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ABSTRACT

This paper considers hypothesis tests when the parameter space is restricted under the al-
ternative hypothesis. Multivariate one-sided tests are a leading example. Optimal tests, called
directed tests, are derived using a weighted average power criterion. The likelihood ratio test is
shown to be admissible and to maximize power against alternatives that are arbitrarily distant
from the null hypothesis. Exact results are established first for Gaussian linear regression models
with known variance. Asymptotic analogues are then established for dynamic nonlinear models.

Simulation is used to compare the tests discussed in the paper. The D-W,, directed test is
found to perform best in an overall sense for multivariate one-sided alternatives. The D-W, and

LR tests are found to perform likewise for mixed one- and two-sided alternatives.



INTRODUCTION

This paper considers tests of hypotheses in parametric models in which the parameter of
interest, 3, is restricted under the alternative hypothesis. More specifically, we consider tests of
Ho : B =0 versus Hf : § € B, where 8 € RP is a subvector of an unknown parameter § € R* and
B is a subset of RP that does not include a neighborhood of zero. Leading examples of hypotheses
of this form include multivariate one-sided hypotheses, joint one- and two-sided hypotheses, and
multivariate non-negativity hypotheses (of the form Hf : 8 £ 0). Econometric applications of
hypotheses of these types have been noted in the literature, e.g., see Gourieroux, Holly, and
Monfort (1982) and Gourieroux and Monfort (1989). Examples include (1) applications where
the signs of regression parameters are known (such as the coefficients on own price and income
in demand analysis), (2) tests of positivity of the variances of random coefficients, (3) tests of
positivity of the variances of error components in panel data models with individual and time
error components, (4) tests of positive definiteness of variance matrices, (5) tests of skewness and
excess kurtosis, (6) tests of positive first-order serial correlation plus ARCH effects, and (7) tests
of ordered alternatives (of the form Hf : p3 < po < pg, where 8= (u2 — 1, p3 — p2)’).

Hypotheses of the above sort are non-standard when p > 2. In consequence, the likelihood
ratio (LR) statistic does not have its usual chi-square asymptotic distribution nor does it possess
its usual optimality properties of the type established by Wald (1942, 1943). Nevertheless, most of
the literature on this subject (see references below) has considered the LR test or asymptotically
equivalent tests and has focussed its attention on obtaining suitable critical values for such tests.

In contrast, the focus of this paper is on the choice and optimality properties of test statistics.
We specify a weighted average power optimality criterion and derive tests that are optimal or
asymptotically optimal (depending on the model) according to this criterion. This approach is
similar to that used by Andrews and Ploberger (1994) for a different testing problem. The weight
function employed is a truncated multivariate normal density truncated to be zero when 8 ¢ B.
The contours of this density are the ellipses that Wald (1942, 1943) considered in his analysis

of the optimal (asymptotic) weighted average power of Wald and LR tests (for the case where



B contains a neighborhood of zero).? The optimal test statistic is found to be a directed Wald
statistic (or asymptotically equivalent directed LR or Lagrange multiplier (LM) statistic).

The directed Wald statistic equals the standard Wald statistic for testing Hy : 8 = 0 against
the unrestricted alternative Hy : B # 0 multiplied by a weighting factor that depends on the
location of the unrestricted maximum likelihood (ML) estimator B relative to the restricted pa-
rameter space B. The directed LR and LM statistics are defined analogously. None require the
computation of the ML estimator for the restricted parameter space B, which can be difficult to
compute and is required by the standard LR test and asymptotically equivalent versions of it.
For the case of a univariate one-sided test, the directed Wald statistic reduces to the standard
one-sided Wald test, which has known optimality properties. The asymptotic null distribution of
the directed statistics is shown to be a function of a multivariate normal random variable (rv).
Critical values and p-values can be obtained by simulation. An interactive GAUSS program,
written by E. Fiuza and the author, that does this is available from the author.

The weighted average power optimality criterion that we consider depends on a scalar para-
meter ¢ that indexes whether more or less weight is placed on alternatives that are close to the
null hypothesis. For each value of ¢, one obtains a different optimal directed test statistic. Thus,
it is important to know whether the directed tests have power that is sensitive to ¢ and to have
guidance regarding the choice of ¢. These issues are discussed below.

This paper also analyzes the power properties of the most widely used test statistics in the
literature, viz., the LR test and various asymptotically equivalent Wald, Kuhn—Tucker (KT),
and modified LM tests. It is shown that the LR test is admissible or asymptotically admissible
(depending on the model) when B is a positively homogeneous set (i.e., § € B implies 73 € B
V7 > 0). The latter condition is satisfied in most examples. Furthermore, it is shown that the LR
test is the best test in a certain sense against alternatives in B that are arbitrarily far from the
null hypothesis. This result is useful in terms of understanding the properties of the LR test, but
is only a weak optimality result, because all good tests have high power against such alternatives.

We note that the admissibility of the LR test in the context considered here is not an obvious



result. The LR test is known to be inadmissible in several closely related testing problems con-
cerning the means of normal rv’s, e.g., see Berger and Sinclair (1984), Warrack and Robertson
(1984), and Berger (1989). In addition, the inadmissibility of the ML estimator for simple ordered
normal means (see Sackrowitz and Strawderman (1974)) has led Robertson, Wright, and Dykstra
(1988, p. 109) to (incorrectly) anticipate that the LR test is not admissible in the present context.

For clarity of presentation of the results and their proofs, exact versions of the results outlined
above are derived first for linear regression models with Gaussian errors and known error variances.
Then, analogous asymptotic results are provided for parametric models that satisfy standard ML
regularity conditions.

The theoretical results outlined above are supplemented in the paper by simulation results.
The simulations compare the power of the LR test, several directed Wald tests, viz., D-W, for
c=0,1/3,1, 3, and oo, the two-sided Wald test, and the power envelope. The model considered
is the multivariate normal location model with known variance. For this model, the theoretical
results hold exactly. Furthermore, the asymptotic local power of the above tests for nonlinear
models equals their exact power for the model above. In consequence, the finite sample power
comparisons given in the paper also provide asymptotic local power comparisons for a wide variety
of models.

The simulation results can be summarized as follows: We find the D-W, test to be the best
overall test for multivariate one-sided alternatives. For mixed one- and two-sided alternatives, the
D-Wy and LR tests are best with the D-W, test doing better in the middle of the parameter
space and the LR test doing better along the edges. The D-W}, test does very poorly for mixed one-
and two-sided alternatives, for reasons given below. The D-W 3, D-Wi, and D-Wj tests have
similar power and are almost as good as D-W,. All of the above tests usually have much higher
power than the standard two-sided Wald test, which ignores the restrictions on the parameter
space. The D-W, test is often near the power envelope for alternatives in the middle of the
parameter space, but not for alternatives on the edge of the parameter space. Finally, the relative

performances of the tests do not vary greatly as the distance of the alternative from the null is



varied, at least across the range for which the LR test has power between .3 and .9.

The fact that the power of the directed Wald tests does not vary greatly with ¢, provided
¢ # 0, has useful consequences. First, it implies that the choice of ¢ is not crucial. The choice
of ¢ = 0o does very well in all cases considered. Second, it implies that the power of a directed
test for a given value of ¢ is nearly optimal for a wide range of weight functions. In consequence,
directed test statistics (with ¢ # 0) have nearly the same optimality properties as classical Wald,
LM, and LR tests for standard two-sided alternative hypotheses.

The optimality properties of the directed tests and the classical tests can be criticized for
using weight functions whose contours are arbitrary. In fact, the contours are not arbitrary. They
are chosen to deliver a computationally tractable test statistic. Given that it is hard to argue in
favor of one particular shape of contour over another on a priori grounds for a general class of
testing problems, and given that an applied researcher has to choose some test, it seems prudent
to choose contours that ease the computational burden as much as possible. This is what has
been done in this paper and in Wald (1942, 1943).

We now briefly review the literature concerning the testing problems considered here. The
early literature focussed on one-sided testing problems in multivariate analysis. Much of it is
concerned with the finite sample distribution of the LR statistic. See Perlman (1969) and Barlow
et al. (1972) for references. More recent work along similar lines is referenced in Robertson,
Wright, and Dykstra (1988) and includes papers by Hillier (1986), Shapiro (1988), and Goldberger
(1992), among others. An exception to the focus of the early literature is the paper by Chernoff
(1954), which considers the asymptotic distribution of the LR statistic for more general models.

The econometrics literature has focussed on deriving the distribution (asymptotic and finite
sample) of the LR statistic for one-sided alternatives for regression and nonlinear models and on
deriving asymptotically equivalent tests to the LR test. For linear regression models, references
include Gourieroux, Holly, and Monfort (1982), Hillier (1986), Wolak (1987, 1989b), and Dufour
(1989). For nonlinear models, references include Gourieroux, Holly, and Monfort (1980), Kodde

and Palm (1986), Rogers (1986), and Wolak (1989a). Results for the LR test for mixed one-



and two-sided alternatives were initiated by Perlman (1969) for Gaussian location models and
extended to more general models by Kodde and Palm (1986) and Wolak (1987, 1989a). The
papers above all consider the LR test or asymptotically equivalent tests. There is also a number
of papers that consider tests based on contrasts. These include Hillier (1986), King and Smith
(1986), and King and Wu (1990). See Robertson et al. (1988) for further references. King and
Wu (1990) established a locally mean most powerful property of their additive t—test.

The testing problems considered in this paper are ones in which the null hypothesis is defined
by equality restrictions. We do not consider tests of “multivariate inequality constraints.” A
simple example of such a testing problem is Hy : 3 > 0 versus H; : 8 2 0. For results concerning
problems of this sort see Perlman (1969), Robertson and Wegman (1978), and Wolak (1987, 1989a,
b). For further references, see Robertson et al. (1988).

The remainder of the paper is organized as follows. Section 2 derives the optimal directed tests
for the Gaussian regression model. Section 3 establishes the admissibility of the LR test for this
model. Section 4 establishes the asymptotic null distribution and asymptotic optimality proper-
ties of the directed statistics for dynamic nonlinear models under a set of high-level assumptions.
Section 5 shows that the LR statistic is asymptotically admissible in such models using similar
conditions. Section 6 provides primitive sufficient conditions for the high-level assumptions of
Sections 4 and 5. Section 7 describes the experimental design and the results from a simulation
experiment that compares several tests of one-sided and mixed one- and two-sided alternatives.

Two Appendices contain proofs of the results stated in the text.

2. REGRESSION: OPTIMAL TESTS

This section derives optimal tests for Gaussian linear regression models with known variance

using a weighted average power criterion. We assume:
ASSUMPTION 1: The model is given by

Y, =X,8+G6+U; for t=1,..,T,



where Uy ~ iid N(0, 0%), 02 > 0 is known, Xy € RP, Gy € R, 3 € B C RP, § € A
C RY, {(Xy,Gy) : t =1, .., T} are non-random, and [X : G] is full rank s = p+q (< T) for

The null and alternative hypotheses of interest are:
(2.1) Hyp : =0 and Hj : g€ B/{0},

where B/{0} denotes the set B minus the zero vector. The regression parameter vector is

0 = (4, 6)'. The information matrix for 6 is

T T X'X X'G
(2.2) 7= _ /o2 .
T, Ty G'X GG

The parameter space ©* (C R*) of 6 is required to satisfy:
ASSUMPTION 2: ©* = B X A for BC RP and A C R? and B has positive Lebesque measure.
ASSUMPTION 3: d —Z;'Thb € A Vb€ B, Vd € A.

The two main cases where Assumption 3 is satisfied are when (1) the nuisance parameter ¢ is
unrestricted (i.e., A = R?) or (2) the regressors X and G are orthogonal (i.e., To = X'G/a? = 0).
In each of these cases, Assumption 3 places no restrictions on the shape of the parameter space
B. Common shapes include (i) {8 € RP : 3; >0Vj =1, ..,p}, (i) {8 R : B € RVj < J;
B; > 0Vj=J+, ..., p}, (ili) {8 € RP : B; >0 for some j < p}, and (iv) {8 € RP : B; — Bj_1
>0Vj=1, .., p, where fy =0} (which corresponds to the non-negative and ordered alternative
Hf : 0< 81 < By -+ < Bp). In addition to the two main cases listed above, Assumption 3 is
satisfied in a variety of other special cases. For example, if B is contained in the positive orthant of
RP, A is the negative orthant of RY, and 7 1I§ contains non-negative elements, then Assumption
3 holds.

Let 6y denote some parameter vector in the null hypothesis: 6y = (0, &;) € R® for some
bo € R?. Any parameter vector 6 € R® can be written as the sum of the null parameter vector g

and some perturbation vector h € R*. That is, 8 = 6y + h. Given 6y, we specify a weight function



Q.(+) over perturbation vectors h. The weight function we use is a singular multivariate normal
distribution whose support lies in the orthogonal complement (with respect to a particular inner
product) of the linear subspace of R* defined by the null hypothesis.

More specifically, let V' denote the linear subspace of R® defined by
(2.3) V={0eR :0=(0, ) for some § € R} .

The null hypothesis can be expressed as Hy : 6§ € V' N ©. Define the inner product (h, ¢) = K'Z¢,

for h, ¢ € R®. Denote the orthogonal complement of V under (-, -) by V. Since V is a q

dimensional subspace of R®, V1 is a p dimensional subspace of R®. Let {ay, ..., ap} be some basis
of V4 and define A=[a; i az i --- | ap] € R**P. For example, one can take A = [I, 1 — T4Z;']".
Note that
(2.4) ATA =T — T,I;'T) = X'MgX/o? , where Mg = Iy —G(G'G)" G’ .
Next, let
-1 -1
(7 - I ') - (O -DI'G) I

(2.5) X = A(ATA) 1A =
—17 17\ 1 17\ 71
L (L - D) LG (L - LI

Also, let N(0, ¥) denote a multivariate normal distribution with mean 0 and covariance matrix

Y. (possibly singular).
ASSUMPTION 4: Q. = N(0, cX) for some positive constant c.

Note that the support of Q. is V=*.

The weight function Q. gives equal weight to different alternatives 8 = 8y + h that are equally
difficult to detect (as measured by the power of the best test of ﬁo : 0 = 0y versus ﬁl : 0 =0y+h.
Thus, the contours of ). are the same as those considered by Wald (1942, 1943).

The constant ¢, which scales the variance matrix of the weight function ., determines the
relative weight given to alternatives that are close to the null versus alternatives that are distant

from the null. A small value of ¢ corresponds to giving high weight to close alternatives. The



larger is ¢, the more weight is given to distant alternatives. As ¢ — oo, the weight function gets
closer and closer to giving equal weight to alternatives of different proximity to the null.

The weighted average power criterion that we consider is given by
(2.6) /1(90 + h € ©")P(p rejects HylOg + h)dQ.(h)/K ,

where ¢ is some level « test and K = [1(6p + h € ©*)dQ.(h). K is positive, because B has
positive Lebesgue measure. Note that the weight function Q.(h) is truncated so that it only gives
non-zero weight to parameter values 6 (= 6y + h) in ©*. (The constant K merely ensures that
the truncated weight function integrates to one.) An optimal test of level & maximizes the above
weighted average power criterion over all tests of level a.

