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ABSTRACT

We consider an econometric model based on a set of moment conditions which are indexed
by both a finite dimensional parameter vector of interest,f, and an infinite dimensional
parameter,h, which in turn depends upon both # and another infinite dimensional
parameter,7. The model assumes that the moment conditions equal zero at the true value
of all unknown parameters. Estimators of § are obtained by forming nonparametric
estimates of A and 7, substituting them into the sample analog of the moment conditions,
and choosing that value of # that makes the sample moments as "close as possible" to zero.
Using independence and smoothness assumptions the paper provides consistency, v/n
consistency, and asymptotic normality proofs for the resultant estimator. As an example,
we consider Olley and Pakes’(1991) use of semiparametric techniques to control for both
simultanaeity and selection biases in estimating production functions. This example
illustrates how semiparametric techniques can be used to overcome both computational
problems, and the need for strong functional form restrictions, in obtaining estimates from
structural models. We also provide two additional sets of empirical results for this
example. First we compare the estimators of # obtained using different estimtors for the
nonparametric components of the problem, and then we compare alternative estimators for

the estimated standard errors of those estimators.



A Limit Theorem for A Smooth Class of Semiparametric Estimators

We consider an econometric model that specifies a set of conditions on a vector of

population moments
G(6) = [ mlz,ho{z,7o(2),0},6] P(dz),

and assumes they equal zero at § = ;. Here both hy and 7, are unknown functions.
Estimators of § are obtained by drawing a random sample of size n from the distribution
P(-), forming nonparametric estimates of Ay and 7, say hn and 75, and finding that value

of  that makes the sample moment
Gn(6) = 07125 mlzs, ha{zs,7a(z1), 0}, 0]

as close as possible to zero. The generality obtained by allowing the unknown functions to
be indexed by both the parameters of interest, and by other unknown functions, is essential
for the examples we have in mind (see below).

Section I provides consistency, root—n consistency, and asymptotic normality results
for a "smooth" class of such estimators. Section II discusses prior results which justify the
additional assumptions (beyond smoothness) needed for our limit theorems, and section I1I
concludes with an empirical example.

The example, taken from Olley and Pakes(1991), uses semiparametric estimation
techniques to control for both simultanaeity and selection biases in estimating production

functions. It starts from Griliches’(1967) notion that one cannot obtain interpretable

estimates of production function parameters without a complete model of firm decision



making, and then illustrates how semiparametric techniques can be used to overcome both
the computational problems and the need for strong functional form assumptions that arise
in obtaining parameter estimates that are consistent with such a model. In this paper we
provide the limit distribution of Olley and Pakes’(1991) estimator, and then compare
empirical results obtained from both, i)alternative estimators for the nonparametric
components of their problem, and ii)alternative estimators for the standard errors of those
estimators.

We assume at the outset that all functions are sufficiently smooth in all of their
arguments, and that the data are anii.d. sample from some population. Though, as
pointed out below, these assumptions could be relaxed in an increasing number of ways,
they allow us to provide proofs for the limit theorems, and an exposition of the conditions
that will suffice for them, that are reasonably transparent.

In addition, use of the moment conditions framework allows us to use familiar
arguments from prior work (see, for e.g. Hansen,1982, Hardle and Stoker,1989,

Manski, 1991, and Pakes and Pollard,1989), and this simplifies the proofs of the
propositions. In particular the proofs presented here are structured similarly to the proofs
given in section III of Pakes and Pollard (1989) for the parametric case, so that the reader
who is familiar with that material should have little difficulty with the material that
follows. This structure of proof has the additional advantage that it can also be used for
cases that do not satisfy our smoothness restrictions.

The problem dealt with in Section I, and the results obtained there, are, however,
more similar to Newey (1991; see also Andrews 1994). Indeed, if we were to extend
Newey’s definition of a semiparametric M—estimator (his 3.1) to allow the unknown
functions to depend on other unknown functions, and extend his definition of the
"pathwise" derivative analogously, then Newey’s formula for the limit distribution of the
parameters of interest would be identical to ours (and Newey does not require the

smoothness conditions used here). The incremental contribution of section 1 of this paper



is in providing a set of assumptions that, for the smooth case, allows us to justify our limit
theorems when there are unknown functions that are indexed both by the vector of
parameters of interest and by other unknown functions, and in the simplicity of the method
of proof. We conclude the first section by noting first that given consistency (and our
smoothness and independence assumptions), the additional assumptions needed for the
limit distribution of our estimator are automatically satisfied if "orthogonality" conditions
similar to those used in Andrews(1994) are satisfied (a similar result is presented in
Newey,1991). As noted by Andrews(1994), in this special case we need not adjust the
variance—covariance of our estimated parameters for the fact that we use estimated (rather
than actual) values of ¢ and 7 in the definition of our moment conditions. We then
extend this discussion and provide conditions under which we need not adjust the variance
covariance for the fact that we use an estimate of 7¢ in the definition of our moment
conditions, even though an adjustment for the fact that we use an estimate of hy is still
required.

Section II, which discusses conditions on the primitives of our problem (in particular
on the nonparametric estimators) which insure that the assumptions needed for the limit
theorems of section I are satisfied, is largely a short summary of relevant results in prior
work by Andrews (1991,1993,1994,forthcoming), Newey(1991 and forthcoming), Pollard
(1991), and Powell, Stock, and Stoker (1989). It makes particularly intensive use of the
results in Andrews(1993). Section II deals explicitly only with the case where hg and 7, are
conditional expectations, as this is the case we need for our example. However, as noted in
section II, the literature provides conditions which justify the assumptions used in section
I, and the precise form of the resulting limit distribution, for a variety of other cases.

The empirical example in Section III uses theory to generate investment and exit
rules that allow one to correct estimates of production—function parameters for both the
simultaneity problem induced by endogenous input demands, and the selection problem

induced by exit behavior. The estimation algorithm leaves the exit rule and the



investment equation, as well as the process generating differences in productivity over
time, as nuisance functions to be accounted for by nonparametric techniques. As is
frequently the case in estimation problems derived directly from a behavioral model, the
relevant moment conditions involve unknown functions which are indexed by both the
parameters of interest and by other unknown functions.

We present several estimators of the production function parameters that differ in
the way the nonparametric components of the problem are estimated. Also, for each such
estimator, we compare standard errors estimated in three ways; once using a bootstrap,
once using an analytic form which produces a consistent estimator of the
variance—covariance matrix generated by our limit theorems, and once using an analytic
form which ignores the fact that ho and 7 are not known at the outset. The alternative
estimators include both kernel and series estimators, and among the kernel estimators we
present estimates based on both bias—reducing kernels with bandwidths obtained from a
cross—validation procedure, and estimates obtained from a standard Normal kernel.

Of these alternatives the only one that, to our knowledge, is currently known to
satisfy all the assumptions of the limit theorems is the estimator based on the
bias—reducing kernels. The results, however, do not differ much among estimation
techniques. The correction to the standard error formula that is required to adjust for the
presence of the estimates of the nonparametric functions (in the case where orthogonality
conditions do not hold) does seem to increase the estimated variances, but the parameters
of major interest are still estimated with a fair amount of precision. Interestingly, the
bootstraps produced estimates of standard errors which tended to be larger than the
estimates obtained from the analytic formula. Also worth pointing out is that the
bias—reducing kernels produced a distribution of bootstrapped coefficients with a slightly
larger variance, and a significantly larger kurtosis, then did the non bias—reducing kernels.

We note that our empirical example is quite complex, involving nonparametric

estimates of three unknown functions, and structural parameters that are buried inside



them (though in an intuitive way). Thus the fact that the estimated standard errors were
within traditionally acceptable bounds for production function estimators (though the
sample was not terribly large by modern microeconometric standards) is indicative of the
potential usefulness of semiparametric techniques in alleviating both restrictive
assumptions, and computational bottlenecks, in empirical work on micro data sets. In
particular, estimation of any reasonable specification of a parametric version for our
problem (and by this we mean any specification which allowed for serial correlation in the
productivities of a plant over time), would have led to a computational problem which
would have probably been impractical even using the current generation of supercomputers
(see the discussion in sections 3 and 4 in Pakes, forthcoming). In contrast, some of the
nonparametric specifications ran in under an hour on our 486 personal computer. The
computational advantages of semipararametric techniques also come out clearly from the

recent work of Hotz and Miller (1991).

Notation.
The symbol ||-|| denotes not only the usual Euclidean norm but also a matrix norm: || (bs;)
I = (B3 b%)‘/?. It has the useful property that ||Bx]|| < ||Bj ||x|| , for each vector x and

each conformable matrix B. The symbol +4 will denote convergence in distribution.

I.Limit Theorems.

The population moment conditions are
(la) G(ﬂ) =E m[z,ho{vl,ro(vz),ﬂ},ﬂ] ,
with G(0) an R! valued function which satisfies G(6)=0 at 0=4,.

Here the expectation operator is with respect to P, a distribution for z with support

I cRY, and v/ =(vy’,v5’) is a subvector of z whose support contains 7€ R%v (dy < d). v,



and v, have supports 7 C R!and % c R92, respectively. 6 € ©, a bounded subset of !Rk.
7o(+) € T and h(-) € H¥ where & and T are pseudo metric spaces of functions from % x T
x B - HCRY, and from %~ T C RY, respectively. Thus m(-):Zx Hx8-R¥ ho: Hx T
x8- H, and 7¢(+): %- T

We note that it will be assumed that m(-) can be written as
(1b)  m[z,he{vy,7o(v2),0},0] = m*[z,ho{vy,70(v2),0},0]{ve 77},

where I{-} is an indicator function which takes the value of one if the condition inside it is
satisfied and zero elsewhere. The indicator function, I{-}, allows us to trim out, or delete,
those observations with v values that are "outliers" in the sense that they lie in subsets of
Rdv where there are likely to be few observations; too few to allow us to estimate the
associated values of A(-) or 7(-) precisely. Though we needed to introduce the indicator
function here for completeness, it has no direct role to play in the discussion of the limit
theorems of this section. We come back to it in section 2 where we provide restrictions on
¥ which insure that the rate conditions used as assumptions in the proofs of the limit
theorems of this section are indeed satsified. More detailed notation will be introduced

when needed.

