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ABSTRACT

This paper provides an introduction to the use of empirical process methods in econo-
metrics. These methods can be used to establish the large sample properties of econometric
estimators and test statistics. In the first part of the paper, key terminology and results are
introduced and discussed heuristically. Applications in the econometrics literature are briefly
reviewed. A select set of three classes of applications is discussed in more detail.

The second part of the paper shows how one can verify a key property called stochastic
equicontinuity. The paper takes several stochastic equicontinuity results from the probability
literature, which rely on entropy conditions of one sort or another, and provides primitive suffi-
cient conditions under which the entropy conditions hold. This yields stochastic equicontinuity

results that are readily applicable in a variety of contexts, Examples are provided.



1. INTRODUCTION

This paper discusses the use of empirical process methods in econometrics. It begins by
defining, and discussing heuristically, empirical processes, weak convergence, and stochastic
equicontinunity. The paper then provides a brief review of the use of empirical process methods
in the econometric literature. Their use is primarily in the establishment of the asymptotic
distributions of various estimators and test statistics,

Next, the paper discusses three classes of applications of empirical process methods in more
detail. The first is the establishment of asymptotic normality of parametric M-estimators that are
based on non-differentiable criterion functions. This includes least absolute deviations and
method of simulated moments estimators, among others. The second is the establishment of
asymptotic normality of semiparametric estimators that depend on preliminary nonparametric
estimators. This includes weighted least squares estimators of partially linear regression models
and semiparametric generalized method of moments estimators of parameters defined by condi-
tional moment restrictions, among others. The third is the establishment of the asymptotic null
distributions of several test statistics that apply in the non-standard testing scenario in which a
nuisance parameter appears under the alternative hypothesis, but not under the null. Examples
of such testing problems include tests of variable relevance in certain nonlinear models, such as
models with Box-Cox transformed variables, and tests of cross-sectional constancy in regression
models.

As shown in the first part of the paper, the verification of stochastic equicontinuity in a
given application is the key step in utilizing empirical process results. The second part of the
paper provides methods for verifying stochastic equicontinuity. Numerous results are available
in the probability literature concerning sufficient conditions for stochastic equicontinuity (refer-
ences are given below). Most of these results rely on some sort of entropy condition. For appli-
cation to specific estimation and testing problems, such entropy conditions are not sufficiently
primitive. The second part of the paper provides an array of primitive conditions under which

such entropy conditions hold, and hence, under which stochastic equicontinuity obtains. The



primitive conditions considered here include: differentiability conditions, Lipschitz conditions,
L? continuity conditions, Vapnik-Cervonenkis conditions, and combinations thereof. Applica-
tions discussed in the first part of the paper are employed to exemplify the use of these primitive
conditions.

The empirical process results discussed here apply only to random variables (rv’s) that are
independent or m-dependent (i.e., independent beyond lags of length m). There is a growing
literature on empirical processes with more general forms of temporal dependence. See
Andrews (1993a) for a review of this literature.

The remainder of this paper is organized as follows: Section 2 defines and discusses empir-
ical processes, weak convergence, and stochastic equicontinuity, Section 3 gives a brief review of
the use of empirical process methods in the econometrics literature and discusses three classes
of applications in more detail. Sections 4 and 5 provide stochastic equicontinuity results of the
paper. Section 6 provides a brief conclusion. An Appendix contains proofs of results stated in

Sections 4 and 3.

2. WEAK CONVERGENCE AND STOCHASTIC EQUICONTINUITY

We begin by introducing some notation. Let {Wp,:¢ <T, T > 1} be a triangular array of
#valued 1v’s defined on a probability space (Q, 4, P), where %/is a (Borel measurable) subset
of R*. For notational simplicity, we abbreviate Wy, by W, below. Let 7" be a pseudometric space

with pseudometric p.? Let
(21) M={m(,1):t € 7}

be a class of R-valued functions defined on %/ and indexed by t € 7. Define an empirical

process v{(*) by

22)  vg(r) = %Ef(m(W, t) - Em(W, 1)) for t € 7,

where E{ abbreviates 23;1. The empirical process v{*) is a particular type of stochastic pro-

cess. If 7= [0, 1], then v{(-) is a stochastic process on [0, 1]. For parametric applications of



empirical process theory, 7 is usually a subset of R”. For semiparametric and nonparametric
applications, 7'is often a class of functions. In some other applications, such as chi-square diag-
nostic test applications, 7is a class of subsets of R”,

We now define weak convergence of the sequence of empirical processes {v,{") : T = 1} to
some stochastic process v(+) indexed by elements t of 7. (v(*) may or may not be defined on
the same probability space (Q, 4, P) as vy(*) VT 2 1.) Let = denote weak convergence of sto-

d

chastic processes, as defined below. Let -~ denote convergence in distribution of some

sequence of rv’s. Let |-| denote the Euclidean norm. All limits below are taken as T — .
DEFINITION OF WEAK CONVERGENCE:

vr() = v() if Ef(vi()) - Ef(v()) ¥ € ©(B(7)) ,
where B(7) is the class of bounded R'-valued functions on 7" (which includes all realizations of
ve() and v(-) by assumption), d is the uniform metric on B(7) (ie., d(b;, by)
= sup_.,db;(t) - by(t)l), and ZA(B(7)) is the class of all bounded uniformly continuous (with

respect to the metric d) real functions on B(7).

In the definition, E* denotes outer expectation. Correspondingly, P* denotes outer probability
below. (It is used because it is desirable not to require v{") to be a measurable random ele-
ment of the metric space (B(7), d) with its Borel o-field, since measurability in this context can
be too restrictive. For example, if (B(7), d) is the space of functions D[0, 1] with the uniform
metric, then the standard empirical distribution function is not measurable with respect to its
Borel o-ficld. The limit stochastic process v(-), on the other hand, is sufficiently well-behaved
in applications that it is assumed to be measurable in the definition.)

The above definition is due to Hoffman-Jorgensen. [t is widely used in the recent probabil-
ity ﬁtemture, e.g., see Pollard (1990, Sec. 9).

Weak convergence is a useful concept for econometrics, because it can be used to establish
the asymptotic distributions of estimators and test statistics. Section 3 below illustrates how.

For now, we consider sufficient conditions for weak convergence. In many applications of

interest, the limit process v(-} is (uniformly p) continuous in t with probability one. In such



cases, a property of the sequence of empirical processes {vy{(*) : T 2 1}, called stochastic
equicontinuity, is a key member of a set of sufficient conditions for weak convergence. It also is

implied by weak convergence (if the limit process v() is as above).

DEFINITION OF STOCHASTIC EQUICONTINUITY: {vi{*) : T > 1} is stochastically equicontinuous
if Ve > 0 and n > G, 36 > 0 such that

2.3) Iim P( sup Ivp(ty) - v{t))l > n) < e .
T-®  1y,T2€7p(74,19)<d

Basically, a sequence of empirical processes {v{(*) : T z 1} is stochastic equicontinuous if
v{(*) is continuous in t uniformly over 7 at least with high probability and for T large. Thus,
stochastic equicontinuity is a probabilistic and asymptotic generalization of uniform continuity of
a function.

The concept of stochastic equicontinuity is quite old and appears in the literature under
various guises. For example, it appears in Theorem 8.2 of Billingsley (1968, p. 55), which is attri-
buted to Prohorov (1956), for the case of 7= [0, 1]. Moreover, a non-asymptotic analogue of
stochastic equicontinuity arises in the even older literature on the existence of stochastic pro-
cesses with continuous sample paths.

The concept of stochastic equicontinuity is important for two reasons. First, as mentioned
above, stochastic equicontinuity is a key member of a set of sufficient conditions for weak con-
vergence. These conditions are specified immediately below. Second, in many applications it is
not necessary to establish a full functional limit (i.e., weak convergence) result to obtain the
desired result -- it suffices to establish just stochastic equicontinuity., Examples of this are given
in Section 3 below,

Sufficient conditions for weak convergence are given in the following widely used result, A
proof of the result can be found in Pollard (1990, Sec. 10) (but the basic result has been around
for some time). Recall that a pseudometric space is said to be fotally bounded if it can be cover-
ed by a finite number of e-balls Ve > 0. (For example, a subset of Euclidean space is totally

bounded if and only if it is bounded.)



PROPOSITION: If (i) (7, p) is a totally bounded pseudometric space,
(ii) finite dimensional (fidi) convergence holds: V finite subsets (t{, .., 7;) of 7, (v{t 1) e
vy{(x;)") converges in distribution, and
(iif) {v{(*) : T 2 1} is stochastically equicontinuous,
then there exists a (Borel-measurable with respect to d) B(7)-valued stochastic process v{*), whose
sample paths are uniformly p continuous with probability one, such that v{(*) = v(*).

Conversely, if v{*) = v(*) for v{(*) with the properties above and (i) holds, then (ii) and (iii)
hold.

Condition (ii) of the Proposition typically is verified by applying a multivariate central limit
theorem (CLT) (or a univariate CLT coupled with the Cramer-Wold device, see Billingsley
(1968)). There are numerous CLTs in the literature that cover different configurations of non-
identical distributions and temporal dependence.

Condition (i) of the Proposition is straightforward to verify if 7'is a subset of Euclidean
space and is typically a by-product of the verification of stochastic equicontinuity in other cases.
In consequence, the verification of stochastic equicontinuity is the key step in verifying weak con-
vergence (and, as mentioned above, is often the desired end in its own right). For these reasons,
we provide further discussion of the stochastic equicontinuity condition here and we provide
methods for verifying it in several sections below.

Two equivalent definitions of stochastic equicontinuity are the following: (i) {v(): T > 1}
is stochastically equicontinuous if for every sequence of constants {8} that converges to zero,

we have sup (. ve{ty) - vp(ty)| -£-0 where "-£.," denotes convergence in probability,

t,)<b Tl
and (ii) {v4{*) : T = 1} is stochastically equicontinuous if for all sequences of random elements
{t,7} and {i,} that satisfy p(¥,p 7) £ 0, we have v(3;7) - vp(i;p) -£= 0. The latter
characterization of stochastic equicontinuity reflects its use in the semiparametric examples
below. Allowing {7} and {7,7} to be random in the latter characterization is crucial. If only
fixed sequences were considered, then the property would be substantially weaker -- it would not

deliver the result that v{i;7) - vi{f37) £~ 0 -- and its proof would be substantially simpler

-- the property would follow directly from Chebyshev’s inequality.



To demonstrate the plausibility of the stochastic equicontinuity property, suppose 4¢ contains
only linear functions, i.e., # = {g:g(w) = w'r forsome v € R*} and p is the Euclidean metric.
In this simple linear case,

im P*(  sup  Ivy(ty) ~ vl > n)
Tuoo Ty, T p(Tp1y) <

_— % T .
=Tm P*(  sup %.,zl(w, -EWY(z, - to)| > n)

(2.4) T-=  spepp(tpT)<d

< Tm P(IL=T(W, - EW)I > n/o)
Tew VT

< e,

where the first inequality holds by the Cauchy-Schwarz inequality and the second inequality holds
for & sufficiently small provided %EI(W, - EW,) = O,(1). Thus, {v("): T 2 1} is stochastic-
ally equicontinuous in this case if the rv’s {W, - EW,:t < T, T > 1} satisfy an ordinary CLT.

For classes of nonlinear functions, the stochastic equicontinuity property is substantially
more difficult to verify than for linear functions. Indeed, it is not difficult to demonstrate that
it does not hold for all classes of functions 44 Some restrictions on 4/ are necessary -- #/ cannot
be too complex/large.

To see this, suppose {W,:¢ < T, T > 1} are iid with distribution P, that is absolutely contin-
uous with respect to Lebesgue measure and #/'is the class of indicator functions of all Borel sets
in 7/, Let t denote a Borel set in %/ and let 7 denote the collection of all such sets. Then,
m(w, 7 = 1w € 7). Take p(y, ©5) = ([Enw, ©7) = mOw, )2dPyw)]

Ty, T2 in 7 that have finite numbers of elements, v(r;} = %E{l(Wt € 1;) and p(7y, 15) = 0,

. For any two sets

since P,(W, € ;) = Oforj = 1,2. Given any T > 1 and any realization o € Q, there exist finite
sets 7,7, and Ty, in 7 such that W(w) € 1,7, and W(w) ¢ 17, ¥ s T, where W)
denotes the value of W, when o is realized. This yields vy(ty7,) = ﬁ , vi{tar,) = 0, and
SUP o (x, )< [VT(TD) — vi{w)] 2 VT . In consequence, {vr(*) : T = 1} is not stochastically
equicontinuous. The class of functions 47 is too large.

In Sections 4 and 5 below, we discuss various entropy conditions that restrict the complex-

ity/size of the class of functions 47 sufficiently that stochastic equicontinnity holds. Before



doing so, however, we illustrate how weak convergence and stochastic equicontinuity results can

be fruitfully employed in various econometric applications.

3. APPLICATIONS

3.1, Review of Applications

In this subsection, we briefly describe a number of applications of empirical process theory
that appear in the econometrics literature. There are numerous others that appear in the statis-
tics literature, see Shorack and Wellner (1986) for some references.