We determine an optimal test as follows. Let f(y, 8) denote the density of the T" vector of
observations Y = (Y1, ..., Yr) evaluated at y = (y1, ..., yr)’. Let ¢ = ¢(y) denote a test of Hp.
That is, ¢(Y) is a [0, 1]-valued function of Y that rejects Hg with probability v when ¢(Y) = .
(Of course, ¢ depends on the non-stochastic regressors as well as on Y.) The power of ¢ against
0 =0y + h is given by [ ¢(y)f(y, 6o + h)dy. The weighted average power of ¢ equals

/ 1(8y + h € ©%)P(g rejects Ho|fo + 1)dQu(h) /K
(2.7) = [10+nee) [ ou)fy, o+ hdydQe(n)/ic
= [ o) | [ 160+ 1 €)1, b0+ WdQu(t/ K] dy
by Fubini’s Theorem.

Equation (2.7) shows that the weighted average power of ¢ equals the power of ¢ against the

single alternative density specified by

(2.8) o, 00) = [ 100+ € ©°) (3, b0 + QU /K

Hence, a test that maximizes power against the simple alternative g(-, ) also maximizes weighted
average power.
The Neyman—Pearson Lemma shows that the best test for testing the simple null Y ~ f(-, 6p)

against the simple alternative Y ~ g(-, 6p) is based on the likelihood ratio statistic LR(6p):

(2.9) LE(0o) = g(Y, 60)/f(Y, bo) = [/ 1(6p +h € ©°) f(Y, 0o + h)dQ.(h)/ K| / (Y, bo) -



We show below that this statistic does not depend on 6. In addition, we show below that it can
be written in a simplified form that involves only a p dimensional multivariate normal probability
rather than an s (= p+¢) dimensional integral. These simplifications are a consequence of our
choice of the contours of the weight function Q.. One could consider different contours, but this
would leave one with a test statistic that involves a higher (often much higher) dimensional integral
to compute and an integral which is less well understood from a computational perspective than
the multivariate normal probabilities that arise (see below) with the given choice of Q..

For B C RP, u € RP, and ) a positive semi-definite p X p matrix, let
(2.10) ®,(B, p, Q) =P(ZeB), where Z ~ N(u, Q) .

For notational simplicity, we often suppress the subscript p.
The statistic LR(6p) is shown below to equal a constant times the directed Wald statistic

D-W, defined by

W, = —p/2 1 _c <3 _c(x! 1.2
(2.11) DWW, (1+¢) exp (2 Tre )@(B, 75, 1+C(X MgX) a) . where

W = §(X'MgX/o?)3, and 3= (X'MgX) X' Mgy .

Note that B is the least squares estimator of 3 from the (unrestricted) regression of ¥; on X; and
Gy. W is just the standard Wald test statistic for testing Hy : 3 = 0 against H; : 3 # 0 (for the
case where o2 is known). The calculation of D-W, requires the computation of a multivariate
normal integral. For p = 2 or 3, this can be done by numerical quadrature. For p > 4, it can
be done by simulation methods. See Hajivassiliou, McFadden, and Ruud (1994) for a review and
evaluation of methods of doing so. One rejects the null hypothesis for large values of D-W.,.

The directed Wald test differs from the standard Wald test by the appearance of the factor
®O(-, -, -) in the test statistic. Due to the ® factor, the directed Wald statistic differentially
weights realizations of W depending on the specification of the alternative parameter space B
and the length and direction of B Consider the case where p = 2, B is the positive orthant, and
(X'MgX) 102 is the identity matrix. Table I provides the values of <I>2(R?H A, I) for several

values of A on the unit circle. For A in the middle of R?i—’ ie, A = (.707, .707), the factor
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dy (Ri, A, I) is almost ten times as large as when A is on the opposite side of the circle. Thus,
the factor ® has a substantial impact on the value of the directed Wald statistic.

Note that the directed test statistics depend on the weight function Q.(-) only through the
scalar constant c¢. As mentioned above, a small value of ¢ corresponds to giving high weight to
close alternatives. In contrast, as ¢ — oo, the weight function gets closer to giving equal weight
to alternatives of different proximity to the null.

The limiting value as ¢ — oo of the directed Wald statistic (after a suitable monotone trans-

formation) is as follows:
(212) DW= lim 2log[(1 + O)P2D-W.) = W + 21og[®(B, 3, (X'McX) '0?)],

where log denotes the natural logarithm here and below.
If B is positively homogeneous (i.e., § € B = 73 € B V7 > 0), which includes the four
examples listed following Assumption 3, the limit as ¢ — 0 is

D—WO _ llII(l) Jc(D_WC) _ d/B/ (dI(X/MGX/O.Q)fld)l/Q ’

o1 where d = 2 ®(B, 0, (X'MaX) ™) ,
O 2e(B,0,Q) = Z0(B, u, Q) _=0Q7'EZ1(Z € B) for Z~N(0,Q), and

— Ou
' (B, 0, (X' MaX)™1)
(d(X'GX/o?2)~1d)?

Jo(w) = Z [log (1 + ¢)P/2z) —log (B, 0, (X' Mg X))

Except for special cases (such as B = RP), we have d # 0 and D-W) is well-defined. Since
D-Wy ~ N(0,1) under the null hypothesis, it is easy to obtain the desired one-sided critical
values for this test statistic. (One rejects Hy for large values of D-Wy.) Thus, to carry out a test
based on D-Wj, the only potential complication is in computing d = 8%@(3, 0, (X'MgX)™h).
For p = 2 or 3, d can be computed by numerical quadrature. For p > 4, it can be computed by
simulation methods. As noted above, see Hajivassiliou, McFadden, and Ruud (1994) regarding
the latter. In addition, d (or d up to a constant of proportionality) can be obtained by symmetry
arguments in some cases. For example, suppose p = 2 and B is the positive orthant (or R? minus
the negative orthant), then by symmetry d is proportional to (1,1)’. For p > 2, an analogous

result holds if the correlation matrix that corresponds to the covariance matrix (X'MqgX )™ lo?
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has all non-diagonal elements equal. Although a test based on D-W) is easier to carry out than
one based on D-W, for 0 < ¢ < oo (since one does not need to simulate critical values), we do
not favor it on theoretical grounds (because it is designed only for very local alternatives to the
null hypothesis) or based on the results of power simulations; see Section 7 below.

The null distributions of the directed Wald statistics equal those of the following rv’s:

V0 < ¢ < o0,

Lo=(140) P exp (3 152'2) @ (B, (X' MaX) V202, 14 (X' MeX) 1o?)
(214) £ =2'Z +log [cb(B, (X' Mg X) Y202, (X’MgX)*l(rz)} , and
Lo=2, where Z~N(0,1I,) and Z = (Zy, ..., Z,) .
Let &, denote a test of level a based on the directed Wald statistic D—W,. Properties of this

test are given in the following theorem.

THEOREM 1: Suppose Assumptions 1-4 hold. Then,
(a) D-W. = LR(6p) x K for all0 < ¢ < o0,
(b) D-W, ~ L. under the null hypothesis Hy for all 0 < ¢ < oo and

(c) for any level «v test @, the directed Wald test &. satisfies

[16+neer) [ [erteo h)du] 4Qu() < [ 100+ 1 € ©7) [ [ecso0+ h)du} dQe(h)

for all 0 < ¢ < oo, with strict inequality unless ¢ = &, (Lebesque) almost everywhere, where f(0)

is the Gaussian density of the data and  is Lebesque measure on R”.
The proofs of Theorem 1 and Theorem 2 below are given in Appendix A.

CoMMENTS: 1. By Theorem 1(b), the directed Wald test is an exactly similar test. Its null
distribution depends on the regressors, however, so it is not possible to provide tables of exact
critical values. Instead, critical values can be obtained on a case by case basis by simulation.

2. The result of Theorem 1 (and Theorem 2 below) applies to a more general class of regres-
sion testing problems than those that satisfy Assumption 1. In particular, the following regres-

sion model and hypotheses do not satisfy Assumption 1 but can be transformed to do so: YT
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= X191+ U, Ut ~ N(0, 0290), HB : RTOT =, and H]{ : R0 € BT/{r}, where YT is an observed
rv in RT; X7 is an observed non-stochastic T’ x s regressor matrix; ! is an unknown parameter
vector in R®; Ut is an unobserved error vector in RT; Q is a known T x T positive definite co-

2 is a known positive constant; R is a known p x s matrix of constants; r is a

variance matrix; o
known p-vector of constants; and BT is a known subset of RP. An example of the above testing

problem is a test of the equality of a sub-vector of parameters HB : (‘)I = 95 == 9;2 41 against

the ordered alternative HJ{ : (‘)1r < (‘)g < e < of

41 With one or more of the inequalities being

strict. This testing problem cannot be written directly as a special case of the testing problem
of (2.1), but it can be transformed to the form of (2.1). (See King and Smith (1986, Sec. 2) for
details of the transformation.)
3. If 02 is unknown, then an exactly similar test can be constructed, provided B is pos-
itively homogeneous, by replacing 02 in the definition of D-W, by the unrestricted estimator
=75

02 = lpEthl(Yt - X{B - GQS)Q. The resultant test statistic is a directed F' statistic. The null

distribution of the directed F’ statistic is given by that of
Lo=(1+0) " exp(} $£52'2(T-)/x*)®(B, 15 (X' Mo X) ™22, 15(X' MX) "X /(T-p))

where Z ~ N(0, I,,), x? has a chi-squared distribution with p degrees of freedom, and Z and x?
are independent. Theorem 1 does not establish finite sample optimality properties of the directed

F statistic, but Theorem 3 below provides asymptotic optimality properties for it.

3. REGRESSION: THE LIKELITHOOD RATIO TEST

3.1. Admussibility

In this section we consider the standard LR test for the hypotheses given in (2.1). We show
that the LR test is admissible. Roughly speaking, we show that it maximizes weighted average
power for weight functions that place weight only on distant alternatives. Analogous properties of
the LR test, but for a different non-standard testing problem (viz., that of testing when a nuisance

parameter is present only under the alternative) are established in Andrews and Ploberger (1993).
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The standard LR test statistic equals minus two times the likelihood ratio:

LR = —-2(¢(0) — £(6*)) , where
(3.1) _
0) =log f(Y,0), @)= sup £(f), and ¢(0*)= sup ¢(0) .
ocVnoe* 0co*
Let U(-) denote the uniform distribution on the p—dimensional unit sphere. Let U*(-) denote
the distribution of b* = (A'ZTA)Y/2¢, where £ ~ U.

We consider the case where the parameter space © satisfies Assumptions 2 and 3 plus the

following assumptions.
ASSUMPTION 5: B is positively homogeneous.
ASSUMPTION 6: Ve > 0, infpe g arzap=1 | 1(]|0 — b*|| < e, b* € B)dU*(b*) > 0.

Assumption 6 does not allow B to contain isolated rays. It is satisfied if B is an orthant, a
union of orthants, etc.

The weight functions we consider place all weight on ellipses of radius proportional to r for
r > 0. As in the previous section, we write 6 = 6y + h and we let Q" be a weight function over

vectors h.
ASSUMPTION 7: Q" is the distribution of rA(A'TA)~Y2¢, where € ~ U,

The weighted average power criterion considered here is given by (2.6) with Q. replaced by
Q". By (2.7), the weighted average power of a test equals its power against the single alternative
density specified in (2.8) with Q. replaced by Q". By the Neyman-Pearson Lemma, then, the

best test statistic in terms of weighted average power is given by the simple likelihood ratio:

(3:2) LR(B0, Q") = ([ 1060+ h € ©)F(Y. 60+ W)AQ" (1)K ) /(Y. 80).

(Note that the constant K = [1(0g + h € ©*)dQ"(h) does not depend on r, since B is positively
homogeneous.)

It turns out that LR equals the limit as » — oo of LR(6p, Q") (after suitable normalization).
In consequence, the level a likelihood ratio test A = 1(LR > ko) inherits a weighted average

power optimality property for distant alternatives.
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Let ¢ denote a test of Hyp. Let Ey denote expectation under Hy. We say that ¢ is distinct
from A if Eg(1—p)1(LR > kq) > 0 (i.e., if ¢ accepts and A rejects with some positive probability

under Hp).

THEOREM 2: Suppose Assumptions 1-3 and 57 hold. Then,

(a) LR = B (X' MgX/0o?)3* = lim, oo (max {% + 1 log LR(6, Q"), 0})2, where 0* = (5%, 6*'),
(b) LR ~ (max{supecs, (p) &' Z, 0})? under 6y, where Z ~ N(0, I,) and Sp(B) ={£ € RP : ||¢]| =
1 and (A'TA)"1/%¢ € B}, and

(c) for any test ¢ that is distinct from A, there exists a constant ro < oo such that for all r > rg

/1(90 +heoY [/@f(eo + h)du} Q" (h) < /1(90 +heoY [/Af(@o + h)du} Q" (h) -

COMMENTS: 1. Theorem 2(c) provides only a weak optimality property for LR, because power
is directed only at very distant alternatives.

2. Critical values for LR can be obtained by simulation for arbitrary choices of parameter
space B, provided the computation of 3* is not particularly onerous. If B is a closed, convex,
positively homogeneous set, then the null distribution of LR is a chi-bar-squared distribution,
which is a mixture of chi-squared distributions, see Shapiro (1988).

3. The proof of Theorem 2(c) actually establishes the stronger result that the ratio of the

weighted average type II error of ¢ over that of A diverges to infinity as r — oo.

3.2. Computational Issues

We conclude this section by discussing some of the relative merits of the directed tests and
the LR test from a computational perspective.

To obtain critical values for multivariate one-sided or mixed one- and two-sided hypotheses,
both tests require the calculation of multivariate normal orthant probabilities. (The LR test
needs them to determine the weights in the mixture of chi-squared distributions.) For either test,
approximations could be used to circumvent the calculation of such probabilities. Simulation

methods for calculating such probabilities, however, are now sufficiently easy and fast that there



15

seems to be little reason to rely on approximations. See Hajivassiliou, McFadden, and Ruud
(1994) for GAUSS and FORTRAN programs that compute the requisite orthant probabilities.

An advantage of the LR test is that once one has calculated the orthant probabilities, one
can obtain a p—value using just the distribution function of a chi-squared random variable. For
a directed test, one has to simulate the p—value or critical values. On the other hand, simulating
p—values and/or critical values is easy and fast and can be programmed simply to handle a wide
variety of different alternative hypotheses. As noted above, an interactive GAUSS program that
does this is available from the author. To write an analogous general program for the LR test
is more complicated, because one has to determine the appropriate probability weights for any
given restricted alternative.