Our problem is to estimate §, and we would use a method of moments estimator if
ho and 7¢ were known. Because these two functions are not known, we plug preliminary
estimates of them, say 7n(+), and An(v,7n,0) = ha{v1,7a(v2),0} , into G(-) and consider

minimizing a distance in
(2)  Ga(f) =07 55 mzs,hn(vi,7n, 0),6]

Starting with Euclidean distance then, fp, our estimate of , will be assumed to satisfy



(3) I Ga(fn) || =infpeg || Gn(6) || + op(1/vn)-
Note that in general hn(-) has to be reestimated for each different value of 4.

Our goal is to provide a limit distribution for a f, which satisfies (3). To do so we
show that any such 6, is also a solution to a different problem, and then show that the
limit properties of the solutions to this simpler problem can be analyzed quite easily. We
justify the use of this method of proof by assuming that the functions m(-) and A(-) are
sufficiently smooth (though, again, less restrictive justifications could be used at a cost of
increasing the complexity of the proofs). Briefly we assume that: m(-) is twice
continuously differentiable in h=A(-), and once continuously differentiable in #; and that
h(-) is twice continuously differentiable in t=7(-). Further these derivatives are assumed
to be continuously differentiable in € in a region of #; and bounded by functions
(envelopes) which are square integrable with respect to P (see below). Also for
expositional convenience we consider the case where h(-) and 7(-) are both functions into a
subset of Rl. The example will extend the discussion to higher dimensional spaces.

We introduce these assumptions now. To simplify the exposition we use the
following conventions. Capital letters are used to designate functions which are
constructed as derivatives of their lower case counterparts, with sub or super scripted
capitals used to differentiate different derivatives where there is a chance of confusion, and
iterated capitals used for second derivatives. Also we subscript functions by n when we are
referring to a nonparametric estimate of the function from a sample of size n, and we omit

a function from an index set when we evaluate that function at its true value.

Assumption R. (regularity conditions)
For each (8,h,7) € B x &'x T let
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m(z,h,7,0) = m[z,h=Hh(v,7,6),0)],
m(z,0)zm(z,h¢(v,70,9), 0],
M(z,h,7,0)=0m(z,h,6)/oh |h=h(v,r,0)’
M(z,0)=M(z,hq,70,0),
MM(z,h,T,0)502m(z,h,0)/02hIh: Wm0

and assume that M(z,h,7,0) and MM(z,h,7,0) exist (a.e.P). Also assume that there are
envelopes M(-), and MM(-), with the property that

|M(z,0)| < M(z), |MM(z,A,7,0)| < MM(z),
and

IM(z)?P(dz) < k, [MM(2)?P(dz) < k, for some & < w.

The functions h(v,7,0), and h(v,0) are defined analogously. Further their
derivatives with respect to 7, Hy(v,7,0), Hi(v,0), and HHy(v,7,0), are assumed to exist (a.e.
P) and be bounded by the square integrable envelopes Hy(- ), and HHy(-).

m(z,6), M(z,0), h(v,0), and Hi(v,0) are all continuously differentiable in § (a.e. P).
Moreover, for all 4 in some neighborhood of 64, M8(v,#) and H;9(v,0) exist and are bounded
by the square integrable functions M8(v) and H.8(v), while || H8(v,0) — HB(v,0,)]] <
| H8(v)]|||6—0||, with H8(v) integrable.

Finally as n grows large the nonparametric estimate, hy [75), will be contained in &

[T] with probability tending to one, and §; is in the interiorof 8.  o.

Section II will provide conditions which insure that as n grows large Ap [74) will be
contained in &[] with probability tending to one. Other than that, assumption R will be
maintained throughout the rest of the paper without further comment. Note that it,

together with a Taylor’s expansion, imply that we can write m(-) and A(-) at each
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(23,hn,Tn,0) €L x Hx T =B as

(4a) m(zi,ha(vi,T0,0),0) =
m(z5,0) + M(zs, 0)[ (v, 70, 0) — ho(v1,0)] + (1/2)MM[z3,hn(vs,7,m; 0), 6] [An (5,7, 0) —
ho(Vi,g)]2 )

where B (vi,7n,hn,0) € [ha(vi,Tn,0),ho(v3,6)], and

(4b)  hp(vi,Tn,0) =
ha(vi,0) + Hen(vs,0)[a(vs) = 7o(vs)] + (1/2) HHunlvs 8(v, 0, [ 7a(vs) — 7o(vi)]? =
ho(vi,0) + Heo(vi,0)[7n(vi) = 7o(vi)] + [Hin(vs,0) = Heo(vs,0)][7n(vi) — 7o(v3)]
+ (1/2) HBynlv,E(vs,70), [ 7a(v3) = o(v1)1%

where t(vi,7n) € [Tn(vi),To(v1)]-

We now use the first two terms in (4a) and (4b) to define a different minimization
problem which is easier to work with, and then provide conditions under which the 6y

which satisfies (3) also solves the new minimization problem. Let

(6)  =(2z,hn,Tn,0) =
{m(z,0) + M(z,0)[hn(v,0)—ho(v,0)] + M(z,0)Hio(v,6)[a(v)—To(v)]}
and

(6) fn(&) = 1/n Y = (zi,hn,70,0).
Below we provide conditions which insure that

sup | Fa(0)-Ga( )} =05(1/41).
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A standard argument will then insure that if fy, is an estimator which satisfies

(1) %a(bn) = infyll G(O)l + op(1/vn),

it will also satisfy our original problem (3), and, conversely, if §*, is an estimator which
satisfies (7) it must also satisfy (3). Thus we can analyze our estimator by analyzing the
set of estimators which satisfy either (7) or (3), and it is easier to work with those that

satisfy (7).

We now introduce a set of three assumptions on the rates of convergence of the
estimators of ho and 7o (Ala to Alc), that together insure that
supg|| %a(0)—Gn(0)ll=0p(1/vn). Section II provides conditions which insure that the rates

in Ala to Alc are attained.

Assumption 1. (rates of convergence)
(Ala) % SUP(ve 7 ed) || An(v,0) = ho(v,0)]| = Op(1),
(Alb) 0% 5UP(ye 3 Il (V) = 7o(v) | = Op(2),
(Alc) 0% sup (ve % e8) | Hen(v,0) = Heo(v,0) || = 0p(1),
with
a; > 1/4, and e; + a3 > 1/2, fori=l1,2,
and

(A18)  sup(ye 59 Il Hoa(v,00) = (v, 00) || = 05(1), o

(A1d) is introduced here for convenience, as it follows from (Alc) in all the

examples we are aware of and helps simplify the asymptotic normality proof below.2

2In the examples hg(-) is an unknown function of a known (possibly vector valued) function
of 7,v, and 4, say x(7,v,f) [for more details see the discussion in section II]. Then (Alc)
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Only (Ala) to (Alc) are needed for Lemma 8.

8.Lemma.
sup ;|| %l #)~Grn(6)l|=0p(1/vn).
Proof.

From (2),(4),(5),(6) and the triangle inequality

IGn(8)—Za(0)] €
||n—1)3iM(Zi,0)[th(Vi, 0)~Heo(v, 0))[7n(vi)—ro(vs)]ll +
Hn—lEiM(zi,0)HHtm[Vi,f(Vi,Tn),9][Tn(Vi)—To(Vi)]2“ +
0728 MM {25, Ba(Vi, 70k, 0), 01 B (v, 0)=ho(v5,0) + Heo(v, 0)[7u(vi)—7o(v1)]
[ Hun(3,0)~Hio( 3, 0))[mal(v)=7o( i)+ HHeealv53(v3,70), Ol 7a(vi)=ro(v ) 1]

with £(-), and h(-) defined as in (4). We consider only the first term in this expression.

The other terms can be handled analogously. Since

1M (21,0)[ Hen(v4,8)—Heo(v4,0)][7n(vi)=To(v4)]]
<IM(z3) || x [ Hen(vi,0)=Heo(vs, )]l * |l[7a(vi)=ro(v3)]ll ,

the triangle inequality implies that the supremum with respect to ¢ of the left hand side of

the first expression is

< sup py{ (1/n)2 ()| * [Honls 0)—Hialvs, O  Nralvs)=ro(vill }
<o {02°)0 (1) « (1/n)34[M(23)]| < 0p(1/4),

will imply (A1d) provided dx(7,v,00)/d7 # 0 whenever dx(7,v,0,)/30 # 0.
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where the inequalities are due to A1 (parts b and c), and the law of large numbers for i.i.d.

deviates since, by assumption, [M(z)?P(dz) < w. 0.

Equation (7) (with fy defined as in 3) follows immediately. We now use that
equation to prove consistency, yn consistency, and asymptotic normality of 0.
Assumption 1 could have been replaced by weaker conditions for the consistency proof, but
we will use something close to it later on, and by employing assumption 1 here we can
provide a consistency proof which relies on steps that are familiar from parametric

problems.

9.Theorem. (consistency)

The definition of the estimator in (3), Assumptions R and 1, and the identification

condition that for any 6 > 0

mf”g__go”>5 | G(6) || >0,
imply that f,—0y = op(1).
Proof.

From the definitions of % (0) and G(6) and an argument analogous to that used in

the proof of (8) we have
supg || #a(6) — G(0) || < supl o 3i{m(zs,0) — Em(z5,0)] || + op(1).

Thus we need only work with the finite dimensional parameter. The fact that the r.h.s. of

this expression is op(1) then follows from the differentiability of m(-,f) in ¢ and the
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boundedness of 8 since they imply that supglln_l)][m(zi,0)-Em(zi,9)]”=op(1) (a uniform
law of large numbers based on these conditions is provided, for example, in lemma 2.13 of
Pakes and Pollard,1989). This together with the identification condition and the definition
of the estimator in (7), imply the result (see for example, Pakes and Pollard Corollary 3.2).

a.

We now move to the proof of y/n consistency. Here we begin by proving lemma 10,
which, together with assumption 2 (stated immediately thereafter), makes the proof of yn
consistency straightforward. However, before moving to the proof of this lemma two
comments might prove helpful. First it is the most detailed argument in the paper so a
reader who prefers to begin with an overview of where we are going may prefer to jump
ahead to the y/n consistency proof and return to lemma 10 thereafter. Second, lemma 10
can be shown to be true under less restrictive assumptions than those we are assuming
using results on stochastically equicontinuous families of functions. As a result, after
providing /n consistency and asymptotic normality proofs using only the more familiar
concepts introduced thus far, we turn to a brief introduction to the notion of stochastic
equicontinuity and provide references to a literature which insures that lemma 10 holds for

a wider variety of cases than those considered here.

