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ABSTRACT

This paper establishes the asymptotic admissibility of the likelihood ratio (LR) test for a
general class of testing problems in which a nuisance parameter is present only under the
alternative hypothesis. The paper also establishes the finite sample admissibility of the LR test
for testing problems of this sort that arise in Gaussian linear regression models with known

variance,



1. INTRODUCTION

This paper considers hypothesis tests when a nuisance parameter is present only under the
alternative hypothesis. Such tests are non-standard and the classical likelihood ratio (LR) test
does not possess its usual chi-square asymptotic null distribution in this context, It also does not
possess its usual asymptotic optimality properties (of the sort considered by Wald (1943)).

Davies (1977, 1987) first provided a general asymptotic analysis of the testing problems con-
sidered here. He established the asymptotic null distribution of the LR test under a set of high-
level assumptions. He also provided approximations to the asymptotic critical values of the LR
test,

Andrews and Ploberger (1992) (denoted AP) developed a class of tests, called exponential
LR tests, that exhibit explicit asymptotic optimality properties in terms of weighted average
power when a nuisance parameter is present only under the alternative. The weight functions
they consider are particular multivariate normal densities. The class of tests that are optimal
with respect to these weight functions does not include the LR test. These results, Davies’ adop-
tion of the LR test, and the omnibus use of the LR test make the question of the asymptotic
admissibility of the LR test one of considerable interest (to some at least). It is this question
that is addressed in the present paper.

We show that the LR test and two asymptotically equivalent tests, viz., the sup Wald and sup
Lagrange multiplier (LM) tests, are asymptotically admissible. In fact, we show that these tests
are best tests, in a certain sense, against alternatives that are sufficiently distant from the null
hypothesis. We establish these results first under a set of high-level assumptions. Then, we pro-
vide primitive sufficient conditions for a number of examples. The examples considered include
tests of (i) changepoints in nonlinear dynamic models, (ii} cross-sectional constancy in nonlinear
models, (iii) threshold effects in autoregressive models, (iv) variable relevance in nonlinear
models, such as Box-Cox transformed regressor models, and (v) functional form in nonlinear

models. Two examples that are covered by the high-level results, but for which primitive condi-



tions are not provided, are tests of (i) white noise versus first-order autoregressive-moving
average structure (ARMA (1, 1)) and (ii) white noise versus first-order generalized autoregres-
sive conditional heteroskedasticity (GARCH (1, 1)).

Next, we consider finite sample admissibility of the LR test for the Gaussian linear regres-
sion model with known variance. We show that minor modifications to the proof of the asymp-
totic admissibility result yield finite sample admissibility. The types of hypotheses covered by this
result include tests of (i) single and multiple changepoints, (ii) variable relevance for Box-Cox
transformed regressors, and (iii) cross-sectional constancy, among others. The admissibility result
for a single changepoint in the case of an iid univariate Gaussian location model replicates a
recent result of Chang and Hartigan (1993). (Rather unbelievably, Chang and Hartigan’s work
was done independently and almost contemporaneously -- their paper was finished six months
earlier -- fifty yards down Hillhouse Avenue.)

The remainder of this paper is organized as follows, Section 2 presents the main asymptotic
admissibility result under a set of high-level assumptions. Section 3 presents examples and pro-
vides primitive safficient conditions for the high-level assumptions. Section 4 states the finite
sample admissibility results for tests concerning a Gaussian linear regression model. Section 5

gives proofs of the results stated in earlier sections.

2. ASYMPTOTIC ADMISSIBILITY

This section introduces notation and assumptions and states the asymptotic admissibility
result of the paper. The notation and assumptions are very similar to those of AP. The problem
considered is that of testing whether a subvector § € RP of a parameter 6 € © c R® equals zero

when the likelihood function depends on an additional parameter = € II under the alternative.

2.1. Notation and Definitions
Let (Q, 7, P) denote a probability space on which all of the random elements introduced
below are defined. Let Yy denote the data matrix when the sample size is Tfor T = 1, 2, ...

Consider a parametric family {f{y . 6, n) : 6 € 8, = € T} of densities of ¥, with respect to
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some o-finite measure py, where @ c R® and II is some metric space (usually a subset of
Euclidean space). The likelihood function of the data is given by f{(6, z) = Xy 8, n).

The parameter 6 is taken to be of the form 6 = (p’, 8°), where p € R®, 6 € R, and s
= p+q. For example, in one-time changepoint problems, the parameter n € (0, 1) indicates the
point of change as a fraction of the sample size, & is of the form (8, 8})', &, is a pre-change
parameter vector, 8, + P is a post-change parameter vector, and 5, is a parameter vector that
is constant across regimes.

The null hypothesis of interest is
(2.1) Hy:p=0.
In the changepoint problem, this is the hypothesis of no change. The alternative hypothesis is

2.2 H,: p # 0 and the likelihood function depends on the parameter n .
1 hd P P

We let 68, denote the true value of 6 under the null hypothesis. Under the null hypothesis,
the likelihood function f{6, =) does not depend on the parameter = and is denoted f{6;).
Let 26, =) = log f{6, =n). Let D{{B, =) denote the s-vector of partial derivatives of
¢{6, =) with respect to 0. Let 0207(6, n) denote the s x s matrix of second partial derivatives
of £{6, n) with respect to 6. (Note that D¢(6;, =) and DZQI(BO, 7) depend on n in general
even though f{0,, =) and ¢46,, =) do pot.)