A computational advantage of the directed tests is that they do not require computation of
the ML estimator for the restricted alternative (RA) hypothesis Hj : g € B/{0}. The estimator
employed by the directed statistics is just the unrestricted LS estimator regardless of the speci-
fication of B. On the other hand, for common specifications of B, the LR statistic requires that
one solve a quadratic programming problem that depends on B. For nonlinear models considered
below, avoiding the computation of the ML estimator for the RA hypothesis can be particularly
advantageous. Furthermore, the directed LM statistic (defined below), only requires calculation of
the ML estimator under the null and not under the RA hypothesis or the unrestricted hypothesis
H; : 8 € RP. As is well known from classical testing problems, this yields considerable compu-
tational simplicity in a variety of nonlinear models. In contrast, the LR test and asymptotically
equivalent versions of it, such as the Kuhn—Tucker multiplier test, require computation of the ML

estimator under the RA hypothesis.

4. NONLINEAR MODELS: OPTIMAL TESTS

In this section we extend the finite sample optimal test results of Section 2 to nonlinear dy-

namic models using asymptotics. We introduce tests called directed Wald, LM, and LR tests.
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4.1. Notation

Let Yr denote the data matrix when the sample size is T for T = 1, 2, .... Consider a
parametric family {fr(yr, 0) : 6 € ©* U O} of densities of ¥ with respect to some o—finite
measure pr, where ©* (C R®) and © (C R®) are two parameter spaces defined below. The
likelihood function of the data is given by fr(0) = fr(Yr, #). In many cases, the likelihood
function fr(@) can be written as a product of two terms, one that depends on 6 and another that
does not. Often the latter term is the product over ¢ = 1, ..., T' of the conditional distribution
of some weakly exogenous variables at time ¢ given all of the preceding variables (exogenous or
not). In such cases, these conditional distributions of the weakly exogenous variables need not
be known in order for one to construct the test statistics considered here. The optimality results
stated below hold for any distribution for which the assumptions on fr(#) hold.

The parameter 6 is taken to be of the form 6 = (', §')', where 5 € RP, § € R%, and s = ptq.
The null hypothesis of interest is Hy : 3 =0, as in (2.1). We let 6y denote a parameter vector in
the null hypothesis. That is, g is of the form 6y = (0/, §’)" for some 6 € RY.

For standard large-sample two-sided testing problems, the parameter space is taken to be a
subset © of R® that contains a neighborhood of €y for all 6y in the null hypothesis. We refer to
such a parameter space © as the unrestricted alternative (UA) parameter space. The alternative
hypothesis corresponding to the UA parameter space is Hy : 3 # 0. In this paper, our interest
centers not on testing Hy versus Hy, but on testing Hg versus a restricted alternative. Nevertheless,
we define the standard Wald, LM, and LR test statistics here, because it is necessary to establish
notation that is used below when discussing the main problem of interest.

Let ¢7(6) = log fr(6). Let D¢r(#) denote the s—vector of partial derivatives of ¢7(#) with
respect to 6. Let D?(1(6) denote the s x s matrix of second partial derivatives of ¢7(f) with
respect to . We consider the standard case where the appropriate norming factors for D7 (6)
and D%7(0) (so that each is Op(1) but not o,(1)) are == and

VT

plimy_,o, — £D*(7(6). (Z(9) is the limiting information matrix for 6.)

% respectively. Let Z(0) =
6.

Let 6 be the UA ML estimator of 6. By definition, 6 maximizes the log likelihood function
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over © at least with probability that goes to one as T' — oo (i.e., wp — 1). That is, 0 satisfies

-~

(4.1) lr(6) = rgnegiéT(O) wp — 1 under 6 .
e

Let 6 be the restricted ML estimator of 6 (restricted by the null hypothesis Hp). By definition,

0 satisfies

0cO={0cO:0=(0,§) forsomesec R} and

(4.2) _

lp(0) =suplp(f) wp — 1 under 6y .
0O

The standard Wald, LM, and LR test statistics for testing Hy against H; are given by
~ ~ —1 ~ ~ o~ ~ A~ ~ o~
Wy = T(HOY [HI;l(O)H’] HO=TRT — 1,75 ' T8 ,
LMy = (Dlr(9) /T I3 (0) Dl (6) /T
~ !~ ~ o~ ~1—1 ~
= (BrONT) | -LI;'T| - ()T,
(4.3) LRy = —2(0p(0) — 01(6)) , where H =[I,: 0] C RP*S
Tir(0)  Tor(0 _ _
7o) = 2020 = | DT O 5100, ana
Tor(0) Tar(0)
j-j = IJT(g) for j = 1, 2, 3.

Alternatively, one can define Zp(6) to be of outer product rather than Hessian form.

4.2. Optimal Tests for Restricted Alternatives

The alternative hypothesis that is of primary interest in this paper is Hf : 8 € B/{0}, as
in (2.1). The corresponding restricted alternative (RA) parameter space is ©* = B x A, where
B C RP and A C RY. For standard asymptotic results, the parameter space B is required to be
positively homogeneous (i.e., f € B = 73 € B V1 > 0) and to have positive Lebesgue measure;
otherwise, its shape is arbitrary. For example, B could be an orthant, a half-space, a cone,
or unions or intersections of such sets. By using non-standard asymptotics, the assumption of
positive homogeneity can be circumvented; see the comments following Theorem 3 below.

To derive asymptotically optimal tests of Hy versus Hy, we consider local alternatives to Hg
of the form fr(6y + h/+/T) for some h € R®. We consider the same weight function Q.(h) over

values of h as in Section 2, but with the information matrix Z defined as Z(6y), where Z(6) is
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defined above (4.1), rather than as in Section 2. We consider an asymptotic weighted average
power criterion, which is the limit superior as T — oo of (2.6) with 6 + h replaced by 8y +h/V/T.
For this criterion, directed Wald, LM, and LR tests are shown to be best.

The directed Wald statistic is defined as

~ ~ ~ ~ 1~\—1
D-Wp = (1+¢)"P/2 exp (% ﬁWT)cb(B, =6, (Il—IgIglIé) /T> for 0 < c< oo,

o DWor = Wy + 2log [cp (B, B, (T - fgfglfé)l/Tﬂ , and
DW= VIR (@ (B - 3, '5)d)
where d = 8—%@(3, 0, (fl - fgfglfé)—l/qv) :
One rejects Hq if D-W, r exceeds a critical value k, that is determined using the asymptotic null
distribution of D-W_r.

The directed LM statistic, D-LM.p, is defined analogously to D-W,p with Wi replaced by
LMy, B replaced by [fl —i—gj-glfé} - (%ZT(g)/T, and (fl — fgfglj@il/T replaced by
(fl - fgfg 1fé)_l/T. Note that the D-LM_.pr statistic is constructed using only the restricted
ML estimator 6. The directed LR statistic, D—LR.r, is defined analogously to D-W,r with
Wr replaced by LRy. (One also could replace B and (jl —jgf:; lfé)il /T by the expressions
above involving 6 without affecting the large sample properties of D-LR.p.) The test statistics
D-Wer, D-LM_r, and D—LR.1 have the same asymptotic distributions under the null hypothesis
and under local alternatives. In consequence, the directed LM and directed LR tests reject Hg
if D-LM.r and D-LR.r, respectively, exceed k,, where k, is the same critical value as for the
directed Wald test.

A GAUSS computer program is available from the author that calculates each of the above

test statistics plus asymptotic p—values and critical values.

4.8. Assumptions
In this section, we state high-level assumptions under which the asymptotic results hold.
Section 6 below gives one set of sufficient conditions for these high-level assumptions. All limits

below are taken “as T' — oo” unless stated otherwise. Let 6y denote the true value of 8 under
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the null Hy. We say that a statement holds “under 6y” (i.e., under the null hypothesis) if it
holds when the true density of yr is fr(6p) for T' = 1, 2, .... We introduce a sequence of local

alternatives to the null parameter vector 6y:
(4.5) Op = 0g+ h/VT for T >1,

where h € R®. Of greatest interest are cases where h is such that 8 € ©*, but the asymptotic
results given below do not require this. As stated in Section 2, the domain of the density functions
fr(0) is (at least) ©*UO, where O is some set that contains a neighborhood of #y. The parametric

model is assumed to be sufficiently regular that the following assumptions hold.

AssuMPTION NL1: (a) 0y is an interior point of ©.

(b) fr(0) is twice continuously partially differentiable in 6 for all § € ©g with probability one
under 0y, where ©g (C ©) is some neighborhood of 6y.

(c) =T~'D201(0) 2> T(0) uniformly over & € ©q under 6y for some non-random s X s matriz
function Z(6).

(d) Z(8) is uniformly continuous on O.

(e) T =1Z(0y) is positive definite.

ASSUMPTION NL2: T=Y2Der(07) - Z* ~ N(0, I) under {67 : T > 1}.
ASSUMPTION NL3: 8 -2 0 under 6p.

ASSUMPTION NL4: 6 -2 6y under 6.

ASSUMPTION NL5: For each d € A and b € B, Jgg > 0 such that Ve < gy we have d — Iglfébs
€A, where T = [% %} and I, C RP*P.

We comment now on Assumptions NL1-NL5. Assumptions NL1(a), (b), (d), and (e) are fairly
common ML regularity conditions.® Differentiability in 6 is assumed for simplicity at the expense

of some generality. As is well known, it is not needed for standard ML estimation results and

undoubtedly could be relaxed here with some increase in complexity.
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Assumption NL1(c) is a high-level assumption that requires a uniform weak law of large
numbers (WLLN) to hold (since —T~1D?{7() can be written as a normalized sum of random
variables by factoring the likelihood function using conditional distributions). The “uniformity”
in Assumption NL1(c) can be established, e.g., by using the generic uniform convergence results
of Andrews (1992). As stated, Assumption NL1(c) allows one to be relatively agnostic regarding
the temporal dependence and heterogeneity of the data. To verify NL1(c), one needs to be more
specific regarding these properties.

Assumption NL2 requires that the normalized score function satisfies a central limit theorem
(CLT) (since T='/2D0r (1) can be written as a normalized sum of random variables that are mean
zero under weak additional conditions). Assumptions NL3 and NL4 are not very restrictive. Given
primitive sufficient conditions for Assumption 1, one typically needs few additional conditions to
verify Assumptions NL3 and NL4.

Assumption NL5 is automatically satisfied if (1) the nuisance parameter space A is open or (2)
the information matrix is block diagonal between 3 and § (i.e., Zo = 0). In addition, Assumption

NL5 is satisfied in a variety of special cases.

4.4. Asymptotic Results
The asymptotic distributions of the directed test statistics under the local alternatives {6 :

T > 1} are given by

(1+¢)~P/2exp [%I%CZ'Z} @(B, = (L - 1223—125) 1y
% (0 -nI'n) ) for 0 < ¢ < oo

(4-6) £c(h) = —1/2 —1
7'7Z + 2log [cp (B, (11—121511§> 2y (Il—zgzglzg) >] for ¢ = 00,

~1/2 —1 11/2
d (L - Iﬂglzg) 2 [d’ (L - Igzglzg) d} for ¢ =0,

1/2
where Z ~ N ((Il - LI 'T) " Ip>, ho= (W, W) for by € RP, and T = (7} 72) for
7, € RP*P. Of course, the asymptotic distributions under the null are obtained by taking h; = 0.
Note that the asymptotic null distribution of the ¢ = 0 directed statistic, Lo(0), simplifies to the

N(0,1) distribution.
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Next, to state the optimality properties of the directed tests, we introduce some additional
notation. Let ¢p denote a test of Hy. The test ¢p is of asymptotic significance level « if
[ o1 fr(0o)dpr — a as T — oo for all Oy in the null hypothesis Ho, where [ o7 fr(6o)dpr denotes
the probability of rejecting Hg using @1 when 6 is true. Similarly, the power of ¢ against the
local alternative fr (6 + h/v/T) is denoted [ o7 fr(6o + h/v/T)dur.

Let {kpo : T > 1} be a sequence of critical values (possibly random, but with non-random
probability limit) such that the directed Wald, LM, or LR test has asymptotic significance level
a. Let £ denote a directed test, i.e., £ = L(D-Wer > kra), & = 1(D—LMer > kpg), or
v = W(D—LRyr > k) for 0 < ¢ < oo.

The primary asymptotic properties of the directed tests are given in the following theorem:

THEOREM 3: (a) Suppose Assumptions NL1-NL4, 2, and 5 hold. Then, under the local alter-
natives {07 : T > 1}, D-Wyp - Lo(h), D—LMup % Lo(h), and D—LRyp —% Lo(h) for all
0<cec< 0.

(b) Suppose Assumptions NL1-NL5, 2, 4, and 5 hold. Then, for any sequence of asymptotically
level av tests {op : T > 1}, a sequence of asymptotically level a directed Wald (LM or LR) tests

{&r : T > 1} satisfies

T [1(8+h/VT € ©%) | [ orfr(bo +h/VT)dur| dQc(h)
< lim [ 1(60+h/VT € ©") [ &x fr(80 + h/VT)dpr | dQc(h)

for all0 < ¢ < co. (In addition, the limy_,. on the right-hand side in part (b) equals imr_..)

The proofs of Theorem 3 and Theorem 4 below are extensions of the proofs of Theorems 1 and 2
for the exact Gaussian regression case to the asymptotic nonlinear models case. The proofs are

given in Appendix B.

COMMENTS: 1. One can extend the scope of the results by taking a model parameterized by
v €I € R® with restrictions Hy : h(y) = 0, say, and transforming it into a model parameterized
by 0 = (8, ¢')' € ©* C R® with 8 = h(y). For example, if h(y) = (72 =71, 13 =72, 74 —73)", then

letting 3 = h(y) and B= {8 € R : 3; > 0 Vj < 3} yields a test against the ordered alternative
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Hy : 11 <92 <93 <94 (without a nonnegativity constraint).

2. The assumption that B is positively homogeneous (Assumption 5) can be restrictive in
some contexts. This assumption is not needed for the corresponding finite sample Gaussian linear
regression results given above. It can be circumvented in the case of nonlinear models if one
adopts a slightly different asymptotic framework than the usual one. In particular, suppose the
sample size of interest is T*. We embed the testing problem for sample size T™* in a sequence
of testing problems indexed by T > 1 as follows: One changes h/v/T and ©* to h/\/T*/T and

% = B\/T*/T x A, respectively, in the beginning of Section 4.2 and in (4.5) and B to B\/T*/T
n (4.4). For the sample size of interest T' equals T* and this has no effect on the definition of the
test statistics. What the changes do is create an asymptotic framework in which the restricted
alternative parameter space for 3, viz., B \/W , shrinks to zero at a suitable rate, yet equals the
parameter space of interest B when T' = T*. Assumption 5 can now be dropped and Assumption
2 can be changed to: “©* = ©% = B\/T*/T x A for B C RP and A C R4, where B has posi-
tive Lebesgue measure.” In (4.6), the set B remains as is—it is not changed to B/T*/T. With

the above changes, Theorem 3 holds with i /+/T and ©* changed to h+/T*/T and O respectively.

5. NONLINEAR MODELS: THE LIKELIHOOD RATIO TEST

In this section we consider the LR test for the hypotheses given in (2.1) for dynamic nonlinear
models. We show that the LR test is asymptotically admissible. In fact, we show that the LR test
is asymptotically best, in a weighted average power sense, against alternatives that are sufficiently
distant from the null hypothesis.