The applications and use of empirical process methods in econometrics are fairly diverse,
Some applications use a full weak convergence result; others just use a stochastic equicontinuity
result. Most applications use empirical process theory for normalized sums of rv's, but some use
the corresponding theory for U-processes, see Kim and Pollard (1990) and Sherman (1992). The
applications include estimation problems and testing problems. Here we categorize the applica-
tions not by the type of empirical process method used, but by area of application. We consider
estimation first, then testing.

Empirical process methods are useful in obtaining the asymptotic normality of parametric
optimization estimators when the criterion function that defines the estimator is not differenti-
able. Estimators that fit into this category include robust M-estimators (see Huber (1973)),
regressions quantiles (see Koenker and Bassett (1978)), censored regression quantiles (see Powell
(1984, 1986a)), trimmed LAD estimators (see Honore (1992)), and method of simulated
moments estimators (see McFadden (1989) and Pakes and Pollard (1989)). Huber (1967) gave
some asymptotic normality results for a class of M-estimators of the above sort using empirical
process-like methods. His results have been utilized by numerous econometricians, e.g., see
Powell (1984). Empirical process methods were utilized explicitly in several subsequent papers
that treat parametric estimation with non-differentiable criterion functions, see Pollard (1984,
1985), McFadden (1989), Pakes and Pollard (1989), and Andrews (1988a). Also, see Newey and
McFadden (1993) in this Handbook. In Section 3.2 below, we illustrate one way in which empir-

ical process methods can be exploited for problems of this sort.



Empirical process methods also have been utilized in the semiparametric econometrics litera-
ture. They have been used to establish the asymptotic normality (and, in a few cases, other
limiting distributions) of various estimators. References include Horowitz (1988, 1992), Kim and
Pollard (1990), Andrews (1993b), Newey (1989), White and Stinchcombe (1991), Olley and
Pakes (1991), Pakes and Olley (1991), Ait-Sahalia (1992a, b), Sherman (1993a, b), and Cavanagh
and Sherman {1992). Kim and Pollard (1990) establish the asymptotic (non-normal) distribution
of Manski’s (1975) maximum score estimator for binary choice models using empirical process
theory for U-statistics. Horowitz (1992) establishes the asymptotic normal distribution of a
smoothed version of the maximum score estimator, Andrews (1993b), Newey (1989), Pakes and
Olley (1991), and Ait-Sahalia (1992b) all use empirical process theory to establish the asymptotic
normality of classes of semiparametric estimators that employ nonparametric estimators in their
definition. Andrews {1993b), Newey (1989), and Pakes and Olley (1991) use stochastic equicon-
tinuity results, whereas Ait-Sahalia (1992b) utilizes a full weak convergence result. Sherman
(1993a, b) and Cavanagh and Sherman (1992) establish asymptotic normality of a number of
semiparametric estimators using empirical process theory of U-statistics. Section 3.3 below gives
a heuristic description of one way in which empirical process methods can be used for semipara-
metric estimation problems.

A third area of application of empirical process methods to estimation problems is that of
nonparametrics. Gallant (1989) and Gallant and Souza (1989) use these methods to establish
the asymptotic normality of certain seminonparametric (i.e., nonparametric series) estimators,
In their proof, empirical process methods are used to establish that a law of large numbers holds
uniformly over a class of functions that expands with the sample size. Andrews (1990) uses
empirical process methods to show that nonparametric kernel density and regression estimators
are consistent when the dependent variable or the regressor variables are residuals from some
preliminary estimation procedure (as often occurs in semiparametric applications).

Empirical process methods also have been utilized very effectively in justifying the use of
bootstrap confidence intervals. References include Gine and Zinn (1990), Arcones and Gine

(1992), and Hahn (1992).



Next, we consider testing problems. Empirical process methods have been used in the litera-
ture to obtain the asymptotic null (and local alternative) distributions of a wide variety of test
statistics. These include test statistics for chi-square diagnostic tests (see Andrews (1988b, c)),
consistent model specification tests (see Bierens (1990), Yatchew (1992), Hansen (1992), DeJong
(1992), and Stinchcombe and White (1993)), tests of nonlinear restrictions in semiparametric
models (see Andrews (1988a)), tests of specification of semiparametric models (see Whang and
Andrews (1993) and White and Hong (1992)), tests of stochastic dominance (see Klecan,
McFadden, and McFadden (1990), and tests of hypotheses for which a nuisance parameter
appears only under the alternative (see Davies (1977, 1987), Bera and Higgins (1992, 1993),
Hansen (1991, 1993), Andrews and Ploberger (1991), and Stinchcombe and White (1993). For
tests of the latter sort, Section 3.4 below describes how empirical process methods are utilized.

Last, we note that stochastic equicontinuity can be used to obtain uniform laws of large
numbers that can be employed in proofs of consistency of extremum estimators. For example,

see Pollard (1984, Ch. 2), Newey (1991), and Andrews (1992).

3.2. Parametric M-estimators Based on Non-differentiable Criterion Functions
Here we give a heuristic description of one way in which empirical process theory can be
used to establish the asymptotic normality of parametric M-estimators (or GMM estimators) that
are based on criterion functions that are not differentiable with respect to the unknown param-
eter. This treatment follows that of Andrews (1988a) most closely (in which a formal statement
of assumptions and results can be found). Other references are given in Section 3.1 above.
Suppose T is a consistent estimator of a parameter t; € R that satisfies a set of p first

order conditions
3.1 thT{-E) =0

at least with probability that goes to one as T ~ =, where
32)  mig(t) = 1ETmW
(2 Figls) = ZZmW, ).

Here, W, is an observed vector of random variables and m(-, -) is a known R?-valued function.
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Examples are given below.

If m(W,, ©) is differentiable in t, one can establish the asymptotic normality of £ by expand-
ing VT m{t) about t, using element by element mean value expansions. This is the standard
way of establishing asymptotic normality of ¢ (or, more precisely, of VT (% - Tp) ). In a variety
of applications, however, the function m(W,, t) is not differentiable in t, or not even continuous,
due to the appearance of a sign function, an indicator function, a kinked function, etc. Examples
are listed .above and below. In such cases, one can still establish asymptotic normality of ¢ pro-
vided Em(W,, t) is differentiable in r. Since the expectation operator is a smoothing operator,
Em(W, 1) is often differentiable in t even though m(W,, 1) is not.

One method is as follows. Let
33) mt T e W
(3.3) mT(T)=E~ 1m( :’7)'

To establish asymptotic normality of £, one can replace (element by element) mean value expan-
sions of () about 7, by corresponding mean value expansions of m (1) about £ and then
use empirical process methods to establish the limit distribution of the expansion. In particular,

such mean value expansions yield
~ — 4. 0 —* .
64 0= Tsieg) = Tags) - ZasenTG - <.

where the first equality holds by the population orthogonality conditions (by assumption) and ¥
lies on the line segment joining T and r, {(and takes different values in each row of %ﬁr’z,{‘f) ).
Under suitable assumptions on {m(W, t) : ¢t < T, T > 1}, one obtains %ﬁ;(’f) LM
= limy_, 71_ ET%Em (W,, 1) . (For example, if the rv’s W, are identically distributed, it suffices
to have %Em(Wr, 1) continuous in t at t;.) Thus, provided M is nonsingular, one has
(3.5) T - 1) = M7 + o ,(OWTm(3) .
(Here, op(l) denotes a term that converges in probability to zero as T —~ «,)

Now, the asymptotic distribution of JT(% - To) is obtained by using empirical process

methods to determine the asymptotic distribution of yTrm (). We write
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~Ty(2)= (Tm(?) - yTmy(1)) - yTmy()
= (vi(3) - vp(tg)) + v(tg) - VTmy(3) .

The third term on the right-hand side (rhs) of (3.6) is 0,(1) by (3.1). The second term on the

(3.6)

rhs of (3.6) is asympiotically normal by an ordinary CLT under suitable moment and temporal

dependence assumptions, since vo{t,) is a normalized sum of mean zero rv’s, That is, we have

BT vty = _;TEf(m(W,, %) - Em(W, 1)) 4. N(0,S) as T - =,

where § = limy_ Var(%E{m(W,, 79)). (For example, if the rv's W, are independent and
identically distributed (iid), it suffices to have § = Em{W,, t)m(W,, 1,)’ well-defined.)

Next, the first term on the rhs of (3.6) is op(l) provided {v{*) : T > 1} is stochastically
equicontinuous and ¢ £ t;. This follows because given any n > 0 and ¢ > 0, there exists a

8 > 0 such that
Bm P(jvr(®) - vi(sp)l > )

< im P(jv{(%) - vp(tp)| > n, p(E, tg) < 8) + Iim P(p(%, 7y > &)
(3.8) T-e Toe

sm P( sup  |vp(r) - ve(1g)| > n)
T-=  1eZip(r,1y)<d

< e,

where the second inequality uses © £ t,, and the third uses stochastic equicontinuity,

Combining (3.5)-(3.8) yields the desired result that

39)  VT(t - tg) - No, MTISMY) as T - =

It remains to show how one can verify the stochastic equicontinuity of {v;{*) : T 2 1}, This is

done in Sections 4 and 5 below. Before doing so, we consider several examples.

EXAMPLE 1: M-estimators for standard, censored, and truncated linear regressions models. In
the models considered here, {(Y,, X,) : ¢ < T} are observed rv's and {(Y;, X7) : t < T} are latent

rv’'s. The models are defined by
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Y =X"6,+U, t=1.,T,

linear regression (LR): (¥, X,) = (Y:, X:) )
(3.10)
censored regression (CR): (Y, X)) = (Y, 1(Y] 2 0), X,),
truncated regression (TR): (¥, X)) = (Y:I(Y: > 0), X:I(Y: > 0)) .
Depending upon the context, the errors {U,} may satisfy any one of a number of assumptions

such as constant conditional mean or guantile for all ¢ or symmetry about zero for all t. We

need not be specific for present purposes.

We consider M-estimators £ of 7 that satisfy the equations

T ‘s .
(3.11) 0 = I,y (Y, - X/ ), (W, D)X,
with probability - 1 as T ~ o, where W, = (Y, X| ;)'. Such estimators fit the general framework

of (3.1)-(3.2) with

(3.12)  m(w, 1) = Yy - X'DUyw, T}, where w = (y, x') .
Examples of such M-estimators in the literature include the following:

(a) LR model: Let y,(z) = sgn(z) and ¥, = 1 to obtain the least absolute deviations (LAD)
estimator. Let y(z) = ¢ - 1(y - x’t < 0) and ¢, = 1 to obtain Koenker and Bassett’s (1978)
regression quantile estimator for quantile g € (0, 1). Let ¢,(z) = (z A c) V (-c) (where A and
V are the min and max operators respectively) and §, = 1 to obtain Huber’s (1973) M-estimator
with truncation at :c. Let §,(z) = |g - 1y - x’1 < 0)| and ¢,(w, ) =y - x't to obtain
Newey and Powell’s (1987) asymmetric LS estimator.

(b) CR model: Let y,(z) = ¢ - 1{y - x't < 0) and §,(w, 1) = 1(x’t > 0) 1o obtain Powell’s
(1984, 1986a) censored regression quantile estimator for quantile ¢ € (0, 1). Let ¢, = 1 and
Yo(w, ©) = 1x't > O)[(y - x't) A x't] to obtain Powell's (1986b) symmetrically trimmed LS
estimator.

(c) TR model: Let ¢; = 1 and y,(w, 1) = 1(y < 2't)(y - x'r) to obtain Powell’s (1986b)

symmetrically trimmed LS estimator.
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(Note that for the Huber M-estimator of the LR model one would usually simultaneously esti-

mate a scale parameter for the errors U, For brevity, we omit this above.)

EXAMPLE 2: Method of simulated moments (MSM) estimator for multinomial probit. The
model and estimator considered here are as in McFadden (1989) and Pakes and Pollard (1989).
We consider a discrete response model with r possible responses. Let D, be an observed
response vector that takes valuesin {¢;:i = 1, ..., r}, wheree; = (0, ..., 0, 1, 0, ..., 0)' is the i-th
elementary r-vector. Let Z,; denote an observed b-vector of covariates -- one for each possible

response i = 1, ..,r. LetZ = [Z;,, Z;5 - Z;r]'. The model is defined such that
(313) D, =¢ if (Z; - Z,)(B(zp) +AGz)U,) 20 Vo =1, .., 7,

where U, ~ N(0, 1) is an unobserved normal rv, () and A(-) are known R**! and RP*¢ valued
functions of an unknown parameter t; € 7 c RP.
McFadden’s MSM estimator of 1 is constructed using s independent simulated N(0, 1) rv's

(Y,

11>+ Yy)' and a matrix of instruments g(Z,, t), where g(, *) is a known R"*®_valued func-

tion. The MSM estimator is an example of the estimator of (3.1)-(3.2) with W, = (D, Z,, Y},

v Y) and

(314)  m(w, ) = g, DYd - T HEB() + AN,
=1

where w = (d, z,yy, ... ;). Here, H[-] is a {0, 1} -valued function whose i-th element is of the

form

r
(3.15)  JI UG - zp'(B(z) + A(e)y)) 2 0) .
=1
3.3. Tests When a Nuisance Parameter Is Present Only Under the Alternative
In this section we consider a class of testing problems for which empirical process limit
theory can be usefully exploited. The testing problems considered are ones for which a nuisance
parameter is present under the alternative hypothesis, but not under the null hypothesis. Such

testing problems are non-standard. In consequence, the usual asymptotic distributional and opti-
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mality properties of likelihood ratio (LR), Lagrange multiplier (LM), and Wald (W) tests do not
apply.
Consider a parametric model with parameters 0 and t, where 6 € 8 c R’, 1 € 7c R". Let

0 = (p’, 8'), where p € RP, and & € RY, and s = p+q. The null and alternative hypotheses
of interest are

Hy:p =0 and
(3.16)

H;:f=0.
Under the null hypothesis, the distribution of the data does not depend on the parameter t by

assumption, Under the alternative hypothesis, it does. Two examples are the following.