We consider the case where the appropriate norming factors for D¢{(6, =) and Dzﬂ]—(e, )
(so that each is O, (1) but not 0,(1)) are non-random diagonal s x s matrices B}l and B;l xB;.l,
respectively, where [B;l]ﬁ -0 asT -~ % <s5. For non-trending data, the matrix By is just
ﬁ I;. For data with deterministic time trends, By is more complicated, see AP. The local
alternatives to H, that we consider are of the form fr(8y + B;.lh, n) forh e R and = € 1I.

All limits below are taken "as T - =" unless stated otherwise. We say that a statement holds
"under ;" (i.e., under the null hypothesis) if it holds when the true density of Y is f{6,) for
T=1,2,... Let A, (4) denote the smallest eigenvalue of a matrix 4. Let |-| denote the
Euclidean norm. Let wp - 1 abbreviate "with probability that goes to 1 as T — "



2.2. Assumptions

The likelihood function/parametric model is assumed to satisfy:

ASSUMPTION 1: (a) fr{0, n) does not depend on = for all 8 in the null hypothesis.

(b) 8, is an interior point of 8.

() f1(8, =) is twice continuously partially differentiable in © for all 0 € ©, and n € Il with probabil-
ity one under ©,, where 8, is some neighborhood of 6.

(d) -B; D8, n)B}l -2, %8, =) uniformly over = € Il and 0 € O under 8, for some non-
random s x s matrix function A0, n) and some sequence of non-random diagonal s x s matrices
{Br: T 2 1} that satisfies [Bq]; - wasT - = Vj <.

(e) (6, n) is uniformly continuous in (6, ) over 6, x II.

(f) R0y, 1) is uniformly positive definite over n € Il (ie. inf . A, (6, 7)) > 0).

The matrix function #0, n) introduced in Assumption 1 is the asymptotic information matrix for
0 for given n, which depends on both § and =. See AP for comments on Assumption 1. Note
that Assumption 1 is a "high level" assumption. Primitive conditions that imply Assumption 1 are
provided below,

Let 8(x) (= éT{n)) be the (unrestricted) maximum likelihood (ML} estimator of 0 for fixed

n € II. That is, 8(n) satisfies

(2.3) 4{(B(x), n) = sup 4B, n) Vz € I wp - 1 under 6, .
8ce

Let @ be the restricted maximum likelihood estimator of 0. That is, D satisfies

T8 ={6c0:0=(0, ) for some § € R%} and

tr(8, ) = sup (6, 1) wp -~ 1 under 6, .
0cd

(24)

Note that § does not depend on = by Assumption 1(a).
We assume that the parametric model is sufficiently regular that the ML estimators 6(x)

and 9 are consistent for 8, under the null hypothesis uniformly over = € II.



ASSUMPTION 2: sup, q10(x) - 851 -2 O under 6,
ASSUMPTION 3: 8 - 8y —E~ 0 under 6.

The parameter space II is assumed to satisfy:
ASSUMPTION 4: 1I is @ compact metric space with metric p.

We now specify high-level conditions under which the asymptotic null distribution of the sup
LR, Wald, and LM test statistics (defined below) can be determined. Let "—2." denote conver-
gence in distribution. Let "=" denote weak convergence of stochastic processes indexed by = € II.
Below we consider weak convergence of the process B.;lD t{8;, =) (€ R°) indexed by = € I to
a process G(0y, n). Note that the definition of weak convergence requires the specification of
a metric d on the space Z of R’-valued functions on . We assume d is chosen such that (i) the

function

25)  G() - sup(HG(x))[HT (8, mH'|'HG(r)

nell

is continuows at each function G € Z that is continuous on II, where H = [7, : 0] € R, and

(i) if g, € Z Wn 2 0, g; is continnous on II, and d(g,, g;) -~ 0 as n ~ =, then
(2.6) sup,(n} - go(x)l -~ 0 as n - .
rell
These conditions hold, for example, if the uniform metric is used, as in Pollard (1984), or if the

Skorohod metric is used in the case when II = [0, 1] or IT < [0, 1], as in Billingsley (1968).

We assume that the normalized score function satisfies:

ASSUMPTION 3§: B;-ID@1(60, ") = G(0g, ©) under 0, (as processes indexed by = € I) for some
mean zero R°-valued Gaussian stochastic process {G (8, =) : = € I} that has EG(8;, n)G (6, ©)’
= K0, n) Vn € I and has continuous sample paths (as functions of = for fixed 6,) with probabil-
ity one.

In applications, Assumption § is verified by applying a functional CLT. Assumptions 1-3 and §

above are the same as in AP,



2.3. Specification of Weight Functions

The admissibility result given below is stated in terms of weighted average power. That is, we
show that for certain weight functions the sup LR, Wald, and LM tests have greater weighted
average power than any other asymptotically distinct test. To achieve this, a weight function J{-)
needs to be specified for the parameter = € II. Given =, a weight function Q, () needs to be
specified for the perturbation vector h that appears in the local alternative density
fr(6; + Bk, m).