10.Lemma.

For any sequence {0y} such that 5, — o = op(1),

Vel Za(Fn)~G ()] — v Fa(fo) | = 0p(1)[1 + [[Va(Gu—0o)ll]. ©.

Proof.

From the definitions of %, and G and the triangle inequality
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(10%)  |Iva[ %u(Fn)-G(Fn)] — vn ga(00)]| <
[1(1/v)2[m(zs,00)—Em(z3,00)]H1/vn)2m(zs, fo} |
+ [1(1/¥m)EM(21,00) [ hn(v3,80)—ho(v1, Bn)] — (1/v0)EM(24,00) [n(V1, 00)—ho( v, Oo)]l
+1(1/vn)EM (23, 0n) Hot(v3,0n) [ 7a(vi)—ro(vs)]~(1/vn) EM (23, 80) Hot(vs, 00) [mn(vi) =7 o(vi)] |

We prove that for any sequence {f,} such that #,—fy=0p(1), the second term is
op(1)[14|lvn(Fn—00)||] (the proofs that the other two terms are also have a similar

structure, but require less detail). Note that this term is

< 11(1/vn)EM(zs, 60){[ho(vs, 00)—ho(v1,8n)] — [An(Vi,00)—hn(vs, Bu) } ]
+ [1(1/vn) 2 [M(zs,00)-M(23,00) ][ (V1,80)=ho(v,0n)]||

Given that #,—fo=0p(1), assumption R insures that the last term in this expression is, with

probability tending to one

¢ Iv(8a=00) supy plla(v,0)=ho(v,0)]| (1/n) T [[M¥(z3)]
=0p(1) [[Va(Fu—bo)ll ,

where the equality is a result of assumption 1a, the square integrability of M8(z;), and the

law of large numbers for i.i.d. deviates. In addition

(1/vn) £ { M(2,00) { [hn(v,8n)—hn(v,00)] = [ho(v,8n)—ho(v,00)] }
< (1/n) 3 ||[M(2,80)|| { | Hn®(v,00)—Ho®(v,00)|| +
| Hu8[v, 05 * (8, V)| —Hub(v, 80) || + || Ho®[v,00*(0n,v)]~HeB(v,00)}| } IIvn(Fa—00)]l

where both 0,*(%n,v) and 6,*(fy,v) are in the interval [fy,0y] for each v, and the inequality

is due to the differentiablity conditions in Assumption R.
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Since independence and square integrability implies that (1/n)2||M(z,0)||=0p(1),
and assumption 1d insures that (1/n)X||Hn8(v,00)—Hob(v,00)||=0p(1), Holder’s inequality
implies that we need only show that (1/n)X||Hy8[v,0n*(On,v)]—Hnb(v,00)|l,
and (1/n)Z||Ho®[v,00*(0n,v)]—H®(v,00)}|| are op(1) to complete the proof of the lemma.
Since the probability that either of these expressions is less than e is, for arbitrary 6, less

than or equal to

(11) Pr{sup(he %sup(”0_90||S5)(1/n)2||H9(v,9)—H9(v,90)|| > €}
+ Pr{||0u—0o|| > 6} + Pr{hne %},

it will suffice to show that we can make this expression less than ¢ by choosing n large
enough. The fact that d,—0, = op(1) together with assumption R (which implies that
Pr{h,€ 7} - 1 as n - o) insures that the last two terms can be made arbitrarily small
(<€e/3) by choosing n large enough. Now recall that for § near 6y, || H8(v,0)—H®(v,0)|| <
IIH8(v)|l]| 6—bo||, from which it follows that

SUB (e U ggq] <)L/ WL ER(Y, O~ EO(v 00) <61 /m)BI[ (W) | =SEFE(I] + 05(1),

which, provided 6§ is chosen small enough {<¢/(3E[||H8(v)||])}, insures that for n large

enough the first expression in (11) will be less than €/3 (for arbitrary ¢). 0.

Lemma 10 and assumption 2 (that %n(0) is stochastically bounded) provide the
basis for the yn consistency proof. Since assumption 2 follows from assumption 3 (the
normality assumption used in our asymptotic normality proof), we delay justification of it

until assumption 3 is introduced.

Assumption 2.



18

Fu(00) = 0p(1/4h) . o
11. Theorem. (yn consistency).

Let D(4,) = 0G(6)/ 6’ | 9=0y and assume that D(f,) is of rank k. Then the

consistency result in (9), A2, and Lemma 10 imply that
fn — 8o = Op(1/yn).

Proof.

Use the triangle inequality twice to show that

Vel %a(62)—G(fn)] — v Fu(60)] 2 VoG (fa) ]| ~llVa Fa(bn)ll — VR Za(60)]]
> [[VaG(fa)ll —2[va Z(60)]l ,

where the last inequality follows from the fact that 6, minimizes the objective function.
Recall that for any matrix B=[bs;], [|B”=(Eijb?j)1/2. Thus the above inequality, A2, and

lemma 10 imply that

Op(1) + op(1)[1 + [[¥n(fu—Co)ll] 2 [IVnG(8u)ll = [[D(fon)[vn(fn 0],

where fon € [65,00]). Continuity of D(6), consistency of fy, and the fact that D(f,) has rank

k imply that
ID(Gon)[va(fn —8o)]l| = [I[D(8e)+0p(1)][Va(fn =Bo)lll 2 cllvn(n —0o)]| — op(1)lIvn(fn —o)ll,

for some ¢ > 0. Rearranging terms we have Op(1) > ||yn(fn —0o)||, as required. .
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The argument for asymptotic normality is now essentially the same as in the
parametric case. We provide it for completeness (the argument parallels the proof of the
second part of Theorem 3.3 in Pakes and Pollard). Let D=D(6,) (=6G(9)/69| 0= 90)’

assume it has full rank, and consider the quadratic form || Lyn(6) || where
(12a)  Ln(0) = D(0—-00) + %a(00).
The value of § which minimizes || Ln(6) || , say H:, can be solved for explicitly as
(12b)  yn(0n— 05) = «D'D) " Dy %(6).

*
Consequently the limit distribution of yn(f, — ;) follows directly from an assumption on
the asymptotic normality of yn #%(0o) [assumption 3]. This will also provide the limit
distribution of yn(fy, — ;) provided

(13) ya(0n — 06) = ya(fn — o) + 0p(1).

So what the asymptotic normality proof requires is (13) and assumption 3. We provide a
discussion of assumption 3 (of the more primitive conditions which might suffice for it, as
well as of the form of the variance covariance matrix) immediately after the asymptotic

normality proof.
Assumption 3.

Vn %a(0o) »g A(0,V),
with [V] <o. o
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Theorem 14. (Asymptotic Normality).
Assume that 0;,—0,=0p(1/4n), that D has full rank, and assumptions R,1, and 3.

Then

Va(0n — 60) =4 A [0,(D’D) ' DVD(D'D) ]

Proof.

We begin by showing that

| Lo(fa) = %a(0a) || = 0p(1/vn) = || La(fn) — (6n) ||

Use the triangle inequality, lemma 10, and differentiability of G(-) to show that for any
{?,} which satisfies Op—0o=0p(1yn)

Il La(Pn) = (@) 1 € 1| Fa(Bn) = G(On) = Fu(bo) | + Il Ln(Pn) — G(0n) — %(0o) || =
0p(1/vn) + || Ln() — G(%) — %(0o)ll = 0p(1/¥n) + || D(Gn—bo) — G(fn) || = 0p(1/¥n).

Now theorem (11) [#n—0y=0p(1yn)], and the combination of A3 and (12b) [which together

imply 6*,—0,=0p(1yn)], give the desired result. Consequently

*
[l Lo(fn) | € I La(6n) || + 0p(1/vn) = || %a(fn) || + 0p(1/vn)
* *
<l %a(0n) Il + 0p(1/vn) = || Ln(fn) || + 0p(1/vn),
*
where the two inequalities follow from the fact that that f, and 6, minimize || Ly(4) || and
*
| #a(0) || respectively. Now note that because 0y is obtained as a projection

*
n

La(fu) = La(0a) + D(0a=0n) , with (05—01)'D’Ls(6) = 0.
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As a result
* *
I Ln(n) | = || Lu(8n) || + ID(80—6n)]].
Combining this with the fact, from above, that ||Ln(6’n)||——||Ln(0:)||=op(1/Jn), gives us
*
ID(6a—0n)l| = op(1/+n),

which, since D has full rank, implies (14). The theorem is then a direct implication of A3,

and the Lindberg Levy central limit theorem (Rao0,1973, section 2c.5). o.

We now return to assumption 3. It requires that

Vo %) = (1/vn) 35 { m(z1,600) +
M(z3, 00)[hn( V1, 80)—Ro(v3,80)] + M(zs,00) Ho(v,00)[7n(vi)~To(v1)]},

has a limit Normal distribution. It will be sufficient therefore to provide conditions which

insure that

(15a) yn-t EiM(Zi,00)[hn(vi,0o)—ho(vi,90)] = 4/n-t 2ifi(zi) + Op(l),

and
(15b)  yn-t 33M(z3,00) Hot(vi,00)[Tn(vi)—7(vi)] = vn-t Bifa(21) + op(1),
with
E[jj(zi)]=0, and E[jj(zi)z]=0? < m,
for j=1,2.

That is if (15) is satisfied then
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Vo %u(b0) = (1/yn): { m(zs,00) + fi(zs) +fa(21)} + op(1),

so the Lindberg Levy central limit theorem, together with our assumption on the

boundedness of E m(z3,00)m(z;,6,)’, will imply assumption 3 with

(16) V =E{ [m(z:,00) + fi(z1) +fol21)][m(zs,00) + fi(z3) +/a(z3)] °}.