EXAMPLE 3: This example is a test for variable relevance. We want to test whether a regressor

variable/vector Z, belongs in a nonlinear regression model. This model is
(317) Y, =X, 8) + Ph(Z, )+ U, U -N(O,8), t=1,.,T.

The functions g and h are assumed known. The parameters (8, 8,, 6,, t) are unknown. The
regressors (X,, Z,) and/or the errors U, are presumed to exhibit some sort of asymptotically weak
temporal dependence. As an example, the term h(Z,, t) might be of the Box-Cox form
(Z} - 1)/r. Under the null hypothesis Hy : p = 0, Z, does not enter the regression function and

the parameter T is not present.

EXAMPLE 4: This example is a test of cross-sectional constancy in a nonlinear regression model.
A parameter t (€ R?) partitions the sample space of some observed variable Z, (€ RY into two
regions. In one region the regression parameter is &; (¢ RP) and in the other region it is
&; + B. A test of cross-sectional constancy of the regression parameters corresponds to a test
of the null hypothesis Hy : p = 0. The parameter vt is present only under the alternative.
To be concrete, the model is
gX, &) +U, for h(Z, ) > 0

(318) Y, =

L = for t=1,.., T,
gX, d, +B) + U, for K(Z, 1) <0
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where the errors U, ~ iid N(0, §,), the regressors X, and the rv Z, are m-dependent and identic-
ally distributed, and g(:, -) and h(-, -) are known real functions. For example, h(Z, 1) could
equal Z, - 1, where the real rv Z, is an element of X,, an element of X, ; for some integer
d > 1, or Y, ; for some integer d = 1. The model could be generalized to allow for more
regions than two.

Problems of the sort considered above were first treated in a general way by Davies (1977,
1987). Davies proposed using the LR test. Let LR(t) denote the LR test statistic (i.e., minus
two times the log likelihood ratio) when = is specified under the alternative. For given t, LR(1)
has standard asymptotic properties (under standard regularity conditions). In particular, it con-
verges in distribution under the null to a random variable X2(1:) that has a xg distribution.

When 7 is not given, but is allowed to take any value in 7; the LR statistic is

(3.19)  sup LR(x).
Ted

This statistic has power against a much wider variety of alternatives than the statistic LR(t) for
some fixed value of 1.

To mount a test based on sup_., LR(r), one needs 1o determine its asymptotic null distri-
bution. This can be achieved by establishing that the stochastic process LR(t), viewed as a
random function indexed by t, converges weakly to a stochastic process Xz(r). Then, it is easy
to show that the asymptotic null distribution of sup__,LR(t) is that of the supremum of the
chi-square process X 2(1.-). The methods discussed below can be used to provide a rigorous justifi-
cation of this type of argument.

Hansen (1991) extended Davies’ results to non-likelihood testing scenarios, considered LM
versions of the test, and pointed out a variety of applications of such tests in econometrics,

A drawback of the sup LR test statistic is that it does not possess standard asymptotic opti-
mality properties. Andrews and Ploberger (1991) derived a class of tests that do. They consid-
ered a weighted average power criterion that is similar to that considered by Wald (1943),
Optimal test statistics turn out to be of an average exponential form:

1

(320)  Exp-LR = (1+c) 72| exp[2

£ LR(1)[I(x) ,
1+c¢
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where J(-) is a specified weight function over © € 7 and c is a scalar parameter that indexes
whether one is directing power against close or distant alternatives (i.e., against  small or
large). Let Exp-LM and Exp-W denote the test statistic defined as in (3.20), but with LR(r)
replaced by LM(1) and W(<), respectively, where the latter are defined analogously to LR(x).
The three statistics Exp-LR, Exp-LM, and Exp-W each have asymptotic optimality properties.
Using empirical process results, each can be shown to have an asymptotic null distribution that
is a function of the stochastic process Xz(r) discussed above.

First, we introduce some notation, Let {{0, 1) denote a criterion function that is used to
estimate the parameters § and t. The leading case is when ¢{0, t) is the log likelihood func-
tion for the sample size 7. Let D0{0, t) denote the s-vector of partial derivatives of ¢{0, 1)
with respect to 6. Let 8, denote the true value of 6 under the null hypothesis Hy, i.e. 8,
= (0, 6{’,)'. (Note that D¢{0,, ) depends on t in general even though ¢7(6,, 1) does not.)

By some manipulations (e.g., see Andrews and Ploberger (1991)), one can show that the test
statistics sup_ . LR(t), Exp-LR, Exp-LM, and Exp-W equal a continuous real function of the
normalized score process {D (8, r)/ﬁ : T € 7} plusan op(l) term under Hy. In view of the
continuous mapping theorem (e.g., see Pollard (1984, Ch. II1.2)), the asymptotic null distn-
butions of these statistics are given by the same functions of the limit process as T - = of
{Doy(8,y, DNT : © € 7}.

More specifically, let

(B21)  vp(x) = J_;Dor(oo, 7).

(Note that ED{{(0;, ) = 0 under H, since these are the population first order conditions for

the estimator.) Then, for some continuous function g of v{(:), we have

(3.22)  sup LR(1) = g(v4(?)) + 0,(1) under Hy .
T€T

(Here, continuity is defined with respect to the uniform metric 4 on the space of bounded
R®-valued functions on 7; ie., B(7).} If vi{(*) = v(*), then

(3.23)  sup LR(z) -4 g(v(*)) under Hy,
TeT
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which is the desired result. The distribution of g(v(+)) yields asymptotic critical values for the
test statistic sup, ., LR(t). The results are analogous for Exp-LR, Exp-LM, and Exp-W.

In conclusion, if one can establish the weak convergence result, v{-) = v(-) as T - =, then
one can obtain the asymptotic distribution of the test statistics of interest. As discussed in Sec-
tion 2, the key condition for weak convergence is stochastic equicontinuity. The verification of
stochastic equicontinuity for Examples 3 and 4 is discussed in Sections 4 and 5 below. Here, we

specify the form of v4{(t) in these examples.

EXAMPLE 3 (cont.): In this example, 0,{0, t) is the log likelihood function under the assump-

tion of iid normal errors:

040, ) = - —10g2:rc62 %ET(Y, - g(X,, 3;) - Bh(Z, 1))*> and
2
4 y
L. LsTunz, <
g9 VT
(3.24)
1
_ 1 =1— _2 U X, &
vr(t) = =Dir(6p, 1) 5y T ( b S10)|.
1 1 QT2
1 1T -
205 T 1% =D )

Since © only appears in the first term, it suffices to show that {flrz-‘lrU,h(Zt, y: T > 1} is sto-

chastically equicontinuous,

EXAMPLE 4 (cont.): In this cross-sectional constancy example, #(0, 1) is the log likelihood func-

tion under the assumption of iid normal innovations:
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1.1
0 (6, <) = - %log21t62 - 5B - g(X,, 8)1(H(Z, ©) > 0)

- S(Xp 61 + B)I(h(zr, t) < 0))2 and

(1

1 Ty O )
(3.25) I FE1 U,a—%g(x,, 3;)(h(Z, 1) < 0)

1
820

1 14T _
g;"ﬁz](’-ﬂz/azo Y

1 Ty ©
iﬂDgT(ﬂo, 'r) = '“‘,’."-2) U:a_alg(xp 610)

J
Since T only appears in the first term, it suffices to show that{%EITU,E%g(X,, 5,011 (Z,, )
1

<0):T:> 1} is stochastically equicontinuous.

3.4. Semiparametric Estimation

We pow consider the application of stochastic equicontinuity results to semiparametric esti-
mation problems. The approach that is discussed below is given in more detail in Andrews
(1993b). Other approaches are referenced in Section 3.1 above.

Consider a two-stage estimator 0 of a finite dimensional parameter 8, € © = R. In the first
stage, ;m infinite dimensional parameter estimator £ is computed, such as a nonparametric
regression or density estimator or its derivative. In the second stage, the estimator 0 of 6 is
obtained from a set of estimating equations that depend on the preliminary estimator . Many
semiparametric estimators in the literature can be defined in this way,

By linearizing the estimating equations, one can show that the asymptotic distribution of
JT (6 - 0,) depends on an empirical process v{t), evaluated at the preliminary estimator .
That is, it depends on v{£). To obtain the asymptotic distribution of 0, then, one needs to
obtain that of v(%). If £ converges in probability to some 1, (under a suitable pseudometric)
and v{t) is stochastically equicontinuous, then one can show that v{(?) - v{tp) -2, 0and
the asymptotic behavior of VT (6 - 0;) depends on that of v{t), which is obtained straightfor-
wardly from an ordinary CLT. Thus, one can effectively utilize empirical process stochastic

equicontinuity results in establishing the asymptotic distributions of semiparametric estimators,
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We now provide some more details of the argument sketched above. Let the data consist

of {W,:t < T}. Consider a system of p estimating equations
— N 1oT .
(3.26) mT(B, T) = ?Elm(ﬁ, t) N

where m(-, +, *) is an RP-valued known function. Suppose the estimator 8 solves the equations

(327)  {Tmyb, %) =0
(at least with probability that goes to one as T - =), These equations might be the first order
conditions from some minimization problem.

We suppose consistency of & has already been established, i.e., 6 2. 8, (see Andrews
(1993b) for sufficient conditions). We wish to determine the asymptotic distribution of 6. When
m(W,, 6, 1) is a smooth function of 6, the following approach can be used. Element by element

mean value expansions stacked yield
(3.28)  o,(1) =my(d, ¥) = VTmp0y, ) + %ﬁr(oz #WT( - 0, ,

where 6* lies between § and 6, (and 6* may differ from row to row in %ET(G*, 7)). Under

suitable conditions,

a — * A P M 1 T a -
3.29 —m 0%, ) £ M =lim —Z E—m(0,, 7q) .
(.29 @9 I-e T 130 7% <o)
Thus,

VT - 0g) = -1 + o, (YWTm {0y, ©)

(3.30)

M+ o VTGO, ) - 30 £) + VTR0 )],
where ﬁi;{ﬁ, 1) = %ETEm(W,, 8, t).

Again under suitable conditions, either

(331)  {Tmy0p ©) 24 0 or yTm}0y, ) -2 N0, A)

for some covariance matrix 4, see Andrews (1993b).
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Let

(332)  vp(t) = yT(mp(8;, 1) - m6 7)) .
Note that v{) is a stochastic process indexed by an infinite dimensional parameter in this case.
This differs from the other examples in this section for which t is finite dimensional.

Under standard conditions, one can establish that

(333) vty - N(O, S)

for some covariance matrix S, by applying an ordinary CLT. If, in addition, one can show that

(334)  v{i) - v{(tp) &5 0,

then we obtain

VT (0 - 0p) = -(M™" + 0,(1)[vy(2) + VTmy(6y, )]

(3.35) -M[vp{(zg) +T (8 1)] + 0,(1)

4 N@©, MISAYMTY

which is the desired result.

To prove (3.34), we can use the stochastic equicontinuity property. Suppose

(1) {vy(*) : T 2 1} is stochastically equicontinnous

) for some choice of 7"and pseudometric p on 7,
(3.36
(i) P(¥ € 7) -1, and

(i) p(%, o) £ 0,

then (3.34) holds (as shown below).

Note that there exist tradeoffs between conditions (i), (ii), and (iii) of (3.36) in terms of the
difficulty of verification and the strength of the regularity conditions needed. For example, a
larger set 7 makes it more difficult to verify (i), but easier to verify (ii). A stronger pseudo-
metric p makes it easier to verify (i), but more difficult to verify (iii).