Let S(=n, £) denote the open sphere in IT centered at = with radius ¢ > 0. Of the weight

function J(-), we only assume:
ASSUMPTION 6: J(-} is a probability measure on 11 for which inf_ . J(S(=, £)) > 0 Ve > 0.

If 11 is separable (and satisfies Assumption 4), then Assumption 6 holds provided the support of
Jis II.
The weight functions {Q,  : = € I} forr > 0 are taken to be ellipses of radius proportional

to r. The ellipses are the same as those considered by Wald (1943) for a single fixed =.

ASSUMPTION 7: @, is the distribution of rAn(AéfﬂAn)'mX, where X ~ U, U, is the uniform

7, 7 ]
distribution on the unit sphere in RP, 7, = 70, =) = 1,“ 2n ,and A, = _f B
Br B Iy T

2.4. Definition of the sup LR, Wald, and LM Test Statistics
For known n € II, the standard LR, Wald, and LM test statistics for testing H; against H;
(as defined in (2.1) and (2.2)) are given by

LR(m) = 278, 7) - 4(8(n), m)) ,

Wr(r) = (HB,é(n))'[Hf;‘(é(n), n)H']-lHBTé(n) , and
2.7

LM(x) = [B;‘DaT(G, n)]’];.l(ﬁ, x)B7'De (B, ©) , where

H=[,:0 cR* and 76, n) = -B; D*(0, ;)B7 .



Alternatively, one can define 7{(6, n) to be of outer product, rather than Hessian, form.

The sup LR, Wald, and LM test statistics are now defined as

(2.8) sup LR(n) , sup W{(r), and sup LM {(xn).
nell nell

nell

Note that the sup LR test statistic is the standard LR test statistic for the case of unknown =.
Let {kr, : T 2 1} be a sequence of critical values (possibly random) such that the sup LR,

Wald, or LM tests {1 : T 2 1} have asymptotic significance level «. That is, JETfT(BO)d Br - a
for all ; that satisfy the null hypothesis, where

(2.9) & = 1(sup LR(x) > kp,)

nell
or where { is defined analogously with LR{=) replaced by W{r) or LM(x).
Under Assumptions 1-5, the asymptotic null distribution of sup . LRy(x),
sup, .n Wr(n), and sup, .y LM;(n) is that of

(2.10) sup(HG (8, ))' (H7 (8, n)H")*HG(8,, =) .
nell

This is proved by an argument analogous to that used to prove Theorem 1 of AP.

2.5. Asymptotic Admissibility
Let @ denote a test of H,. That is, ¢ is a [0, 1]-valued function that is determined byY
(and perhaps some randomization scheme) that rejects H, with probability y when ¢ = y. The

power of ¢ against the local alternative f,(6, + B;.lh, ) is denoted J’tprT(GO + B;lh, ) pr.

DEFINITION: A sequence of tests {¢: T 2 1} is asymptotically distinct from the sup LR, Wald,
or LM tests {§r: T 2 1} if

(2.11) § = lim [(1 - op)sfr(Bp)Mdur > 0.

T =

Note that I(l - ¢p)&1{0p)dur is just the pull probability that the test ¢ accepts Hy and
the sup test {, rejects Hy. If two tests are not equal almost surely (under 6;) and are not

nested, then this probability is positive,



The sup LR, Wald, and LM tests are asymptotically equivalent under the null and local
alternatives under Assumptions 1-5, see AP. In consequence, if a sequence of tests is asymptot-
ically distinct from any one of the three, it is asymptotically distinct from all three,

The main result of this paper is the following admissibility result.

THEOREM 1: Suppose Assumptions 1-7 hold and {9 : T 2 1} is a sequence of tests that is asymp-
totically distinct from a sequence of asymptotically level « supremum LR, Wald, or LM tests {1 :
T 2 1}. Then, there exists an ry < o such that forallr 2 ry,

im J’[j orfr(0g + Brh, n)de]de(h)d](n) < lim j[j Efr(6g + By h, m)dprfQ, (h)di(x) .
T

T=a

(In addition, the lity_, on the right-hand side equals lim__.)

REMARKS: 1. Theorem 1 shows the sup LR, Wald, and LM tests are best tests against alterna-
tives that are sufficiently distant from the pull.

2. The weighted average power of a test can exceed that of another test only if its power at
some (h, ©) exceeds that of the other test. In consequence, Theorem 1 implies that there exist
sequences {(hp, nr) T 2 1} such that {; has higher power asymptotically against {f{(6,
+ B7'hp, np) i T 2 1) than any other sequence of tests. Thus, & is asymptotically admissible.

3. The proof of Theorem 1 actually shows that the ratio of the asymptotic (as T ~ =) weight-
ed average type Il error of ¢y (with respect to (Q, ., J)) over that of £ converges to infinity as
r - o

4, Theorem 1 holds for all weight functions J that satisfy Assumption 6. Thus, the optimal
performance of the sup tests against distant alternatives holds for a wide variety of weight
functions J.

5. Theorem 1 holds for any sequence of asymptotically distinct tests {@,: T > 1} -- it need
not be a sequence of tests of asymptotic significance level «. Thus, for certain alternatives the
only way to increase the asymptotic power of a sequence of sup tests is to enlarge its critical
regions.

