Part (b)
of Lemma 3.1 shows that CrH, has the usual asymptotics of a cointegrating IV regression with
the additional term ¥,. In sum, if we construct a correction term ¥7 so that it satisfies (C1) and
(C2) and yields a limit matrix ¥ that correctly adjusts the asymptotics in part (b), then the limit
behavior of Cr and its various functionals may become nuisance parameter free and have some
other good properties like asymptotic median unbiasedness and possibly even optimality. In fact,
the FM-IV estimator and its variants that are proposed in this paper are designed so that their
correction terms satisfy the conditions just mentioned. The lemma is helpful in understanding
the key elements in and the motivation behind the construction of these estimators. We will use

it frequently in the analysis that follows.
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4. Estimation Theory

This section studies the estimation of the model proposed in Section 3, allowing for the regres-
sors to be cointegrated and to be correlated with the errors. Cointegration among the instruments
is also allowed for. In the construction of the estimator, we use the vector of instruments z, con-
sisting of both stationary and nonstationary components.

The following formula defines the FM-IV estimator of the coefficient matrix A in (3)

~

A

I

¥tz -TArNZ'Z) ' ZX(X'P,X)"!

= (Y'P, - Q072 ULP, - TAI(Z'2) Z1X(X'P, X))} (10)

where Y+ =Y’ - ﬁgaﬁ;j U, 133; = Ag; — ﬁot,ﬁ;;é‘.a,. Aq; denotes the estimate of the one-sided
long-run covariance between ug and u,. We use the subscript “a” in these formula to signify
elements that correspond to ugy and u, taken together. Note that in the definition (10}, the
second term in the square bracket is the correction term for the endogeneity of the nonstationary
instrument z; and the regressor z;, while the third term corrects for serial correlation.

Before studying the asymptotics of the FM-IV estimator, we will prove two lemmas which
are useful in evaluating the asymptotic contribution of the correction terms in our estimators. In
these lemmas, the long run covariance matrices can be estimated by the use of kernel estimators
or smoothed periodogram estimators. Kernel estimators of the long run covariance and one-sided

long run covariance matrices between {u,;} and {u} take the following forms:

T-1 T
Q= 3 0/ K wunl) Buawy = D v/ K uu (), (11)
i==T+1 j=0

where w(-) is a kernel function, Ty u,(j) = T~ Ltar4;u, and K is a lag truncation or bandwidth
parameter satisfying K = o(T%/?) as T — oo. In some cases (e.g. for the quadratic spectral
estimator) the kernel function w(-) is nonzero outside the interval {—1,1] and then there is no
truncation in the summation in (11). It will be helpful to be specific at this stage about the class

of kernel functions that we will include in our theory. The class is given by the following:

Conpition KL (Kernel Condition): The kernel function w(-) : R — [-1,1] is such that w(z)
= w(-z), w(0) = 1, w(z) is continuous at zero and continuously differentiable at all but a finite

number of values of z € R, [g jw(z)ldz < oo, and In w(z)e** > 0 for all A € R.
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Suppose (> 0) is the largest integer such that

. 1—w(u)
'1‘12% —"'l";'l'r—— < 0. (12)
This implies that
. dw(u)/du
lim — "5 = w(y < oo (13)

In fact, r is what Parzen {1957) calls the characteristic exponent of the kernel w(-) using the
expression (12). For our purposes expression (13) turns out to be the more useful. Several well
known kernels satisfy Condition KL. We will be concerned mainly with kernels whose characteristic
exponent r = 2. Among these we have the following (noting that the Tukey-Hanning does not

satisfy the positivity requirement of Condition KL, which is desirable but not essential):

1-6z2+6|z]* for0< |z} <1/2
Parzen: w(z)={ 2(1-|z|)? for1/2< 2| < 1
0 otherwise
(14 cos(xz))/2 for|z] <1

Tukey — Hanning : w(z) =
otherwise

Quadratic Spectral : w(z) = 25 (sm(ﬁw:c/5)

12757 b72/5 - cos(67r::/5)) .

In practice we need to estimate the unknown sequence {uqg:} to construct estimators of long

run covariance matrices such as ﬁof,. Conventional IV estimators and residuals defined by
A=Y'P,X(X'P,X)"", and T = g — Az, (14)

can be used for this purpose. A is consistent for A under Assumptions EC and IV, since the
estimator 21 = AH 1 is v/T-consistent for 4; and the estimator :4} = AH 7 1s T-consistent for
As. It is straightforward to justify these consistency results using Lemma 3.1, since ¥7 = 0 in
this “naive” IV regression. In finite samples there may, of course, be some advantage to using a
third stage FM-IV estimator in which the estimates of long run covariance matrices like (2o, are
refined by using the residuals from the second state FM-IV regression to estimate up,. This is a
matter that will be explored in subsequent simulation experiments with our methods.

Finally, we assume
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AssuMPTION LR (Long Run Covariance Matriz Estimation): Any of the Parzen, Tukey-Hanning
or the Quadratic Spectral (QS) kernel estimators are used in the estimation of the long run covari-

ance matrices. The covariance functions I‘.,ouﬂ(-) and Ty, (+) satisfy the summability condition
e JIIF()I < (15)

where uy = (uh,, w,, ) and ug = (u},, thy,). The parameter K in (11) grows at the rate of T* for
2ty Yz2t (4 1ty Yzt

some k € (1/4,1/2).

The kernel estimators specified in Assumption LR are all commonly used in long run covariance
matrix estimation. The summability condition (15) allows for a wide range of time series including
quite general finite order stationary vector ARMA specifications for the error processes. Under
stationary ARMA specifications, of course, I'(j) decays exponentially and (15) is automatic.

Now we postulate an additional condition concerning the unknown stationary component

{z1:):
AssuMPTION NF (No Feedback): Eluge+; ® 21¢) =0 for allj > 1.

Assumption NF does not seem restrictive in empirical applications, since it holds in two sit-
nations where conventional instrumental variable methods are most frequently used. First, the
assumption is trivially satisfied when all the instruments are stationary and strictly exogenous.
Second, the hypothesis of rational expectations will usually entail that there is no feedback from
the regressors or instruments to the errors. In typical rational expectations models components
of stationary variables involving past information are orthogonal to current errors, and this fact
provides the opportunity for instrumental variables estimation of rational expectation models.
Research along these lines was initiated by McCallum (1979) and extended by Hansen and Sin-
gleton (1982) and many others, particularly to the estimation of rational expectations models
with future expectations. In the case of nonstationary models, the rational expectations assump-
tion imposes restrictions on the stationary linear combinations of nonstationary variables, i.e. the
cointegrated variables, as pointed out in Hansen and Sargent (1991). In our model, the stationary
linear combinations of nonstationary instrumental variables are denoted by z;;, and their past
values must be orthogonal to the current stationary error uq;. This implies Assumption NF.

Define up = (Aul,, uh) (= Azpe = H'uze) and 25 = (D244, 23) (= Bzge = G'uzt), where we
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use the subscript “A” and “g” to denote elements corresponding to {Auy,} and {uy:} ({Au.y,} and
{u,2}) taken together. The following lemma describes the asymptotic behavior of the component

elements of the FM-IV estimator.