The LR test statistic LR is defined as in (3.1) with ¢(6) replaced by ¢7(0) (defined in Section
4.1) and with the RA ML estimator 6* (€ ©*) defined such that ¢7(6%) = supgcg« 7 (0) wp — 1.

We assume 0* satisfies:
ASSUMPTION NL6: 6* 2= 0y under 6.

Given the previous assumptions, this assumption is not restrictive. It can be verified in the same
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way as are Assumptions NL3 and NL4.

As in Section 3, we consider the case where ©* satisfies Assumptions 2, 5 (positive homogene-
ity), and 6 (no isolated rays in B) and the weight function is Q".

Let {k$ : T > 1} be a sequence of non-negative critical values (possibly random, but with non-
random probability limit) such that the LR test, Az = 1(LRy > k%), has asymptotic significance
level a. By definition, a sequence of tests {¢p : T > 1} is said to be asymptotically distinct from

the sequence of asymptotically level o LR tests {Ap : T > 1} if

(5.1) li_InEo(l — QOT)AT >0,

T—o0

where Fy denotes expectation under Hy.

Asymptotic admissibility of {Ag : T' > 1} is established in the following theorem.

THEOREM 4: (a) Suppose Assumptions NL1-NL4, NL6, 2, 5, and 6 hold. Then,
under the local alternatives {0y : T > 1}, LRy <, (max{supees,(p) §'Z, 0})2, where
Z ~ N((L —1225125)1/2 I, Ip>, and h = (K, WY, and Sy(B) = {€ € R” : |i¢] = 1 and
(A'TA)~/%¢ € B}.

(b) Suppose Assumptions NL1-NLG, 2, and 5-7 hold. Then, for any sequence of tests {or : T > 1}
that is asymptotically distinct from the sequence of asymptotically level a LR tests {Ap : T > 1},

there exists a constant ro < co such that for all r > rq

T [ 160+ /YT €0 | [ orfe(@+ h/VTdur | a@r (i
< Jim [1(60+ hNT € %) U A fr(fo + h/\/T)dMT] dQ"(h) .

COMMENT: The comments following Theorem 2 apply here too.

6. NONLINEAR MODELS: PRIMITIVE SUFFICIENT CONDITIONS

In this section, we provide primitive sufficient conditions for Assumptions NL1-NL4 of Section

4 and Assumption NL6 of Section 5 for nonlinear dynamic models. For simplicity, we consider
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strictly stationary m—th order Markov models. With some additional complexity in the assump-
tions, the results could be extended to allow for non-Markov models with non-stationary non-
trending random variables.

The sample of observations is given by {(S;, X¢) : ¢t < T}, where {S; : t < T} are endogenous

variables and {X; : ¢t < T} are weakly exogenous variables. Let

(6.1) {g:(0) : 0. € ©°UOY = {gu(Se|S1, orry Si_1; X1, . X3 0) : 0 € O*UO}Y

denote a parametric family of conditional densities (with respect to some measure A) of S; given
S1, -y St—1, X1, ..., X; evaluated at the random variables Sy, ..., S;, X1, ..., Xi, where ©* C R®

and © C R®. Let

(62) ht = ht(Xt|Sl, ceey Stfl; Xl, ceey thl)
denote the conditional density (with respect to some measure) of X; given Sy, ..., S¢_1, X1, -y X1
evaluated at the random variables Sy, ..., Si—1, X1, .., X¢. By the assumption of weak exogeneity,

h: does not depend on #. The log likelihood function ¢1() is given by £7(8) = Y1, log g¢()
+ 3L log hy.

We consider the case where {(S;, X;) : t > 1} is part of a doubly infinite strictly sta-
tionary ergodic sequence {(S;, X;) : t = ..., 0,1, ...} and {S; : ¢t = ..., 0,1, ...} is m—th or-
der Markov for some integer m > 0. In this case, the function Z(6) equals _Eag_gef log g:(0).
By definition, {S; : t = ..., 0, 1, ...} is m—th order Markov if the conditional distribution of
Sy given Fy_1 = (..., St—2, St—1; ..., X¢—1, X¢} equals the conditional distribution of S; given
Stm = (St—m, -, Se—1) and Xy = (X4, ..., Xy) for all t. The Markov assumption yields the
simplification that the summands log ¢g;(6) in the log-likelihood function are strictly stationary
and ergodic for ¢t > m. Without the Markov assumption this would not be the case, because the
number of relevant observed variables in the conditioning set would vary with t.

The following assumption is sufficient for Assumptions NL1-NL4 and NLG6:

ASSUMPTION A: (a) © is compact and 0y lies in the interior of ©.

(b) {(Sy, Xy) : t = ..., 0,1, ...} is strictly stationary and ergodic and {Sy : t = ..., 0,1, ...} is
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m~th order Markov under 6 for each 6 € ©.

(c) g:(0) is continuous in 0 on © and twice continuously partially differentiable in 6 on ©g with
probability one under 6y, where ©q is some compact set that contains a neighborhood of 6.

(d) g¢(0) # gi(6p) with positive probability under 8y V60 € © with 6 # 6.

2
(e) E supgeg |log gi(0)| < 00, E suppeq, ||Z510g gt(Q)H < oo, EH%log gt(QO)H < oo, and

2
E supyee, %loggt(e)” < 00.

() = —E%{;Q, log ¢:(6p) is positive definite.

(The expectations in parts (e) and (f) are taken under 6y.)
Assumption A constitutes a fairly standard set of ML regularity conditions for stationary and
ergodic situations. Note that Assumption A imposes stationarity on {(S¢, X¢) : ¢ > 1} under 6

for each fixed € in O, but does not place such restrictions on sequences of local alternatives.
LEMMA A: Assumption A implies Assumptions NL1-NL4 and NL6.

The proof of Lemma A is given in Appendix B.

7. MONTE CARLO POWER COMPARISONS

In this section, we compare the power of several tests of hypotheses of the form (2.1) by Monte

Carlo simulation.

7.1. Ezxperimental Design
The model we consider is a p—variate normal location model with unknown mean 6 and known

covariance matrix 2:

(7.1) Y ~ N(B, Q) .

The data consist of a single realization of Y € RP. The null and alternative hypotheses of interest
are as in (2.1). Results for model (7.1) are more general than they might appear at first glance.

First, a normal linear regression model (with known variance) can be written in the form of (7.1).
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Second, the asymptotic local power of tests in a wide variety of nonlinear models equals their
exact power in model (7.1).

To illustrate the first point, consider the linear regression model: y = X3 4+ G6 + U,
U ~ N(0,0%I,), where ¢ is known. Premultiplication of the regression model by
(X'McX)™1X'Mg, yields a model of the form (7.1) with ¥V = (X'MgX)~'X'Mgy and
Q=0?(X'MgX) L.

To establish the second point, one sets Q) = (Il - Igl'glfé)il/T and 8 = hy/v/T. Then, the
exact power of the directed tests and LR test for the multivariate normal location model equal
their asymptotic local power given in Theorems 3 and 4 for nonlinear models.*

We consider four different choices for the parameter space B:

Br ={peR®:m>0, up >0}, where p = (p1, p2)’
(72)32:{,“632 1 >0, pg € R}, where = (1, pi2)'
BS = {:u € R6 B ] 2 07 vj S 6} ’ where n= (/’le ES) :U“G)/ ) and

By ={p€R:p;j>0,Vj<3, pj € R, V4<j <6}, where p= (p, ..., ) -
Parameter spaces B and Bj correspond to multivariate one-sided hypotheses. Parameter spaces
B> and By correspond to mixed one- and two-sided hypotheses. For parameter spaces By and Bo,

we consider three different covariance matrices:

(7.3) Q; = Lo for j=1,2,3, where py =0, pa=.6, and p3=—.6.

pi 1
Note that the correlation p; in (7.3) corresponds to the correlation between the least squares
estimators of different regression coefficients in the linear regression model. Clearly, in applications
this correlation often ranges from —1 to 1. Thus, there is no a priori reason to give greater weight

to the results corresponding to p; equal to zero, or to p; positive, than to p; negative.

For parameter spaces B3 and By, we consider the single covariance matrix
(7.4) Q=1 .

Note that for the parameter space Bi1, the models and hypotheses above are the same as those

considered by Goldberger (1992).
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The parameter spaces By — By of (7.2) are invariant under multiplication by positive definite
diagonal matrices. In consequence, there is no loss in generality in (7.3) and (7.4) by taking the
diagonal elements of €2; to be equal to unity—if {2 has non-unit diagonal elements, premultipli-
cation of (7.1) by Diag!/2() yields a data vector with unit variances and leaves the hypotheses
unchanged.

We now introduce the test statistics that will be considered: First, we define the directed test
statistics in the context of model (7.1). The Wald, LM, and LR versions of these statistics are
numerically identical for model (7.1). In consequence, it suffices to consider the directed Wald
statistics. By definition,

d'Y/(d'Qd)*/? for c =0
(7.5) D-W.= (1+¢)P %exp (%ILJFCY’Q_IY) o (B, =Y, ﬁﬂ) for 0 < c< o0

Y'Q7Y + 2log[®(B,Y, Q)] for ¢ =00 .
Note that for Bj, Bs, Bs, and By, d is proportional to (1,1)’; (1,0)', (1,1,1,1,1,1), and
(1,1,1,0,0,0)" respectively (and its length is irrelevant).

Below we report results for ¢ = 0, 1, co. Results for ¢ = 1/3 and ¢ = 3 also are discussed,
but are not tabulated for brevity.

The power of the test based on D-W; can be calculated exactly and, hence, need not be
simulated. For a test of significance level o and true parameter value [, its power is given by
1—,(07 (1—a) — d'B/(d'Qd)*/?), where ®,(-) and ®;(-) are the normal and inverse normal
distribution functions respectively. For ¢ > 0, critical values and power of the D-W, test are
calculated by simulation. The multivariate normal probability ®(B, -, -) that appears in the ex-
pression for D-W, is calculated by numerical integration since it reduces to univariate or bivariate
normal probabilities in the cases considered here.

Second, we define the LR statistic for the model (7.1):

(7.6) LR=Y'Q Yy - 5161% Y-8)Q Y Yy-3) .

Algebraic manipulations yield the following expressions for LR for the parameter spaces By — By:
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LR = Y'Q'Y1(Y1 >0, Y2 >0) = Y?1(Y] <0, Y2 > p;V7)

— Y221(Y2 <0, Y1 >p;Y1) when B=B; and Q= ,

(7.7) LR = Y'Q7'Y = Y?1(Y; <0) when B=B; and Q= ,
6
LR = > Y L(Y; > 0) when B = B3 and Q= , and
i=1
3 6
LR = > Y2L(Y; >0)+ > Y7 when B=DBy and Q=0 .
i=1 =4

For convenience, critical values and power of the LR test are computed by simulation.
Third, we define the “two-sided Wald” (25—W) test. This is the Wald (Lagrange multiplier,

and likelihood ratio) test of Hy : 3 =0 versus H; : 3 # 0. By definition:
(7.8) 25-W =Y'Q71Y .

Results for the 25—-W test are included to quantify the magnitude of the power gains that occur
when the information that 8 € B is exploited in the definition of the test. The D-W, and LR
tests exploit this information, whereas the 25-W test does not.

The power of the 25-W test can be calculated exactly. For significance level o and true
parameter (3, it equals 1 — Xp(xljl(l—a), B'Q13), where x,(y, A) is the noncentral chi-squared
distribution function with p degrees of freedom and noncentrality parameter A evaluated at y and
X ' (+) is the inverse of the central chi-squared distribution function with p degrees of freedom.

Fourth, we define test statistics that map out the envelope power function. For a given
alternative parameter vector 3;, the Neyman—Pearson Lemma implies that the envelope power
is given by the power of the likelihood ratio test of Hyg : 8 = 0 versus H; : 3 = (1. This test

statistic, denoted ENV (/31), is defined by
(7.9) ENV (1) = Bi71Y/(B1971 62 .

Clearly, ENV (1) depends only on the direction of 3; from the origin and not on its distance

from the origin. Results for the envelope power function are included to quantify the magnitude
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of the power losses that occur for the D-W,, LR, and 25-W tests due to the lack of knowledge
of the direction of the true parameter value from the origin.

The power envelope can be calculated exactly. For a test of significance level « and true
parameter value 3y, it equals 1 — @, (&7 (1—a) — (B,Q7161)1/?).

The alternative parameter values for which the power of the above tests are computed are
as follows: For Bj, (3 is taken proportional to (1,0)" and (1,1)’; for Bs, [ is taken proportional
to (0,1), (1,1)', and (1,0)'; for Bs, (8 is taken proportional to (1,1, ..., 1), (1,1,1,0,0,0)’, and
(1,0, ..., 0); and for By, 8 is taken proportional to (1,1, ..., 1)’; (1,1,1,0,0,0)", (1,0,0, ..., 0)’,
(0,0,0,1,1,1), (0,0, ..., 0,1)’, and (1,0,0, ..., 0,1)". For each direction of 3, four distances from the
origin are considered. These distances are chosen so that the LR test has powers .3, .5, .7, and
.9. These choices ensure the chosen distances are reasonable and provide for easy comparisons
between the D-W, and LR tests.

We note that the power functions of the tests considered here display certain symmetries,
which increase the generality of the results provided below. For parameter spaces B; and Bj,
power is invariant under permutations of the elements of 3. For Bs, power is invariant under
changes in sign of the second element of 3. For By, power is invariant under permutations of the
first three elements of (3, permutations of the last three elements of 3, and changes in sign of the
last three elements of 3.

Thirty thousand repetitions are used in the simulation of the critical values and power of the
D-W, and LR tests for 0 < ¢ < co. All calculations were carried out using the GAUSS computer

program on a 486-66MHz PC.

7.2. Simulation Results

Table IT gives the power of the D-W,, LR, and 25-W tests and the envelope power function for
the parameter space By = Ri for all eight values of 3 and all three values of p;. The first feature
of the table to notice is that the relative powers of the tests are not sensitive to the distance of

the alternative from the null (at least within the range considered). In consequence, the average
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power of each test over the four distances considered summarizes the results well. These averages
are given in the fifth column of numbers in the table. This insensitivity is quite interesting given
the theoretical derivation of the D-Wy, D-W7;, D-W,, and LR tests as tests that are better for
alternatives that are progressively more distant from the null.

The relative powers of the D-W, and LR tests vary much more with the direction of departure
from the null and the value of the correlation coefficient than with the distance from the null.
Table IT provides six different direction/p; combinations. The average power results for these six
cases show that the D-Wy, test is best overall. It is best in three of the six cases, is within .02
of the best in five of the six cases, and is within .04 of the best in all cases. The test D-Wj is
a close second in overall performance. The LR and D-Wj tests both suffer from poor relative
performances in two or more cases. This is especially true of the D-W test, which does very well
in the middle of By (i.e., 8  (1,1)")—in fact, it attains the envelope power there—but sacrifices
considerable power at the boundaries of Bj.