Section II discusses conditions which insure 15a and 15b when 7,(-) and hy(-) are
either series or kernel estimators of regression functions; i.e., when there exists random

variables y(z,7¢,00) and y2(z) such that
(17a)  Elyi(z:,70,00)|v] = ho(vi,70,80), and Elya(z;)|vi] = 7o(vi).
In this case, given sufficient regularity, (15) holds with

(17b)  fi(z1) = M(v3,00)[y1(2i,70,00)~ho(v1,70,00)], and
(17¢)  falz1) = M(vs,00)Hot(vi, 70, 80)[y2(21)~70(v1)],

Not surprisingly the contribution of the variance in the estimate of the
nonparametric component to the variance of the estimator of # depends directly on both
the conditional variance in the unknown regression functions, and on the derivative of the
moment condition with respect to the value of that regression function. We note that
Andrews(1991,1993,1994) and Newey (1991 and forthcoming) consider a variety of other
cases (including densities and integrals of conditional expectations, as well as derivatives of
these objects), and alternative proofs of assumption (3). Also Newey (forthcoming,b)
considers an extension wherein the object enterring into the moment conditions is not the

value of the unknown function per se (our Ag), but rather a functional of A (eg. an integral,
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or weighted integral, of Ao over a subset of 7).

Theorems 9,11, and 14 insure the consistency and asymptotic normality of our
semiparametric estimator given assumptions R, 1 and 3. Before going on to sets of
primitive conditions which insure that the latter two assumptions are satisfied it is useful
to pause and review the notion of stochastic equicontinuity. This for two reasons. First, as
noted above, existing results allow us to use the notion of stochastic equicontinuity to
verify lemma 10 directly under less restrictive assumptions then those contained in
assumption R. In addition, that notion underlies much of the literature on primitives
which suffice for our assumption 3 above (the normality assumption; these conditions are
reviewed in the next section). On the other hand, stochastic equicontinuity is not used
directly in the proofs of our major results. Thus the reader who is willing to suffice with
references for the primitives which insure our assumptions should be able to omit this
discussion (go directly to Lemma 20) and have no trouble with the rest of the paper.

Let

my(z,0) = m(z,6),
my(z,0,h) = M(z,0)[h(v,0)—ho(v,0)] ,
m;y(z,,7) = M(z,0)Hot(v,8)[7(v)—7o( V)],

define the following families of functions,
Ml = {m1(-,0), g € 9})
My = {ms(-,0,h), 0 x he B x K}, and

M; = {m;(-,0,7), 0 x €8 x T}

ahd endow each with the metric
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(18)  pj(735,725) = llmj(71)—mj(723)]]

where ||f(7))|| = [Ef(z,71)?]!/2, and 9; € T is the appropriate index set (I';=8, I's= 8 x H I's
=8 xT).
The empirical processes we associate with these families and the random sequence

{z:} are defined as

(19a)  vi(d) = (1/4n) § [m(z,0) — Em(z,0)],
(19b)  van(8 x h) = (1/4n) ¥ [my(z,0,h) — Emy(z,0,h)], and
(19¢)  wvan(0x 7) = (14h) L [my(z,0,7) — Ems(z,0,7))

where here and below all eipectations are with respect to P.

An empirical process defined on a metric space is called stochastically
equicontinuous with respect to its index set if for any two sequences of random indices, say
{71}, {72n}, we have vn(71n)—vn(72n)=0p(1), whenever p(7ym,72n)=0p(1) [this presumes
that both 71 and 79 will be in the space with probability tending to one]. There is a
reasonably large literature which provides metric spaces of functions which are
stochastically equicontinuous in their index sets, and sets out rules which allow one to
combine functions from different spaces to produce new spaces which inherit the property
of equicontinuity from the original spaces (for a good overview with econometric
applications see Andrews,foithcoming, and the literature cited there).

To illustrate the usefulness of the notion of stochastic equicontinuity go back to

(10*) and note that the first term in that expression is just

Vln(-gn)—l/ ln( 00)-

Ie. provided the process {vin(8):0€8} is stochastically equicontinuous the first term in
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(10%) is op(1), which is small enough for lemma 10. The condition that {vs(#):0€8} be
stochastically equicontinuous has a simple interpretation. That process provides the
disturbance generated by yn times the difference between the sample and the population
mean of a (random) function that is indexed by a parameter value, at different values of
that parameter. vin(fn)—vin(fo) is comparing the value of that disturbance at two values
in the index set. Stochastic equicontinuity implies that whenever the difference in the
index set values converges in probability to zero, the difference in the disturbance also
converges to zero. We would expect this to be true if the underlying families of functions
were sufficiently "smooth" in the index set. This is the case, and our differentiability
conditions together with the assumption that 8 is bounded insure that {vn(0):0€B8} is
stochastically equicontinuous (see Pakes and Pollard, lemmas 2.13 and 2.17). Continuity
of m(-,0) is not, however, necessary for the stochastic equicontinuity of {v,(0):0€8} (for a
more detailed discussion see Pollard,1991, and the literature cited their). As a result one
can use methods of proof similar to those provided here for problems with discontinuities in
the objective function (see for eg. Pakes and Pollard,1989).

Provided that 7(v) is sufficiently smooth in v, one can also show that our
assumptions imply that {vsn(fx7): §x7 € 8xT} is stochastically equicontinuous in its index
set (see below). Since the third term in (10*) can be written as [van(fnx7n)— van(fox7n)] —
ynE{m3(z,0n,7n) —ms(2,00,7)}, and assumption 1 implies that ps[(fnx7n),(fox7a)] = 0p(1),
if we prove that ynE{m;3(z,0n,7n) —m3(z,00,70)}=0p(1)[1+||vn(fa—00)||], we will have
shown that the third term in (10*) is op(1). An argument similar to the proof of the first
part of lemma 10 shows that this expectation satisfies the needed condition.

The second term in (10%*) is a bit more problematic. Since each & is indexed by 4,
and mj is indexed by h, the process {von(0xh): Ox H€ Bx H} is constructed by composing
functions of one index set with functions of another index set and we do not know of a
general rule which implies that such a composite family inherits stochastic equicontinuity.

What the proof of lemma 10 shows is that the existence of integrable envelopes for the
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derivatives of both M(z,§) and H®(v,0) with respect to § in a neighborhood of f, imply that
van(fnxhn)—van(foxhn) = 0p(1)[1+]|vn(Fa—00)|l], provided
VRE{my(z,0n,hn)—my(2,00,hn)}=0p(1)[1+||vn(Fn—00)||], and that the latter is indeed true.

Finally note that the asymptotic normality assumption (3 above) depends only on
Vin(00), Van(Boxhn), and vsn(fox7n) (and the expectations of the latter two processes). As a
result in reviewing conditions for assumption 3 below we can set §=6, and worry only
about the equicontinuity of von(-) and v3pn(-) as we vary 7, and h,. We provide conditions
which insure that {von(foxh): h € H} and {vsn(fox7): 7 € T} are stochastically

equicontinuous in the next section.

There are two other points that we would like to make before concluding this
section. First we illustrate how the results simplify when alternative orthogonality
conditions hold. The first is a condition similar to that introduced by Andrews(1994) [and
our result here is similar to Theorem 5.4 of Newey(1991)], and allows us to specify
conditions under which we need not adjust the variance—covariance matrix of our estimate
of @ for the fact that we have used estimated, rather than the actual, values of our
unknown functions in our moment conditions. The second allows us to specify conditions
under which we need not adjust the variance covariance of § for the fact that 7(-) has been
estimated, even though we do need to make an adjustment for the fact thét h(-) has been
estimated. Both of these conditions seem to occur frequently in empirical applications (see
section III below).

These orthogonality conditions are a direct result of the following asymptotically

equivalent expression for vn % (o).

20. Lemma.

Let
M(v,0) = E [M(z,)|v],
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MH(v2,00) = E [M(z,00)H(v,00)| v2],

assume that both {von(foxh):he #} and {van(fox7):7€1} are stochastically equicontinuous,

and recall that 7o(v)=7¢(vy) a.e. P. Then

vn Fa(60) = via(60) + Vo[ M(v,00) (v, 06)~ho(v,00)]P(dv)
+ o [ MH(v2, 00)[7n(va)~7o(v2)]P(dv2) + 0p(1).

Proof.
Note that equation (5), the definitions of the empirical processes in (19), and the

equicontinuity conditions combined with assumption 1 allow us to write

ya %u(0s) = vin(do) + vn [ M(z,00) (v, 00)~ho(v, 00)|P(d2)
+ JnfM(z,00)H(v,00)[7n(v)—10(v)]P(dz) + op(1).

We consider only the second term in this expression. The third term can be treated in an

analogous way.

w/IlfM(Z,ﬂo)[hn(V:90)"10(";00)]1)(‘12)
=y [ [M(z,00)-M(v, 00)][ (v, 00)-(v, 00) P(dz)
+n [ M(v,00) [hn(v, 00)—ha(v,00)]P(dz).
But

| o [M(2,86)-M(v, 00)][hn(v, B0)~ha(v, 00) P d2) | ¢
supy ¢ | Vi [M(2,00)-M(v, 60)][R(v,0c)~ha(v,80)|P(dz| v)P(dv)| =0,

which completes the proof. .
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The equicontinuity conditions given in the statement of the lemma are generally
also required for Assumption 3, and so do not really detract from the generality of the

lemma. Sufficient conditions for the equiconinuity conditions are given in the next section.

21.Corollary. (orthogonality conditions).

(a) If M(v,00)=0 a.e. P, assumptions R and 1 together with the consistency result
imply the limit theorem in 14, with V=Em(z;,6,)m(z;,6,)’.

(b) If MH(vs,60,)=0 a.e. P, then assumptions R and 1 together with the consistency
result and (15a) imply the limit theorem in 14, with V=E [m(z;,00) + f(z;)][m(z3,0¢) +

fi(z1)]’.

Proof.

We prove only part (a). The proof of part (b) is similar. If M(v,8,)=0 then

v Za(fo) = (1/vn) ¥ m(zs,0) + op(1).

But then assumption (4) is an immediate consequence of our regularity conditions, since
they imply the conditions of the Lindberg—~Levy central limit theorem for (1/yn) %

m(z;,00). O

The impact on the variance of our estimate of 6, of substituting an estimator
(rather than the actual value) of A(-) in the moment condition depends on the derivative of
the moment conditions with respect to h=~h(-) at the true value of the estimated
parameters [it depends on M(-,f,)]. Moreovoer since h(-) only takes on distinct values at
distinct values of v, it only depends on [M(z,0,)P(dz|v). The condition in 21(a) states
that [M(z,0,)P(dz|v) = 0 (a.e. P), and therefore implies that we do not need to adjust the

variance covariance matrix of our estimates of f; for the fact that we have used estimates
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of ho and 7, rather than their actual values. Condition (b) insures that the derivative with
respect to t=7(-) is zero a.e.P, even though the derivative with respect to A(-) may not be,
in which case we do not have to adjust for the fact that 7 is estimated (though we do have
to adjust for the fact that hg is estimated). In general, however, an adjustment for the
perturbation induced by the variance in both estimated nonparametric components is
required.