6. Assumption 3 is not required in Theorem 1 for the case of the sup Wald test.



3. EXAMPLES

For a number of examples, this section provides primitive sufficient conditions for

Assumptions 1-3 and 5 of Section 2.

3.1. Changepoint Tests

In this subsection we consider changepoint tests. The tests are designed to detect a one-time
change in the value of a parameter (but they have power against more general forms of change,
e.g., see Andrews (1993b, Thm. 5 and Cor. 2) and Pioberger, Kramer and Kontrus (1989, Cor.
1)). The models we consider are stationary dynamic nonlinear models. A simple example where
the results of this section can be applied is in a test for constancy of the intercept in an AR or
ARMA model for the growth rate of a macroeconomic variable such as GNP. Tests of this sort
have attracted some attention in the literature, e.g., see Perron (1991) and Bai, Lumsdaine, and
Stock (1991). Asymptotic critical values for the LR tests considered in this section are tabulated
in Andrews (1993b).

The sample of observations is given by
(3.1) Yr={(Y, X):t <T}.

{X, : t s T} are weakly exogenous variables (i.e., regressor-like variables, see below). We con-
sider the relatively simple case where the data are strictly stationary, ergodic, and Markov under
the null hypothesis. In particular, we suppose that {(Y,, X,) : t < T} is part of a doubly infinite
strictly stationary ergodic sequence {(¥,, X,): ¢ =..,0,1, ..} and {Y,: ¢ = .., 0, 1, ...} is m-th
order Markov for some integer m > 0. By definition, {Y,:¢ = ..., 0, 1, ...} is m-th order Markov
if the conditional distribution of ¥, given #,_; = o(..., Y,_5, Y,_y; ..., X;_;, X|) equals the condi-
tional distribution of ¥, given ¥, ,, = (Y,_,, ... ¥,.y) and X, = (X, ..., X)) for all 1.
Let

(2) {88y 8)) 1 8, € Ay, 8y € A} = R(Y,IY, 0 X, 8y, 8) 1 81 € Ay, 8y € Ay)

denote a parametric family of conditional densities (with respect to some measure) of Y, given

and X

Lme where A] CRP, Az ch‘P,

Y, m and X, evaluated at the random variables Y, Y, .,
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andp <gq. Let
(3.3) h‘ = hl(Xflyl’ sosy Y‘_.l, XI’ eeny Xl—l)

denote the conditional density (with respect to some measure) of X, given Y,, ..., Y,_;, X, ...,
X,_; evaluated at the random variables Y, ..., Y,_;, X;, .., X, By the definition of weak
exogeneity, h, does not depend on § = (5], 65)'.

LetII c (0, 1) and let = € II. Suppose the parameter vector equals (8, 8,) for the observa-
tions ¢ = 1, ..., [Tx] and (8; + B, &,) for the observations ¢ = [Tx]+1, ..., T, where § € B c RP
and [-] denotes the integer part of . Then, n is the changepoint and 6 = (B’, 6')' for &
= (5;, 55)' contains the pre- and post-change parameter values. Note that the parameter &,
is constant across the whole sample under Hy and H,. Of course, no such parameter &, need
appear in the model.

In the present case, the likelihood function is given by

[T=] T T
(3.4) (8, =) = | IT &5, ‘52)][ IT &3, + 8, 52)][th] :

t=1 =[Tx]+1 el
The norming matrix B of Section 2 is taken to be ﬁ]s .

The Markov assumption yields the simplification that under the null hypothesis the sum-
mands log g,(54, §,) in the log-likelihood function are strictly stationary and ergodic for¢t > m,
The following assumption is sufficient for Assumptions 1-3 and 5 of Section 2. This is

proved in Theorem 3 of AP. All expectations E below are taken under 6,

AssUMPTION CP: (a) II has closure contained in (0, 1),

(b) © is compact and 0, lies in the interior of 6.,

(c) Under 8y, {(Y, X,) : ¢t = ..., 0, 1, ...} is strictly stationary and ergodic, {Y,:t = .., 0,1, ..} is
m-th order Markov, and {X, : t = ..., 0, 1, ...} is weakly exogenous.

(d) (54, ;) is continuous in (&, 8,) on Ay x Ay with probability one under 8¢ and twice con-
tinuously partially differentiable in (5., 8,) on A, x A, with probability one under B, where A,

and A, are compact neighborhoods of 8.y and 8, respectively,
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(e) g6, 83) # g(8yg, boy) with positive probability under 6y V(8,, 8,) € Ay x A, such that
(31, 82) * (330 830)-

8
(D) E supg ca, 8,¢8,1108 8(81, 87)| < =, E s“pbleAw-szAz"Ia(ﬁ—iﬁB]og &(0p 8] < =,

3 o &
Emlog (510 om)r < v and B 0By, cp b0 firminlo8 (01 89

@®7=- log g,(84q, 840) is positive definite.

< oo,

Ea(bi' 85)'(34, 83)

Note that Assumption CP is quite similar to standard assumptions in the literature for the
consistency and asymptotic normality of ML estimators in stationary contexts. The results could
be extended to some nonstationary contexts. In addition, the example could be extended to

cover multiple changepoints.