Table IIT presents power results for the parameter space By = R, x R. In this case too,
the relative powers of the tests are insensitive to the distance of the alternative from the null.
In consequence, for brevity, we do not report the results for all distances, but rather, just give
averages of the powers over the four distances that yield the LR test to have powers .3, .5, .7, and
.9. Thus, the results of Table III are analogous to those of column five of Table II. Analogous
average power summary statistics are given in Tables IV and V (discussed below) for the same
reasons.

The results of Table III cover three different directions of the alternative from the null and
three different values of the correlation p;. Note that the direction (1,0) is in the middle of By,
direction (0,1) is on the boundary of Bs, and direction (1,1) is between the two. Several features
of Table IIT are worthy of note. First, the results for D-W,, LR, 25-W, and the envelope power
function (the last four rows of the table) are insensitive to the value of p;. In fact, D-Wj is the
only test that shows significant sensitivity to p;. This makes the comparison of the tests much

simpler. Second, the D-W} test has disastrous power along the edge of Bs—its power equals
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its size for direction (0,1) for all distances from the null and for all p;. Third, the D-W test
almost dominates the D-W7 test. Thus, the D-W,, and LR tests are the best overall tests with
the D-Wy, test being preferable unless one places great weight on performances at or near the
boundary of By. The D-Wj test is not to be recommended as an omnibus test.

Table TV presents results for the high dimensional one-sided parameter space Bs = R§r with
the single covariance matrix 04 = Ig. In this case, D-W7 and D-W, are the best tests overall.
They both dominate LR and almost dominate D-Wj. They perform very much better than 25-W
and are at or near (within .02 of) the power envelope in the middle of the parameter space.

Table V presents results for the high dimensional mixed one- and two-sided parameter space
By = Ri x R3. As with parameter space Bs, the test D-Wj has very poor overall power properties,
since its power equals its size for the fourth and fifth directions, which lie on the boundary of Bj.
The D-W7 and D-W tests have similar power, although D-W,, is somewhat better due to its
performance for the fourth and fifth directions. The comparison between D-W, and LR is much
the same as with the low dimensional mixed one- and two-sided parameter space By. That is,
D—W typically does better for alternatives that are in the middle of the parameter space, but
worse for alternatives that are on the boundary.

The poor performance of D-Wj for alternatives on the boundary of the parameter spaces Bs
and By may seem puzzling. This test is the limiting test of a sequence of tests that maximize
weighted average power where the weight functions place increasingly great weight on alternatives
close to the null. The explanation of the puzzle seems to be that for alternatives very close to the
null, all tests have power almost equal to size in all directions, so the drawback of the D-W test
in certain directions is a relatively minor one that can be compensated for by high power in other
directions. As soon as one considers alternatives that are not very close to the null, the deficiency
of the D-Wj test in certain directions is glaring and cannot be compensated for by high power
in other directions.

For brevity, Tables I1I-V report results for only three values of ¢, viz., 0, 1, and co. Power

calculations for ¢ equal 1/3 and 3 also were carried out. The results for these tests lie between
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those of the ¢ = 0, 1, and oo tests. In particular, the monotonicity of power as a function of c,
which is evident in the tables, also holds when the results for ¢ = 1/3 and ¢ = 3 are added. For
those cases where D-W) has power equal to size, the power of D-W 3 is very much closer to that
of D-W1; than D-Wj. Overall, for those cases where D-W, does not have power equal to size,
the power of the D-W, tests is not very sensitive to the choice of ¢. For those cases where D-Wj
has size equal to power, there is a substantial difference between D-W and D-W., for ¢ > 0 and
larger values of ¢ are preferable.

For a summary of the simulation results, see the Introduction.
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APPENDIX A

This Appendix provides proofs of Theorems 1 and 2.

The proof of Theorem 1(a) uses the following Lemmas. Let

(A1) TR(6o) = exp [10'70| / 1(0p +h € ©) exp [~ (@ — hYZ(0 - h)| dQc(h) /K ,

where 0 = § — y and @ is the (unrestricted) LS estimator of 6 (i.e., 8 = (02Z)1[X : Z]'Y).
LEMMA 1: Under Assumption 1, LR(6y) = LR(6p).

LEMMA 2: The projection matriz P+ onto the orthogonal complement V+ of V with respect to

<, - > is given by P+ = AH, where A= [I, : —TZ3 ' and H = [I, : 0] € RP*®,

PrROOF OF THEOREM 1: First we establish part (a). By Lemma 1, it suffices to show that
LR(#y) = D-W,./K. To do so, let A\ ~ N(0, ¢c(A’TA)™!) and h = AX. Then, h ~ Q.

= N(0, cA(A'TA) 1 A’) as desired. The statistic LR(p) can be written as

g TR0 = Jym) 7 AT
X exp (% 070 — (6 — ANT(0 — A)) — XA’IA)\/cD AN/ K
since g +h € ©* iff A\e {be RP : Oh+Abc ©*} ={be RP : (60_1-(3)—11-éb> € Bx A} = B, where
the second equality holds under Assumption 3.
Let P and P+ denote the projection matrices with respect to (-, -) onto V and V+ respectively.

The term in square brackets in the exponent on the rhs of (A.2), with A\ replaced by h for

simplicity, now simplifies as follows:

(43 670 — (0 — h)Y'Z(0 — h) — W'Ih/c
= =(PYOYIPIO— (h— PUOE) T2 (h— P1O)

using the fact that (P)'Zh =0 Yh € V*.
By Lemma 2, P10 = AHO = AB. In addition, ATA = T; — ToI, ' T, = X'MgX/o?. Thus,

the rhs of (A.3) equals

A PV~ (A= o) HEOMX o) (- i)
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Combining (A.2), (A.3), and (A.4) gives the desired result LR(6y) = D-W./K.
Part (b) holds because 3 = (X'MgX) X' MqU ~ N(0, (X'MgX) t0?) under Hy, where
U= (U, ..., Up).

Part (c) holds by (2.7), the Neyman—Pearson Lemma, and Theorem 1(a). O

PrOOF OF LEMMA 1: Let ¢(0) = log f(Y, 0) and D{(0) = %5(9). Simple algebra yields D¢(6y)

=(U'X,U'Z) and § = Z-'D{(0y). We can write
(A.5) LR(6y) = /1(90 +h € O%)exp(l(6p + h) — £(6p))dQ.(h)/K .
Let h = (hy, hy)" for hy € RP and hy € RY. The integrand of (A.5) simplifies as follows:

(0o + h) — £(6p)
" = — b [T (V= X{h1 = Gi(60 + h2))? — ST (¥; - Gio)?]
= — ok [-25F (Vi = Gloo)(Xfh + Giha) + BT (X{h1 + Giha)?]

202

— DU6o)h — W Th=0Th—WTh=10T0— 1@ - hyT@—h) .

Combining (A.5) and (A.6) gives the desired result LR(6y) = LR(6p). O

PROOF OF LEMMA 2: It suffices to show that (1) AHd = 0Vd € V and (2) AHm =m V¥Ym € V*.
To show (1), note that d € V iff d = (0/, d})’ for some dy € RI. Thus, AHd = A[l, : 0] (;2) = 0.
To show (2), note that m € V- iff Zm = 0 ¥d € V iff [0} I]Tm = 0 iff [Z} : To] = (1m1) =0,

where m = (m}, mb)', iff my = —Igll'éml for m; € RP and my € R?. Thus, for m € V*,

_ I, 0
AHm = {—I?,_llé 0

m1 _ m1 _ .
[_13_1%7”1} = |:_1—3—11—ém1:| =m, as desired. O

The proof of Theorem 2 parts (a) and (b) follows from the following Lemmas 3-6. The proof

of Theorem 2 part (c) is given below. It utilizes Lemmas 3-7.
LEMMA 3: Under Assumptions 1-3 and 5, LR = ¥ A'TAB*.

LEMMA 4: Under Assumptions1, 2,5, and7, LR(6y, Q") = fsp(B) eXp[—r2/2—|—7’§'(X’MgX/(72)1/23}

dU(§)/K.
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LEMMA 5: Under Assumptions 2, 5, and 6,

lim sup

%log/ exp(ré&’\)dU(§)/K — sup &N =0.
=% XeRr:||)\||=1 Sp(B)

£€Sp(B)

LEMMA 6: Under Assumptions 1, 2, and 5, max{supecs, (p) f’(A’IA)l/QB,O} = (BYATAB*)Y2,

LEMMA 7: Let ¢ be a test of Hy. Under Assumptions 1-3 and 5, if Eg(1—¢)1(LR > kq) > 0,

then 3y >0, € >0, and 6§ > 0 such that
Eo(1—0)1(LR > ko + 27, € < (X' MgX /o) V25| <e 1) > 6,
where Ey denotes expectation under the null density f(y, 6p).

Proor orF LEMMA 3: The likelihood function ¢() equals

o) = C—(0—06)Z(6-0)
(A.7) = C — (P16 — PLo)T(P+0 — PLO) — (PO — POYL(PH — Pb)
= C—(B—BYATA(B - p) — (P — PO)T(Pf— PY) ,

where C is a constant, P+ and P are as in the proof of Theorem 1, and the third equality uses
Lemma 2. By Assumption 3, the imposition of the null hypothesis does not restrict the parameter
space of PO = 0 — AHO = (0, §' — BT,Z;"')". Thus, PO* = P6. In addition, P10 = 3 = 0 by

definition. Hence,
(A8) LR = ATAG— (B~ ) ATAB - 5*) = 57 ATA"

where the second equality uses the orthogonality condition (B* —B)ATAB* = 0, which holds
because (3* minimizes (3—6)’ A IA(B—B) over the positively homogeneous set B (e.g., see Perlman

(1969, Lemma 4.1(i))). O

PROOF OF LEMMA 4: By Lemma 1, LR(6y, Q") equals LR(6p) defined in (A.1) with Q. replaced

by Q". The log of the integrand of (A.1) (including the term exp (%§,Ig>) can be rewritten as

(A.9) 3076 — 1(h—0YZ(h—0) = 3(P+0)TP+0 — L(h — PL0)I(h — P10) ,
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using the fact that WZP = 0 Yh € V. Also, P = AHO = AB using Lemma 2. Let
A= (ATA)Y25. Let h = rA(A'TA)~1/2¢, where ¢ is a random p—vector with uniform distribution
on the unit sphere. Then, h ~ Q" and
LR(6, Q") = / 1(6g + h € ©%) exp [%B’A’IAB - %(h—AB)'I(h—AB)} dQ"(h) /K
(A.10) = [ e [P - 06N e -] v/
P

— / exp [~3r% +r&\[ dU(¢)/K . O
5,(B)

ProOF OF LEMMA 5: The supremum over A in Lemma 5 is attained for each r. Hence, it suffices

to show: For some A, with ||\.|| =1,
(A.11) lim [% log/ exp(ré A\ )dU(§)/K — sup &N | =0.
e Sp(B) £ESp(N)

By replacing £'A, with supg, ¢ 5 () §iAr, it is easy to see that the ¢hs of (A.11) is less than or equal
to zero. To show the reverse inequality, let € > 0 be given and choose a subset of S,(B) for each
7, say Ey, for which &'\ > supe s, (5) A — € V€ € Er and [z dU(§) > ¢ for some 6 > 0. Such
sets exist by Assumption 6, since the latter is equivalent to: Ve > 0, infees (p) [ 1([[€ — &l < e,

&« € Sp(B))dU (&«) > 0. The ¢hs of (A.11) is greater than or equal to

(A.12) lim

bog [ exp(rl swp €A — DU — sup €| = <.

E, £.€5,(B) £€S,(B)

Since € > 0 is arbitrary, the ¢hs of (A.12) is > 0. O

PROOF OF LEMMA 6: Let S denote the closure of a set S. Any 8 € B can be written as
B = c(A'TA)~1/2%¢ for some & € Sp(B) and ¢ > 0. In particular, there exists ¢* > 0 and
¢ € 5,(B) such that B* = c*(A'TA)"Y/2¢*. Note that BYA'TAB* = (c*)?. By (A.7), B*

minimizes (3 - ﬁ)’A'IA(B — ) over 3 € B. The latter holds if and only if (c*, £*) minimizes
(A.13) BATAB — 26" (ATAY2B+ 2 over (c, €) € [0, 00) x Sp(B) .
To solve (A.13), we first maximize & (A'ZA)Y23 over ¢ € Sp(B) and then minimize

(A.14) —2¢ sup E(ATAY? G+ over ¢>0.
£€Sp(B)
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If supges, () §’(A’IA)1/QB > 0, then we obtain ¢* = supges, () §’(A’IA)1/23. Combining this
with the above expression for (c*)? gives SUPgcs, (B) g’(A’IA)l/QB = (ﬁ*’A'IAﬁ*)l/Q. If

SUPges, (B) g’(A’IA)1/2B < 0, we obtain ¢* =0, * =0, and (8 A'TAF*)/2=0. O

PROOF OF THEOREM 2(c): Let E, and P, denote expectations and probabilities, respectively,
under the density [1(6p + h € ©*) f(y, 6o + h)dQ"(h)/K for r > 0 (where for r = 0 the density

is f(y, 6p)). It suffices to show that

(A.15) E,(1—¢)/P.(LR < ko) — 00 as 17— 00 .
Below we show that

(A.16) P(LR < kq) < exp(—r2/2+rkl/?) ¥r>0.

We also show that for v > 0 and 6 > 0 as in Lemma 7
(A.17) Er(1—¢) > § exp(—12/2 + (kg +7)/?)

for r sufficiently large. Equation (A.15) follows immediately from (A.16) and (A.17).

We now establish (A.16). Let 3 = (X’]\/ng/O'2)1/2 3. We have

P(LR < kq) = EoLR(6, Q")1(LR < kq)

= exp(—r/2)Ey | exp(r¢/BAU(©1(LR < ha)/K
Sp(B)

P

exp(—r2/2)E0 exp(r sup E’E)l(ﬁR < kq)
£€Sp(B)

exp(—1?/2) Eg exp (r(ﬁR)1/2> (LR < kqy)

(A.18)

IN

IN

IN

exp(—r2/2 + Tk‘é/Q) ,

where the second equality holds by Lemma 4 and the second inequality holds by Lemmas 3 and

6.
Next, we establish (A.17). Let 7, ¢, and 6 be as in Lemma 7. Let 3, = 3/|3]|. We have
E,(1—) = Eo(1—¢)LR(6o, Q)LLR > ko + 27, ¢ < |5 <=1
(A.19)

= e(-rt/2)Eo(1-0)[ || exprIBIEB)UEULR > kat2y, e < 3] <7)/K),

P
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where the equality uses Lemma 4. Now, we use Lemma 5 to establish a lower bound on the term in
square brackets on the right-hand side of (A.19). For A such that [|A[| = 1 and supecg, () §'A > 0,
define ¢(r, A) to satisfy
(A.20) / exp(r&’\)dU(€)/K = exp(rc(r, A) sup &'N) .