LEMMA 4.1: Under Assumptions EC, IV and LR

(2) Bonlly} (T~'0;26 - Bag) = [05(1/VT) F Qoaf23) N1 + 0(1)]

ZtZ)1Z2'X 0,(1
( 1 1) 1 ,(ZE;ZG)—IZ’GX2=[ P()\l,

(b) (Z5Z6)' 26X, =
05 (1)

My

-1
where Ny < [} dB,BY,, and M7 % (f3 B, B.,)  [3 BB,
LEMMA 4.2: Under Assumptions EC, IV, LR and NF,

(a) Bog(Z426) 25X, = T 03P X1 + 0(1/VT) = op(1/VT), Aog(ZZ6) ' 25Xy
d -1
- Aﬁzz (fol Bz?B;z) fol Bzz 5’

(b) Qonlty} (FAXYPug — Rug(Z526)7 25) X1 = 0,1/VT), and
() Qonly} (FAXY Peg — Big(2526)725) X2 =% Qa0 [} dBaB, (Js Bz, B;z)_l [}B.,BY.
With these results in hand we now turn to study the asymptotic behavior of the FM-IV
estimator A. We rotate coordinates in R™ by the orthogonal matrix H that was introduced in
Section 3 so that we can analyze the component matrices A, = AH; and 4, = AH, separately.

The asymptotic behavior of these two components is quite different as the following theorem

shows.
TrEOREM 4.3: Under Assumptions EC, IV and LR,
(a) VT(A - A)H; -5 N(0, J,, 5., J2,)

(b) T(A — A)H; 2+ MN(0, Q005 ® ( s Iézﬁ;)).
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Remarks

(a) In the statement of Theorem 4.3 we use the following notation for limit processes that are
adjusted for their conditional means. For the partitioned limit process B = (B{, Bj}) we define
the process By.; = By — 91292'21 B; = BM(11.2), which is independent of the Brownian motion
B,. We use the subscript “b” to signify elements corresponding to us; and u,, jointly. Note that
B,, which appears in part (b) and which was defined in Lemma 3.1, is the projection in L;[0,1]™?
of B; onto the subspace spanned by the elements of I, ® B, .

(b) Theorem 4.3 shows some of the advantages of the FM-IV estimation procedure. The
estimator A is v T-consistent and its limit distribution is normal in the direction of Hi, as a
result of the use of valid instruments. At the same time, in the direction of H, the estimator is
T-consistent and its limit distribution is mixed normal, symmetric and median unbiased, with
nuisance parameters (other than scale) being eliminated by the FM correction terms.

Another interesting and practically important situation which viclates Assumption EC (e)
is one in which the I(1) instruments and the regressors are cointegrated. This case happens, for
example, when the set of nonstationary instrumental variables includes lagged values of regressors.
Such instruments are commonly used in instrumental variables estimation and in the estimation
of rational expectation models. Regressors and instruments that are found by lagging regressors
are naturally cointegrated if the regressors are stochastically nonstationary. Fortunately, this case
can be treated without any changes in the above definitions and only involves a minor change in
the asymptotic properties of the estimators. To illustrate, suppose that the I(1) processes {zz:}

and {z2;} are jointly driven by the following cointegrated system:

F{ T2t = 1, FfjA T = u,,,
2 ]

where {u, } and {u,} are £;- and {;-dimensional and F = (Fj, F3) is an £ x £ orthogonal
matrix with £ = €; + £, = m2 + go. We continue to require that Assumption EC holds with
we = (uby, ulhy gy, uly, uh,) now replaced by wy = (ug,, Uy ¥y, Ue,,s U, ) - This assumption
implies that each column of Fj is a cointegrating vector of {(z%,, 23,)'}.

With these adjustments, part (a) of Theorem 4.1 remains valid without any changes, while
part (b) holds with subscripts “b” replaced by “c;”. The latter result is a direct consequence of

Lemma 4.2, though we need three coordinate rotations to achieve it; rotation by H in R™ to
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decompose {z:} (into {z1¢} and {zz:}), rotation by G in R? to decompose {z} (into {21,} and

{z;t}), and rotation by F in IR to decompose {(z},, z5,)'} into its I{0) and I(1) components.

5. Efficient Estimation

In the analysis of systems with cointegrated regressors in the previous section, we have shown
that the FM-IV (and FM-IV/CI) estimators of the nonstationary components of the model are
asymptotically median unbiased and the limit distributions are nuisance parameter free (up to
scale), as a result of the “fully modified regression” methodology. However, as far as the stationary
components of the model are concerned, the FM-IV procedure proposed above uses the standard
IV estimation method. So there is the potential of efficiency gain with respect to the stationary
components, for example by the use of a GLS-type transformation. GLS-type transformations
have not been a popular tool in the recent literature of nonstationary time series analysis, since
in general the effect of a GLS-type transformation asymptotically vanishes and no efficiency gain
is to be expected, as shown in Phillips and Park (1988). In our model, however, both stationary
and nonstationary components are included in the regressors and they are not identified a priori.
Thus, it seems worthwhile applying GLS-type transformations to the whole model including its
nonstationary components to see if an efficiency gain is realized for the coefficients of the stationary
components.

In the following we suggest the use of two well known approaches to obtair an efficiency gain
by data transformations. The first corresponds to the GMM procedure with optimal choice of
the “distance matrix” proposed by Hansen (1982) for nonlinear estimation problems. The second
is the GIVE procedure, originally proposed by Sargan (1958, 1959). Also, following Bowden and
Turkington (1984), one may call the former the “IV-OLS analog” and the latter the “IV-GLS
analog.” The former is valid under fairly general assumptions upon the instruments, such as those
that are implied by usual rational expectations (RE) models with predetermined but not exoge-
nous instruments. The latter method can be relatively efficient over the former asymptotically,
as in the case where the instruments are strictly exogenous. The limit theory of estimators of the

nonstationary components of the model is not affected by either transformation.
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5.1. FM—-GMM (FM-IV-OLS Analog) Estimator

Here by the term “GMM” we mean a linear version of the GMM estimator with an “opti-
mal” choice of the distance matrix. However, unlike conventional GMM, we need to deal with
nonstationarity, both in the regressors and the instruments. For exposition of this case, we will
use the same model as that considered in Section 4.1, i.e. the model specified as (3)H5), with
Assumptions EC and IV. To simplify our presentation in what follows we use capital script letters
to represent the Kronecker products of the n x n identity matrix I, with matrices of observations.
For example, we use X = (I, ® X), Z = (I, ® Z), and so on.