Finally we note that there was no need to use Euclidean norm in the analysis. For a
nonsingular matrix A, define a norm by ||x|| , =||Ax||, and let {An(#)} be a sequence of
matrices whose elements are random variables that depend on §. Lemmas 3.4 and 3.5 in
Pakes and Pollard (1989) provide conditions on {A,(8)} which insure that our limit
theorems will be true if, instead of minimizing ||Gy(6)]|, we minimized “G“(H)”An(ﬁ)' As
in Hansen (1982), and discussed in the context of semiparametric estimators in Newey
(1991), the asymptotic efficiency of one’s estimator can be improved by an appropriate

choice of norm.

II. Primitives for the Assumptions of Section I.

There is a large literature with alternative sets of conditions which suffice for the
assumptions used in Section I; too large to be surveyed in a subsection of this paper. Our
strategy will be to provide a brief verbal exposition of a set of conditions which suffice
when the h, and the 7, functions which appear in the moment condition in (3) are
nonparametric estimates of regression functions, emphasizing the aspects of those
conditions which impact on the actual computation of the estimator, and then refer the
reader to references which deal with a variety of other cases. Notationally recall that:
v/=[vy’,v2’] € ¥CRIV with v; € %C Rdvifori=1,2; 7 € T, a pseudo metric space of
functions from R4v2 - T'C RY; hy € ¥ a pseudo metric space of functions from RIvi x Rt x @

- HC RS and that #¢ R4V defines the trimming function I{ve ¥} which sets m(-) to zero if
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vg ¥

We begin with conditions which insure that assumption 1 is satisfied when our A
and 7p, are kernel estimates of the regression functions, hq and 7. Good introductions to
kernel estimators, introductions which include discussions of computational techniques and
their performance as well as of the analytic properties of the estimates, can be found in
Silverman,1986, Hardle,1991, and Stoker,1991b. What we require is appropriate rates of

convergence for those estimates. In particular assumptions 1a and lc require that
(A12) 1% sup(ye 5 gy | Bn(v.0) = ho(w, )| = O5(1)
(Alc) n®? sup (ve 7,0¢0) | Hne(v,0) — Hut(v,0) || = Op(1),
where a;>1/4, and a;+ae3>1/2, while assumption 1d requires
(A1d) sup (ve ) | Hn8(v,8¢) — He®(v,0,) || = op(1).

[Recall that h(v,0)zh[vi,7o(v2),0], Hi(v,0)z0h(v,t,0)/0t , and HO(v,0)=0h(v,0)/34).

[t=To(v2)

Note that in (Ala) and (Alc) the convergence must be uniform over the product
space constructed from ¥, a subset of the support of v, and the index set 8. Andrews
(1993) details conditions which insure rates of convergence of kernel estimators of functions
of the data and an index set which are uniform over this product space. The dependence
on the index set is builf in through the construction of regressors or dependent variables
that depend on the value of the index. This is general enough to cover all empirical

examples we are aware of. Accordingly, assume that there is a known vector function (- ):

R4V x Rt x B -+ R*, and a known function y(-): R%z x 8 - R! such that

ho{zi[v,7o(v2), 0),-..,2x[v,70(v2), 0], 6} = Ely(2,0) | v].



31

The estimate of Ao, hn(-), is obtained as a kernel estimate of the regression of y(-) on #{-),

while
Hy(- )EEj[aho[-,Xj,-]/ﬁxJ' |Xj=$j( . )](9zj(-,t,' )/ ot lt=7o(+)’

and Hpy(-), Hob(-), and Hy8(-) are obtained analogously.
We will assume that each z;[v,7¢(v2),0] is differentiable in t=7o(v,) and in 4, and
that these derivatives are bounded uniformly over (v,0) € 7x 8. Thus to prove both Alc

and Ald it will suffice to show that

(Alc) na3sup( ,,)uoh,,(x,0)/ax-aho(x,0)/axn=op(1),

X,

where the supremum is taken over (x,4)e Xx8 and
X = {xeRdx: x=1]v,7¢(v2),0] for some ve ¥and some b}

[note that since z{-) is continuous, if 8 and ¥ are compact, sois X]. To focus our
discussion we will carry along the example in the next section wherein z{v,7o(v2),0] =
[v,70(v2)]” 0, and 7, is continuous in vs.

We note that Andrews(1993) also provides conditions which insure rates of uniform
convergence for the more general case where both y(-) and () depend on an infinite
(rather than on a finite) dimensional index set [here only z{-) does], and for cases in which
ho is a density function, or a higher order derivative of either a density function or of a
conditional expectation3.

The sufficient conditions we provide include: i) additional smoothness conditions on

3Conceptually the proofs for the other cases are quite similar to those for the regression
function case, but to deal with them we would have to add alot of notation.
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the functions of interest [y(-),x(-),and A(-); additional to the conditions in assumption R];
ii) additional restrictions on the choice of the kernel (conditions which insure a smooth
bias—reducing kernel of appropriate order)4; and iii) restrictions on X [we will choose 7
and hence X, so that the density of x(v,7,0) is bounded away from zero over all ve 7and
feB ; this will trim out subsets of the data which could generate values of x with densities
that are too low to allow us to obtain precise enough estimates of the regression function,
ho]. We first provide a summary of the conditions we need (this is a verbal summary of
material in section 4 of Andrews simplified for the case we are considerring), and then
comment on their impact on the computation of the estimator. The rates provided here
are not necesserily sharp, nor is there any claim that the conditions we are providing are in
any sense minimal.

We summarize on the smoothness conditions first. In addition to assumption R, it
is assumed that for each € 8: x(-) has a density w.r.t. Lebsegue measure [say fx(x)]; that
both A(x,0) and fy(x) are continuously differentiable in x with bounded derivative on R*
[the bound being uniform in (x,4)] to order at least 2 (further differentiability conditions on
these functions are given below); that both A(x,§) and x(v,f) are differentiable in 4 (a.e.)
with derivatives that are bounded by square integrable functions of v; and that for some
k>0 and every 0€B, y(z,0) is both bounded by a function of z which is integrable to power
2+k, and has a derivative with respect to § which is bounded by a square integrable
function of z. For the example in the next section #{v,7o(vy),d] = [v,70(v2)]" 8, A(x,0)=h(x),
¥(z,0)=2z—220 and this satisfies all our conditions provided 7¢(v,), and the density of v,
fy(v), are sufficiently smooth in their arguments.

The kernel estimate of the density and regression functions at point z are given,

respectively, by

4We shall focus on the use of bias reducing kernels to insure a given rate of uniform
convergence for our estimates, but alternative bias reduction techniques could also have
been used (see for eg. Newey, Hsieh, and Robins,1993, or Jones, Linton, and Robins,1993).
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fa(z,0)=0"13; K[(2-x(v1,0))/0a] /(on)¥, and

~

ha(z,0)={n"121 y(2i, O)K[(z—x(v1, 6))/ 0n]/(on)*} /u(z,0),

where Ik(:x):det!ﬁl—l/2 K(ﬁ_1/2x), K(-) is a non random function on Rx, oy, is a (possibly
random) bandwidth parameter, and Jn(ﬁ—n)=op(1) for some positive definite matrix .
Usually ﬁ is taken to be an estimate of the variance covariance matrix of x, or a diagonal
matrix with estimates of the variances of the individual elements of x on the diagonal.

Letting p be a vector of nonnegative integers with | x| = I; g;, the smoothness and
bias—reducing conditions on the kernel K(-) can be formulated as follows: [K(x)dx = 1;
[xPK(x)dx = 0, where x* = x¥1 x ... x x¥% for all 4 with || <b; 0/A1K(x) / 6%1x, x . x
0"*x, is bounded (uniformly in x) and continuous for all 4 with [z|<b+1; and K(x)-0 as
||| = . Here b is the order of bias reduction of the kernel. To allow for data dependent
bandwidths (eg. cross validation, see our example below), oy, is permitted to be random,
but there is assumed to be two sequences of numbers, {i} for i=1,2, and constants C; and
Cy, such that C;01n<on<C209n, with probability tending to one. We assume oip=n"?in
what follows, and consider setting ¢ to enable us to insure the rate conditions in (Ala) and
(Alc’) by appropriate choice of b.

Recall that what we need to insure is a convergence rate for h,(x,6) and for
0hn(x,0)/36 that is uniform over (x,#)e(X,8). To obtain them we will need to also insure
convergence rates for the density f,(x,§) and the derivative of the density dfn(x,6)/d6
which are uniform over the same space. We consider first the convergence rate for a
density or a regression function at a given point (and of their derivatives at that point;
more detail on these calculations can be found, for eg., in Silverman,1986). To do so fix x
and compute the squared bias and the variance of the kernel estimates of E[y(z,) | x}fx(x)
and fx(x) as a function of the bandwidth, the degree of bias reduction of the kernel (b), and
the sample size. The bias will be increasing, and the variance will be decreasing, in the

bandwidth. Given a sample size, and a degree of bias reduction for the kernel, one can
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calculate the bandwidth which minimizes the mean sqare error of the estimates. The rate
at which these bandwidths go to zero as we increase sample size, or 4 in the formula above,
is 1/(2b + z + 2q), where, g is the order of the derivative we need to estimate consistently
(in our case q is one or zero), and, z is the number of regressors. This presumes that both
the density and the regression function are differentiable to order (b+1) in x. To form the
estimate of the regression function we divide the estimate E[y(z,0)|x]{(x) by the estimate
of f(x). For this procedure to produce a consistent estimate of E[y(z,0)|x], the density,{(x),
must be bounded away from zero. The rate of convergence of the kernel estimate of the
regression function obtained in this way is then 1/[2 + (z+2q)/(b+1)]. If (in addition to
the assumptions stated above): i)these conditions [both the density and the regression
function are differentiable to order b+1, and f(x)2£>0] are met at every (x,0)€ X = 8; ii)the
latter space is totally bounded; and iii) ||y(z,81)—y(z,82)||<p(2)||6:—02|| for a square
integrable p(-) and the kernel estimate of the regression function is continous uniformly
over both xeX and h,(- )€ # (the space of possible estimates of the regression function),
then the rate given above will also be uniform. That is, these conditions insure that the e,
in (Ala) will be 1/{2 + [z/(b+1)]} and the a3 in (Alc’) will be 1/[2 + (z+2)/(b+1)]. So
for a;>1/4 we require b > z/2 —1, and for ey*e3>1/2, b>x/2 is more than enough.