3.2, Empirical Process Examples

This subsection provides primitive sufficient conditions for Assumptions 1-3 and 5 for
empirical process examples. Such examples are ones in which the log likelihood can be written
as the sum of terms of the form log g(W,, 6, =), plus a term that does not depend on (6, =),

where W, is a random variable and g is a fixed function. We now provide several examples.

EXAMPLE 1 (Cross-sectional Constancy): In this example, the observations are iid and the
unknown parameter n partitions the sample space of some observed variable(s) into m+1
regions. In one region the model is indexed by the parameter (5, 65)' and in other regions
it is indexed by (87 + BJ’-, 6;’,)’ forj < m. In this case, 6 = (B’, 6’)' for p = (B, - B”’,)'
and & = (&5, 65)'. In this model, a test of cross-sectional constancy of the parameters corres-
ponds to a test of the null hypothesis Hy: p = 0.
To be concrete, consider the following special case given by a linear regression model with
two regions:
X,/'6; + U, for Z, <=
3.5) Y, = for t=1,..,T,
J(B;+B)+ U for Z,> =

where {(Y, X, Z, U) :t = 1, .., T} are iid, (X,, Z,) and U, are independent; U, is an unobserved
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N(0, &,) error; Y, is an observed scalar random variable; X, is an observed random p-vector with
EX'X, < =, Z, is an observed scalar random variable that may be an element of X; Z, has

bounded density with respect to Lebesgue measure on the intersection of its support and II;

, X1z, > X1z, > 7)) , .
inf AMJE[ g ;(‘ I ‘ )'[‘ > 0; the parameter 6 = (B’, 8], ;) liesin a

compact set © c R¥*! that excludes &, values < 0; the parameter = lies in a compact set II < R;

and the true parameter §; lies in the interior of 8 under H,,

EXAMPLE 2 (Threshold Autoregression): This example generalizes Example 1 to time series
contexts in which the variable (or vector) Z, is often given by a lagged value(s) of a dependent
variable. In particular, consider the simple threshold autoregressive model defined by (3.5) with
X, =(,Y,,), Z =Y, ; for some integerd > 0, {U, : t = 1, .., T} are iid, (¥y, Y;_,) have
distributions that correspond to a stationary start-up of the AR model when p = 0, and € and
II are as defined above with p = 2 and |6,]| < 1. (In this case, the assumptions of Example 1
on X, and Z, automatically hold.) Models of this sort have been applied in the physical and bio-
logical sciences, e.g., see Tong (1990), as well as in economics, ¢.g., see Potter (1989). Typically,
it is of interest with these models to test for the existence of a threshold effect, which corres-

ponds to testing the null Hy : f = 0.

ExXAMPLE 3 (Variable Relevance): This example considers tests of variable relevance in non-

linear models. For specificity, consider a nonlinear regression model
(3.6) Y, =g(X, &) + ph(Z, n) + U, for ¢t =1,.., T,

where {(Y, X, Z, U} : t = 1, ..., T} are iid; (X,, Z,) and U, are independent; U, is an unobserved
N(0, 8,) error; Y, is an observed scalar random variable; X, and Z, are observed random vectors;
g and h are known functions; § is a scalar parameter; = is an Rb-valued parameter; 6 = (B, §,,
62)' and = lie in compact sets ® and II respectively; © excludes &, values < 0; the true
parameter 6 lies in the interior of © under Hy; g(X,, &;) is two times continuously differentiable
in §; VO € 6, with probability one under 6, where 8 is some neighborhood of §y; h(Z,, 1) is
differentiable in n with probability one under 6; Vn € II; E supg.g 22X, 61) < o
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E sup, hz(zn m)log*(|h(Z,, 1)) < =, where log*(x) = max{log(x), 0} for x > O;

;
E SUPg.cq abalg(X" Bl)r < = E supeeeulﬁtg(&, ﬁl)r < = E supnsnlé‘%h(z \ n)l < = for

h{Z, =) h(Z,, =)
some r > 2, mf.nen A a‘%g(x" 610) a%g(X‘, 610) > 0; and E(g(X‘, 61) - g(X‘, 610)
1 1

+ Bh(Z, =)’ > 0 VO € @ with 0 « 8,

For example, h(Z,, n) might be of the Box-Cox form (Z* - 1)/x. A test for the relevance
of the regressors Z, is a test of the null hypothesis Hj: B = 0. Under H, the parameter  is no
Ionger present.

We note that the results given below cover the case where = is infinite dimensional, but the
resulting test statistic and critical values may be difficult to compute in this case, so we have

focussed on the finite dimensional case above.

EXAMPLE 4 (Functional Form): This example consists of tests of functional form for nonlinear
models. The model set-up is the same as in Example 3 except that the variables that are being
tested for relevance in Example 3 are variables that are already in the model in the present
Example. For example, for the nonlinear regression model (3.6), Z, 1s taken to be a sub-vector
of X,. In this case, the nonlinear regression function depends on the same variables under the
null and alternative hypotheses, but is of a more complicated form under the alternative. Neural
network tests of functional form and some consistent tests of model specification are designed

for this testing problem.