We define the FM~GMM estimator ZGMM as follows:

vec Agmm = (.«’1:"2'.5'2}1.Z"A’)-1 X257 vec(YH'Z — TAL). (16)

where the distance matrix S,r (rotated by G) is partitioned as

G’S,TG - Sle SzlzzT nq ,
Szgz;T SzaT nqz

and each block must satisfy the following conditions

Sle -2, 521 = Ej-—ciooR'q(t) ’ (17&)
SZIZQT = (52221T), = Op(l)s T-lszzT -z o0 ® fol B=2B;;' (17b)

The notation used here is analogous in form to our earlier notation. However, the use of the affix
€U ¥ n

in place of “ ~ ™ indicates that the estimate of the unknown process {uo.} is not obtained

through a naive IV regression, but is instead the GMM residual Upigmm = ¥t — EGMMI:, where
vec Agum = (X253 2'X) 7 X253} vee(Y'Z). (18)

In the literature, several techniques to obtain the optimal distance matrix for the GMM
estimators have been proposed, and we can use these in the FM-GMM procedure. The first

method uses the spectral estimator

S = 24114 Z Fuouo (”k)mu (—’—;—;) (19)

-M+1

where M = o(T'/?) as T — oo. In the formula (19) the spectral density estimates are of the form
1 T-1
~~ - . —~ . Il A
foM =52 Y wli/M)Ta()e™,

j=-T+1
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where the sample covariance matrix is

T=;

S o ] e 1<
Tan(i) = 5 D oessbhs Tar(=9) = Te(9), 15 < T,
=1

the bandwidth parameter K is as before in (11), and the lag window w(-) satisfies Condition KL.
By following the arguments in Hannan (1963) and Phillips (1991) we can show that the spectral
estimator (19) satisfies (17a) and (17b), respectively. A second method is to estimate a VAR model
for the error process {ug} and use it to construct an estimator of the long run covariance matrix
of {ug;}. This approach will be pursued later in the section on the “FM-GIVE” estimator. In
either method, we can substitute the estimated process {Zo} in (11) for the unobserved sequence
{ug¢}, without affecting the asymptotic behavior of these estimators.

The following lemma describes the asymptotic behavior of the stationary part of the correction

term in (18)
LEMMA 5.1: Under Assumptions EC, IV, LR and NF
X!2571 vec(Rog) = T2, 57 vee(TaaumZi) + 05(1/VT) = 0p(1/VT).
Our next result gives the limit theory for the FM-GMM estimator:
THEOREM 5.2: Under Assumptions EC, IV, LR and NF
VT(Agum — A)H; = N (0, K. 5;1%;1]‘1) ,

where K,, = [In ® K;,). Further, A'GMMHQ is asymptotically equivalent to ZHQ, which is the
FM-IV estimator of A; = AH,.

If we compare these results with those of the FM~IV estimator given in Theorem 4.3, the
advantage of the FM-GMM estimator should be clear. For the coefficient of the stationary
components of the model, we obtain an efficiency gain in estimation as a result of the “optimal”
choice of distance matrix. This follows from the well known inequality [K,, 5;1K. 7! £ J., 52, 7},
between the asymptotic covariance matrix of the two IV estimators. As far as the nonstationary
components are concerned, the two estimators of these coefficients are asymptotically equivalent,

because the effects of the GMM transformations of the integrated processes cancel out, just as
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the effects of GLS transformations cancel out in regressions with full rank integrated processes

(as shown in Phillips and Park, 1988).

5.2. FM-GIVE (FM-IV-GLS Analog) Estimator

The FM~-GMM estimator considered in the two last subsections is designed to incorporate an
asymptotically optimal choice of the “distance matrix.” Hence, we obtain an asymptotic efficiency
gain over the FM-IV estimators of Section 4, at Jeast with respect to the stationary components
of the model. In the literature on IV estimation, there is extensive discussion of the choice
of optimal instruments in the stationary time series context, and the generalized instrumental
variable estimator (GIVE) was proposed as another approach — see Sargan (1988, Ch. 5.4) for a
recent treatment. Roughly speaking, the GIVE procedure employs a GLS-type transformation to
correct the data (including the instruments) for serial dependence in the equation errors. Some
further efficiency gains (potentially even over GMM) may be obtained, though some additional
assumptions are needed in order to justify the transformations. In the following, we show that
efficient estimation of the stationary components of a possibly cointegrated nonstationary model
can be achieved by the use of a fully modified version of the GIVE procedure. We shall assume
strict exogeneity of the instruments in our development in this paper but in later work we will
give an extension of the GIVE methodology that allows for the same set up as we have used in our
GMM analysis. As one might expect from our earlier theory on IV and GMM, estimators of the
nonstationary components are shown to be asymptotically invariant to the GLS transformations
that underlie the GIVE procedure.

We will employ a parametric GLS transformation here, though it is probably worth pointing
out that a nonparametric treatment is possible by the use of a corresponding technique in the
frequency domain. (See Corbae, Quliaris and Phillips (1991) for the form of the frequency domain
GIVE estimator and an application to nonstationary time series.} In this subsection and the next,

we assume that the error term {ug:} is generated by a p-th order vector autoregression {VAR).
AssuMPTION VR: The stochastic process {ug:} is generated by the VAR(p) mode!

uor = —EF_,Cruoi—r + &4

r=1

where ¢¢ = iid(0, £,). IfC(L) = I, + Z¥_,C,L", where L denotes the backshift operator, then the
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roots of {C(L)| = 0 ere greater than one in absolute value.
The model can be rewritten in matrix form as
Uy =-L0_,C.Us_ + F,

where Ué_r and E’ denote observation matrices of ug,..., and g, respectively. Now set the first r

rows of Uj__ to be vectors of zeros (i.e., the initial values are ignored) and define the T'x T matrix

010 ---0
001 - 0

L= ,
1
00 s 0

which is similar to the circulant matrix, but has its (T, 1) element zero, not unity. Letting Co = I,

we have Z7_ C,U4LT = E', or
(2polCr® L7)) vec(Up) = vec(E').

Thus we have

Wr vec(Up) ~ N(0, Ir), where
Wr = (2:1/2 ® IT) (Ef=o(C, ® ﬁ;)) = 2P_C:® E}' and C* = 2:1/26',.

Therefore, the nonsphericality in the model is removed by the premultiplication of the stacked
observation matrices by Wr. For later use, we let Vor denote the nT x nT covariance matrix
of vec(U}). (Then WiWr = V7.) In practice, we need estimates of Wr to achieve this GLS
transform. To do so we first estimate {uq;} using some v/7T-consistent estimates of A such as the
naive IV estimator A (see (11)). Then we estimate a p-th order VAR process by OLS using {&or}
and plug the resulting estimates 6‘: = $7Y2F, in the above definition of Wr, giving Wr. In the
following, we use the affix “*” to indicate premultiplication by Wr, eg A" = WrA = WT(In ®A)
and vec(A)* = Wr vec(A).

In FM-IV estimation and FM-GMM estimation, one of the key requirements for the consis-
tency of those methods is the {contemporaneous) orthogonality of {ug:} and {2y}, viz. Assumption
IV(a). This assumption holds, for instance, in rational expectation models where the instruments

are predetermined but not necessarily exogenous, given a suitable choice of instruments. In the
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case FM-GIVE estimation, the orthogonality condition E{C{L)ug ® C(L)z1;] = 0 is especially
convenient. As is well known, this does not hold for predetermined (but not exogenous) instru-

ments. However, it does hold for strictly exogenous instruments. Therefore we assume,
AssuMPTION SE (Strict Ezogeneity): {z:} is strictly ezogenous.