A few comments on empirical implementation are in order. First note that the
normal based system of bias—reducing kernels discussed in Bierens (1987, equation 2.2.36)
will satisfy the smoothness and bias reduction conditions in these assumptions provided his
bias reduction parameter is set appropriately. Second, the trimming conditions are placed
on the domain of x rather than on the domain of v. In particular it is assumed that there
is a bounded subset of R*, say X, and a x>0 with an associated X; = { x€R* : inf068 1(x,4)
> £}, and then shown that if X = X; n X; the convergence will be uniform over x € X.
Thus setting = {v: x(v,0) € X for all § € 8} will insure that the trimming conditions are
satisfied. lly note that a special case of this framework is z(v,§)=v, for all §, which

implies that conditions analogous to those givén above will also imply that 7,(v) is also



obtained as a kernel estimator
(Alb) na2 sup(ve 7/) ” Tn(V) - TO(V) ” = Op(l)J

with a2>1/4 and a+a3z>1/2.
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Both Andrews(1991a) and Newey(forthcoming) provide conditions which suffice for

(A1b), that is for convergence rates that are uniform over a subset of the data, for series

estimates of regresssion functions and their derivatives. We do not review the details

here5. We are not aware of any results on rates of convergence for series estimators which

are also uniform over an index set (as required by assumptions Ala and Alc).

A brief summary on assumption 1 is in order before proceeding. The conditions
detailed above insure that it is indeed satisfied if 7, and h,, are estimated using
bias—reducing kernels of appropriate orders. Conditions are available which insure that
assumption 1 will also be satisfied if 7, is estimated using a series estimator, and hy, is
estimated using a kernel. Finally, there may be conditions which insure the required
convergence rates if both 7, and hy, are estimated using series estimators, but we are not
aware of a formal statement of them (though the empirical example in fhe next section
provides some indication that this may just be a technical problem).

Next we briefly review conditions which insure that the empirical processes
generated by the families M;={m;(z,0) : § € 8 }, Myo={mo(z,00,h) : h € H} and

Ms={mj(z,0,7) : Ox7 € Bx1} are stochastically equicontinuous in their index sets. We

begin by noting that a sufficient condition for a family of functions to generate an empirical

process which is stochastically equicontinuous is that the family have an envelope which is

5They require; i)smoothness of the underlying functions, ii)conditions on the
sequence of basis functions to insure invertibility and convergence, iii)rates at which the
number of basis functions used in the series expansion must grow as a function of sample
size (because of arbitrary constants, these do not constrain the choice of the number of
terms used in any empirical example), and iv) bounds on the density over the set 7
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square integrable with respect to P and satisfy Pollard’s (1991) entropy condition. F is an
envelope for a family & if F > |{| for all f € & The existence of a square integrable
envelope for our families follows directly from Assumption R. Thus all that is needed is to
show that M;, My, and Mj satisfy the entropy conditon.

From (13), the M3 family of functions is formed as the product of two functions one
of which depends only on the finite dimensional component of the index set, and the other
depends only on the infinite dimensional component. That is if f € M3, then f = f3; @ {35
where f3; € FKi= {M(+,0)Ho(+,0); 0 € 8}, f30 € FKa={7(-)—70(-); 7€T}, and ® is the |
product operator. Since families formed as the product of elements of two different
families each of which satisfies Pollard’s entropy condition will satisfy Pollard’s entropy
condition, the empirical process {van(fx7):0x7 € BxT} will be stochastically equicontinuous
if each of the primitive families of functions satisfies the entropy condition. A finite
dimensional family satisfies Pollard’s entropy condition if it is Euclidean in the sense of
Pakes and Pollard(1989). For our example it suffices to note that a family is Euclidean if
it is differentiable in its index set (8), and 8 is bounded (Pakes and Pollard, lemma 2.13).
An infinite dimensional family will satisfy Pollard’s entropy condition if it is a type III
family of functions as defined by Andrews (forthcoming, section 3). An infinite
dimensional family from a subset of R4V? into T ¢ R will be a type III family provided each
of its members is differentiable to order greater than dyo/2, say [dy2/2], with derivatives of
order dyz/2 that satisfy a Lipschitz condition on a compact connected subset of R¢V2 and
take on a constant value outside of this subset, say %* . Recall that a compact 7 defines
our trimming set, so that provided the set % = {v3 € Rdv2 v=(vy,vy), for some ve ¥} ¢

%* | it is irrelvant how 7(-) is defined outside of %* . That is, all we require is the ability
to form a compact connected subset of RiV2 on which 7(-) is sufficiently smooth and which
contains 7.

Similar smoothness conditions on the family M, guarantee that the process

{van(f8oxh): h € H} is stochastically equicontinuous. Finally the Euclidean argument for
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finite dimensional index sets given above also establishes that the empirical process vy(4)
formed from M, is stochastically equicontinuous in §. For alternative primitives which
guarantee Pollard’s entropy conditions, and rules for building families of functions which
inherit them, see Andrews (forthcoming), Pollard (1991), and the literature cited in these
references.

Before going on to assumption 3 we note that use of both assumption R, and of the
equicontinuity conditions, in our proofs is premised on the assumption that Pr{r,€T}-1
and Pr{hp€e #}-1 as n-o; where, recall, T and 7 are families of functions with bounded
derivatives up to a certain order. For kernel estimates, existence of derivatives is insured
by the choice of the kernel. An easy way to insure that these derivatives will be bounded
(with probability tending to one) is to insure that the derivatives of the estimated
functions converge in probability to their true values (these satisfy the restrictions by
assumption). For bandwidths of the form discussed here, a standard argument will insure
mean square convergence of the derivatives provided; 0<¢<[1/(x+2d)], where d is the
order of the derivative needed, and x is the number of regressors. Thus, to insure
convergence of derivatives of order x/2+1 (which is more than enough for the
equicontinuity results, see above), it suffices for [1/2(x+1)] > ¢. Recall that for any given
degree of bias reduction (b), there will be a lower bound to the ¢ that will allow us to
attain the rates in assumptibn 1. In particular, ¢ > [1/(2b+x)] will suffice for the rate
conditions, so provided b>(x/2+1), there will be a choice of ¢ which satisfies all our
conditions simultaneously. For series estimators one can insure the existence of bounded
derivatives by constraining the space of acceptable coefficient vectors.

We now turn to assumption 3, and provide references for conditions which suffice
for (15a) and (15b) above. Again we focus on the case where E[y(z3,7¢,00)|v] =
ho(vi,00,70) and E[ya(z;)|vi] = 7o(vi), so that hy, and 7y, are obtained as either a series
estimator or a kernel estimator of a regression function. Both Andrews (1991a) and Newey

(forthcoming; see also the discussion in Newey,1991a) provide (slightly different) sets of
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sufficient conditions for (15a) and (15b) when hy, and 7, are series estimators. The fi(-)

and fy(-) functions appearing in (15) are then given by

fi(z3) = M(v3,00)[y1(21,00)—ho(vi,80,70)], and
fa(z1) = M(vi,00)Hot(vi,00,70) [y 2(2i)—To(v1)].

Andrews (1992) extends the results in Powell Stock and Stoker (1989) to provide a simple
proof that, again provided certain regularity conditions are satisfied, then (18a) and (18b)
are also satisfied if hy, [7y] are obtained using a bias—reducing kernel estimatoré. The
formula for fi(-) and fy(+) are identical to those given above for the series estimator. That
is, the limit distribution does not depend on the form of the estimator for the
nonparametric component of the moment conditions (a result which accords with
proposition 1 of Newey,1991). We note that the regularity conditions used in these articles
to do not generate any further restrictions on the way we form our estimators.

Recall that the formula given above for the limit distribution of our semiparametric
moment estimator is the natural extension of the pathwise derivative formula provided in
Newey(1991) to the case where one or more of the unknown functions depends on another
unknown function. This implies that smoothness, independence, and our Al to A3 are
sufficient for using the pathwise derivative formula in cases where one or more of the
unknown functions depends on # and/or on another unknown function. Since our
regularity conditions suffice for theorem 5.5 in Newey(1991), it also implies that (one, of
several possible) consistent estimator for the variance covariance matrix in (19) can be
obtained by substituting estimated (denoted by a ") for actual functions in the definitions

of fi(+), fo(+), and m(- ), and computing

8An early version of this paper contained an appendix which provides an alternative
proof of this result.
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1/n Si{{m(zi,0n) + fi(zs) + falzo)lim(zs,8) + filza) + fal2:)])

III. An Empirical Example.

Olley and Pakes (1991) develop a semiparametric estimator to account for
simultanaeity and selection biases in estimates of production function parameters (the
former due to the endogeneity of input demands and the latter due to exit behavior). We
begin by formalizing their argument for the limit distribution of that estimator, and then
consider the effect of alternative estimators for the semiparametric components, and for
the standard errors of the parametric components, on the results reported in the
Olley/Pakes article.

A brief description of their problem is in order. They assume that the industry
produces a homogeneous product with Cobb—Douglas technology, and that the factors
underlying the profitability differences among firms are neutral efficiency differences.

Therefore the production function is written as

(22)  yit = fo + Badit + Pukie + il + wse + 73t

where yi; is the log of output (value added) from plant i at time t, a;; is its age, kit is the
log of its capital input, ;s is the log of its labor input, wj; is its productivity, and 7;; is
either measurement error in output or a shock to productivity which is independent over
time and realized after all input decisions are made. Here both v and 7 are unobserved.
The distinction between them is that input and exit decisions can depend on « while those
decisions will be independent of realizations of 7 (formally v is an unobserved state
variable known to the economic agent but not to the econometrician).