Since the sufficiency of (3.36) for (3.34) is the key to the approach considered here, we pro-
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vide a proof of this simple result. We have: Ve > 0, vy > 0, 36 > 0 such that
lriTl P(lv(?) - vi{rodl > n)
< Im P([v{(?) - v(tp)] > n, t € 7 p(%, 7o) < )
T

(3.37) + Iim P(f ¢ 7or p(, tp) >8)
T

shm P sup  |vp(t) - v{tg)| > n)
T-o tep(t,1y)<d

<e,

where the term on the third line of (3.37) is zero by (ii) and (iii) and the last inequality holds by
(i). Since £ > 0 is arbitrary, (3.34) follows,

To conclude, one can establish the /T -consistency and asymptotic normality of the semipar-
ametric estimator 8 if one can establish, among other things, that {v{-) : T > 1} is stochastic-
ally equicontinuous. Next, we consider the application of this approach to two examples and
illustrate the form of v,{:) in these examples. In Sections 4 and 5, we discuss the verification
of stochastic equicontinuity when %/ = {m(:, 1) : © € 7} is an infinite dimensional class of

functions,

EXAMPLE 5: This example considers a weighted least squares (WLS) estimator of the partially

linear regression (PLR) model. The PLR model is given by
(338) Y, =X/0, +g(Z) + U, and E(U,X, Z) =0 as.

for t+ = 1, .., T, where the real function g(-) is unknown, W, = (Y, X|, Z;)' is iid or
m-dependent and identically distributed, Y,, U, € R, X, 0, € R’ and Z, € Rk". This mode! is
also discussed by Hirdle and Linton {1993) in this Handbook. The WLS estimator is defined for
the case where the conditional variance of U, given (X,, Z,) depends only on Z,. This estimator
is a weighted version of Robinson’s (1988) semiparametric LS estimator. The PLR model with
heteroskedasticity of the above form can be generated by a sample selection model with non-

parametric selection equation (e.g., see Andrews (1993b)). Let 1,((Z,) = E(Y,|Z)), t50(Z,)
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= EX,|Z), v3(Z) = E(U%lZ,), and t5 = (Ty9 Tap» T30). Let (') be an estimator of
1:]-0(-) forj = 1, 2, 3. The semiparametric WLS estimator of the PLR model is given by
- T . - ‘e -
8 = [S{EW)X, - HENX, - HE@)1HEZN
(3.39) ,
ZIEWDX, - 2ENY, - T1(Z)E(2)
where £(W,) = 1(Z, € 2%} is a trimming function and 2” is a bounded subset of R, This

estimator is of the form (3.16)-(3.17) with

(3.40)  m(W, 8, 1) = EW)Y, - £(Z) - (X, - $5(Z))'0)[X, - £,(Z))/3:(Z) .
To establish the asymptotic normality of ¢ using the approach above, one needs to establish sto-

chastic equicontinuity for the empirical process v;{*) when the class of functions #/'is given by
M ={m(, 0y, t): t € 7} , where

(3.41)
mw, 0y, 1) = LWy - 7,(z) - (x - ()" 0y)lx - (/) .

w=(y,x, z’)', T = (14 T 13)', and 7 is as defined below. Here, the elements t € 7 are
possible realizations of the vector nonparametric estimator . By definition, Z < R is the
domain of tj(z) forj = 1, 2, 3 and Z includes the support of Z, ¥t > 1. By assumption, the
trimming set Z2* ¢ 5. If 2* = 2, then no trimming occurs and £(w) is redundant. If Z* is a
proper subset of Z, then trimming occurs and the WLS estimator § is based on only non-

trimmed observations.

EXAMPLE 6: This example considers generalized method of moments (GMM) estimators of
parameters defined by conditional moments restrictions (CMR).

In this example, 0, is the unique parameter vector that solves the equations
(3.42) E(W(Z,0)|X) =0 as. W21

for some specified R%-valued function §(-,-), where X, € Rk". Examples of this model in econ-
ometrics are quite numerous, sce Chamberlain (1987) and Newey (1990).

Let QO(Xx) = E('IJ(Z,, e{))w(zv 00)' |X:)! AO(X:) = E] %w(zp e(]) |Xf

and TO(XE) = AG(XI)’
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x Qal(X,). By assumption, Q(-), 4,(-), and ty(*) do not depend on ¢, Let Q(-) and A() be

nonparametric estimators of Qy(-) and Ay(). Let ¢(-) = A(Y'Q7I(). Let W, = (Z;, X})

A GMM estimator 0 of 0, minimizes
(343)  [ETrX)¥(Z, 8)| iZ]4(X)W(Z,, 6) over 0 € O c R°",

where ¥ is a data-dependent weight matrix. To obtain the asymptotic distribution of this esti-
mator using the approach above, we need to establish a stochastic equicontinuity result for the
empirical process v{-) when the class of functions 4f is given by

M= {m(,, 0, t): 1 € 7}, where

(3.44)
m(w, 8, 1) = TRV, 0)) = A Q7' )WE, 9p)

w = (z',x') and 7is defined below.

4. STOCHASTIC EQUICONTINUITY VIA SYMMETRIZATION

4.1. Primitive Conditions for Stochastic Equicontinuity

In this section we provide primitive conditions for stochastic equicontinuity. These condi-
tions are applied to some of the examples of Section 3 in Section 4.2 below. We utilize an
empirical process result of Pollard (1990) altered to encompass m-dependent rather than inde-
pendent rv’s and reduced in generality somewhat to achieve a simplification of the conditions.
This result depends on a condition, which we refer to as Pollard’s entropy condition, that is based
on how well the functions in #/ can be approximated by a finite number of functions, where the
distance between functions is measured by the largest Lz(Q) distance over all distributions Q that
have finite support. The main purpose of this section is to establish primitive conditions under
which the entropy condition holds. Following this, a number of examples are provided to illus-
trate the ease of verification of the entropy condition.

First, we note that stochastic equicontinuity of a vector-valued empirical process (i.e.,s > 1)
follows from the stochastic equicontinuity of each element of the empirical process. In conse-

quence, we focus attention on real-valued empirical processes (s = 1).
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The pseudometric p on 7'is defined in this section by
1N 12
@1)  p(ty T = sup[-ﬁEIE(m(Wt, t) - m(W, 12))2] 3
N:1

let Q denote a probability measure on %, For a real function f on %] let
of? = j sz(w)dQ(w). Let 7 be a class of functions in L%(Q). The L%(Q) cover numbers of #

are defined as foliows;

DEFINITION: For any £ > 0, the cover number Ny(g, Q, ) is the smallest value of n for which
there exist functions f,, ..., f,, in # such that minjsn(Q(f - f})z)l/2 <t YfeF Nye,Q,7) =

if no such n exists,

The log of N,(e, Q, #) is referred to as the L%(Q) e-entropy of 7. Let @ denote the class of all
probability measures @ on 7#/that concentrate on a finite set. The following entropy/cover num-

ber condition was introduced in Pollard (1982):

DEFINITION: A class # of real functions defined on 7#satisfies Pollard’s entropy condition if

¢y 3‘2‘33[1"8 wlder)™. o, 7)) e < =,

where F is some envelope function for 7, i.e. F is a real function on %¢ for which [f(*)| s F(+)

Vf €7

As ¢ | 0, the cover number Nz(e(QFz)m, 0, F ) increases. Pollard’s entropy condition
requires that it cannot increase too quickly as ¢ | 0. This restricts the complexity/size of #and
does so in a way that is sufficient for stochastic equicontinuity given suitable moment and tem-
poral dependence assumptions. In particular, the following three assumptions are sufficient for

stochastic equicontinuity.

ASSUMPTION A: A/ satisfies Pollard’s entropy condition with some envelope M.

ASSUMPTION B: Iim,_, j%EITEJ\—/-!Z“?'(I/!/',) < o for some & > 0, where M is as in Assumption A.
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ASSUMPTION C: {W,:t < T, T > 1} is an m-dependent triangular array of rv’s.

THEOREM 1 (Pollard): Under Assumptions A-C, {v{(*) : T 2 1} is stochastically equicontinuous

with p given by (4.1).

COMMENTS: 1. Theorem 1 is proved using a symmetrization argument. In particular, one
obtains a maximal inequality for v{t) by showing that sup ., |v4(t)| is less variable than
suptEH%EIo,m(W,, t)|, where {o, : ¢ < T} are iid rv’s that are independent of {W,: ¢ < T}
and have Rudemacher distribution (i.e., g, equals +1 or -1, each with probability 1/2). Condi-
tional on {W,} one performs a chaining argument that relies on Hoeffding’s inequality for tail
probabilities of sums of bounded, mean zero, independent rv’s. The bound in this case is small
when the average sum of squares of the bounds on the individual rv’s is small. In the present
case, the latter is just Tl_Elez(W,, t). The maximal inequality ultimately is applied to the
empirical measure constructed from differences of the form m(W,, t;) - m(W,, t,) rather than
to just m(W,, t). In consequence, the measure of distance between m(:, t{) and m(:, 1,) that
makes the bound effective is an LZ(PT) pseudometric, where Py denotes the empirical distribu-
tion of {W, : ¢t < T}. This pseudometric is random and depends on T, but is conveniently domin-
ated by the largest L2(Q) pseudometric over all distributions @ with finite support. This explains
the appearance of the latter in the definition of Pollard’s entropy condition. To see why
Pollard’s entropy condition takes the precise form given above, one has to inspect the details of
the chaining argument. The interested reader can do so, see Pollard (1990, Sec. 3).

2. When Assumptions A-C hold, 7 is totally bounded under the pseudometric p provided
p is equivalent to the pseudometric p* defined by p*(7q, 15) = li_mN_I[%ZTE(m(Wr, 1)
-m(W, 12))2]10. By equivalent, we mean that p*(t;, 1) > Cp(t}, T3) Vty, T4 € 7 for some
C > 0. {p*(ty, 15) < p(ty, T5) holds automatically.) Of course, p equals p”* if the rv’s W, are
identically distributed, The proof of total boundedness is analogous to that given in the proof

of Theorem 10.7 in Pollard {1990).

Combinatorial arguments have been used to establish that certain classes of functions, often

referred to as Vapnik—éervonenkis (VC) classes of one sort or anot.her, satisfy Pollard’s entropy
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condition, see Pollard (1984, Ch. 2; 1990, Sec. 4) and Dudley (1987). Here we consider the most
important of these VC classes for applications (type I classes below) and we show that several
other classes of functions satisfy Pollard’s entropy condition. These include Lipschitz functions
indexed by finite dimensional parameters (type II classes) and infinite dimensional classes of
smooth functions (type III classes). The latter are important for applications to semiparametric
and nonparametric problems because they cover realizations of nonparametric estimators (under
suitable assumptions). .

Having established that Pollard’s entropy condition holds for several useful classes of func-
tions, we proceed below to show that functions from these classes can be "mixed and matched,”
e.g., by addition, multiplication, and division, to obtain new classes that satisfy Pollard’s entropy
condition. In consequence, one can routinely build up fairly complicated classes of functions that
satisfy Pollard’s entropy condition. In particular, one can build up classes of functions that are
suitable for use in the examples above.

The first class of functions we consider are applicable in the non-differentiable M-estimator

Examples 1 and 2, see Section 3.2 above.

DEFINITION: A class # of real functions on %/ is called a type I class if it is of the form
(@) F={f:fw)y =wE Vwe W for some E € ¥ cR} or (b) 7 = {f:f(w) = h(w'})
Y e Fforsomef e ¥ < Rk, h € V}}, where V. is some set of functions from R to R each with

total variation less than or equal to K < .

Common choices for h in (b) include the indicator function, the sign function, and Huber
y-functions, among others.

For the more knowledgeable reader (concerning empirical processes), we note that it is
sometimes useful to extend the definition of Type I classes of functions to include various classes
of functions called VC classes. By definition, such classes include (i) classes of indicator func-
tions of VC sets, (ii) VC major classes of uniformly bounded functions, (iif) VC hull classes,

(iv) VC subgraph classes, and (v) VC subgraph hull classes, where each of these classes is as
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The second class of functions we consider contains functions that are indexed by a finite

dimensional parameter and are Lipschitz with respect to that parameter:

DEFINITION: A class # of real functions on #/is called a type II class if each function f in #
satisfies: f(*) = f(:, ) for some t € 7] where 7 is some bounded subset of Euclidean space

and f(-, t) is Lipschitz in 7, ie.,
(4.3) lf(', Tl) - f(', Tz)l .S B(')itl = Tzl vtl, Tz c7T

for some function B(*) : #/~ R.

The third class of functions we consider is an infinite dimensional class of functions that is
useful for semiparametric and nonparametric applications such as Examples 5 and 6. This class
is more complicated to define than Type I and II classes. The reader may wish to skip this sec-
tion on first reading and move ahead to Theorem 2.

The third class of functions contains functions that depend onw = (w_, w,;)' only through
a subvector w,, that has dimension k, < k. The functions are smooth on a restricted subset of 7/
and are equal to a constant elsewhere. Define %/ = {w, € R . I, s.t. (W), wi) € #A. For

w, h € RK, we write w = (w!, w}) and h = (h, h})'.

DEFINITION: A class # of real functions on %#is called a type 111 class if

(i) each f in # depends on w only through a subvector w, of dimension k,, < k,

(ii) for some real number g > k_/2, some constant C < =, and some set ##,*, which is a subset
of 7/, and is a connected compact subset of Rk", each f € 7 satisfies the smoothness condition:

VYw € #/and w+h € %,

lg]
foweh) = 3 -1_'Bv(ha, w,) + R(h, w,) and
(4.4) v=0 ¥

R(ha’ wa) < Cihalq ’

where B, (h,w,) is homogeneous of degree v in h, and (g, C, #/,") do not depend on f, w, or A,

(i) for some constant K and all f € # f(w) = K W € ##/such that w, € 94, - %",
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where B, (h,w,) is homogeneous of degree v in b, and (g, C, 94,") do not depend onf, w, or k,

(iii) for some constant K and all f € 7, f(w) = K Ww € #/such that w, € #/ - %",

Typically the expansion of f(w+h) in (4.4) is a Taylor expansion of order [g] and the

!
function B,(h, w,) is the v-th differential of f at w, ie. B,(h,w,) =Z, ———
vy an.

Ff(w) vy

v

k
- ko hak:’ where I, denotes the sum over all ordered k,-tuples (v, ..., vkn) of
vy k

By o
nonnegative integers such that v, + - + Ve, =V» Wg = (L ...,wak.)', and h = (h,y, ...,hakn)’.