This is a strong version of Assumption NF. As explained at the beginning of this subsection, this
assumption is stronger than necessary. In order to obtain consistency and the asymptotically
normal and mixed normal results, only the strict exogeneity of the stationary instruments {z,}
is needed. In fact, even this assumption may be relaxed to allow for lagged dependent variables
as in Sargan (1988). We will continue to assume Assumption SE in this paper for the following
reasons: (i) without the exogeneity of {z}, the definition of the FM~GIVE is much more involved,
and (ii) Assumption SE is the most convenient one in the case where we will consider cointegrated
instruments. Extension of our approach to accommodate more general assumptions than SE will
be included in later work.

For the model (3), we define the FM—GIVE estimator as follows:

vec Agivg = (XVP3A™)? (20)

x X* 2" {(z-'z")-lz*'vec(y')* — vec[0o, 07 (ULZ - Ta,,)(z'zrl]} .

It is possible to define the FM-GIVE estimator in other forms that are asymptotically equiv-
alent and possibly computationally easier. We use the above definition chiefly for conceptual
convenience. Note that unlike the instruments, the regressors and the dependent variables, the
correction terms in the FM-GIVE formula (given by the expression inside square brackets in
(20)) are not transformed, since these terms are designed to persist asymptotically only in the
estimator of the coefficients 43 = AH; corresponding to nonstationary components. As stated
before, GLS transformations usually cancel out as scale effects in the estimation of nonstationary
components, and there is, therefore, no need to transform the correction terms. As far as feasible
GLS estimation is concerned, any consistent estimates of {uo;} may be used as in the case of

FM-GMM. The following theorem gives the limit theory for the FM-GIVE estimator.
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THEOREM 5.3: Under Assumptions EC, IV, LR, VR and SE,
X d v aqu-1pv'] "}
VT(Agve - A)H1 -5 N (o, [zcle,, ic,,] ) ,

where KU = pim(T7'KY'27) = pim(T-'XVF21), and M? = plim(T7'Z]Z])
= plim(T‘IZ{Vo}l Z,). Further, AcrveHz is asymptotically equivalent to AH;, the FM-IV esti-
mator of Ay = AH,.

Potentially, the FM-GIVE estimator of A; = AH; can be more efficient than the FM-GMM
estimator. In the conventional setting, namely systems in which only stationary variables appear,
this is already known. White (1984), for instance, gives a detailed argument about the asymp-
totic relative efficiency of IV-GLS type estimators over IV-OLS type estimators and provides
some sufficient conditions. In our case, if the instrumental variables {z1;} appear as variables in
the reduced form equations of {z}, we can show the asymptotic relative efficiency of FM-GIVE
over FM~GMM with respect to the estimation of A;. The demonstration is essentially the same

as that for the linear simultaneous equations model with serially dependent errors.

6. IV Validity Tests for Overidentifying Restrictions

It is well known that in IV estimation with stationary processes a test for the validity of
instruments that was originally proposed by Sargan (1958, 1959} is available when the total
number of orthogonality conditions exceeds the total number of unknown coefficients. Hansen
(1982) extended this test to the case of the GMM estimator. The test is also known as a test of
overidentifying restrictions or as an IV misspecification test. In what follows we will extend this
IV testing principle to the FM-IV procedure and its various generalizations that we have studied
earlier in this paper.

We strengthen Assumption NF slightly to accommodate a limit theory of our statistics. Let

RS ("’oz—j’ W10 Uegepr)s § 2 0 and F: = o(m, N-1, ...) be the o-algebra generated by

{7?: :=-oo'

AssuMPTION NF?: (ugq, Fi) is a martingale difference sequence.

This assumption is stronger than Assumption NF. However, the inclusion of u,2: in the or-
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thogonality conditions probably makes ].ittle difference in practice, since if we assume rational
expectation models as we referred to in Section 4.2, it is implied that both {u,;,} and {u,;} are
in‘ the current information set and orthogonal to the future prediction errors. QOf course if we
assume the strict exogeneity of {2}, Assumption NF? holds trivially. In fact, under Assumption
NF? the FM-IV (or -GMM) estimators need not be corrected for the serial correlation between
{uot} and {u,2:}, thus we can remove Ag, and Ag, from the definitions of these estimators.

Accordingly, the following replacements are possible:
A, = Ao - Q071 AL, — —00a52 A0, [in (10)] (21a)
Ag-z = AOZ - ﬁOaﬁggauZ - _ﬁ()gﬁ;:aqz [in (16)]. (21b)

First, we will consider the instrument validity test for the FM-GMM estimator. The model
is taken to be the same one used in Sections 4 and 5, where the instruments are assumed to be
not cointegrated among themselves. Using the definition of the FM-GMM estimator Agmm, and

the residual {Zogmm:} defined as

ToaMM: = ¥ — AGMMZt,

we now define {uf,}, which is corrected for endogeneity with respect to ug, = (ul,, u},)":
., — - 4‘\_1
Udonmae = Boamme — 0a825, Ut

(In the calculation of §0a, {HogMM¢} may be used.) Now we define an n x ¢ (unstandardized)

score matrix =

Using the corrected residuals {#j;\ny,} defined above, we define the score with the endogeneity

correction as
== ﬁJéMM 4
Next, in parallel with fully modified estimation, we correct =% for serial correction terms as well,
giving the “fully modified” score,
=t ==t - TAf,. (22)

and where AJ, = Ao, — Q0a071 Ag; as earlier.
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LEMMA 6.1: Suppose Assumptions EC, IV, NF? and LR hold. Then
(a) T2+ Gy = 0,(1),

1{H 2 =172 = d
(b) T (Qooa @ T-2242,) " vec(Z*"Ga) = MN(0, [Ings = Pp,,)),

where Dyyp = {I,. & (2 BaBL) " Ji B,,B;}.
Next we construct test statistics for IV validity using the scores defined above
¢ = vec(ZH* ) Doo.a ® 2'Z) 71 vec(TH). (23)
The following theorem follows directly from Lemma 6.1.

THEOREM 6.2: Under the same conditions as those in Lemma 6.1,
d 2

(— Xn(gz—mz)

However, since the cointegration structure of {z;} is unknown, so is ¢;. The limit distribution of
¢ is bounded by xi(q_m) and this could be used to construct a bounds test. However, we now
propose a way to avoid such uncertainty in the limit theory.

We suggest the use of the one-sided long-run covariance estimator Ao;. Rotating coordinates

in R? by the orthogonal matrix G, we have

TAew,G = [TAg, i TAo,,] (24)
= [UgommZ1 + 0p(VT) i TAqz, + 05(T)]

= [UiammZi + 0p(VT) i 0p(T)].

For the second block in the matrix in the second line, see Lemma 5.1. The third equality holds
by Assumption NF2, Next, define

Ca = T vec{Aq; Y S vec(Aq.). (25)
We rotate the matrix Z by G every time Z appears and using (24) it is easy to establish that

(a = vec(ﬁgz)zlsg}Z{vec(ﬁw)-I-o,,(l)

LI
Xn(g—mi)*
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Now let
"=¢a+¢ (26)

We have,

TaEOREM 6.3: Suppose Assumptions EC, IV, LR and N¥? hold, then

- g 2
(" = Xn(gem)®

Notice that the limit distribution of ¢* does not depend upon the unknown parameter g, as a result
of the augmentation of the statistic. Roughly speaking, the orthogonality condition E [2o: ® 214
is transferred from {7 to {3 by flo;, so that we now do not lose q; degrees of freedom as we did
before in Theorem 6.2.