Sp(B) £€Sp(B)

By Lemma 5, V( > 0,

(A.21) lim sup{|c(r, \) = 1] : [N =1, sup &AX>(}=0.
T—00 €€SP(B)
In consequence, 3r, < oo such that Vr > r, and VA with [[A| = 1 and supecs, (p)&'A

> (ko + 27)Y%, we have c(r, \) > ((ka + 7)/(ka + 27))/2.  Then, since SUPgcs, (B) €',

= (ER)I/Q/HBH, we obtain: Vr > r, /e,

cr§,§1£R>ka+2,6§ ?Se_l
(4.22) (rlisll, B1)1( v 18]l ) .
> ((ka +7)/(ka +29) 2LLR > ka + 2y, e < |8 < 7).

By (A.20) and the substitution of (A.22) into (A.19), we get: Vr >, /e,

X LR >kq+27,e<||B] <eh)

(A.23)

AV

exp(—12/2) Eo(1=) exp (r((ka +7)/ (ko + 27)) 2 (LR)?)
X 1(LR > ka + 27,2 < |l < &)

> Sexp(—r?/2 + (ko +7)Y?) |
where the last inequality uses Lemma 7. O

ProoF OF LEMMA 7: The lemma follows from absolute continuity with respect to Lebesgue
measure of ||(X'MgX/o2)/25|| and of LR on (0, co), where the latter follows from the expression

LRY? = max{supecs, (p) ¢(ATAY2E 0} O
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APPENDIX B

This Appendix provides proofs of Theorems 3 and 4 and Lemma A.

For notational simplicity, we suppress the subscript ¢ on ). in the proofs below.

The proof of Theorem 3 is similar to that of Theorems 1 and 2 of Andrews and Ploberger
(1994). The idea of the proof is to show that the directed Wald, LM, and LR test statistics are
asymptotically equivalent, under the null and local alternatives, to the Neyman—Pearson likelihood

ratio ¢rq(0p), defined below. The proof uses the following definitions, lemmas, and theorems: Let

Oro() = [ / (80 + h/NT € ©%) fr (60 + h/NT)AQ(h) /K

/ fr(6o)and
B.1) o= / 160+ h/V/T € ©°) exp 5620 — (8 — h)'T(8 — )| dQ(h) /K , where

K= /1(90 + h/NT € ©9)dQ(h) = /1(>\ € B)AN()), 8 = I~} Der(60) VT

and N(-) denotes a N (0, c(A’ZA)~!) distribution function. Note that r.(6p) is the Neyman—
Pearson likelihood ratio statistic for testing the simple null hypothesis that Y7 ~ fr(6p) against

the simple alternative that Y7 ~ [1(8g + h/vVT € 0*) fr(6o + h/VT)dQ(h)/K.

LEMMA B—1: Under the null hypothesis and Assumptions NL1-NL3, \/T(g— 0o) —0 - 0.

LEMMA B-2: Under the null hypothesis and Assumptions NL1-NL3, lr.(fy) — fro —— 0

V0 < ¢ < oo.

LEMMA B-3: The projection matriz P+ onto the orthogonal complement V+ of V with respect

to (-, -z is given by P+ = AH, where A= [I, * —TyI3 '] and H = [I, : 0] € RP**.

LEMMA B-4: Under Assumptions NL1 and NL2, the densities {fr(6p + h/vT) : T > 1} are

contiguous to the densities { fr(6p) : T > 1} for all h € R*.

The proofs of Lemmas B-1 to B-3 are analogous to those of Lemmas A-1 to A-3 of Andrews and

Ploberger (1994). For brevity, they are not given here. The proof of Lemma B—4 is given below.
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For 0 < ¢ < 00, define

1 —

r = (HOY (HI~*H') ' HP ,

— - — —1
W e = (1+¢) P2 exp (%I%CWT)cp(B, = BNVT, 1 (T - 2T ') /T) ,

SIS

—_ —_ — -1
D-W ooy = W +2log {cp <B, B/VT, <11 - Igzglzg) /T)] . and

_ _ —1\ /2 1
D-Wp = d'B/ <d’ (11 - Igzglzg) d> . where d = %@(B, 0, (Il - Iﬂglzg) /T> .

(B.2)

THEOREM B—1: Under the local alternatives {0p : T > 1} and Assumptions NL1-NL4, 2, and 5,
for all 0 < ¢ < 0o, we have

(a) lre(6g) — fr, 250, (b) lre x K = D-W r provided Assumption NL5 also holds, (¢c) D-W . —
D-W.p 20, (d) D-W,p — D—-LM,y - 0, and (e) D—LM,p — D—LR.p -2 0. In addition,

parts (c), (d), and (e) hold for ¢ =0 and ¢ = oco.
The proof of Theorem N-1 is given below.
PROOF OF THEOREM 3(a): By the positive homogeneity of B (Assumption 5),
c 7 c 1\ ! c A _c 1\ !
(B3) @ B, mﬁ/ﬁ, 1—+c (Il —1-21-3 1-2) /T - @ B, 1—+c 5 1—+c (Il —IQIS 1-2) .

Theorem 3(a) now follows for all 0 < ¢ < oo from the combination of (i) Theorem B-1 parts
(c)—(e), (ii) @ N N(h, Z71) under {67 : T > 1}, (iii) the continuity of D—Wr as a function of

# and Z, and (iv) the continuous mapping theorem. Condition (ii) holds because
6 = I7'Der(6y)/VT
(B.4) = I'Dlp(07)/NT + (T D1 (67)/]VT)(—h/VT)
4 N(h, TV under {67 : T > 1},
where the second equality holds by element-by-element mean value expansions, O lies between

0o and 07, —D%p(07)/T - T under 6y and under {#7 : T > 1} using Assumption NL1 and

contiguity, and the convergence in distribution uses Assumption NL2. O

ProOOF OF LEMMA B—4: We make use of the following result, which follows, e.g., from Thms. 16.8
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and 18.1 of Strasser (1985): If (i) fr(67r)/ fr(6o) —4, X under 6 for some random variable X and
(ii) EX =1, then the densities { f7(6p) : T > 1} are contiguous to the densities { f7(6p) : T > 1}.

To obtain condition (i), we do a two-term Taylor expansion of ¢7(67) about 6p:

fr(0r)/fr(fo) = exp(lr(07) — lr(60))
(B.5) = exp (T*l/QDeT(eo)'h + %h’DQZT(éT)h)

4, exp (Z*'h — %h’Ih) under 6,

where 67 lies between 67 and 6y, Z* ~ N (0, Z), and the convergence in distribution uses As-
sumptions NL1 and NL2.
Condition (ii) holds because Eexp(Z*h) = exp(3h'Th) using the formula for the moment

generating function of a normal random variable. O

PrROOF OF THEOREM B-1: By contiguity (Lemma B-4), it suffices to show that the Theorem
holds under the null. In consequence, all probabilistic statements in this proof are made “under
6o.” Part (a) holds by Lemma B-2. Next, consider part (b). Let A\ ~ N (0, c(A'ZA)~!) and
h = AX\. Then, h ~ Q@ = N (0, cA(A'ZTA)~'A’) as desired. Note that 1(y+AN/VT € ©*)

= 1(\/V/T € B) by Assumption NL5. Thus, we have

Or, = (2m)7P/2 detY2(A'TA/c)
(B.6)

x / L\/VT € B) exp(3[0'78 — (AN—8)T(AN—0) — (ANYZAN/d]) A/ .

where det(-) denotes the determinant operator.
Let P and P+ denote the projection matrices with respect to (-, -) onto V and V+ respectively.
Using some algebra, the term in square brackets in (B.6), with A\ replaced by h for simplicity,

can be shown to simplify as follows:

B 676 — (h—0)YZ(h—8) — WIh/c
= (PYOYIPHO — [h - PHos] T - PO

using the fact that I/ =0Vh € VL, L€ V.
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Combining (B.6) and (B.7) yields

Trex K = (L+e) 2 exp [4 1 (PHOYTP E] /1 (VT € B)(2r)7/?

—1]An- Pielic} T [AN - PLog]

e || dA

(B.8) :
— (1+0) P2 exp [} 15 5)/A/IAH9] (B, £ HO/VT, 15 (ATA) T

— (o) exp [} ﬁWﬂ@(B’, < BNVT, (- T 'T) /T> ,

where the second equality uses P+ = AH (Lemma B-3) and a change of variables (\* = \/v/T)
-1

and the third equality uses (A'TA)™! = HI 'H' = (Il — IQIS_IIQ) . This completes the proof

of part (b).

Part (c) is established as follows. Since Hfy = 0,
(B.9) VTHO — HO =VT3 -3 -0
by Lemma B—-1. In addition,
(B.10) 1Zr(0) - Z|| < sup 1Zr(6) = Z(0)]| + 1Z(8) — Z|| = 0,(1) ,

where the inequality holds wp — 1 using Assumption NL3 and the equality holds by Assumptions
NL1(c), NL1(d), and NL3. Given Assumption NLI1(e), this establishes part (c) for all 0 < ¢ < oo.

For parts (d) and (e) with 0 < ¢ < oo, it suffices to show that

(i) Wp— LMy +50 and LMy — LRy == 0,
(i) VT8 — HI 'Dip(6)/VT 20,

(B.11) . .

(i) (7 -2L'%) - (L-BL'n) 50 and

SN T N |
(L. -2L'L) - (L-%L'h) 0.
Condition (iii) holds by (B.10) and Assumption NL1(e). Condition (i) is a standard result and
its proof is similar to proofs in the literature. For brevity, its proof is omitted. Condition (ii)

typically is established as part of the proof of condition (i). Again, for brevity, its proof is omitted.

O

We now turn to the proof of Theorem 3(b). First, we establish another contiguity result.
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LEMMA B-5: Under Assumptions NL1-NL3, NL5, 2, 4, and 5, the densities {[1(6o + h/\/T
€ %) fr(6p + h/VT)dQ(h)/K : T > 1} are contiguous to the densities {fr(6g) : T > 1} for all

0<e<oo.
Lemma B—5 and Theorem B—1 combine to give:

THEOREM B-2: Under the local alternative densities {[1(6g + h/vVT € ©*)fr(6o + h/VT)
dQ(h)/K : T > 1} and Assumptions NL1-NL5, 2, 4, and 5, for all 0 < ¢ < oo, we have
(a) lre(8g) — Ore 250, (b) Ore x K = D W, (¢) DWep — D-Wp -0, (d) D-Wep — D-LM,r

2,0, and (¢) D-LM.; — D—LR.+ -2 0.

Proor or THEOREM 3(b): Let ar be the rejection probability of ¢ under 6. Let &7, > 0 and
Ar € [0,1] be constants such that the likelihood ratio test yr = 1(¢re(6o) > k,.) +Ar1(¢re(6o)
= k},,.) has rejection probability ar under 6. Then, by the Neyman-Pearson Lemma (e.g., see

Lehmann (1959, Thm. 3.1, p. 65), for all T" > 1,

for | [ 160+ 1/VT € 0)fr(60 + 1 /VT)QUN/K | dyus

S/'VT

By Corollary 15.11 of Strasser (1985), the lim;_, ., on the rhs of the inequality in the statement

(B.12)
d#T .

/1(90 + WNT € 0% fr(Bo + h/NT)dQ(h) | K

of Theorem 3(b) is actually limz_,~, because Aq(E7, E) — 0 as T'— oo (in his notation) by the
proof of Lemma B-5 below.

This result, inequality (B.12), and Fubini’s Theorem yield

T [ 1060 +h/VT € ) [/ orfr (8o + h/ﬁ)d,@} dQ(h)/ K

IN

Jim [ | [ 160+ h/VT € 0)fr (00 + 1VTYIQN) /K | dur

(B.13) = lim / 1(re(60) > hra/K) [1(60 + h/VT € ©°) fr(6o + h/VT)dQ(h) /K| dpur

T—00

— lim / UD-Wer > kra) [1(00 + h/VT € ) fr(60 + h/VT)AQ(M) /K| dyur

T—00

= Jim / 1(6o + h/VT € %) [ / Eerfr(fo + h/x/ﬂdw] dQ(h)/K

where the first equality holds because /{:;T —kro/K L, 0and lr¢(0p) has an absolutely continuous

asymptotic distribution under [ 1(fy + h/v/T € ©*)dQ(h)/K, the second equality holds because
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tre(6o) = D-Wep/K 25 0 under [1(6p +h/VT € ©*) fr(8o +h/vVT)dQ(h)/K by Theorem B-2,
and the third inequality holds by Fubini’s Theorem. The proof is analogous for D-LM.r and

D-LR.r. O

PrROOF OF LEMMA B-5: As in the proof of Lemma B4, it suffices to show that (i) ¢r.(6p)
4, L./K under 0y and (ii) EL./K = 1. Condition (i) holds by Theorem B-1(a)-(c) and

-1
Theorem 3(a). Condition (ii) is obtained as follows: Let V = (Il —1oIs 1I§) . Then, we have

ELJK = (1+4c) P2 /Rp exp (3 ﬁZ’Z)/B(%r)_p/Qdet_l/Q(V)
x exp[— %(A ~ (V) 1/22>,v1 ()\ ~ (V) UQZ) ]dA
x (2m) P exp (= $2/2) dZ/K
= (14+¢) 7" /B (21) P12 det1/2(V) /R (om) P2
X exp (— Ulzz+ <Z - (5 V1/2>\>,

(o))

where the second equality uses Fubini’s theorem. Via some algebra, the expression in square

(B.14)

)dzd)\/K :

brackets in the exponent of the rhs of (B.14) equals

1/2 ! 1/2
(B.15) (Z— ()" V1/2)\> (Z— ()" v1/2>\> Y
Substituting this result in (B.14) gives

ELJK = (1+c)*p/2/B

= 0,(B, 0, (1+0)V)/K =1,

(B.16) (2m) P2 det™V2(V) exp (— 2 ﬁcXV*U\) d\/ K

where the first equality holds because the integral of a normal density equals one and the third

equality holds because K = [1(A € B)dN(X) = ©,(B, 0, cV) = ®,(B, 0, (14¢)V). O
The proof of Theorem 4 uses the following lemmas:
LEMMA B—6: Under Assumptions NL1-NL6, 2, and 5,
LRy —TBATAB; 50 under 6y,

where B is such that (B — 35) ATA(B — ;) = infgep(B—B) ATAB - B).
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LEMMA B-7: Under Assumptions NL1-NL3, NL5, 2, 5, and 7,

LR (00, Q7) — /S . exp(—12/2 + 1€ (ATA)V/TR)U(€) /K - 0 under 0y .

LEMMA B-8: Under Assumptions 2, 5, and 6,

lim sup
700 AcRe:||A|=1

%log/ exp(ré’\)dU(§)/K — sup &M =0.
Sp(B) £€Sp(B)

LEMMA B-9: Under Assumptions NL1, 2, and 5,

max{ sup &(A'TA)V?B,0}=(BYATAB)V? VT >1.
£eS,(B)

LEMMA B-10: Under Assumptions NL1-NL6, 2, and 5,

LRy - (max{ sup &'Z,0})* under 6y, where Z ~ N(0, I,) and
£€5p(B)

SUP¢es,(B) &'Z has absolutely continuous distribution.