Labor is assumed to be the only variable factor (so its choice can be affected by the
current value of wy). The other two inputs, k¢ and ag, are fixed factors and are only

affected by the distribution of »; conditional on information at time t—1, and past values of
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w. k¢ is assumed to be built up from past investments through the traditional accumulation
relationship; k¢ = (1—8)k¢-g + it-1, where i; is investment at time t and § is a known
depreciation rate. w; is assumed to evolve as an exogenous first order Markov process.
That is if £.; contains all information known in period t—1 then for any x, Pr {wix| £-1}
= Pr{wix|w¢-1}, and this latter probability is determined by the family of distributions le
={P(:|v),vel}.

Olley and Pakes (1991) consider a Markov Perfect Nash equilibrium which
generates investment and exit policies of the following form. If y is an indicator function

which takes the value one if a firm continues in operation and zero if it exits, then

if Xt=0
¢ ) (23b) Iy =

(23a) y =
0 otherwise iy(weag,ke) if yi=1

{1 if v 2 _ugt(at,k )
t
with i¢(+) strictly increasing in » whenever i;>0.

The functions y(-) and iy(+) which set the exit and investment rules are determined
as part of the Markov Perfect Nash equilibrium, and their form depends on a host of
auxiliary assumptions (on both the nature of the spot market equilibrium for current
output, and on functional forms). Moreover, even given the assumptions needed to
determine the investment and exit rules as a function of a small number of parameters, the
forms of these policies will be very difficult to compute; so difficult that attempting to
compute them iteratively at each different function evaluation needed for a nonlinear
search routine would probably be impractical even on the most sophisticated of computing
equipment.

We now turn to a semiparametric technique which treats the investment policy
[it(-)], the exit policy [y], and the Markov process [P ], as nuisance functions to be
estimated nonparametrically. Note first that the fact that the investment function is

strictly increasing in v whenever i;>0 lets us invert (23b) and write
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(24) Wy = qt(it,at,kt) .
Substituting (24) into the production function (22) gives us

(25)  yit= Bilic + de(isn,ain.kie) + it
where,

bi(ii,ait ki) = Bo + fadis + Pk + qe(iis,aie.kit)-

(25) is an example of a partially linear model and it can be used to estimate 4. Note,
however, that the production function coefficients of capital and age, fa and f, can not be
identified from this equation since the equation does not allow us to separate out the effect
of capital and age on the in\;estment decision, from there effect on output.

To identify the age and capital coefficients we have to use the panel structure of the
data and the model’s implications regarding the relationship between the productivities of
a given firm over time. Moreover since we only observe the subsequent years’ data for
those plants that survive, we will need the probability of survival. That probability is

given by

(26) Pr{X:'—" ll Qt(kt)a‘t)7 dg-l}
= Pr{uvs > wi(ke,at)| wi(ke,at), we-1}

= Py {wi(ke,at),0t-1} = Pe-s(ke-nac-nis1)z Ao,

where the first equality in the third line follows from the fact that (ks,as,v5-1) can be
written as a function of (kg-1,a¢-1,it-1), we have dropped the dependence of the variables on
the individual subscript (i) for notational convenience, and ., represents all information
known at time t—1.

We complete the system to be estimated by considering the expectation of yt — A1l
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conditional on information at t—1 and survival. This equation, when combined with the
estimates of f1, $-1, and A-, from (25) and (26) will allow us to identify f. and fx . We

have

(27)  E[yi— bk | A-ux1=1] = fo + Bads + fiks + E[vg]| vp-1,x:=1]
= faat + fxks + g( R-1,011)

where

8(Auon) = B0 + [ {0iP(do] 0r1}/ f R

and the last equality assumes that the function giving the probability of survival, .1 =
P{ws(ke,at) | ws-1}, is invertible for almost every v, allowing us to write w¢(-) as a function of
A.1and w-q.

We now consider alternative estimators of the system in (25), (26), and (27). The
data consist of a thirteen year panel of enterprises in the telecommunications equipment
industry. For an overview of both the events that took place in this industry during the
period of the study, and of the data set used, see Olley and Pakes (1991), and the literature
cited there.

Equation (25) is an example of a partially linear model. The limit properties of its
estimator of ﬂl have been analyzed using both kernel (see,Robinson, 1988) and series
(Andrews 1991 and Newey forthcoming) estimators of the nonparametric component, ¢;(-).
For simplicity we use a polynomial series estimator in all of what follows. That is we
project y; on k and a polynomial in the triple (a;,k¢,it). All empirical results described
below that are based on series approximations use a fourth order polynomial (with a full
set of interactions) as the approximating function. In no case was there any noticeable
change in either the estimates of the coefficients of interest, or in the minimand, when we

went from a third to a fourth order approximation.
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Next we consider the estimation of the selection equation in (26); the equation
giving the probability of survival as a function of (is,k¢,at). Here we use three different
estimators of the survival probability and compare results; a series estimator, an estimator
based on a normal kernel, and an estimator based on a bias—reducing kernel. The series
approximation was constructed by using a polynomial series in (it,kt,at) as regressors in a
probit estimation algorithm (that this is just a series approximation follows from the fact
that the formula the computer uses to compute the normal distribution is a series
approximation to that distribution). Whenever we employ a normal kernel we use a
diagonal covariance matrix with the inverse of the variance of the regressors as the
diagonal elements, and a bandwidth of one. Whenever we employ a bias—reducing kernel
we use the family of normal based bias~reducing kernels discussed in Bierens (1987) with; a
diagonal é with the inverse of the variance of the regressors as the diagonal elements, a
bandwidth chosen by cross validation, and a degree of bias reduction equal to four.

The third step of the estimation procedure takes the estimates of 4, q;-; and R4
from the first two steps, substitutes them into equation (27) for the true fy, q;-1, and K-y,
and then obtains estimates of fa, fx, and the g(-) function by minimizing the sum of
squared residuals in the resulting equation. As above we tried three estimators for the
unknown g( &.;, q¢-1) function; a series estimator, a normal kernel, and a bias—reducing
kernel estimator. Recall that it is ¢;-; that is estimated in the first stage, and g¢.1 =
¢t-1—Padt-r—Pxk¢-1, so that the values of the regressors in the nonparametric function in the
third stage depend upon the values of the parameters of interest. Consequently the
diagonal elements of the covariance matrix of the kernel, and the cross validation
procedure used to choose the bandwidth for the bias—reducing kernel, could be recomputed
for every alternative value of the parameter vector evaluated in the minimization
subroutine. This proved to be too computer time intensive. Instead we used the series
estimates of the coefficients to both set the diagonal elements, and to cross validate for the

bandwidth, and then held both the covariance matrix and the bandwidth fixed throughout
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the remainder of the estimation algorithm.
If, for expositional simplicity, we temporarily ignore trimming, then the population
analogue of the sample moment conditions that the nonlinear least squares estimation

procedures sets equal to zero are

(28a) E[Xt{yt—ltﬂl—ktﬂk—atﬂa—g[5%-1,¢t-1—kt-1ﬂk~at-1ﬂa]}
x {krwg(-)/6¢Jkt-1,at—[ag(-)/amat-l}f].

Rewriting this in the notation of the first two sections of the paper with

2’ =(y1,h,xt. K a8, Keop,80-1it-1), V! = var’ = v/ =(k¢-1,8¢-1,1¢-1), and 0’ = (fx,fa), we have

(28b) G(6) = Em{z, hso,haalv,710(¥),720(¥), 8],8ha0] -1/ 3720, 0,
where
T10(v) = Ra(ke-1,2¢-1,1¢-1),
720(v) = $e-s(ke-s,ae-115-1),
hio=F
haolv,710(v),720(v), 0] = B[ R4+ ), be-1(+ ) ke -1Bi—2t-15a),

and it is understood that both 71¢(+) and 72¢(+) are indexed by time. Note that (28)
implies that G(6,)=0.
Our estimation procedure substitutes preliminary estimators of 74(+), 7o(+), hy and

ho(+) discussed above into m(-) and then chooses § to minimize
(29) ”Gn(a)“ = ”(1/11)2im{zi,hln,hm[Vi,Tm(Vi),Tm(Vi),0],5}2,2;,[']/(97'2,9}”.

If we define hgo(-)=dhyo(+)/ 074, and hsn accordingly, then (29) is in the form of

equation (2) with &% mapping into a subset of R3, and T into a subset of R2. We now
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provide an expression for V, the variance covariance of y/n #(fo), for the example in (29).

An estimate of it will then be combined with an estimate of

to obtain an expression for the variance covariance of § appearing in our limit theorum
(theorum 14).

Let M;(-) be the (row) vector of derivatives of m(-) with respect to the value of h;
for j=1,2,3; and Hijs(+) be the derivative of h(-) with respect to 74(-) for s,j = 1,2. Now
use equation (27) to show that E[M;(z,0)|v] = 0. It follows that we can treat hj as if it

were a known function in computing the variance of yn #(fo) [corollary 20]. As a result

(31)  #(fo) = (1/n)24{ m(zs,00) + My(vs,00)[f1n — f1] +
Ma(vi,00)[han(vi,00) — hoo(vi,00)] + Ma(z3,00) Hai(vi,00)[71n(vi) =T 10(v1)]
+ My(21,00) Hao(vi, 00)[72n(vi)—720(v3)] } + op(1/yn).

Moreover, since hy(-), 74(+), and 75(-) are all conditional expectations, we have

(32a)  (1/vn)BiMy(vi,00)[han(vi,00)—hzo(vi o)) = (1/vn)Eifa(2i) + 0p(1/¥n),

(1/¥n)EiMa(v1,00) Hai(v4,00)[71n(vi)—T10(v3)] = (1/yn)E1fs(z3) + 0p(1/v/n)
and

(1/yn)2iMa(vi,00) Hoo(vs,00)[72n(vi)—T20(vi)] = (1/vn)34fs(z:i) + op(1/vn)
where if ‘

Q(vi,00) = xe{ke—{9g(+)/09]ks-1,2e—{0g(+ )/ 0d]ac-1}’
then
f2(Z) = Q(Vi,ﬂo) x {}’t-ltﬂl—ktﬁk—atﬂa—g[2¢t-1—kt-Lﬁk~at-1ﬂa]} )
fi(2) = Q(vi,00) = [0g(-)/0 2] [xe— A]
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and,

fi(z) = Q(vi,00) = [9g(+)/ 4] Nty

where, again, n¢-1=[yt-r—1k-r—$;-1]. Finally we note that the moment condition which

defines the estimate of f) (Robinson,1986) is

E { 1 [FE(1]1,a,k)]? — [y—E(y|i,a,k)][FE(I]1,a,k)] }.