Sufficient conditions for condition (ii) above are: (a) for some real numberqg > k,/2,f € 7
has partial derivatives of order [g] ob #* = {w € #/:w, € %"}, (b) the [g]-th order partial
derivatives of f satisfy a Lipschitz condition with exponent g-[q] and some Lipschitz constant C*
that does not depend on f Vf € %, and (c) %#," is a convex compact set.

The envelope of a type III class #can be taken to be a constant function, since the functions
in # are uniformly bounded in absolute value over w € #/and f € 7.

Type III classes can be extended to allow %# to be a finite union of connected compact
subsets of Rk". In this case, (4.4) only needs to hold ¥w € 9#/and w+h € %/such that w, and
w, + h, are in the same connected set in 74",

In applications, type III classes of functions typically are classes of realizations of nonpara-
metric function estimates, Since these realizations usually depend on only a subvector W,, of
W, = (W, Wl;:)" it is advantageous to define type III classes to contain functions that may
depend on only part of W,, By "mixing and matching" functions of type III with functions of
types I and II (see below), classes of functions are obtained that depend on all of w.

In applications where the subvector W,, of W, is a bounded rv, one may have #/* = W,.
In applications where W, is an unbounded rv, %+, must be a proper subset of #/, for 7 to be
a type III class. A common case where the latter arises in the examples of Andrews (1993b) is
when W, is an unbounded rv, all the observations are used to estimate a nonparametric function

tg(w,) forw, € %/, and the semiparametric estimator only uses observations W, such that W,

is in a bounded set 7#,*. In this case, one sets the nonparametric estimator of ty(w,) equal to
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THEOREM 2: If #is a class of functions of type 1, II, or 111, then Pollard’s entropy condition (4.2)
(i.e. Assumption A) holds with envelope F() given by 1 V supreAf()L 1V supseAf('}| V B(:), or

1V supg 4Af()|, respectively, where V is the maximum operator.

COMMENT: For type I classes, the result of Theorem 2 follows from results in the literature such
as Pollard (1984, Ch. IT) and Dudley (1987) (see the Appendix for details). For type II classes,
Theorem 2 is established directly. It is similar to Lemma 2.13 of Pakes and Pollard (1989). For
type III classes, Theorem 2 is established using uniform metric entropy results of Kolmogorov
and Tihomirov (1961).

We now show how one can "mix and match" functions of types I, II, and III to obtain a wide
variety of classes that satisfy Pollard’s entropy condition (Assumption A). Let & and &* be
classes of r x s matrix-valued functions defined on 7/ with scalar envelopes G and G* respec-
tively (e, G: #/ - Rand g;()| <G() Vi=1,.,r, %=1 .,5 ¥ €. Letg andg"
denote generic elements of ¢ and ¢*. Let % be defined as & is, but with sxu-valued functions.
Let h denote a generic element of % We say that a class of matrix-valued functions &, &*, or
4 satisfies Pollard’s entropy condition or is of type I, II, or III if it is element by element for
each of the rs or su elements of its functions.

Let gog" ={g+2"t (={g+2':geG2 €g™)), o =1{gh}, 6Vg* =1{gVg'}
GhG = {g A g*}, and |¢| = {|g|}, where V, A, and || denote the element by element
maximum, minimum, and absolute value operators respectively. Ifr = s and g(w) is non-singular
vwe#and g eg, let ¢1={g'}. Let Apin() denote the smallest eigenvalue of the

matrix -,

THEOREM 3: If G, &°, and H satisfy Pollard’s entropy condition with envelopes G, G*, and H,
respectively, then so do each of the following classes (with envelopes given in parentheses): ¢ v "
(GVGY), e (G+GYH, ¢ (GVDHHVL),eVEF (GVGY, 6N g (GV G*), and
|G| (G). If in addition r = s and &' has a finite envelope G, then &' also satisfies Pollard’s

entropy condition (with envelope (G V I)ZG2 )
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|G| (G). If in addition r = s and G~ ! has a finite envelope G, then ¢! also satisfies Pollard’s

entropy condition {with envelope (G V 1)26'?2 )

COMMENTS: 1. The stability properties of Pollard’s entropy condition given in Theorem 3 are
quite similar to stability properties of packing numbers considered in Pollard (1990).
2.Ifr = s and inf, . inf, cpy Ayin(8(W)) > O, then & ! has an envelope that is uniformly

bounded by a finite constant.

4.2, Examples
We now show how Theorems 1-3 can be applied in the Examples of Section 3 to obtain

stochastic equicontinuity of v{*).

EXAMPLE 1 (cont.): By Theorems 1-3, the following conditions are sufficient for stochastic

equicontinuity of v,{*) in this example:
(1) {(Y, X)) : t = 1} is an m-dependent sequence of rv’s.

il EEETE!LXllz*6 < = for some & > 0.
T 1 4

T-x
(iii) {¥,(-, t) : T € 7} satisfies Pollard’s entropy condition with envelope
(4.5)
Iy 1 T +*
sup|y,(+, )| and km -EIE(IIX,F LI Dsup |[y(W,, 1)12‘6 <
1e7 T-= T te7

for some 8 > 0,
(iv) ¢4() is a function of bounded variation.

Sufficiency of conditions (i)-(iv) for stochastic equicontinuity of v(-) is established as
follows: The sets {g : g(w) = ¢(y - x't) forsome t € 7} and {h : h(w) = x} are type I classes
with envelopes C, and lx|, respectively, for some constant C; < ~, and hence satisfy Pollard’s
entropy condition by Theorem 2. This resuit, condition (iii), and the &% result of Theorem 3
show that 4/ satisfies Pollard’s entropy condition with envelope (k| V 1)(sup_.A¥,(w, t)| V 1).
Stochastic equicontinuity now follows from Theorem 1, since Assumption B is implied by con-

ditions (11) and (iii}.
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For the particular M-estimators considered in Example 1 above, condition (iv) is always
satisfied and condition (iii) is automatically satisfied given (ii) whenever ¥, =1 or y,(w, 1)
=1(x't > 0). When §y(w, t) =y -x't, §yy(w, 1) = 10"t > O)[(y - x't) Ax't], or
Yy(w, 1) = 1y < 2't)(y - x't), condition (iii) is satisfied provided 7 is bounded and
Iy, jl_zf[E|U,|2“" + EIXI**® + EJUX,?**) < = for some & > 0. This follows from
Theorem 3, since {1{x't > 0):t e 7h {y -x't:1 € 7}, {x't: ¢t € 7}, and {1y < '1) :
T € 7} are type I classes with envelopes 1, |u| + kefsup At - tol Iklsup_,ltl, and 1,

respectively, where u = y - x'z,,

EXAMPLE 2 (cont.): In the method of simulated moments example, the following conditions are

sufficient for stochastic equicontinuity of v4(-):

0 {D, Z, Y, ...Y,) : t 2 1} is an m-dependent sequence of 1v’s,

(i) {g(*, ) : T € 7} 1is a type II class of functions with Lipschitz function

4.6
(“5) B(9) that satisfies Iim %EIEBL"’(Z‘) + Esuplg(Z, <) I2+a] < w
T-= te7T

for some & > 0,

Note that condition (ii) holds if g(w, t) is differentiable in t Yw € % Vr € 7, 7is open, and
Lmy_, %EI[E suprey.ll-g_:a-'g(zt, 1:)||2"6 + E sup_.1g(Z,, 1)2*5] < = for some § > 0,

Sufficiency is established as follows: Classes of functions of the form {1((z; - z))'(B(7)
+ A(r)yj) 2 0) : © € 7 < RP} are type I classes with envelopes equal to 1 (by including products
zy; and zy; as additional elements of w) and hence satisfy Pollard’s entropy condition by
Theorem 2. {g(-, t) : © € 7} also satisfies Pollard’s entropy condition with envelope 1 V
sup.Ag(:, )| V B(*) by condition (ii) and Theorem 2. The &% result of Theorem 3 now
implies that 4 satisfies Pollard’s entropy condition with envelope 1 V sup__,lg(-, ©)| V B(*).
Stochastic equicontinuity now follows by Theorem 1.
EXAMPLE 5 (cont.): By applying Theorems 1-3, we find the following conditions are sufficient
for stochastic equicontinuity of v{(:) in the WLS/PLR example. With some abuse of notation,
let t;(w) denote a function on #/that depends on w only through the k -subvector - and equals

rj(z) above forj = 1, 2, 3. The sufficient conditions are:
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(i) {(Y, X,. Z,) : t 2 1} is an m-dependent identically distributed sequence of 1v’s,
(ii) ETY, - X,'8,12*® + EWX,1>*® + E\(Y, - X/68p)X,’*® < = for some 8 > 0.

(i) 7= {r: 1t =(rp Tp T3h T € 7 forj =1, 2,3}, 7 is a type III class of

J
4.7) )
R’i-valued functions on %/ < R that depend on w = (y, x’, 2') only through

the k,-vector z for j=1,2,3, where py =1, p=p, and p3=1,

and 7; c {r: inf |t3(w)| 2 ¢} for some e > 0.
wew/

The set %/,* in the definition of the type III class 7; equals Z* in this example forj = 1, 2, 3.
Since Z* is bounded by condition (iii), conditions (i)-(iii) can be satisfied without trimming only
if the rv’s {Z, : t > 1} are bounded.

Sufficiency of conditions (i)-(iii) for stochastic equicontinuity is established as follows: Let
hiw) =y - x'8, and h,(w) = x. By Theorem 2, {£}, {h;}, {h;}, and 7; satisfy Pollard’s en-
tropy condition with envelopes 1, |#,|, |k,|, and C;, respectively, for some constant C; € {1, o),
forj =1, 2,3. Bythe g*‘ result of Theorem 3, so does {1/t5 : T3 € 73} with envelope CYe2,
By the 6% and ¢ & &* results of Theorem 3 applied several times, 4/ satisfies Pollard’s entropy
condition with envelope (|iy| V 1)Cy + ({hy] VI)Cs + ([hy] V 1)(|hy| V 1)Cq for some
finite constants C,, C, and C,. Hence, Theorem 1 yields the stochastic equicontinuity of v{*),
since (ii) suffices for Assumption B.

Next, we consider the conditions P(f € 7) - 1 and ¥ £, 1 of (3.36). Suppose (i) ’rj(z)
is a nonparametric estimator of t,y(z) that is trimmed outside Z* to equal zero forj = 1, 2 and
one forj = 3, (ii) 2* is a finite union of convex compact subsets of Rk", (iii) © j(z) and its partial
derivatives of order < [¢] +1 are uniformly consistent overz € Z* for © jo(=) and its correspond-
ing partial derivatives, forj = 1, 2, 3, for some ¢ > k_/2, and (iv) the partial derivatives of order
[q] + 1 of 1j(2) afe uniformly bounded over = € 2* and inf _,. A;(t30(z)) > 0. Then, the
realizations of t(z), viewed as functions of w, lie in a type [II class of functions with probability
-1forj=1,23and % -2, 1y uniformly over Z (where ty(z) is defined forz € 2 - Z* to
equal zero forj = 1, 2 and one forj = 3). Hence, the above conditions plus (i) and (ii) of (4.7)

imply that conditions (i)-(iii) of (3.36) hold. If ;(z) is a kernel regression estimator for
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j =1, 2, 3, then sufficient conditions for the above uniform consistency properties are given in

Andrews (1990).

5. STOCHASTIC EQUICONTINUITY VIA BRACKETING

This section provides an alternative set of sufficient conditions for stochastic equicontinuity
to those considered in Section 4. We utilize a bracketing result of Ossiander (1987) for iid rv's
altered to encompass m-dependent rather than independent rv’s and extended as in Pollard
(1989) to allow for non-identically distributed rv’s. This result depends on a condition, that we
refer to as Ossiander’s entropy condition, that is based on how well the functions in 4/ can be
approximated by a finite number of functions that "bracket” each of the functions in 47/ The
bracketing error is measured by the largest L2(P,) distance over all distributions P, of W, for
t <T, T :>1 The main purpose of this section is to give primitive conditions under which
Ossiander’s entropy condition holds.

The results given here are particularly useful in three contexts. The first context is when 1
is finite dimensional and m(W,, t) is a non-smooth function of some nonlinear function of v and
W,. For example, the m(W,, 1) function for the LAD estimator of a nonlinear regression model
is of this form. In this case, it is difficult to verify Pollard’s entropy condition, so Theorems 1-3
are difficult to apply. The second context is semiparametric and nonparametric applications in
which the parameter t is infinite dimensional and is a bounded smooth function with an
unbounded domain. Realizations of smooth nonparametric estimators are sometimes of this
form. Theorem 2 above does not apply in this case. The third context is semiparametric and
nonparametric applications in which t is infinite dimensional; is a bounded smooth function on
one set out of a countable collection of sets; and is constant outside this set. For example, reali-
zations of trimmed nonparametric estimators with vanable trimming sets are sometimes of this
form.