We now introduce the requisite definitions and assumptions used for the empirical process
examples. For simplicity, we consider stationary random variables. The results could be
extended to cover non-identically distributed random variables. The data are given by {(v,Xx):
t = 1, .., T}, which are part of a strictly stationary, absolutely regular process {(Y,X):t=..,
0, 1, ..}, where {Y,} is an m-th order Markov sequence of random variables and {X,}is a
sequence of weakly exogenous variables (both as defined in Section 3.1).

By definition, a sequence {W,:¢ = .., 0, 1, ...} is absolutely regular (B-mixing) if B(s) - 0 as
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s ~ =, where B(s) is defined as follows. For any two o-fields .4 and 3, define
(37  BA D =2swp ¥ |PA; 0 B) - PAPB)! ,
2 Gjew
where the supremum is taken over all finite partitions of the sample space {4, :i € I} and {B; :
j € J} that are 4 and # measurable respectively. Let % = o(.., W,_j, W) and # = o(W,, W,

...), where o(*) denotes a o-field. Then,

3.8) B(s) = sup Bl #7) .

Absolute regularity is stronger than strong mixing («-mixing), but weaker than ¢-mixing.
Examples of absolutely regular processes are given by Davydov (1973), Mokkadem (1986, 1990),
and Doukhan (1992). They include, under suitable conditions, finite state space Harris recurrent
Markov chains, vector antoregressive moving average processes, bilinear processes, and nonlinear
autoregressive processes, among others. In particular, the AR process of Example 2 under Hy
is absolutely regular with B(s) = O(p*) for 0 < p < 1.

Let W, = (Y, oo Yo'y X' oo X;') . Let

(3.9) gW, 8, 1) = g(V,|Y, s v Yy_ps Xpppy oo X5 6, )

for 6 € © and = € 0 denote a parametric family of conditional densities (with respect to some
measure) of Y, given Yy, ..., ¥,_;, X;, .., X, evaluated at the random variables Yy, .., Y, X}, ...,
X,. By the m-th order Markov property, the above conditional density is a function only of W,
and not of all the data prior to (¥, X,). Let

(3.10) hl = h(XIIYI’ ey },'_1, Xl’ sany X‘-l)

denote the conditional density (with respect to some measure) of X, given Y;, ..., Y, {, X 1 e
X,_; evaluated at the random variables Yy, .., ¥,_;, X}, .., X,. By the assumption of weak
exogeneity, h, does not depend on 6 or =,

The parameter space © is a subset of R*. In the primary applications of interest, the para-
meter space I also is a subset of Euclidean space. In such cases, € x IT and € x II, where €,

is some neighborhood of the true null parameter 8, are metric spaces with the Euclidean metric,
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For generality, however, we allow II to be infinite dimensional in the assumptions below. In
particular, we allow for the case where 8 x Il and 8 x IT are pseudo-metric spaces with some
pseudo-metrics d* and d respectively.

The likelihood and log-likelihood functions of the sample are

T T T T
(3.11) (6, =) = [Te(W, 6, x)[[», and o6, n) = Y log g(W,, 6, n) + Yk, .
=1

t=1 t=1 t=1

The information matrix for 8 given n is defined to be

(3.12) 26, ) = —E%log g(W, 8, r) .

To obtain the uniform weak laws of large numbers that are needed to verify parts of
Assumptions 1-3, we use the concept of L -continuity, which we now define. Let (7, d) be a
pseudo-metric space and let f(W,, t) be a vector-valued function of t € 7. We say that f is
L'-continuous at vy if

(3.13) E  sup VW, t) -fW, tp)f -0 as & -0,
Te7d(t,19)<d

where |-} is the Euclidean norm. We say that f is L'-continuous at < with modulus of continuity
¢(5) if the left-hand side of (3.13) is s ¢(&) V5 small and c(6) -0 as b - 0.

Of course, L’-continuity is implied by almost sure pointwise continuity (viz., f(W,, <) ~ f(W,,
Tg) 85 T — Tp as.) plus a moment condition (viz., E sup_ ., d(z,15)<b (W, t) - f(W, o)l
< o for some & > 0) by the dominated convergence theorem. We will require the log of the
conditional density g(W,, 0, n) and its second derivative with respect to 0 to be L!-continnous
in (6, =). This holds in each of the examples above.

To obtain the weak convergence property of Assumption 5, we use a bracketing empirical
process central limit theorem (CLT) of Doukhan, Massart, and Rio (1992). The latter is a
generalization to strictly stationary absolutely regular processes of an empirical process CLT of
Ossiander (1987) for iid processes. The empirical process CLT relies on a bracketing cover num-
ber condition. We define the cover numbers here. Below we state the aforementioned condition

and give primitive sufficient conditions for it.
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Let #/include the sample space of W,. Let # denote a class of real functions on %/ For any
¢ > 0 and r € [2, =], the L” bracketing cover number Nf(e, %) of #is the smallest value of n for
which there exist real functions a,, ..., a,, and b, ..., b, on %/such that for eachf ¢ 7 |f - aj|
< b; for some j < n and max; “(Eb;(w,))” < e. By convention, if r = o, (1‘5'.'::',-'(W,))1"r
= sup,,41bj(w)|. The bracketing cover number NB(e, #) of a class of vector-valued functions
is equal to the maximum of the element by element bracketing cover numbers of the functions
in 7.