It is straightforward to extend the above results to the FM-GIVE estimation procedure. We

assume strict exogeneity of the instruments as in Section 5.2. Let
UoGIVE: = ¥ — AGIVEZ1,
Tt - 17 Tt
vec(Upgrve)™ = Wr vee(Ugave)-
and define the score with respect to the stationary instruments as
vec(Siove) = Zvec(Upgve)
-1 Fre
= Z'Vyp vec(Upgrve)-

(We do not have a simple expression for Z;grve before vectorization.) Also define {toGIvEL},

which is corrected for endogeneity with respect to ug as:
ut =% — Q01
0GIVE: = WOGIVEt Oadigy Ugt-

(In the calculation of Qo {%ogve:} may be used.) Using {Uqyg,}. we define the “fully-

modified” score as:
=+ _ It A
Zave = UggveZ — TAos:
We let

Carve = vee(E¢tve) (Qooz @ 2'Z) M vee(SEive)- 27)
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As a direct consequence of Theorem 6.2, we have

THEOREM 6.2": Under Assumptions EC, IV, LR, NF and SE

d 2
CGIVE — x“(qz—m2)'

Without augmentation, the test statistic {grve converges in distribution to a chi-squared
random variable with n(g; — m) degrees of freedom as in the case of the FM~GMM procedure
and the uncertainty with respect to the parameter ¢, arises again.

We therefore proceed to construct augmented test statistics. First define the autocorrelation
function of the transformed processes vec(Toz(5)) = A Z7 vec( ﬁocng )= FAZ ﬁ’u}l(ﬁécw&)
where ﬁQGNEJ is the observation matrix of the residuals {%oGIvE,, ,.}. Then let the estimator of

the corresponding one-side long run covariance matrix be

T
vec(ﬁgz-) - z w(j/K)Vec(fOz‘ (.7))!
j=0

where w(-} is a kernel function as in the preceding sections. Given the strict exogeneity of the

instruments, we have

-~ - 1 -
vec[Ag G1) = vecAg,r = TZ; vec(Usgrve)™ + op(1/VT)

vec[agz-Gg] = vecﬁoz; 0.

We define
(AGIVE = \rec(égz-)’(Z".’:‘f')_1 vec(fﬁo,-) (28)
w ~ -1 w
= vec(Aose)' (z’vo}lz) vec(&oze). (29)

Then using {give as defined in (27), we let

¢cive = (aGvE + (GIVE- (30)
The following theorem can be established by the same lines of argument as Theorem 6.3.

THEOREM 6.3": Under Assumptions EC?, IV2, LR?, NF? and SE

. d .2
(GIVE — Xn(g~m)*
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We can conduct tests of IV validity based on (G in the usual fashion. Note that the degrees
of freedom of (4ryg in the limit are n(g—m), of which ng = (the number of equations) x (the
total number of instruments), and nm is the total number of unknowns. This can be interpreted

as the number of overidentifying restrictions, just as in classical test statistics for IV validity.

7. A Practical Guide to Our Formulae
for Empirical Implementation

In the previous sections of this paper, we developed our theory by starting with simple models
and moving towards more complicated cases. This presentation of our theory is chosen chiefly for
an expository purpose. As a result of this progressive approach, a wide variety of estimators and
test statistics have been included in our development. Therefore, it may be useful in this final
" section of our paper to provide practitioners with recipes for empirical applications of our FM-IV
estimators and test statistics.

We consider a multiple regression model

v = A . + uoe
nxl nxm mxl1l nxl

just as before. Let Z; denote a g-vector of instruments. Here we assume no knowledge about the
cointegrating relationships among the regressors and the instruments (that is, within the regres-
sors, within the instruments, and between the two)., Then, our FM-GMM estimation procedure
can be implemented in the following way. (The procedures inside the square brackets are optional

in what follows.)

FM-GMM Procedure

STEP 1: Run the “naive” IV regression
A=Y'P,X(X'P,X)?

and calculate the residual

Ugt = Yt — Ai't.

STEP 2: Use {To:} obtained in Step 1 to calculate §;7 using the formula (19}). Let

vec Aawm = {(In ® X'2)S;M(In ® Z'X)} " (In ® X'Z)S7} vec(Y'Z)
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and calculate the GMM residual

toGMM: = Yt — AGMM T+

STEP 3: Use {fipgmm:} obtained in Step 2 and {uq:} = {(Az], Az)} to estimate the long-run
covariance matrices

Qoa, Qaa and A, = Ay — 0:07, A,

using kernel estimators (see formula (11)} with a kernel function that satisfies the conditions
stated in Assumption LR. [Also calculate §,r again as in Step 2, but use {dogmm:} in place of

{%g¢}.] Using the estimates Qoa, Qe and A;’z, obtained above, construct
vec Agmm = {(I. ® X'2)57} (1. ® Z’X)}—1 (In® X'Z)S7} vee(Y*'Z - TAL )

where

Y+ =Y - Qo050 UL.
Calculate

UoGMM:t = Yt ~ AGMM Tt

This completes our FM-GMM estimation. [We can iterate this process by returning to the

beginning of Step 3 and using {Fogmm:} in place of {ZocMmmt}-]

STEP 4: Estimate A,,, [and (o, again] usihg the GMM residual {Uogmm:} obtained in Step 3
and call the estimate [luoz [and ﬁoa]. Calculate the corrected GMM residuals

Udonme = TooMM: — Q0a 07 gy
and its long run variance estimate
fo0.0 = Qoo — 00a7) Qo
[We could also calculate S;7 again as in Step 2, but use {Zogmm:} in place of {ig,}.]
STEP 5: Construct the fully modified score matrix

- i %
.:.+‘ = UOGMMZ - TAuoza
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and the test statistics
¢ = vec(EHY(fooa ® Z'Z) Mvec(ZH),
Ca = T vec(Ay;)'Sy vee(Bu,s), and
¢ = G+¢

We can conduct instrument validity tests using (* as an asymptotic x* criterion with n(g-m)

degrees of freedom. We call this the FM-GMM instrument validity test. O

We may also want to use FM—GIVE when certain additional conditions hold. For instance, it
is assumed here that Z; is strictly exogenous in what follows (but again as discussed in Section
5.2 this can be relaxed). We also work under errors of the form prescribed in Assumption VR.

Then the following procedure is suggested.

FM-GIVE Procedure

STEP 1’: = Step 1.

STEP 2t Use {fix} to estimate the VAR model in Assumption VR by the use of OLS. Using the

estimates C and ¥, obtain the transformation matrix Wr given in the formulae of Section 5.3.
Let

X =WrI®2), 2* =Wr(I® Z), vec(Y')" = Wr vec(Y').
STeP 3': Construct the estimator

vec Agvg = (X PX") A E" {(Z"Z")'IZ" vec(Y')'},
and associated residual

ToGIVE: = %1 — AGIVEZt.