The pseudometric p on 7 that is used in this section is defined by
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51)  p(ip 1) = sup [E(m(W, 7)) - m(W, )" .
t<N.N:1

We adopt the following notational convention: For any real function f on 'W,(E [f(W,) }P)Up

= sup,, W) it p = =
An entropy condition analogous to Pollard’s is defined using the following bracketing cover

numbers:

DEFINITION: For any ¢ > 0 and p € [2, «|, the L? bracketing cover number Nﬁ(s, P, 7) is the
smallest value of n for which there exist real functions ay, ..., @, and b,, ..., b, on #/such that for

1/p
) < £, where

each f € 7 one has |f - a;| < b; for some j < n and max;_, sup,sT_Tzl(Ebf(W,)
{W,:t <T, T 2 1} has distribution determined by P.
The log of Ng(s, P, ) is referred to as the LP bracketing e-entropy of 7. The following

entropy condition was introduced by Ossiander (1987) (for the case p = 2):

DEFINITION: A class # of real functions on %#satisfies Ossiander’s L? entropy condition for some
pel2, i
12
52 | 1(1og NG, P, f')) de < =,
0 P

As with Pollard’s entropy condition, Ossiander’s entropy condition restricts the complex-
ity/size of # by restricting the rate of increase of the cover numbers as e | 0.

Often our interest in Ossiander’s L? entropy condition is limited to the case where p = 2,
as in Ossiander (1987) and Pollard (1989). To show that Ossiander’s L? entropy condition holds

for p = 2 for a class of products of functions ¢%, however, we need to consider the case p > 2.

The latter situation arises quite frequently in applications of interest.
ASSUMPTION D: 41 satisfies Ossiander’s L? entropy condition with p = 2 and has envelope M.

THEOREM 4: Under Assumptions B-D (with Min Assumption B given by Assumption D rather than
Assumption A), {vy{(*): T 2 1} is stochastically equicontinuous with p given by (5.1) and 7'is

totally bounded under o,
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COMMENTS: 1. The proof of this Theorem follows easily from Theorem 2 of Poliard (1989) (as
shown in the Appendix). Pollard’s result is based on methods introduced by Ossiander (1987).
Ossiander’s result, in turn, is an extension of work by Dudley (1978).

2. As in Section 4, one establishes stochastic equicontinuity here via maximal inequalities.
With the bracketing approach, however, one applies a chaining argument directly to the empir-
ical measure rather than to a symmetrized version of it. The chaining argument relies on the
Bernstein inequality for the tail probabilities of a sum of mean zero, independent rv’'s. The
upper bound in Bernstein’s inequality is small when the LZ(P,) norms of the underlying rv’s are
small, where P, denotes the distribution of the t-th underlying rv. The bound ultimately is
applied with the underlying rv’s given by the centered difference between an arbitrary function
in #¢ and one of the functions from a finite set of approximating functions, each evaluated at W,
In consequence, these functions need to be close in an L2(P,) sense for all ¢ < T for the bound
to be effective, where P, denotes the distribution of W, This explains the appearance of the
supremum Lz(Pf) norm as the measure of approximation error in Ossiander’s L? entropy condi-
tion,

We now provide primitive conditions under which Ossiander’s entropy condition is satisfied.
The method is analogous to that used for Pollard’s entropy condition. First, we show that
several useful classes of functions satisfy the condition. Then, we show how functions from these

classes can be mixed and matched to obtain more general classes that satisfy the condition.

DEFINITION: A class # of real functions on % is called a type IV class under P with index
p € [2, =] if each function f in 7 satisfies: f(-) = f(>, t) for some t € 7, where 7 is some

bounded subset of Euclidean space, and

lp
(5.3) sup |E  sup [f(W, 1;) - (W, ©)IF < C8Y
e<T.T21 tyidry-tl<d

Vvt € 7and ¥ > 0 in a neighborhood of 0, for some finite positive constants C and §, where

{W,:t < T, T 2 1} has distribution determined by P.*
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Condition (5.3) is an L? continuity condition that weakens the Lipschitz condition (4.3) of
type II classes (provided sup, sm—zI(JEB”(PI/',))UP < «), The L? continuity condition allows for
discontinuous functions such as sign and indicator functions. For example, for the LAD esti-
mator of a nonlinear regression model one takes f(W,, 1) = sgn(¥, - g(X,, ©)) arijg(X » 1) for dif-
ferent elements 7; of <. Under appropriate conditions on (Y,, X,) and on the regression function

g(* *), the resultant class of functions can be shown to be of type IV under P with index p.

EXAMPLE 3 (cont.): In this test of variable relevance example, 4 is a type IV class withp = 2
under the following condition:

54)  sup EU? sup  [|h(Z, t) - h(Z, D) s C8Y

rz1 il -vl<d

for all © € 7, for all & > 0, and for some finite positive constants C and . Condition (5.4) is
easy to verify if h(Z,, t) is differentiable in r. By a mean value expansion, (5.4) holds if
sup,.; E|U, sup, ., %h(z,, 1)}I* < wand 7is bounded. On the other hand, condition (5.4) can
be verified even if h(Z,, ) is discontinuous in t. For example, suppose h(Z,, t) = 1(h*(Z, 7)
< 0) for some real differentiable function h*(Z,, t). In this case, it can be shown that condition
(5.4) holds if sup,,, E\U |>*® < = for some & > 0, sup,,, supteq.ﬂéa;h'(zt, )} < C; < = for
some constant Cy, and h*(Z,, 7) has a (Lebesgue) density that is bounded above uniformly over

T €T

EXAMPLE 4 (cont.): #/is a type IV class with p = 2 in this cross-sectional constancy example
under the same conditions as in Example 3 with U, of Example 3 replaced by U, -a%g(Xr, 310)
1

and with h(Z,, t) taken to be of the non-differentiable form 1(h*(Z,, ©) < 0) discussed above.

Note that the conditions placed on a type IV class of functions are weaker in several respects
than those placed on the functions in Huber’s (1967, Lemma 3, p. 227) stochastic equicontinuity
result. (Huber’s conditions N-2, N-3(i}, and N-3(ii} are not used here, nor is his independence
assumption on {W,}.) Huber’s result has been used extensively in the literature on M-estimators.

Next we consider an analogue of type Il classes that allows for uniformly bounded functions

that are smooth on an unbounded domain. (Recall that the functions of type III are smooth
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only on a bounded domain and equal a constant elsewhere.) The class considered here can be
applied to the WLS/PLR Example 5 or the GMM/CMR Example 6. Define ¢/, as in Section 4
and letw = (w), w;)', h = (h}, h})', and W, = (W, W})".

DEFINITION: A class 7 of real functions on % is called a type V class under P with index
p €[2, « if

(i) each f in # depends on w only through a subvector w, of dimension &, < k,

(i) ##, is such that %/, n {w, € Rk' : w, | s r} is a connected compact set Vr > 0,

(iii) for some real numberg > k,/2 and some finite constants Cy, ..., C [aP C o each f € #satisfies

the smoothness condition: Yw € #/and w+h € %)

lal 4
fow+h) = 3 =B, (hy wo) + Rk, w,)
(5.5) v=0 V3

R(hg, wg) < Cglh,? , and |B,(h, w,)| s Gl I’ for v=0, .., [q] ,

where B, (h,, w_) is homogeneous of degree v in h, and (g, Cy, ..., Cq) do not depend on f, w, or
h,
(V) sup, .17, EIIW‘"I‘: < « for some { > pqgk /(2q - k,) under P.

In condition (iv) above, the condition { > =, which arises when p = =, is taken to hold if
{ =

Condition (ii) above holds, for example, if %/, = Rk" .

As with type III classes, the expansion of f(w+h) in (5.5) typically is a Taylor expansion and
B,(h,, w,) is usually the v-th differential of f at w. In this case, the third condition of (5.5) holds
if the partial derivatives of f of order < [g] are uniformly bounded.

Sufficient conditions for éondition (iii) above are: (a) for some real numbergq > k,/2, each
f € Fhas partial derivatives of order [g] on 7¢/that are bounded uniformly overw € %/and f € 7,
(b) the [g]-th order partial derivatives of f satisfy a Lipschitz condition with exponent g - [¢] and
some Lipschitz constant C,, that does not depend on f, and (c) 7 is a convex set.

The envelope of a type V class # can be taken to be a constant functicn, since the functions

in # are uniformly bounded over w € %/and f € 7.
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Type V classes can be extended to allow %, to be such that 7, n {w, € Rk" D w,l < 1}
is a finite union of connected sets Vr > 0. In this case, (5.5) only needs to hold ¥w € %/and
w+h € #such that w, and h, are in the same connected setin %}, N {w, : Iw,| s r} for some
r> 0

In applications, the functions in type V classes usually are the realizations of nonparametric
function estimates. For example, nonparametric kernel density estimates for bounded and
unbounded rv’s satisfy the uniform smoothness conditions of type V classes under suitable
assumptions. In addition, kernel regression estimates for bounded and unbounded regressor
variables satisfy the uniform smoothness conditions if they are trimmed to equal a constant out-
side a suitable bounded set and then smoothed (e.g., by convolution with another kernel). The
bounded set in this case may depend on 7.

In some cases one may wish to consider nonparametric estimates that are trimmed (i.e., set
equal to a constant outside some set), but not subsequently smoothed. Realizations of such esti-
mates do not comprise a type V class because the trimming procedure creates a discontinuity.
The following class of functions is designed for this scenario. It can be used with the WLS/PLR
Example 5 and the GMM/CMR Example 6. The trimming sets are restricted to come from a

countably infinite number of sets {#/,;:j > 1}. (This can be restrictive in practice.)

DEFINITION: A class # of real functions on %/ is called a #ype VI class under P with index
pef2 i
(i) each f in # depends on w only through a subvector w, of w of dimension k, < k,

(ii) for some real number g > k,/2, some sequence {74,

itdz 1} of connected compact subsets

of R that lie in ), some sequence {Kj :j 2 1} of constants that satisfy sup;.¢ |Kj| < =, and
some finite constants Cy, ..., C[q], Cq, each f € # satisfies the smoothness condition; For some
integer J,

(a) f(w) = K; Ww € #/{or whichw, ¢ %, and

(b) vw € 9/and w+h € %/ for whichw, € %/ ; and w, + h, € 74,



39

lq] 1
f(w+h) = E --;Bv(ha, w,) + R(h,, w,) ,
(5.6) v=0 V!

R(h,, w,) < Cq!halq , and B (h,, w,)| < C W I’ for v =0, .. [q],

where B, (h,, w,) is homogeneous of degree v in h, and (g, {W{,j 1j 21}, Cg, vy C,4) do not

depend on f, w, or A,

(iti) sup, 71,1 EIW,I° < = for some { > pqk,/(2q - k,) under P,

(w) n(r) < K, exp(Ker) for some § < 2({/p and some finite constants K, K,, where n(r) is the

number of sets %/; in the sequence {#/;
Conditions (i)-(iii) in the definition of a type VI class are quite similar to conditions used

:j 2 1} that do not include {w, € %, : jw,| < r}.

above to define type III and type V classes. The difference is that with a type VI class, the set
on which the functions are smooth is not a single set, but may vary from one function to the next
among a countably infinite number of sets,

Condition {iv) restricts the number of #4,; sets that may be of a given radius or less. Suffi-
cient conditions for condition (iv) are the following: Suppose Wy = Awg € #, 1w, < n()}
for all j sufficiently large, where n(-) is a nondecreasing real function on the positive integers
that diverges to infinity as j - =, For example, {'Waj :j 2 1} could contain spheres, ellipses,

and/or rectangles whose “"radii" are large for large j. If

(57 n() = D*(log ™
for some positive finite constant D*, then condition (iv) holds. -Thus, the "radii" of the sets
{#}; :j 2 1} are only required to increase logarithmically for condition (iv). This condition is
not too restrictive, given that the number of trimming sets {‘Waj} is countable. More restrictive
is the latter condition that the number of trimming sets {#4,;} is countable.

As with type III and type V classes, the envelope of a type VI class of functions can be taken
to be a constant function.

The trimmed kernel regression estimators discussed in Andrews (1990) provide examples of
nonparametric function estimates for which type VI classes are applicable. For suitable trimming

sets {‘Wan :j > 1} and suitable smoothness conditions on the true regression function, one can
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specify a type VI class that contains all of the realizations of such kernel estimators in a set
whose probability - 1.

The following result establishes Ossiander’s L? entropy condition for classes of type II-VL:

THEOREM 5: Letp € [2, =|. If Fis a class of functions of type Il with S“P:ST,Tal(EBP (W‘))UP < %,
of type 111, or of type IV, V, or VI under P with index p, then Ossiander’s LP entropy condition (5.2)
holds (with envelope F(-) given by Supy, AR

CoMMENTS: 1. To obtain Assumption D for any of the classes of functions considered above,
one only needs to consider p = 2 in Theorem 5. To obtain Assumption D for a class of the
form &% where & and # are classes of types II, III, IV, V, or VI, however, one needs to apply
Theorem 5 to & and % for values of p greater than 2, see Theorem 6 below.

2. Theorem 5 covers classes containing a finite number of functions, because such functions
are of type IV under any distribution P and for any index p € [2, =]. In particular, this is true
for classes containing a single function. This observation is useful when establishing Ossiander’s
L? entropy condition for classes of functions that can be obtained by mixing and matching func-

tions from several classes, see below.

We now show how one can "mix and match” functions of types II-VI. Letg, ¢*, # g e ¢*,
etc., be as defined in Section 4, We say that a class of matrix-valued functions &, &, or # satis-
fies Ossiander’s L? entropy condition or is of type II, III, IV, V, or VI if it does so, or if it is,
element by element for each of the rs or su elements of its functions. We adopt the convention

that Ap/(A+p) = p € (0, =] if A = = and vice versa.