Throughout this section, we assume g(, 0, n), 3%log g(+ 0, n) and %log g(,, 6, n) are
Borel measurable functions V0 € ® Vn € II, as are their element by element suprema and
infima over all balls in ® x II of small radius. Below, C denotes a generic positive finite constant.

The following Assumptions EP1-EP4 are sufficient for Assumptions 1-3 and 5 of Section

2. All expectations E below are taken under 0,

AsSUMPTION EP1: (a) Under 6y, {(Y, X,) : t = ..., 0, 1, ...} is a strictly stationary absolutely regular
sequence of random variables with z::-l 52!("2)[3(5) < = for some constantr > 2, {Y,: ¢t = ..., 0,
1, ..} is m-th order Markov, and {X, : t = .., 0, 1, ...} is weakly exogenous.

(b) g(W,, 6, &) does not depend on = for 8 in the null hypothesis,

(c) The true parameter 8, is in the interior of ©.

(d) g(W,, 6, m) is twice continuously partially differentiable in 6 for all © € ©; and = € I with prob-
ability one under 8, where @ is some neighborhood of 6,

(e) E supg.g nenilog g(W, 6, n)| < =, E supnenglog g(W, 6, =)

r
< = for r as in part (a),

and E supaeeo,“ﬂ!é%log g(W, 6, n)l <w If{{¥,X):t=.,0,1, ..} is a sequence of
independent or m-dependent random variables for some m < =, then r can be taken to equal 2 here

and in Assumptions EP4 and EP4* below. If 1% X)) 1t = .., 0, 1, ..} has geometrically declining
,

B-mixing numbers (Le., B(s) = O(p*) for some 0 < p < 1), thenE supne[[!-a%log g(W, 6y, n)

< = can be replaced by E supneu!a—ilog g(W,, 6, n)riogﬂa%log g(W,, 6, n)l] < = and r can be
taken to be any number > 2 in Assumptions EP4 and EP4* below.
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(f) (6, =) is uniformly continuous in (8, n) over 6, x II.

(g) A0y, =) is uniformly positive definite over n € II.

ASSUMPTION EP2: (a) log g(W,, 6, =) is L'~continuous in (8, n) on © x Il under 6, and © x II
is totally bounded under some pseudo-metric d”.
o

(b) =log g(W,, 6, ) is L'continuous in (8, =) on 8 x Il under 8y and & x Il is totally

bounded under some pseudo-metric d;,.

AsSUMPTION EP3: For all neighborhoods 8 of 6,
supn.eu supaee’eo(E hg g(W‘, 9, ‘.lt) - E log g(W‘, BO, ﬁ)) < 0.

ASSUMPTION EP4: The L’-bracketing cover numbers Nf(e, M) of the class of functions
1/2

M= {a—‘zlog g 0y ) € ]I} satisfy I;[log N'f(s, ﬂf)] de < « for r as in Assumption

EP1(a) and (e).

We now discuss Assumptions EP1-EP4. First, we note that they are satisfied in Examples
1-4 above. Assumption EP1 is similar to Assumption 1 except that it does not contain the high-
level Assumption 1(d) and it adds temporal dependence and finite moment assumptions instead.
In Example 2, Assumption EP1(a) holds with geometrically declining B-mixing numbers by
Mokkadem (1986). Assumption EP2 is a fairly standard ML regularity condition, which requires
L'.continuity of the log of the conditional densities and their second derivatives,

Assumption EP3 is an identification condition that is used in the proof of the consistency
under Hy of the ML and restricted ML estimators. If @ x II is compact, then more primitive

conditions can be considered, which together with EP2(a) are sufficient for EP3;

ASSUMPTION EP3*: (a) g(W,, 8, n) # g(W,, 8, n) with positive probability under 8, Y0 € 8 with
0 # 6pand Vn € .

(b) 8 x Il is compact (with respect to the metric d* in Assumption EP2(a)).

Assumption EP3* holds in Examples 1-4. It can be verified by showing that E(log g(W,, 6, 1)
- log g(W,, 6, 1)) >0 V8 e ®withd # 6 vrn € II. Note that if g(X,, 8;) = X6, in
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Examples 3 or 4, then the final condition stated in Example 3 can be omitted, since it is implied
by the A, (-) condition of Example 3.

Assumption EP4 is an L"-bracketing cover number condition that requires that the class of
functions 47 is not too complex/large. It is satisfied if the cover numbers Nf(c, #) do not
increase too quickly as ¢ | 0. Primitive sufficient conditions for EP4 are given in Andrews
(1993a, Thms. 5 and 6). In particular, classes of functions of types II-VI, defined in Andrews
(1993a), satisfy EP4. These classes include infinite dimensional classes of smooth functions (of
W,) and finite dimensional classes of functions that satisfy some continuity properties as functions
of a Euclidean-valued parameter n. In addition, results are given in Andrews (1993a, Thm, 6)
that show that functions in classes of types II- VI can be "mixed and matched" in various ways to
yield new classes that satisfy EP4,

For many applications = is a finite dimensional parameter and the following primitive

sufficient conditions for EP4 are satisfied.

ASSUMPTION EP4*: W is a bounded subset of Euclidean space and a%log g(W, 8y, 1) is
L’-continuous in n on T with modulus of continuity C5" for some positive constants C and §, where

r is as in Assumption EP1(a) and (e).