STEP 4': Estimate 0,$;, and A, using {Ho:} [or {GogIve:}] and call these estimates Qox, Qzr

and 3,2. Construct the final FM-GIVE estimator

vec Agvg = (X*Pz ")}

x X2 {(Z"Z')“E" vee(Y')" — vec(o 71 (ULZ - Tﬁu)(Z’Z)“l)} ,
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and calculate the residual

UeGIVE: = ¥t — AGIVEZ:.

[Once again we can iterate this process by returning to the beginning of Step 2/ or Step 4’ and

using {Zogrve:} in place of {¥o:} [{¥ocIvEe}].]

STEP 5': Use {ogIvE:} to calculate vec(&h-) following the formulae in Section 6. [Also calculate
Qoz again.] Calculate the corrected GIVE residual

— -~ A—l
USGIVE: = YoGIVEt — Q02877 Uz,
and its long run variance estimate

o~ -

Qog.c = ﬁog - ﬁozﬁ;_}ﬂrg

STEP 6': Construct the fully modified GIVE score matrix
=&ve = UséveZ — Thox,

and the test statistics

(AGIVE = TVec(ﬁoz-)'(Z"Z')-lvec(a()z-),
Cave = vee(E&ve) (Qoor ® Z'Z) vec(Eiyg), and
(Give = {aGIvE + CGIVE.

FM-GIVE instrument validity tests can now be conducted using (&g 2s an asymptotic xi(q_m)

criterion. O

As shown in the above procedures, the calculation of FM-IV estimators involves the compu-
tation of correction terms at the first stage, and an IV regression at the second stage. As a result
of this two stage structure, which is commeon to all F'M estimators, it is easy to check the impact
of the estimator modifications in the course of analysis. In particular, the values of the FM cor-
rection terms can be used to assess the degree of endogeneity and the extent of serial correlation
in the model. Thus, these corrections provide useful information which suggest features of the

model that are empirically relevant and important. In sum, while the FM(-IV) methods have
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many convenient theoretical properties, they also have advantages that seem to be important and
useful in empirical implementation.

Finally, when we apply FM-IV methods in practice, the choice of instrumental variables is im-
portant. As far as the stationary components of instruments are concerned, the usual IV validity
conditions need to be satisfied, as those discussed in Section 3. Also, the number of nonstationary
components in the instruments must be at least equal to the number of the nonstationary compo-
nents in the regressors. As in usual applications of IV procedures, to ensure that these conditions
are met we may explore a range of possible candidates for instruments. Then we seek to employ 2
“large enough” number of (stationary and nonstationary) instruments so that the aforementioned
“srder” conditions are satisfied. The validity of these instruments can subsequently be tested
using our FM-GMM validity test.

In many cases, in fact, economic theory suggests sets of IV candidate variables. For example,
in many RE models, as we mentioned earlier, lagged regressors are assumed to be contained in
economic agents’ information sets and are therefore orthogonal to subsequent innovations that
affect the outcome of agents’ decision making. Such variables can then be used as instruments and
Assumption NF (NF?) is satisfied. The advantage of the use of lagged regressors as instruments is
the apparent fact that the integratedness properties of the regressors and the instruments coincide
if such instruments are employed. Thus, if we use a vector of lagged regressors as instruments,
such a choice of IV has certain advantages. But of course we need to be careful to ensure that
the instrument set is not “too large,” so that it does not distort finite sample performance.

As for the choice of nonstationary instruments, artificially generated nonstationary processes
could also be used as valid instruments, at least theoretically. This method exploits the spurious
correlation between independent nonstationary processes (see Phillips (1986) and Phillips and
Hansen (1990)). If we are short of nonstationary IV candidate variables, this method might be
used. However, attention should be paid to the finite sample properties of the FM estimators
if such instruments were to be used (see Hansen and Phillips (1990) for some discussion of this
point). In any case, whenever we employ the FM-IV procedure, we need to investigate candi-
dates for instruments carefully, just as we do in usual IV regressions with stationary time serjes.

However, our theory allows us to choose instruments from a very large set of potential candidates,
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especially in the case of FM~GMM. In fact, this is a great advantage of IV and GMM methods

in general.

8. Appendix

8.1. Proof of Lemma 3.1: Rotating coordinates in the regressor space IR™ by the orthogonal
matrix H, we have

CrH = (UyP, - ¥7)Xh (X[ P. X)) "
By straightforward calculation part (a) and part (b) can be established; see proof of Theorem
4.1 in Phillips (1994). Then for part (a), Assumption IV [(a), (b) and (c)] ensures the validity
of the stationary instruments and the required CLT is given by (8). The usual weak convergence

arguments for cointegrating regressions (see Phillips (1991b), for example) deliver part (b) of the

lemma. O

8.2. Proof of Lemma 4.1: In the following, we need to calculate stochastic orders of quantities

such as
_ K-1 . K-1 - -
Ovrss = 3 wi/E)Twau(@= D, w(/E)Twu(i) ~Tuwu(i+1)) (A1)
i==K+1 j==K+1

—w((K =1)/K)F e (K) + w((~K +1)/E)Tugu, (=K +1)

K-1
+ S (w(i/K) - w((G-1)/K)) T ()

j=-K+2
= Fir + Faor + Fsr, sy,
Note that the summation will be taken from —T+1 to T—1 in the case of the quadratic spectral
kernel but the argument in the rest of the proof is otherwise unaltered by the change.
We first focus on the component Fsr in (A.1), which is a sum of the autocovariances weighted
by the first difference of the lag window w(j/K). In what follows, we assume twice differentiability
of w(-) as in Phillips (1994). By the mean value theorem

w(j/K) - w((j-1)/K) = K7'v'(j*/ K),

where j* € [j~1, 7] and is defined for each j. Then
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(A.2)

K-1
Br= % (w(/K)=o((~1)/K)Tuul)
j=—K+2
1 K-1
- £ Y WK (3)+ B/ K) = 0= 1/E)) g ()
j=—-K+12
1 K1 w'(i*/K v g o \F=17 oyr=—1 . . . .
- sz_z!;“(jf‘jg),%(a 3™ GY " Tawsa () + S/ K) = w((G~ 1)/ K)o (3

The condition (13) implies that w/(5*/K)/(j*/K)™"! converges boundedly to w(, for each fixed

j. Thus Fp is of order O(K~"). Also, following Hannan (1970, p. 280, Theorem 9), we bave

] 1
Th—ongo KTT{-EVaI

lim KT Var[vec F3r]
T o0

j=—K+2

T K~-1 "
= Tli_.n(l”-EVa.r [vec{ Z W’(j-/K)ruou1(j)}]

K-1
vec{ Z w'(j'/K)fuom(j)}:'

j=-K+2
= constant.

Thus, combining expressions for the variance and the bias (cf. Hannan, 1970, Theorem 10, p. 283)

we have

) 1 1 1 1
E{vec(Fyr)vec(Fsr)] =0 (ﬁ) +0 (F) =0 (W) +0 (W)
where K = O(T*). Therefore
Fsr=0, (T_(&i’ﬂmk)) .