THEOREM 6: (a) If G and §” satisfy Ossiander’s L? entropy condition for some p € [2, =], with
envelopes G and G*, respectively, then so do each of the following classes (with envelopes given in
parentheses): ¢u G (GVG*), o g (G+G*), gVE (GVGY, ¢hg* (G VG, and
|&| (G). If in addition r = s and inf, . ; inf, 5y Apin(8(W)) = A, for some &, > 0, then ¢ 1also
satisfies Ossiander’s LP entropy condition (with envelope 1/4 ).

(b) The class G satisfies Ossiander’s L entropy condition with p equal to ¢ € [2, =] and envelope
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sGH, if (i) ¢ and 7 satisfy Ossiander’s L? entropy condition with p equal to ) € (a, =] and p equal

to p € (&, =], respectively, (ii) Ap/(A+1) > e, and (iii) the envelopes G and H of & and # satisfy
i /i 1/

sup,.7. 1 (EG (W) < = and sup, g1 ([EH* W)Y < =.

EXAMPLE 6 (cont.): Theorems 4-6 can be used to verify stochastic equicontinuity of v{*) and
total boundedness of 7" in the GMM/CMR example. With some abuse of notation, let A(w) and
Q(w) denote functions on %/’whose values depend on w only through the k -vector x and equal
A(x) and Q(x) respectively. Similarly, let y(w, 8;) denote the function on %#that depends on w

only through z and equals §(z, 9)). The following conditions are sufficient:
(i {(Z, X} : ¢t = 1} is an m-dependent sequence of 1v’s,

(if) su{) EW(Z, 0p)I° < =.
iz

(5.8) (i) 7={t:t=A'Q ! forsome A’ € Dand Q € 4}, where © and 4 are
type V or type VI classes of functions on %/ c RK with index p=©6

whose functions depend on w only through the k -vector x , and

A< {Q: inf A, (QW)) > ¢} forsome £ > 0.
we

Note that condition (iii) of (5.8) includes a moment condition on X, : sup,,; EIX,I° < « for
some { > 6gk,/(2q - k,).

Sufficiency of conditions (i)-(iii) for stochastic equicontinuity and total boundedness is
established as follows: By Theorem 5, {y(, 0;)},2, and 4 satisfy Ossiander’s LP entropy
condition with p = 6 and with envelopes |y (-, 0,)|, C;, and C,, respectively, for some finite
constants C,, C,. By the g~ ! result of Theorem 6, so does 4~} with some constant envelope
C3 < = By the g% result of Theorem 6 applied with & = 3 and 4 = p = 6, 247! satisfies
Ossiander’s L? entropy condition withp = 3 and some constant envelope C, < . By this result,
condition (ii), and the &% result of Theorem 6 applied with @ = 2, A = 3, 1 = 6, ¢ = 297},
and % = {y(-, 8y)}, 4 satisfies Ossiander’s L? entropy condition with p = 2 and envelope
Cs|¥ (", 8p)| for some constant C5 < = Theorem 4 now yields stochastic equicontinuity, since

condition (ii) is sufficient for Assumption B.
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Condition (iii) above covers the case where the domain of the nonparametric functions is
unbounded and the nonparametric estimators A and  are not trimmed to equal zero outside a
single fixed bounded set, as is required when the symmetrization results of Section 4 are applied.
As discussed above, nonparametric kernel regression estimators that are trimmed and smoothed
or trimmed on variable sets provide examples where condition (iii) holds under suitable assump-
tions for realizations of the estimators that lie in a set whose probability -~ 1. For example,
Andrews (1990) provides uniform consistency on expanding sets and L2 consistency results for
such estimators, as are required to establish that P(f € 7) - 1 and i £ ; (the first and
second parts of (3.36)) when stochastic equicontinuity is established using conditions (i)-(ii)

above.

6. CONCLUSION

This paper illustrates how empirical process methods can be utilized to find the asymptotic
distributions of econometric estimators and test statistics. The concepts of empirical processes,
weak convergence, and stochastic equicontinuity are introduced. Primitive sufficient conditions
for the key stochastic equicontinuity property are outlined. Applications of empirical process
methods in the econometrics literature are reviewed briefly. More detailed discussion is given
for three classes of applications: M-estimators based on non-differentiable criterion functions,
tests of hypotheses for which a nuisance parameter is present only under the alternative

hypothesis, and semiparametric estimators that utilize preliminary nonparametric estimators.



APPENDIX

PROOF OF THEOREM 1: Write v4{*) as the sum of m empirical processes {vn-(-) : T 2 1} for
j=1, .., m, where "7}'(') is based on the independent summands {m(W,, -) 1 ¢t =j + sm,s = 1,
2, ...}. By standard inequalities it suffices to prove the stochastic equicontinuity of {vTj(-) : T
> 1} for each j.

The latter can be proved using Pollard’s (1990) proof of stochastic equicontinuity for his

functional CLT (Theorem 10.7). We take his functions f,

ni

(w,f) to be of the formm(W,, t)/{T.
We alter his pseudometric from limN_m[%BfE Im(W, ;) - m(W, rz)lz]m to that given in
(3.1). Poliard’s proof of stochastic equicontinuity relies on conditions (i) and (iii)-(v) of his
Theorem 10.7. Condition (ii) of Theorem 10.7 is used only for obtaining convergence of the
finite dimensional distributions, which we do not need, and for ensuring that his pseudometric
is well-defined. Our pseudometric does not rely on this condition. Inspection of Pollard’s proof
shows that any pseudometric can be used for his stochastic equicontinuity result (although not
for his total boundedness result) provided his condition (v) holds. Thus, it suffices to verify his
conditions (i) and (iii)-(v).

Condition (i) requires that the functions {m(W,, t)/ VT 1t < T, T 2 1} are "manageable.”
This holds under Assumption A because Pollard’s packing numbers satisfy

(A1) sup D(ela o Z(w)|, ¢ 0 7,,) s sup Ny(ef2, Q, ) .
weln:laek, Qe

Conditions (iii) and (iv) are implied by Assumption B. Condition (v) holds automatically given

our choice of pseudometric. O

PROOF OF THEOREM 2: Type I classes of form (a) satisfy Pollard’s entropy condition by
Lemmas I1.28 and I11.36(ii) of Pollard (1984, pp. 30 and 34). Type I classes of form (b) satisfy
Pollard’s entropy condition because (i) they are contained in VC hull classes by the proof of
Proposition 4.4 of Dudley (1987) and the fact that {f: f(w) = w'E Ww € %, £ € R*} is a VC

major class, see Pollard (1984, Lemma [1.18, p. 20), (ii} VC huli classes are contained in VC
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subgraph hull classes, and (iii) VC subgraph hull classes satisfy Pollard’s entropy condition by
Corollary 5.8 of Dudley (1987).

For classes of type II, consider the functions f(-, t¢), ..., f(’, t,), where ty, ..., T, are points
at the centers of disjoint cubes of diameter e(QFz)m/ (QBz)m whose union covers 7 (< R® for

some s > 1). Since
A w0, ©) - for)? < minloB?) “1e - <1 < o)
j=n jen

12 '
Nz(s(QFz) O, F ) is < the number of cubes above. By choice of the envelope F(:) =1V
172 172
supfeflf(-)l V B("), s(QFz) /(QBZ) > ¢, 5o the number of cubes is < Ce™® for some C > 0
and all @ € @ Thus, Pollard’s entropy condition holds with envelope F(-).

For classes of type III, Pollard’s entropy condition holds because

(A3)  sup Nz(e(QFz)m, 0, jf') < C exple ™) ve € 0, 1]
Qeq

for some C < = by Kolmogorov and Tihomirov (1961, Thm. XIII, p. 308). Since q > k,/2 by

assumption, Pollard’s entropy condition holds. O

PROOF OF THEOREM 3: For ¢ u &', we have

Nz(g’ Q’ g‘ u f) s Nz(s, Q$ g) + NZ(S’ Q’ g") ’ and SO,
(Ad)

12 172 172
NZ(E(Q(G A G*)z) ) Q’ 9‘ v g'.) £ NZ(E(QGZ) » Q’ g) + NZ(S(QG*Z) [ Qa g") )
where the second inequality uses the facts that Ny(e, Q, #) is nonincreasing in ¢, @(G V G*Y?
> QG?, and Q(G V G‘)2 2 QG*2. Pollard’s entropy condition follows from the second inequal-
ity of (A.4).
For ¢ @ ¢*, it suffices to suppose that r = s = |. As above, Pollard’s entropy condition

follows from the inequalities



NZ(S: Qs g‘ 8 g‘) £ Nz(!:/z, Qa g)Nz(slzv Q! g‘.) ’
(A.5)

Q(G + G"? > QG?*, and Q(G + G*)? > 0G'?,
where theflrstmequahtyholdsbecause min, _HU(g +g* -8 - 3k)2dQ) < mm,sn(j(g g])de)
+ mlnkgg(_[(g gk)de)

For g each element of gh is a finite union of products of scalar functions, and so, using
the result for ¢ @ &, it suffices to suppose that r = s = ¥ = 1. For notational simplicity,
assume G =G V1and H=HVI Let Qg(-) = Q(-GX/QG? and Q,() = Q(H/QH?.
Note that O, Q) € @ Let n = Nz(s(QHGz)m, Oy ;) and n* = Nz(c(QGH?')UZ, Q6 }J Let
g1 - 8y and hy, ..., h, , denote approximating functions in & and %; respectively, that correspond

to the cover numbers n and n*. We use gjhk to approximate gh forg € Gand h € #:

min ([(eh -gh)%dQ)

jsnkznx
HOH?
(A6) ‘.I"‘"[Qsz‘(g“gf)zdtQ(Hz)” min| QG (h - h )21[0( Gz)
jen QH kzn oG
< (QGsz)me :
Thus, we get

wilocw?)”, 0. o - N{504G%", Qu 6o 5l0aH")", g #) and

sup NZ(E(QGZHZ)IIQ’ o, g}x)
Qeq

(A7) an N ( 0 Gz)l/Z 0 sun N e(Q Hz)lfz 0
< sup 2[ H x4 EQ 2[5 G » Qo> "j
= sup N,

Qe
toc?)"”, o, a]sup NZ[E(QHZ)W. 0, w] :
QeQ 2 Qe 2

Pollard’s. entropy condition follows from the latter inequality.

For ¢ V &7, it suffices to suppose r = s = 1. Pollard’s entropy condition follows from the

inequalities



Ny(e, Q, 6V G°) s Ny(e/2, Q, AN,(e/2, O, 6°)

Q(G VG"? 2 QG?, and Q(G VG")? : QG*?,

(A.8)

where the first inequality uses g V g* - g Vgl < g - gl + lg* - gx|- The proof for
§ A & is analogous (with the envelope still given by G V G* rather than G A G*). The result
for |g]| follows because ||g| - |a;|| < [g - 4j].

Lastly, consider 5~ ! Forg € &, let g! denote the ¢-th element of g, where ¢ = 1, ..., L and
L =1 Let Gy = {g': g € 6} and n, = No(e/2, Q, G)) for some @ € ¢ We claim that given

any £ > 0 and Q €  there exist functions gy, ..., g, in g with n < Hf'.ln, such that forallg € ¢

(A9) min l::lix{Q(g' - g;)z]m <e.

Jjen
To see this, note that by the assumption that & satisfies Pollard’s entropy condition, for each
12
. . . . ¢ 2)
¢ there exist real functions g,, ..., 8y, 1D g, such that for all g € ¢ min, SM'(Q(g gﬁ)
< ¢/2, Form the set g’* of all RL-valued functions whose ¢-th element is gy forsomej = 1, ...,

n,for ¢ = 1,.., L. The number of such functions is n* = 17y n,. The functions in §* are not

t=]
necessarily in . For each function g* in §* consider the L%(Q) e/2-ball in & centered at g*.
Take one function from each non-empty ball and let g,, ..., g, denote the chosen functions.
These functions satisfy the claim above.