LEMMA B-11: Under Assumptions NL1-NL3, NL5, 2, 5, and 7, the densities { [ 1(6g + h/\/T
€ 0%) fr(0o +h/VT)dQ" (h)/K : T > 1} are contiguous to the densities { fr(6o) : T > 1} for all

0<r<oo.

PrOOF OF THEOREM 4: Part (a) follows from Lemma B-10.

Next, we prove part (b). For simplicity we consider the case where k% equals a constant
ko > 0 VT > 1. For the case of random kS, we must have k% 2, ko, for some constant k, > 0
by Lemma B—-10 and the corresponding adjustments to the proof are minor. Throughout, let
B = VT(A'TA)/?B and LRS. = T3 ATAB.

To prove Theorem 4(b), it suffices to show that
(B.17) Tli_m E.(1- goT)/TE P.(LRyp <ky) — 00 as r— oo .
Below we show that

(B.18) lim P.(LRp < ko) < 2exp(—r2/2+rkY?) vr>0.

T—00
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We also show that for some v > 0 and 6 > 0,
(B.19) Jim B (1—r) > §exp(—r?/2 +7(ka +7)!/?)

for r sufficiently large. Equation (B.17) follows immediately from (B.18) and (B.19).

We now establish (B.18). Define the event D7, by

(B20)  Dj, = {exp<—r2/2> [ Ji . exp(re' B)AU(€)/K | /LRy (00, Q") € {1/2,21} -

By Lemmas B-7 and B-11, limp_,oo B-(D4,.) = 1 Vr > 0. In addition, LRy — LR L, 0 under
P, by Lemmas B-6 and B-11.

Using these results, we obtain: Vr > 0,

TE P (LR < kq)
= TE P (LR < ko, D},
= TE EoLRr(0p, Q") - 1(LRE < kg, D)

(B.21)

IA

2exp(—r2/2) im Eo | . exp(re B)dU (€)1(LRY. < ko) /K

P

IN

2 exp(—12/2) T@o Epexp(r £€SSUI()B)E/B)1(£R% < ko)
P

IN

2 exp(—r?/2) TE Eyexp (r(ﬁRqT)l/Q) 1(LRL < ky)

< 2exp(—r?/2 + 7‘1{:32) ,
where the third inequality holds by Lemma B-9. Note that the first equality of (B.21) actually
relies on the results above plus Lemmas B-10 and B-11.

Next, we establish (B.19). The fact that ¢ and Az are asymptotically distinct implies that

3y > 0 and € > 0 such that
(B.22) lim Eo(1—or)1(LRy > ka+ 27, e < |8 <e71) >68/2,

where ¢ = limg_, FEo(1—¢7r)1(LRy > kq). This follows because the left-hand sides of (B.22)

and (5.1) differ by less than

(B.23)  lim Py(LRy € (o, ko +27]) + lim Po(JIBl € [0,e) U (e, 00)) < 6/2 ,
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where the inequality holds for some small v > 0 and € > 0 by Lemma B-10 and the fact that
VT3 =HVT(0—0)=Hf 4, N(0, HI 'H') by Lemma B-1 and Assumption NL2.
Let

(B.24) Dpr = {LRY > ka+27, e < ||B| <1} N D5, .
By Lemmas B-6, B-7, and B-10 and (B.22), we obtain
Let 3, = 3/||3]|. We have

lim E,.(1-¢r) > %E0(1—¢T)LRT(907 Q")1(Drr)

—00

(B.26) I
> fexp(—r2/2) Jim Eo(1—pr) [ [ oy BB E) /5| 1(Dr)

P

Now, we use Lemma B-8 to establish a lower bound on the term in square brackets on the

right-hand side of (B.26). For A such that [|A| = 1 and supgcs, 5y §'A > 0, define (A, r) to satisfy

(B.27) / exp(ré \)dU () /K = exp(rc(r, X) sup &'N) .
Sp(B) £€Sp(B)

By Lemma B-8, V( > 0,

(B.28) lim sup{|c(r, \) = 1| : |A\|=1, sup &A>(}=0.
e £eSp(B)
In consequence, 3r, < oo such that Vr > r, and VA with [[A| = 1 and supecs, (p)&'A

> (ko + 29)Y%, we have c(r, \) > ((ka + 7)/(ka + 27))/2.  Then, since SUP¢cs, (B) '3,

= (£R§1~)1/2/H§H whenever LR%. > 0 by Lemma B-9, we obtain: Vr > r, /e,
(B.29) (1Bl B)H(Dry) = (ko + )/ (ke +20)1(Dry)

By the substitution of (B.27) and (B.29) into (B.26), we get: Vr > r, /e,

> jexp (=75 ) lim Eo(1—or) exp(r|Ble(rllll, /1) sup €B))1(Diy)
e £€5p(B)
(B30) > Jexp (- %) Jim Eo(1—pr)exp (r((ka +7)/(ka + 29) Y2(LRE) ) 1(Dy)
> fexp (- %) lim Eo(1—pr)exp(r(ka +7)/2)1(Dry)

vV
IS
@
e

ol
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where the third inequality uses Lemma B—6 and the fourth inequality uses (B.25). O

PROOF OF LEMMA B—6: A two-term Taylor expansion of ¢7:(6) about 8 yields

~

(B.31) tr(6) = r(0) — (0 - 0) |- £ (B(6))] (0 -9)

where 6(6) lies on the line segment joining 6 and 6. (B.31) holds using the fact that D¢p(8)(6—6)

~
~ =

= 0 wp — 1 by the first-order conditions for 8. For any consistent estimator /é\Of 00, — D01 (6(0))
=7 + 0p(1) by Assumption NLI.

Let P+ be as in Lemma B-3 and define P = I, — P. By Assumption NL5, the imposition of
the null hypothesis does not restrict the parameter space of P =0 — AHO = (0/, &' — B ToZ5 ).
In consequence, PO = Pf. In addition, PLo = AHO = AB and P16 = 0. These results yield

VT (0 —0) = VT(PL0 — PL+ PO — PO) = VTAS = Op(1). The latter result and (B.31) give

(r(8) = £2(8) — £(0—0)Z(6 —6) + 0p(1)

Sl

(B.32) = p(0) —

Sl

(P19 — PLOYZ(P18 — P16) — (PO — PO)I(PE — PB) + 0,(1)
= (p(8) - THATAB +0,(1) .
To obtain an analogous expression for ¢7(6*), we need to show that VT(0—6%) = Op(1). The

likelihood ratio test statistic for testing 3 = 0 versus 3 # 0 is asymptotically chi-squared under

0y under the assumptions. In consequence,
(B:33) Op(1) = £(8) — 1(8) < £r(6%) — 01(8) = — (86" [Z+0,(1)](=0%) + 0,(1) < 0,(1)
using Assumption NL6. This yields /T(6—0%) = Op(1). The analogue of (B.32) is

(B.34) 0r(6%) = r(0) — £(B—B") ATA(B—B*) + 0p(1)

since PO* = PO for the same reason that P = P#.

Now, if we can show

(B.35)  (r=T(B-B")ATAB-B") - T(B—3) ATA(B—-3;) >0 under 6y,
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then combining (B.32), (B.34), and (B.35) gives

B30 LRy = TPATAB—T(3 - B;) ATA(B - ;) + 0p(1)
= 2T ATAR — TRy ATAB; + 0p(1) = TBy ATAB; + 0p(1)

under 6, as desired, where the last equality uses the orthogonality condition ;" A’ IA(B—[?; ) =0,
which holds because 3} minimizes (B—B)’ A’IA(B—B) over the positively homogeneous set B (e.g.,
see Perlman (1969, Lemma 4.1(i))).

To show (B.35), note that {7 > 0 VI" by definition of 3;. Let 0; = AS; + PO € ©*. Then,
0r(0%) — £7(6*) < 0 VT by definition of *. In addition, 0 < T(3—3!) ATA(B—5;) < T ATAB =
Op(1), so \/T(é—&&k) = A\/T(B—ﬁ;) = Op(1). In consequence, (B.31) and simplifications as in

(B.32) yield (r = £r(0;) — €r(0") + 0p(1) < 0p(1). This establishes (B.35). O

PROOF OF LEMMA B-7: Lemma B2 holds with Q. replaced by Q". In consequence, LR7(6y, Q")
equals fr +o0p(1), where fr. is as defined in (B.1) but with @ replaced by Q". The term in square
brackets in the definition of #r. is
(B.37) 30160 — 3 (h—0)I(h—0) = £(P+0)IP*0 — 3(h—P+0)'Z(h—P10) ,
using the fact that WZP8 = 0 VYh € V1. Also, P10 = AHO = VTAB + 0p(1) using Lemmas B-1
and B-3. Let A = (A'TA)Y2VT(. Let h = rA(A'TA)"Y/2¢, where € ~ U. Then, h ~ Q" and

LRr(6, Q") = / 1(6o + h/VT € ©*) exp [gB'A'IAB - %(h—A\/TB)'I(h—A\/TB)}

x dQ"(h)/K + 0p(1)

_ /S 1y P [SVA = 3(r& = N (€ = V)] dU(€)/K + 0,(1)

p

_ /SP(B) exp [~ 12+ €\ dU(©)/K +op(1) . O

(B.38)

ProoF OF LEMMA B—8: The supremum over A in Lemma B-8 is attained for each r. Hence, it

suffices to show: For any A, with ||\.]| =1,

(B.39) lim l% log/ exp(r&\)dU (§)/K — sup &N | =0.
e Sp(B) £4ESp(B)

By replacing &'\ with supg ¢ 5,(B) & A\, it is easy to see that the left-hand side of (B.39) is less

than or equal to zero. To show the reverse inequality, let € > 0 be given and choose a subset
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of Sp(B) for each r, say =, for which {'Ar > supg, s, (8) §Ar — € V€ € Ep and [z dU(§) > 6
for some 6 > 0. Such sets exist by Assumption 6, since the latter is equivalent to: Ve > 0,
infees, () J 1(IE—=8:l < e, & € Sp(B))dU(€x) > 0. The left-hand side of (B.39) is greater than or

equal to

(B.40) Tli_m [% log/ exp(r[ sup &N —¢e))dU(E) — sup &N | = —¢.

Er £+€Sp(B) E+ESp(B)

Since € > 0 is arbitrary, the left-hand side of (B.40) is > 0. O

PROOF OF LEMMA B-9: Let S denote the closure of a set S. Any 8 € B can be written
as 3 = c(A'TA)"1/2¢ for some ¢ € Sy(B) and ¢ > 0. In particular, there exists ¢ > 0 and
& € Sp(B) such that §; = c*(A’IA)_l/Qf;. Note that 3 A'TAB; = (¢*)?. Now, 3F minimizes

(B—BY ATA(B—p3) over 8 € B if and only if (c*, §;) minimizes
(B.41) FATAB —2e8 (ATA)V? 3+ over (¢,€) €0, 00) X Sp(B) .
To solve the latter problem, we first maximize &'(A'ZA)Y23 over ¢ € Sp(B) and then minimize

(B.42) —2¢ sup &(ATA)Y2G+¢ over ¢>0.

£€Sp(B)
If supees, () g’(A'IA)l/QE > 0, we obtain ¢* = supecg, (p) f’(A’IA)l/QB. Combining this
with the above expression for (c*)? gives supgesp(B)f’(A'IA)l/QB = (ﬁ;’A'IAﬁ;‘)l/Q.

If supecs, () f’(A’IA)l/QB < 0, we obtain ¢* =0, 87 = 0, and (ﬁ;’A’IAﬁ;)l/Q =0. O
Proor or LEMMA B-10: By Lemmas B-6 and B-9,

(B.43) LRy — (max{ sup &(ATAY*VTE, 01?2 250.
£eSp(B)

Since (A’IA)l/Q\/TB LNy N(0, I) by Lemma B-1 and Assumption NL2, the result follows
by the continuous mapping theorem. Absolute continuity follows by a result of Lifshits (1982).

O

PrROOF OF LEMMA B-11: The proof is analogous to that of Lemma B-5 with ¢r.(6y) replaced

by LRz (6, Q") and L. replaced by L" = fSp(B) exp(—r2/2 4+ 7€ Z)dU (€). We have LR7(6p, Q")
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<, L" /K by Lemmas B-1 and B-7 and Assumption NL2. It remains to show that EL"/K = 1.
This follows by Fubini’s Theorem and the standard formula for the normal moment generating

function. O

ProOOF OF LEMMA A: Assumption NL1(a) holds by Assumption A(a). NLI1(b) holds by A(c).
NL1(c) holds with Z(0) = —E%;o, log g;(6) provided a uniform WLLN can be established. The
Markov property (A(b)) ensures that {%;9, logg.(6) : t > m} is part of a doubly infinite sta-
tionary and ergodic sequence. Thus, using A(b) and (e), the ergodic theorem implies that
—T-'D%0p(0) 5 () V0 € ©p. A generic uniform WLLN (e.g., Assumptions TSE-1D, BD, DM,
and P-WLLN and Theorem 4 of Andrews (1992)) strengthens this result to uniform convergence
over Og using A(b), (c), and (e).

Assumption NL1(d) holds, because Z(#) is continuous on ©¢ by the dominated convergence
theorem using A(c) and (e) and Oq is compact. NL1(e) holds by A(f).

To verify Assumption NL2, we use a martingale difference triangular array (MDTA) cen-
tral limit theorem of Hall and Hyde (1980, Cor. 3.1, p. 58). By assumption, T~ Y2Dly(67) =
T’l/QElT% log g¢(01). Let Ep denote the expectation operator under 0. { (% log g(07), .7:,5,1> :

m<t<T,T>1}isa MDTA under {6, : T > 1}, because

Er (% loggt(QT)]ﬁ—1) =Er (% log g¢(07)[St,m, Xtvm)

(B.44)
- /%gt(QT)d)\(St) = % /gt(eT)dA(St) =0,

where the third equality holds by the dominated convergence theorem using Assumptions A(c)
and (e) and the last equality holds because [ g;(0)d\(s;) =0 V8 € ©y.

Now, we apply Corollary 3.1 under {6y : T > 1} with X,,; = %loggt(QT)/\/T. By the
Cramer—Wold device, it suffices to consider the case where 6 is a scalar. Hall and Hyde’s condition

(3.21) holds because F; does not depend on T'. The other two conditions of Corollary 3.1 are:
(B.45) Ve >0, SE(X21(| X 0| > €)|Fie1) == 0 and

(B.46) Y E(X2|F; 1) 2= n for some constant 1 > 0.
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We will show that (B.45) and (B.46) hold under 6y with n = E% log gt(«%)% log g:(6p) = Z. By
contiguity (Lemma B—4), then, (B.45) and (B.46) also hold under {67 : T > 1}, which is required
for the application of Corollary 3.1.