In the following, we assume r = 2, and then Far = O,(T~%), with 6 = ((k + 1)/2) A 2k.

On the other hand, Fir and Fyr are negligible since they are of order o,((K — 1)~2). In sum,

we deduce that Qya,, = 0,(T-%).
Next we consider

K-1

ﬁOAui = ﬁ‘l:oﬁ"l = ﬁmAu: + Z w(j/K)(E"A)fz:Aux (])
j:—K+1

= Dusu — W((K=1)/K)A- A su (K) + w((=K +1)/K)A- A)Tz0, (K +1)

K-1

+ Y (w/K) = w((G-1/ K (A=A, (5)

j==-K+2
= Byt + Byt + Bar + Bar, say.

(A.3)
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We have shown that Byt = Op(T~%). Byr and Bjr are easily seen to be of order 0,(1/v/T); see
(P13), (P14) in Phillips (1994). In sum, we have

Do, = Op(T7%) + 0,(T™1) = O,(T7%).

By following a similar line of argument, we find ﬁuz sy = 0p(T7%).
In what follows, we also need to invert the estimator of a long run variance matrix of J (-1)
variables, e.g. ﬁAu; A, - As before, we find ﬁAu, Au; = O,,(T“s). By considering the terms at

lag zero, we can verify that the rate of convergence of ﬁ,_s,.,, Au, 18 10 faster than T—¢ and indeed

31 au, = Op(T?). For a rigorous treatment of this point, see Phillips (1994).
Now, using the partitioned matrix inversion formula and writing ﬁu,u,.Aul = §u2u2

- ~_1 - .
— Qu;Aul Q&!q Auy QAul up; We obtain

Qohnhh = QOAuI (Q.Alq Ay - QAU] Auy QA“! U2 unus-Auy Q“?Aul QAU] Aug
. ~_1 ~ =1 -~ =1 ~ =_1 ca
- T QAU1 Auy QA"I uz Q’ugug-Au‘ ) + QU’-‘Z (_nguz-bm ﬂA"‘l uz QAu;Aul - ‘ngu;-Au; )

= 0p(T™) (OP(T”’) ~ Op(T™)05(T~)05(1)05(T~*)05(T*) | OP(T%)OP(T"S))

+ (R0u + (1) (0T 0T 051, + opm)

[OP(T-““) : Qo 2L, + op(l)] .

Next we evaluate the matrix T7U} Zg — Zihg block by block. For the (1,1) block, we have

K-1
TAVZ) - Rpuan = W((E-D/E)Tau=(K) = Y @G/K) - w((§-1)/K)Tau= ()

i=1

n

0,(T7%).

As for the (2,1) block we can show that T-'U;2Z; — Auyaz = 0p(T~%) in the same way. The
(1,2) block is T~1U{Z; ~ BAUW,: = 0,(T~/?) as in Lemma 8.1(g) of Phillips (1994).
The result for the (2,2) block is familiar from the original Phillips-Hansen (1990) study.

Combining the above results, we have

0x(T7%) i 0,(T?)
, where Ny - [) dB; BL,.

-----------------------
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In sum, we conclude that
Qonllys (%U,ﬁzc - B,,g) = [o,(T-f) +0,(1/VT) | Qou, Qap, N + o,,('rz"-ﬁ-m)] :
Further, if k£ € (1/4,2/3), then 2k - 6§ —1/2 < -1/2 and
-~ -~ 1 - . -
QghQ;; (T;U;;ZG - Ahg) = (op(l/'\/i:) : QOquu;uzNT + Op(lﬁ)) .

This proves part (a).
Part {(b) can be proved by straightforward calculation. 0O

8.3. Proof of Lemma 4.2: For the first equality in part (a) in the lemma it suffices to show
that

Bon (= Bgan ) =T 0021+ 0,(1/VT).

By definition,

K-1

Ts ., (0) - w((K=1)/K);, (K)+ Y (w(i/K) - w((i-1)/ KN T;,., ()
7=1

T . (0) = w((K = 1)/K)Tuez, (K) — w{(K 1)/ K)(A- A)T:zy (K)

-

A

oAz

K-l
+ 3 (w(i/K) - w(i-1)/K) Tuon (4)

i=1
K-1
+ 5 (wU/K) - w((j-1)/K)) (A= A)HT.., (j)

=1
= G1; + Gor + Gar + G4t + GsT, say.
Note that Go = 0,(1/v/T) since w((K —1)/K) = 0,(1) for the truncated kerneis we use in the
paper, and fuoz‘ (K+1) = O,(1/VT) by Assumption NF. Gar and Gsr are also of order o,(1/VT),
just as in the analysis of {A.3) in the proof of Lemma 4.1. Thus, G4t = 0,(T~1/?); see Phillips
(1994), Lemma 8.1(h). In sum, the equality at the beginning of the proof is now established. This
result and Lemma 4.1(b) prove the first equality in the lemma.

For the second equality, we start by using the definition of U, ie.
Y'= 21X; + HQXE + ﬁé
Thus,

UiP, X1 = (A1 — A)XiPy X1+ (Ay — A) X3P X1+ UpPo Xy



35

= (A1~ A)X{Py X1 + UsP.y X1 + 0,(1)
= —UgP Xi(X{P, X0) ' X1 P2 Xy + UgPry X + 0,(1)
OP(]-):

where the second equality above follows from the fact that A, is T-consistent. The second equality

in part (a) of the lemma now follows immediately. Other results directly follow from Lemma 4.1.
]
8.4. Proof of Theorem 4.3: First, following the notation used in (3.7) we define

Ur = Qo 07UP +TAY(2'2)1Z

TAw(Z'2) 12" + TN T Z — B, (2'2)1 2 = Uyp + Vo, say.

Then ¥, X, = ULP,, X1 + 0,{V'T) by Lemma 4.2(a) and 4.2(b). Thus (C1) holds. Lemma 4.2(c)
also shows that (C2) holds. Therefore we can apply Lemma 3.1, 4.1(a) and (c) and establish the

required results. O

8.5. Proof of Lemma 5.1: This follows the same lines as the proof of Lemma 4.2(a) and is

therefore omitted.

8.8. Proof of Theorem 5.2: Comparing the form of (9) and the estimator (16), we define ¥r

as
vec Uy = 257 vec (80a07] (V:Z - TAu:) - Tho.).
Therefore

vec(UrX1) = X[ Z57} vec (ﬁm,ﬁ;}(u,;z - Té.a,)) ~ XiZ S5} vec(TAg,).