If ¢ satisfies Pollard’s entropy condition with envelope G, it also does so with envelope
G V 1. For notational simplicity, suppose G = G V 1. Given Q € @, let §(-) = Q(-G*/QG*

)1/2

(e @), where G is the envelope of ¢!, Take e and Q in the claim above to equals(@ Gt

and O respectively. Thani f;here exist functions g,, ..., g, in ¢ such that

2 1.2 172
min_, maxu[Q(g'_g;) ] < &:(QG4 #* and n < IIi'_lNz[g(QGﬂ i, D, g’@] Letl, = (1,
... 1)’ {€ R") and let |-| denote the matrix of absolute values of the matrix -, For arbitrary

unit vectors b, ¢ € R, we have



me(bg c-bg c)2=me(bg‘(g -2 c)2

1<n j<n

L
(A10) < min QG lg; -], = min r*QT*Y z:mg' -8/ 1le™ ¢

jzn Jsen t=l m=l

< P0G* min max Q(g gj) PG40 GY° = 20GGH .

jen gL

Thus, Nz(z(QG4C 4)1/2, Q, ¢ ]) ins H{'_INZE(Q G‘)mlr‘, 0, g‘,] and

sup N( (QG‘G‘) , 0, 51 ) < sup HNZ[ (QG“) i, 0, g;@]
QEQ QEQ =1 2
(A.11)

s sup HNZ[ (ch) . Q, 50]

= sup HNZ{ (QG“) i, 0, 6, P,
€Q t=1

Qe o=1

The integral over £ € [0, 1] of the square root of the logarithm of the right-hand side (rhs) of
(A.11) is finite since ¢ satisfies Pollard’s entropy condition with envelope G = G V 1. Thus, ¢!

satisfies Pollard’s entropy condition with envelope (G V 1)?G2. O

PROOF OF THEOREM 4. Total boundedness of 7 under p follows straightforwardly from
Ng(e, P, #) < = Ve > 0. For stochastic equicontinuity of {v4{): T > 1}, by the same
argument as in the proof of Theorem 1, it suffices to prove the result when {W, : ¢t < T} are
independent rv’s. By Markov’s inequality and Theorem 2 of Pollard (1989), we have

Im P*( sup |vi{t)) - gr{ty)| > n)
T-x p(T1.t2)<6

< im E* sup vty - vp{t,)I/n
(A1) F g E R I v

< lim ﬁE EM(W)I(M(W) > \/_Ea)/n + ('I (log NE(e P, jr)) de/n
T-x
for some constant C < «, where 5 > 0 is a constant that does not depend on 7. The second

term on the right-hand side of (A.12) can be made arbitranly small by choice of & using

Assumption D. The first term is less than or equal to



(A13) 4 Tm -2 %_z:fEA_Jz*a(W,)l(ﬂ_l(Fﬂ) > VTEE," = 0

using Assumption B. Stochastic equicontinuity follows. O

PROOF OF THEOREM 5; It suffices to prove the result for classes of type III-VI, because a type
II class with suptS,,1.-21(}_3'BP(Wt))1’5P < = is a type IV class under P with index p.

First, we consider classes of type III. For given ¢ > 0, define the functions a;, b,
j = 1, .., n, of the definition of L? bracketing cover numbers as follows: (a) Yw € #/such that
w, € W, - W, let gq(w) = K and bi(w) =0 and (b) ¥w € #/such that w, € 7", let
{ajw):j=1,..n .} be the functions constructed by Kolmogorov and Tihomirov (1961, pp.
312-314) in their proof of Theorem XIV and let bj(w) = £ Yj. These functions satisfy the con-
ditions for LP bracketing cover numbers for all p € [2, «]. Hence, Ng(e, P, #)<n,
Ve € (0, 1], ¥ € [2, =]. The number n, of such functions is < C exple ™) Ve € (0, 1] for
some C < = by Kolmogorov and Tihomirov (1961, Thm. XIV). Since ¢ > k,/2 by assumption,
Ossiander’s entropy condition holds for all p € [0, =].

For a type IV class with index p, consider disjoint cubes in 7of diameter § = (/C)/¥. The
number N(e) of such cubes satisfies N(e) < C*e Y for some C* < », where d is the
dimension of 7. Let t; be some element of the j-th cubeliifn 7. Let a;() = f(:, 7;) and b;(")
= SuPe )< (5 7) - a(-)|. By (4.3), S“P:sT,Tzl[Ebf W) v
< N(e). Since Ll)(log N(=)Y2de < w, Ossiander’s LP entropy condition holds.

< C8¥ = ¢. Thus, N5(c, P, 7)

For a type V class with index p, let 2, = #/'n{w € Rk Iw,! < r}, let 7 denote the class
of functions # restricted to ##}, and let N (e, %/, #,) be the minimal number n of real functions

f1» -+ fy o1 % such that min, squEﬂVrlf(w) - fj(w)| < ¢ for each f € 7. We claim that

(A14)  N(e, P, 7) s No(o/2, Wy, Zio) »
where r(2) = Ce P for some constant C < = when p < = and r(e) = sup{jw,I: w € #}
(< «)ywhenp = =

Using the proof of Theorem XIV of Kolmogorov and Tihomirov (1961, pp. 312-314), it can

be seen that



-k. P, E
(A15)  log N(e, #gpy, Fpp) < Dr(e)ee ™ < D% (c q)

for some constants D, D* < =, where the second inequality holds only when p < =, When
p < = (A.14) and (A.15) combine to yield Ossiander’s L? entropy condition for # if
k,(p/C + 1/9)/2 < 1, or equivalently, if { > pgk,/(2q - k;) and q > k_/2, as is assumed. When
P = =, (A.14) and the first inequality of (A.15) combine to yield Ossiander’s L” entropy condi-
tion for # provided g > k,/2, as is assumed.

It remains to show (A.14). Forp = =, (A.14) follows immediately from the definition of
NB(-) and N_(-), since Wr(e) = 7/ and Fre) = # when p = =, Next, suppose p < =, For
n = N_(e/2, #,, 7,), define real functions aj, bj, j = 1, .., n on % as follows: On %/, take
{a;() :j = 1, .., n} to be the functions constructed by Kolmogorov and Tihomirov (1961, pp.
312-214) in their proof of Theorem XIV and let bj(-) =¢/2forj=1,..,n On % -9, take
a;(*) = 0 and take b;(*) = F forj = 1, .., n, where F is a constant for which sup,, 4 AfW)| s F
Vf € 7. Then, for each f € #, min, , |f - a;| < b; and

sup EB/(W,) = sup EM(W)UW, € %)) + sup EEF(W)I(W, € W - %))

tzT,Tz21 tzT,Tz:1 t<T,T>1
(A.16)

< (/2 + Pr¢ sup EfW,I° = (eR2Y + C*r7%,
t<T,T>1
where C* is defined implicitly. If we let r =r(e) = (ZPC (2P - 1))1/C5'P/ ., then
sup .7, EB](W,) < &P and (A.14) holds.

Last, we consider type VI classes of functions. First, suppose p < = We derive an upper
bound on Ng(e, P, 7) for arbitrary ¢ > 0. Letr, = Ce P for some C < = and let F be a
constant for which sup, ,Af(w)| < F ¥ € #. LetJ be the index of a set %4, that does not
include {w, € %, : |w,} <r,}. For functions f € # whose corresponding integer of part (ii) (of
the definition of type VI classes) is J, take the centering and e-bracketing functions {(a,, b)) :
¢ =1, .., n} (of the definition of L? bracketing cover numbers) as follows: (a) ¥ € 7/such
that |w,| > r,, let ay(w) = 0 and by(w) = F, (b) ¥w € #/such that |w,| <r, and w, ¢ %,

let a(w) = K; and b(w) = 0, and (c) ¥w € %/such that |w,| <r, and w_ € %;, let {a(w) :
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¢ = 1, .., n} be the functions constructed by Kolmogorov and Tihomirov (1961) in the proof
of their Theorem XIV and let b(w) = ¢/2 VI The number n,; of such functions is
<D, exp[Dzrl_:"'e ‘k"/q} by Theorem XIV of Kolmogorov and Tihomirov (1961), since {w : |w,]|
STy, Wy € Wyt © {w:w,l <r.}.

Next, for all functions f € # whose corresponding integer J of part (ii) is such that %;
contains {w, € #,: Iw,| <7}, take the centering and e-bracketing functions {(a, b)) :
¢=1,.,n} as follows: (a) Yw € %/ such that |w,{ > r, let a(w) = 0 and bw)y=F W
and (b) Yw € #/such that jw | <r, let {a(w): 0 =1, .., n .} be the functions constructed by
Kolmogorov and Tihomirov (1961) in the proof of their Theorem XIV and let by(w) = ¢/2 VL.
The number of such functions also is < D, exp[Dzr’:'e’k‘fq] .

Now, the number of indices J for which %4/, does not include {w, € %/ : |w,| <r} is n(r,).
Hence, the total number of centering/e-bracketing functions considered above is < (n(r;) + 1)

lp
) < ¢ for all of the functions b,

ka 'ku/q
D, explDyr, ‘e *?|. Also note that sup, g, |E;(W,)
introduced above by the same calculations as in (A.16) provided C (of the definition of r.) is

defined suitably. Hence,

Nﬁ(e’ P, ) < (n(ry) + DD,y eXP[Dzrine-k"/q]
(A.17)

< (Kl exp[chﬁe'PE/c] + l)D1 exp[DZCJ("e—k“(ijﬂ/q)] .
With this bound, Ossiander's LP entropy condition holds provided p&/(2{) <1 and
k,(p/¢ + 1/9)/2 < 1, or equivalently, £ < 2{/p,q > k,/2,and { > pgk,/(2q - k,), as is assumed.
For the case where p = o, take r(e) = sup{jw,| : w € 7} < = Ve > 0 in the argument

above. Then, Ossiander’s L™ entropy condition holds provided g > k_/2, as is assumed. O

PROOF OF THEOREM 6: For ¢ u ¢*, the result is obvious. For & & &, it suffices to suppose
thatr = s = 1. Let (g, a;, bj) and (8", aj, b}) forg € g and g* € ¢* be defined analogously to

(f, a;, b)) given in the definition of the L? bracketing cover numbers. We have



lp

, 1 o\
(E(bj + bﬂ)-") < (Ebf) i + (Eblp) ? < 2¢, and so,

Nj2e, P, G @ 6") s Nj(e, P, )N, (e, P, &) .

(A.18)

The result follows.
For ¢ V &%, it also suffices to suppose thatr = s = 1. We have
g Veg® - a Va;| <slg-af+ g —a?] < b; +b;k , and so,

(A.19)
NJ(2e, P, 6V 6*) < Ni(e, P, No(e, P, 6%) .

The result for ¢ A * is analogous.

For |g|, the result follows from the inequality [lg| - |a;|| < |g - 4;].

Next consider & 1. For g € ¢, let g’ denote the ¢-th element of g for ¢ = 1, ..., L, where
L = r%. By the same argument as used to prove the claim in the proof of the 4~ ! result of
Theorem 3, there exist r x r matrix functions ay, ..., a,, and by, ..., b, such that (i) a; € 91:1 ;or all
j<n, (i)forallg € g, g - a;| < b} forall ¢ =1, ..,L for some j < n, (iii)[E(b;r < ¢
W1, ¥, and (iv) n < I N3(e/2, P, Gp) -

By an eigenvector/feigenvalue decomposition, we get |g7!| <1 _(I/A)1, , =1, 7/A,
element by element and |a171| < 1 r/k,. Thus, for arbitrary unit vectors b, ¢ € R’, we have:

For any g € & there exists a; and bj for which

|b’g']c—b'aj_1c| < |b|’|g'1||aj—g||aj-1||c| < (Y4511, and

rjr

(A.20) 2 T
[E[(r“/l*)l,'bjl, ] s (12 .
Thus, No(°e/A5, P, 67') < n < Tl N3(e/2, P, 6 and the result follows.

To prove part (b) of Theorem 6 concerning 6%, note that each element of gh (for g € 5 and
h € #) is a finite union of products of scalar functions, and so, using the result for 5 o g it
suffices to suppose thatr =5 = u = 1. Let (g, a;, b)) and (h, a}, by) be defined analogously to
(f, a; b)) given in the definition of the L? bracketing cover numbers, withp = A and p = p

respectively. We have



igh - ajaf| < lgh - gayl + lgay - ag;]
(A.21)
* * ¥ *
< Gb, + |la, - h + hlbj < Gb, + Hb; + b;b,

and

1 1 1 1
* wole ol g ale oy +ol g
(E(Gba + Hbj + bjbe)m)“t < (EG"Lbt )m + (EHabj )'Jc + (Ebj bem)m

e

ap " l
3D

B-g 1 L1y
p-e
Ebj

ap n-a 3 &A
a2 < [EG “] ""(Eb;“)'* + [EHH

< sup ((EG")M + (EH“)UP)e + g2
t<T,T21

ad)he 1
Sl

< C'e

A-10

for ¢ € (0, 1], where C* is defined implicitly and the dependence of each of the functions G, b7},

etc. on W, is suppressed for notational simplicity. The second and third inequalities hold by

Holder’s inequality and the fact that Ap/(A+p) > « impliesthat ¢ p/(p-a) < Aand wA/(A-0) < p.

Equations (A.21) and (A.22) imply that

(A23)  N%(C'e, P, g#) < Ni(c, P, 9N (c, P, #)

and the desired result follows. Note that using the notational conventions stated in the text,

(A.21)-(A.23) hold whetherornot ¢ = =, A = o, orp = ~. O



Footnotes

IThis paper is a substantial revision of the first part of the paper Andrews (1989). I thank D.
McFadden for comments and suggestions concerning this revision. 1 gratefully acknowledge
research support from the Alfred P. Sloan Foundation and the National Science Foundation
through a Research Fellowship and grant nos. SES-8618617, SES-8821021, and SES-9121914
respectively.

2That is, 7'is a metric space except that p(t, t,) = 0 does not necessarily imply that ¢, = T,
For example, the class of square integrable functions on [0, 1] with Pty To)
= Ll)(rl(w) - rz(w))zdw 2 is a pseudometric space, but not a metric space. The reason is that
if ©;(w) equals t,(w) forall w except one point, say, then p(tyr T2) = 0, but 1,(") # (). In
order to handle sets 7 that are function spaces of the above type, we allow 7to be a pseudo-
metric space rather than a (more restrictive) metric space.

3The pseudometric p(-, -} is defined here using a dummy variable N (rather than T} to avoid
confusion when we consider objects such as plimy_, p(f, t;). Note that p(;, *) is taken to be
independent of the sample size T.

*If need be, the bound in (5) can be replaced by C llog 8|* for arbitrary constants C € (1, ')
and A 2 1 and Theorem 5 still goes through.
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