Equation (B.45) can be established under 6y by establishing L'-convergence of the left-hand

side to 0. By stationarity, the L'-norm of the left-hand side of (B.45) equals

E (% loggt(é)T)>2 1 (‘% loggt(QT)) > \/Ts)
2
(B.47) < Eeseué) (%loggt(9)> 1 (‘% loggt(e)‘ > Te)
0
— 0

by the dominated convergence theorem, since E supyce, || 1og g¢(#)||> < oo by Assumption A(e).
Equation (B.46) can be established by taking a mean value expansion of its left-hand side

about 6g:

2
FSUE (G 1ogaen)’ 17i1)

(B.48) 2 . )
= 157E ((% log g:(6)) ml) + 221 E (& 108 91 (0r) 55 108 9:(0r) (=h/VT)| Fi 1)

where 67 lies between 67 and 6y. The first term is the average of stationary, ergodic, L2-random
2
variables under 6y and, hence, converges in probability to its expectation n = F (% log gt(Ho)) .

By Markov’s inequality, the probability that the second term exceeds ¢ is less than or equal to

(B.49) LB s (£ 1080u(0)] - 585 Yoz @)

which is finite for all 7' by Assumption A(e) and, hence, converges to 0. Thus, the second term
of (B.48) converges in probability to 0 and the verification of Assumption NL2 is complete.
Sufficient conditions for Assumption NL3 are: (i) © is compact, (ii) log g;(#) is continuous in
6 on © with probability one under 6y, (iii) supgeg )%ZIT(log g+(0) — E'log gt(e))‘ - 0 under 6,
and (iv) E'logg:(#) is uniquely maximized over © at 6y (e.g., see Amemiya (1985, Thm. 4.1.1,
pp. 106-107). Parts (i) and (ii) hold by A(a) and (c) respectively. Part (iii) holds by the same

argument as for NL1(c) above. To obtain part (iv), note that for 6 # 6y,

(B.50) Elog g:(0) — E'log g:(60) = Elog[g:(0)/9:(60)] < log Eg:(6)/g:(60) =0 ,
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where the inequality is an application of Jensen’s inequality and is strict by A(d).
Assumptions NL4 and NL6 hold by the same argument as for Assumption NL3 with O and

©*, respectively, in place of ©. O



TABLE I

A ®y(R2, A, I)
(707, .707) 58
(0, 1) 42
(~.707, .707) 18
(-1, 0) .08
(—.707, —.707) .06
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TABLE II. Power Results for Parameter Space By = Ri

(a) p=0 Avera,
ge over
Statistic / B=  (.88,.88) (1.28,1.28) (1.67,1.67) (2.24,2.24) B o (1,1)
D-W, .34 .7 .76 94 .65
D-W, .34 .bb .75 93 .64
DWWy .33 .54 .74 92 .64
LR .30 .50 .70 .90 .60
25-w 18 .35 .55 .82 48
Envelope .34 b7 .76 .94 .65
Average over
Statistic / = (1.37,0) (1.92,0) (2.48,0) (3.26,0) B o (1,0)
D-W, .25 .39 .54 .75 48
D-W, .28 .46 .65 .86 .56
DWWy .29 A7 .67 .87 .58
LR .30 .50 .70 .90 .60
25-wW 21 .39 .60 .84 51
Envelope .39 .61 .80 .95 .69
(b) p =6 Average over
Statistic / f= (1.08,1.08) (1.57,1.57) (2.07,2.07) (2.77,2.77) B (1,1)
D-W, .33 .54 .75 .93 .64
D-W, 31 .51 .72 91 .61
D-Wy .30 .50 .70 .90 .60
LR .30 .50 .70 .90 .60
25-wW A7 .33 .53 .80 46
Envelope .33 .54 .75 .93 .64
Average over
Statistic/3 = (1.38,0) (1.93,0) (2.48,0) (3.28,0) B x (1,0)
D-W, .19 .29 .40 .57 .36
D-W, .32 .bb 7 .95 .65
DWWy .35 .58 .80 .96 .67
LR .30 .50 .70 .90 .60
25-w .32 b7 .80 .96 .66
Envelope .53 .78 .93 .99 .81
(¢) p=—6 Average over
Statistic / #=  (.61,.61) (.87,.87)  (1.12,1.12) (1.46,1.46) B o (1,1)
D-W, .39 .62 .80 .95 .69
D-W, .38 .61 .80 .95 .69
DWWy .38 .61 .80 .95 .69
LR .30 .50 .70 .90 .60
25-wW 21 .40 .60 .84 51
Envelope .39 .62 .80 .95 .69
Average over
Statistic/5 = (1.10,0) (1.56,0) (2.02,0) (2.67,0) B o (1,0)
D-W, .34 .b4 73 91 .63
D-W, .34 .bb .74 .92 .64
DWWy .35 .bb .75 .93 .65
LR .30 .50 .70 .90 .60
25-wW 22 .40 .61 .86 .52
Envelope .39 .62 .81 .95 .69
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TABLE III. Average Power Results for Parameter Space By = Ry X R

p= 0 0 0 6 6 6 6 -6 6
Statistic  Boc (L1) (1,0) (0,1) (1,1) (L0) (0,1) (1,1) (1,0) (0,1)
D W 51 72 05 65 58 .05 20 58 .05
D-W; 63 .66 50 66 64 50 59 .64 .50
D-Wa 63 76 55 64 64 55 61 64 .55
LR 60 .60 .60 60 .60 .60 .60 .60 .60
25 W 54 54 58 54 54 58 55 54 58

Envelope .72 .72 .75 .72 .72 .75 72 72 75




TABLE IV. Average Power Results for Parameter Space B; = Rﬁr

Statistic / (o (1,1,...,1) (1,1,1,0,0,0) (1,0,0,...,0)
D-Wy .70 .56 .52
D-W; .70 .61 .60
D-W .68 .62 .61
LR .60 .60 .60
25-W .40 .46 .46

Envelope .70 77 .76




o8

TABLE V. Average Power Results for Parameter Space B, = Ri x R3

Statistic / f < (1,1...1)" 1,1,1,0,0,0)" (1,0,0...0)" (0,0,0,1,1,1) (0,0...0,1)" (1,0,0...0,1)
D-Wy .60 .79 bl .05 .05 .49
D-Wq .67 .72 .59 A7 A7 .87
D-Wx .66 .69 .60 b3 b3 .89
LR .60 .60 .60 .60 .60 90
25-wW .50 .49 .b4 b7 b7 .86
Envelope .80 .79 .83 .86 .86 .89
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FOOTNOTES

IThe author gratefully acknowledges the research support of the National Science Foundation via
grant number SES-9121914.

2A difference between Wald’s results and ours is that Wald’s hold for arbitrary weightings of the
contours referred to above, whereas ours require the specification of such a weighting. This is a
consequence of the nature of the testing problems under consideration.

3 Assumption NL1 requires that the parametric family of densities is defined in a full neighbor-
hood of §y. Given our interest in testing against a restricted alternative parameter space (which
generally does not include a neighborhood of 6), this assumption can be restrictive. For example,
if 3 is a variance parameter, then fr(#) must be well-defined even when this variance parameter
takes on some negative values. To illustrate the implications, consider a test of randomness of
the coefficient in a simple random coefficients regression model. The model is

Yi=X¢(61+m)+e for t=1,..,T,

where {(X¢, m¢, &) : t < T} are iid mutually independent non-degenerate scalar random variables,
e ~ N(0, ), et ~ N(0, 62), (Y, X;) are observed, (n, ¢¢) are unobserved, and the unknown
parameter is 8 = (3, 61, 62)". The null hypothesis is Hy : 3 = 0 and the alternative is Hf : g > 0.
The density fr(0) is given by

-7 T
Fr(0) = @m)7"2 (6, + X28) exp (=3 S (Vi — Xi61)2/ (6 + X28)) [T 9(X0)

where g(x) is the density of X; with respect to some measure. In order for this density to be
well-defined (i.e., to have s+ X283 > 0) for 6 in a neighborhood of 8y = (0, 61, 82)’, it is necessary
to assume that Xy is bounded. This restriction may be undesirable.

On the other hand, there are many applications in which the parameter 6 can take on any
value in a neighborhood of 6y without causing any problem with the definition of fr(6). For
example, this is true of a test of positivity of the variances in an error components model. In
addition, Assumption NL1 is a common assumption in the literature on one-sided testing, e.g.,
see Chernoff (1954), Gourieroux, Holly, and Monfort (1980), Gourieroux and Monfort (1989, Ch.
XXT), and Wolak (1989a). Hence, we are not imposing more restrictive conditions than appear
elsewhere in the literature.

Since ®(B, 1, %) = ®(B, u/VT, B/T) by positive homogeneity of B, the distribution L.(h)
(given in (4.6)) equals the distribution of D-W, when Y ~ N (3, ). To show that the asymptotic
local distribution of LR given in Theorem 4(a) equals that of LR when Y ~ N (3, §2), we rewrite
LR as follows:
LR =sup(2Y'Q713 - FQ718) =sup sup (2Z¢c—c*) = (max{ sup Z'¢, 0})?
BeB >0 £€S5(B) ¢esSz(B)

where the first equality holds by simple algebra, the second equality holds by the change of vari-
ables Z = Q 12y ~ N(Q 128, 1), ¢ = Q V23/|Q V23| € S3(B) = {(¢ € R? : ||¢]|= 1 and
Q1/2¢ € B}, and ¢ = |2 V23|, and the third equality holds by solving the maximization
problem over ¢ > 0.



60

REFERENCES

Amemiya, T. (1985): Advanced Econometrics. New York: Harvard University Press.
Andrews, D. W. K. (1992): “Generic Uniform Convergence,” Econometric Theory, 8, 241-257.

(1994): “The Large Sample Correspondence Between Classical Hypothesis Tests and
Bayesian Posterior Odds Tests,” Econometrica, 62, forthcoming.

Andrews, D. W. K. and W. Ploberger (1993): “Admissibility of the Likelihood Ratio Test When a
Nuisance Parameter Is Present Only Under the Alternative,” Cowles Foundation Discussion
Paper No. 1058, Yale University.

(1994): “Optimal Tests When a Nuisance Parameter Is Present Only under the Alterna-
tive,” Fconometrica, 62, forthcoming.

Barlow, R. E., D. J. Bartholomew, J. M. Bremner, and H. D. Brunk (1972): Statistical Inference
under Order Restrictions. New York: John Wiley and Sons.

Berger, R. L. (1989): “Uniformly More Powerful Tests for Hypotheses Concerning Linear In-
equalities and Normal Means,” Journal of the American Statistical Association, 84, 192-199.

Berger, R. L. and D. F. Sinclair (1984): “Testing Hypotheses Concerning Unions of Linear
Subspaces,” Journal of the American Statistical Association, 79, 158-163.

Chernoff, H. (1954): “On the Distribution of the Likelihood Ratio,” Annals of Mathematical
Statistics, 54, 573-578.

Dufour, J.-M. (1989): “Nonlinear Hypotheses, Inequality Restrictions, and Non-nested Hypothe-
ses: Exact Simultaneous Tests in Linear Regressions,” Fconometrica, 57, 335-355.

Goldberger, A. S. (1992): “One-sided and Inequality Tests for a Pair of Means,” in Contributions
to Consumer Demand and Econometrics, ed. by R. Bewley and T. Van Hoa. London:
MacMillan Academic and Professional Press.

Gourieroux, C. and A. Monfort (1989): Statistique et Modeles Econometriques, Vol. 2. Paris:
Economica.

Gourieroux, C., A. Holly, and A. Monfort (1980): “Kuhn-Tucker, Likelihood Ratio and Wald
Tests for Nonlinear Models with Inequality Constraints on the Parameters,” Harvard Insti-
tute of Economic Research Discussion Paper No. 770, Harvard University.

(1982): “Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with
Inequality Constraints on the Regression Parameters,” FEconometrica, 50, 63-80.

Hajivassiliou, V., D. McFadden, and P. Ruud (1994). “Simulation of Multivariate Normal Or-
thant Probabilities: Theoretical and Computational Results,” Journal of Econometrics,
forthcoming.

Hall, P. and C. C. Heyde (1980): Martingale Limit Theory and its Application. New York:
Academic Press.

Hillier, G. H. (1986): “Joint Tests for Zero Restrictions on Non-negative Regression Coefficients,”
Biometrika, 73, 657-669.



61

King, M. L. and M. D. Smith (1986): “Joint One-sided Tests of Linear Regression Coefficients,”
Journal of Econometrics, 32, 367-383.

King, M. L. and P. X. Wu (1990): “Locally Optimal One-sided Tests for Multiparameter Hy-
potheses,” Department of Econometrics Working Paper No. 2/90, Monash University.

Kodde, D. A. and F. C. Palm (1986): “Wald Criteria for Jointly Testing Equality and Inequality
Restrictions,” Econometrica, 54, 1243-1248.

Lehmann, E. L. (1959): Testing Statistical Hypotheses. New York: John Wiley and Sons.

Lifshits, M. A. (1982): “On the Absolute Continuity of Distributions of Functionals of Random
Processes,” Theory of Probability and Its Applications, 27, 600-607.

Perlman, M. D. (1969). “One-sided Problems in Multivariate Analysis,” Annals of Mathematical
Statistics, 40, 549-567. Corrections in Annals of Mathematical Statistics, 42, 1777.

Robertson, T. and E. J. Wegman (1978): “Likelihood Ratio Tests for Order Restrictions in
Exponential Families,” Annals of Statistics, 6, 485-505.

Robertson, T., F. T. Wright, and R. L. Dykstra (1988): Order Restricted Statistical Inference.
New York: Wiley.

Rogers, A. J. (1986): “Modified Lagrange Multiplier Tests for Problems with One-sided Alter-
natives,” Journal of Econometrics, 31, 341-361.

Sackrowitz, H. B. and W. E. Strawderman (1974): “On the Admissibility of the MLE for Ordered
Binomial Parameters,” Annals of Statistics, 2, 822—-828.

Shapiro, A. (1988): “Towards a Unified Theory of Inequality Constrained Testing in Multivariate
Analysis,” International Statistical Review, 56, 49-62.

Strasser, H. (1985): Mathematical Theory of Statistics: Statistical Experiments and Asymptotic
Decision Theory. New York: de Gruyter.

Wald, A. (1942): “On the Power Function of the Analysis of Variance Test,” Annals of Mathe-
matical Statistics, 13, 434-439.

(1943): “Tests of Statistical Hypotheses Concerning Several Parameters When the Num-
ber of Observations Is Large,” Transactions of the American Mathematical Society, 54,

426-482.

Warrack, G. and T. Robertson (1984): “A Likelihood Ratio Test Regarding Two Nested But
Oblique Order-restricted Hypotheses,” Journal of the American Statistical Association, 79,
881-886.

Wolak, F. A. (1987): An Exact Test for Multiple Inequality and Equality Constraints in the
Linear Regression Model,” Journal of the American Statistical Association, 82, 782-793.

(1989a): “Local and Global Testing of Linear and Nonlinear Inequality Constraints in
Nonlinear Econometric Models,” Econometric Theory, 5, 1-35.

(1989b): “Testing Inequality Constraints in Linear Econometric Models,” Journal of
Econometrics, 41, 205-235.