Substituting first stage nonparametric estimators of E(l|i,a,k)] and E(y|i,a k) into the
sample analogue of this equation and then analyzing the resulting estimator of f) as in the

last section we find that

Vo(Bin—po) = {E[FE(I]1,a,k)]2} 1 (1/vn) B n[i=E(1]1,2,k)]
so that
(32b)  (1/yn) TiMy(vs, 00)[fin—01] = (1/vn)21fi(z1) + op(1)
where

Alzs) = {E[FE(I]1,3,k)]2}-1Q(#o)n[HE(I]1,3,k)], and Q(fo)= EQ(v,0y).

Equation (32), our regularity conditions, and the Lindberg Levy central limit

theorum imply that

(33)  vh ga(0) =y HOV),
with
V=E[m(z, 00)+2fosf (z1)|lm(zs, 0o)+ 34 f (2]

Equations (30) and (33) provide the analytic formula needed for the variance

covariance matrix in the central limit theorum in (14). We obtain our estimate of that
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variance covariance matrix by treating the estimated as the actual values of unknown
parameters, and forming the sample analogues of the expectations needed for D and V.
The estimated variance covariance for each different estimator uses that estimator’s
estimates of the nonparametric components of the problem.

Table 1 provides alternative estimates of the capital, age, and time coefficients, and
their standard errors. The different columns correspond to estimation algorithms which
use different estimators for the nonparmametric components of the problem. As noted
above all columns use the same series estimator for the partially linear model in (24). The
first row of the table specifies the form of the nonparametric estimate of the survival
probability used in obtaining the results in that column, while the second row specifies the
form of the estimate of the g( #,h) function in (27).7 The table lists three estimates of the
standard error of each estimated coefficient. The first (labelled NCE for not corrected
estimate) is the estimate one would obtain if one di»d not correct for the fact that 4}, £ h,
and g are estimated objects (it sets fj(z)=0, for j=1,2,3,4 and all i). The second provides
the standard errors estimated from the analytic formula given above (it is labelled PDE for
pathwise derivative estimate).

The final estimate of the standard error is obtained from a bootstrap procedure (and
is labelled BSE). The Census data set is a "rolling" panel. Every five years a new
probability sample is drawn from the latest Census of Manufacturing and those plants are
followed either over the next five years, or until they exit. The sampling weights depend
on the size of the establishment, and in some years, on the size of the firm. The base
sample is augmented by a sample of new entrants (taken from the standard establishment
list or SSEL) every year. The sampling procedure used for the bootstraps mimicked the

sampling procedure used by the Census. We were satsified that we had reproduced their

"We also combined series and standard kernel estimates for £ with bias reducing kernel
estimates of g(-). Since the estimates obtained in this fashion did not differ much from
those reported in the table we do not discuss them.
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procedure with sufficient accuracy when we began generating samples that had
characteristics that were quite close to the characteristics of the original sample (eg. the
number of plant—year observations generated, the number of plants active in different
periods,...). We note that the samples used for the bootstraps were drawn independently
for each different estimation procedure. The number of bootstrapped coefficient estimates
used to compute the standard errors is given in the last row of the table.

Two points should be noted before proceeding. First, it is only the third column
whose estimates are known to abide by all the regularity conditions needed for our limit
theorems. On the other hand, there is a strong presumption that the series estimators do
also, and if prior monte carlo work is to be taken as a guide, any bias caused by using the
normal (instead of the bias—reducing) kernel should be small (and may be offset by smaller
variances in finite samples; see Powell, Stock, and Stoker, 1989). Second, we ran several of
the estimators with and without trimming. There was only one case in all of our
experiments for which the trimming had any substantial impact on the results, and that
impact was not on the coefficient values, but rather on the PDE of their standard error.
Since the case in question was an early run not reported here, we ignore trimming in what
follows.

The first stage estimate of the labor coefficient was .615, with a PDE of .027, and a
BSE between .028 and .031 in the three bootstrapped samples. As to the other coefficients,
the Table seems to make several points. Perhaps most important, the PDE’s of all
coefficients, with the possible exception of the time coefficient, seem to be within tolerable
bounds for standard errors of those coefficients. We should note that the focus of interest
was on the capital coefficient (as there was a theoretical reason to expect it to be
underestimated in procedures which do not account for selection), and partly as a result
both the investment and the selection equations were allowed to vary freely across time
periods. Hence we did not expect a precisely estimated time coefficient. Also, though this

is a large sample (it is an unbalanced panel with 1763 plant/time observations), it is not
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unusually large by modern econometric standards, and the estimation problem itself is
quite complex (it requires us to estimate three nonparametric functions along with the
coefficients of interest). At least in this instance, then, semiparametric techniques seem to
be quite helpful in both; ameliorating the need for auxiliary assumptions, and in
simplifying the computational burden of the estimation algorithm.

Second, the coefficients and the PDE estimates of their standard errors do not seem
to differ "too much" between estimation techniques. By "too much" here we simply mean
differences of a magnitude which are likely to have an impact on the empirical implications
of the parameter estimates (see the discussion in Olley and Pakes,1991). So any biases
induced by either the series or by the standard kernel estimation procedures do not seem to
generate large differences in results for our example. Note that this is so even though the
fit from the equation used to estimate these coefficients does seem to differ somewhat as we
vary the estimators for the nonparametric components of the problem (this was a bit
surprising, and we do not really have a good idea of why the kernels, particularly the
bias—reducing kernel, fit better in our application).

It is important to realize that in problems such as ours where a nonparametric
function depends on the parameter of interest, when we use kernels we must recalculate the
kernel every time we evaluate a different parameter vector in the minimizati\on subroutine.
As a result the kernel estimators can require substantially more computer time than the
series estimators. In our example the series estimator took under one hour to run on our
486, while the bias—reducing kernel estimator generally took over twelve hours. Thus even
if one did not want to stop with the series estimators, one might consider using them as
starting values for the more comptationally intensive kernel estimators.

We now move on to consider the estimates of the standard errors in more detail.
The first point that comes out clearly here is that it does seem important to correct the
standard errors for the fact that we are using estimated, instead of true, values of (1, £ q,

g). The NCE estimates of the standard errors are all lower than the PDE’s, and the
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difference between them is often, though not always, quite large.

Second the BSE’s are uniformly larger than the PDE’s. A couple of caveats should
be noted before attributing too much to these results. First, we should keep in mind that
though we are producing three different vectors of estimators, there is only one underlying
data set, so the difference between the two estimates of the standard errors are correlated
across the columns of the table. Second, we note that to obtain the actual estimates in
table 1 we ran our estimation procédure several times using different starting values and
different minimization subroutines in the different runs, and then chose the estimates that
minimized over the runs. We simply did not have the computational resources that would
be needed to do this for the bootstraps in a reasonable time period, so the possibility that
the minimization routine used in the bootstrap procedure periodically picked out a local
minima which was not global cannot be ruled out (a possibility which we would expect to
increase variance). However, we did not seem to have any trouble finding the global
minima for the estimator in the series column of the table, and here also the BSE was
about fifty per cent larger than the PDE. Also, the fact that the BSE’s are larger than the
PDE’s is reminiscent of the results in Stoker (1991) on smoothing bias in density and
derivative estimators. That is, the derivative estimator used in our computations of the
variance may just have a "smoothing bias" which causes a systematic tendency to produce
smaller standard errors than the true standard errors when the bandwidth is held at a
positive constant. As a result a deeper investigation of the relationship between the PDE’s
and the BSE’s, though beyond the scope of this paper, may well be worthwhile.

Table 2 provides a comparison of the distribution of the bootstrap estimates of the
capital coefficient from alternative estimators. Of particular interest here is a comparison
of the distribution of the bootstrap estimates from the bias—reducing to those from the
standard normal, kernels. Their means, standard errors, and skewness are all very close,
but the kurtosis in the two distribution is very different. In particular the distribution of

the estimates from the standard kernel looks very much like a normal distribution, but the



distribution from the bias—reducing kernel has much fatter tails (indeed all the difference
in the two distributions is outside of the interquartile range). A risk averse researcher

might, then, want to stick with the standard normal kernel.
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Table 1: Alternative Estimates of Production Function Coefficients

and Their Standard Errors'

1 2 3
Selection Equation Probit/Series | Standard Bias Reducing
Kernel Kernel

Semiparametric? Series Standard Bias Reducing
Moment Condition Kernel Kernel
Capital Coefficient .33 .31 .35

NCE? .032 .014 .004

PDE . 035 .036 . 045

BSE .052 .092 . 097
Age Coefficient -.001 -.009 .01

NCE .005 .003 .002

PDE .006 .011 .014

BSE .014 .021 . 017
Time Coefficient .012 .038 .04

NCE .026 .016 .004

PDE .027 .037 .038

BSE .030 .042 .046
SSR (Semiparametric 582.8 572.9 553.7
Moment Condition)
No. of Bootstraps 44 60 60

' The first stage estimator of the labor coefficient was
.615 with a PDN estimated standard error of .027 and a Bootstrap
estimated standard error of .031.

2 All Series estimators use a fourth order polynomial with
full interactions among regressors.
estimators use normal kernels with a diagonal convariance matrix
equal to the inverse of the variance of the regressors and a

bandwidth equal to one.

All standard kernel

All bias reducing kernel estimators usge

the normal based bias reducing kernels in Bierens (1987) with Q
equal to a diagonal matrix with the inverse of the variance of
the regressors on the diagonal, a degree of bias reduction equal
to four, and a bandwidth chosen by cross-validation.

3 NCE

given in the text

BSE

= no correction for the nonparametric estimators
PDE = analytic formula for estimators of standard errors

Bootstrap estimate of standard errors




Table 2

Characteristics of the Distribution of Capital Coefficients

Obtained from the Boostrap

Bias Reducing Standard Series
Kernel Kernel
Summary Statistics
Mean .36 .36 .29
Standard Deviation ~ . 097 .092 .056
Skew .27 -.26 -.55
Kurtosis 2.63 .04 .52
Quantiles
.99 .69 .54 .43
.95 .47 .51 .36
.90 .44 .49 .36
.75 .41 .42 .32
.50 .37 .37 .30
.25 .30 .30 .26
.10 .25 .23 .22
.05 .18 .19 .17
.01 .11 .13 .14