We now vectorize the result in Lemma 4.2 and replace (2'2)~! by §77. (This replacement does
not change the stochastic orders, given (17).) Part (b) of the lemma shows that the first term in
the last expression is of order 0,(v/T). Therefore, by applying Lemma 5.2 to the second term, we
have vec(¥7X1) = 0,(vT), and thus (C1) holds.
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To establish (C2), we use part (c) of Lemma 4.2 (modified as indicated above) and (17). We

have,

-1
1t vee¥r) L {05 0 [} BB, (5 BaB) fvec(on)

+ (232005 © 1) (f; dBs @ B2),
which establishes (C2). Then, by Lemma 3.1(2) and (17a) we have

—~ -1
VT vec((Agum — A)H1) = (xlzls;}z{xl) X0 2,87Y vec(UZ1) + o5(1)

= VT vec(Agmm — A)H; + 0,(1)

-9

4, N(o, [&,,s;liczl]'l),

proving the first part of the theorem. For the second part, we use Lemma 3.1(b), (17b) and the

limit of T=1&; vec(¥7) obtained above. We have
- -1 -1
VT vec|(Aamm — A)Hz] - {9501 ® J, dB:B. ( I B,B;) I B,,B;}

x { (9;01 ® Jo 48,8, (J; B.B.) '1) (13 4By ® B. + vec(os) - vec(8a,))
— (9l @ 1) ( [ d0u01 By © Ez) }

_ {I o (I EZE;)"} (JidBos® Bs),

giving the required result. O

8.7. Proof of Theorem 5.3: First, note that the premultiplication by wr does not change
the order of integration of a time series. This point can be seen as follows. Take the matrix
X = (I, ® X) which frequently appears after the vectorization of the estimator. By the use of the
(nm x nm) rotation matrix H = [Hy | Ha] = [In ® Hy : I ® Ha), we decompose the matrix & as
XM = [X) 1 X3], so that the first nm; columns are observations of stationary series, while the last
nm; columns are observations of nonstationary series. Clearly, after premultiplication by Wr, we
have WrA'H = (X} : A;], which has the same property in terms of the orders of integration in
the given decomposition.

In view of the above, we can use the results in Lemma 3.1, 4.1 and Lemma 4.2 by vectorizing

them and assigning the superscript “s” to each matrix and vector as necessary to signify that the
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transformation by W has been performed. Since the correction terms used in the definition of
the FM—GIVE estimator {20) are the same as those in the definition of the FM-IV estimator, we
know that conditions {C1) and (C2) hold. Then, by Lemma 3.1(a) we have the first result in the
theorem.

Next, using the idea of the so-called Beveridge-Nelson (1981), or BN, decomposition, we

observe that

i

X = Wrlla® Xo) = S 0 Ir) (Seo(Cr @ £1)) (1 @ Xa) = 2o Cr © X,
= C(1)® X2+ = +0,(1),
where C¢(L) = £:/2C(L), Gt = £¥_,,,C%, and = = —E2_,C¢@U;_, the last of which represents
the observation matrix of the stationary terms. Therefore, we can think of C*(1) @ X as the long
run “approximation” of X, Similarly, we have Z* ~ C*(1)®Z and vec(Ug)" = (C*(1)®1)vec(Ug).

Sample covariance matrices of these transformed data matrices have the following asymptotics:
T2x;' 25 = CH(1YC?(1) ® T2X}2; + 0,(1) = Q3¢ © J3 B2 B, (A.6a)
T-223'2; = C*(1YC(1)® T"2Z3Z2 + 0,(1) = 03 © [; Bx, B, (A.6b)
T-125 vee(UL)" = [C(1YCH1) @ Ivec(T~UjZa) + 05(1) == (250 © 1) ( I dBOB,,,) . (A.6c)

In these expressions we use the fact that C(1)'C*(1) = C(1YE7IC(1) = Q5;. Notice that the
asymptotics of (A.6¢) do not involve a one-sided long run covariance term in view of the strict

exogeneity of {z2¢}. By (A.6), we have
X;'Pz; X3 203 @ Ji BBy
X3'Pe vec(Ug)" < (053 ® 1) (f3 dBo ® Eg) ,
and
X' 25 vec [ﬁ(}xﬁ;zl-(U;ZQ + Tﬁzzg)(zézz)dl] = (Q ®1) (fol Q0223 dBo © Ez) .
By Lemma 3.1(b) we have

vec (T(A—ng - A)Hz) = T(X;'Pz,: X,:)—l

x X5'2; (P3, vee(Y')" = vec [Qosf3 (Ulzs + T2 )(2322)7'] ) + (1),
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and utilizing the above limit resuits we establish the second part of the theorem. O

8.8. Proof of Lemma 6.1:
T-12ztG, = TY2E*G, - TYV2AY,
= T Y3 TiemmZi - Thasy) = TV 00050 UL 2, — TAL,]

op(1).

H

The second term in the second line is of order o,(1) by Lemma 4.1. Under Assumption NF, which
implies the (one-sided) exogeneity of {z1:}, the first term is also 0p(1). To see this, notice that
T12Aq, = T=Y20}gumZ1 + 0p(1), which can be shown in the same way as Lemma 5.1. This

proves part (a) of the lemma. For part (b),

T-124G, T2, — Qo2 T U 22 — BY, - (Aiamm — AT X( 2,

~ T(Azomm — 42)T"1 X432,
= (T7W,2; - Bos,) - 071 (T720. 2, - Asy)
- T(Asomm — AT 71X} 2, + O,(1/VT)
<, [YdBoB., -l [1 dB,B., - 3 dBosB) ( N Ezﬁg)'l I3 BB,
= [ldBo:B., {I - ()3 B..BL,) N EQE;)'I [ B;B;z} .
In the second line the stated error obtains because (A;GMM — 4;) = Op(1/+/T), while Lemma
4.1 and Theorem 5.2 establish the third line. Next we define

-1/2

Dot = (L@ T™2242,) /2 (T2 24%,) 2 {I,, ®(faBuBy) I B,,2B;} - D.,.

~ -1
Then, recalling the definition B,(r) = fol BB, ( fol B, B;z) B, (), we get

—-1/2 A _ -1/2 —_ _ -1/2
T2 (Qo0a ® T °22,) | vec(ET) = (Iﬂq-PD,,){nog/2®(f; B.,B,) }

X fol dBQ.b ® B;

= MNQ, [In; - Pp,,]). DO



8.9. Proof of Theorem 6.2: Using Lemma 6.1,

~ -1
¢ = vee(EtY (Qm.a ® Z'Z) vec(Z**)
~ -1
= vec(ZY*G,) (Qoo.a ® Z{Z;) vec(Z*Gy)
e it i G ! -1 ——
+ vec(Z1G.) (Qoo-a ® Zng) vec(Z1*Gr) + 0p(1)
- -1
= vec(EHG,) (Qm.a ® z;zz) vec(E+Gy) + 0p(1)

P 2
- xﬂ(?:—mz)'



9. Table of Notation for Variable

and Estimator Affixes

Symbol Meaning

Ty vector of regressors

Ty (= 1) vector of the I{0) components of regressors
Ty vector of the I(1) components of regressors
Uzt = Az,

Uzt = Azy

z vector of instruments

21 (= uzat) vector of the I(0) components of instruments
2o vector of the I(1) components of instruments
Uz = Az

Uzt = Azy

subscript “a”
subscript “b”
superscript “+”
superscript “*”
Qi;

Ajj

o

elements corresponding to ¢ and u jointly
elements corresponding to ug: and uzg; jointly
endogeneity correction with respect to {uq:}
serial correlation correction

long-run covariance of {u;;} and {u;;}

one-sided long-run covariance of {u;} and {u;:}
= Ay — Qa7 Agj

estimator without FM corrections

estimator without FM corrections

40
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