In Example 1, the assumption that Z, has a bounded Lebesgue density is used to verify
Assumption EP4* with ¢ = 1. In Example 2, this assumption on Z, holds automatically, since
Z, has a normal distribution. In Example 3, the assumptions that 2(Z,, ) is differentiable in =
and its derivative satisfies a moment condition are used to verify Assumption EP4* with ¢ = 1,

The results referred to above are summarized as follows:

THEOREM 2: (a) Assumptions EP1-EP4 imply Assumptions 1-3 and 5.
(b) Assumption EP2(a) and EP3* imply Assumption EP3.
(¢) Assumption EP4* implies Assumption EP4,

Note that under Assumptions EP1-EP4, Assumption 5 holds with the Gaussian process
G(8g, ) having covariance function given by EG(8,, n,)G(0;, =5)’ =E%log gW, 8y, =)

X ;?:log g(W,, 6y, n,) for ny, n, € II. Continuity (in =) of the sample path of G(8,, =) is with
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respect to the L'-pseudo-metric, where 7 is as in Assumptions EP1(a), EP1(e), and EP4 or EP4*.
(When the data are independent or m-dependent, continuity is with respect to the Lz-pseudo-
metric. When the p-mixing numbers decline geometrically fast, continnity is with respect to the

L'-pseudo-metric for arbitrary r > 2.)

4. FINITE SAMPLE ADMISSIBILITY

In this section we show that the LR test is finite sample admissible for a class of testing

problems that arise in a Gaussian linear model.

ASSUMPTION 8: The model is given by
Y, =X (n)yB +2Z/5+ U, for t=1,.,T,

where U, - iid N(0, 0%), o® is known, X(z) € RP, p € R, Z, € R9, & € RY, {(X(x), Z,) : t = 1,

X (n
vy T} are non-random, = € II, z:l-l[ ()
z Z,

t

X ’
][ '(n)] is nonsingular forall n € 1, and X,(n) is con-

tinuouson U forallt = 1, ..., T.

Below, the parameter space II is assumed to satisfy Assumption 4 and the weight functions J(-)
and @, (-) are assumed to satisfy Assumptions 6 and 7, respectively, with 7 equal to

X (m) X, (m)
Z:T'I Z, Z,

The hypotheses of interest are the same as in Section 2 and are specified by (2.1) and (2.2).

] in Assumption 7,

By varying the definition of X,(n), we obtain hypotheses of different types. For example, if

X
(41)  X(z) =X1(t < Tr), Z, = [Xi], and I c {UT, 2T, .., (T-1)/T} ,

{

then a test of Hy: B = O is a test for a single changepoint in a subvector of the regressor vector.
This example can be extended straightforwardly to allow for arbitrarily many changepoints.

Another example is a test of relevance of Box-Cox transformed regressors. In this case,

(4.2) X (m) = (X}, - D/r, o, (X;‘ - l)ln), and O c [0, =) .
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Under the null Hy : = 0, the Box-Cox transformed regressors do not belong in the regression
model. This example can be extended to allow the Box-Cox parameter to differ across regressors
and to allow a more complicated nonlinear transformation than the Box-Cox transformation.

A third example is a test of cross-sectional constancy. In this case,

X,

4.3) X)) =X1X, <7m), Z, = [X:] , and DR,
'

where X, is an element of the regressor X,. In this example, one is testing for constancy of the
regression parameters across two (unknown) regions. The example can be extended to cover
multiple regions of more complex form.

For known =, the standard LR, Wald, and LM test statistics for testing H, against H, are

given by (2.7) with By = I, 8(x) equal to the unrestricted least squares (LS) estimator of

' X, X
0 = (B, 8, 7700, ™) = 137, 'g)] 5

LS estimator of 8, and ¢,{6, n) and D#;{(0, n) equal to the Gaussian regression log likelihood

] v6 € ® = RP*, T equal to the restricted

and its vector of derivatives with respect to 0 respectively. As is well known, LR(n), Wn(x),
and LM{{n) are monotone transformations of each other.

For the case of unknown =, the LR test statistic is
(4.4) sup LR(m) .
nell

By the monotone transform property, the test statistics sup, .y Wo{n) and sup_ ., LM{(x) yield
equivalent tests to that based on sup, .,y LR{{n). For convenience in the proof, we focus on the
sup,, .y Wo{n) version of the LR test.

We say that a test ¢ is distinct from the significance level @ LR test £7 = 1(sup, ., Wx(x)

> k), where k_ is a positive constant, if

@5) 8= [(1 - eptrfr(BpMdur > 0,
where f,{(6;) is the null Gaussian density and pp is Lebesgne measure on RT. That is, @ is
distinct from £y if there is positive probability under H that ¢ accepts when £ rejects.

Minor alterations of the proof of asymptotic admissibility of the LR test in Theorem 1 yield
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finite sample admissibility of the LR test for the Gaussian linear regression model. The follow-

ing theorem states the result.

THEOREM 3: Suppose Assumptions 4 and 6-8 hold with 7, = LYV (X(x)', Z) X(z)', Zj) in
[+
Assumption 7. Let @ be a test that is distinct from the level « LR test {5 Then, there exists an r

< o such that for all r 2 1y,

[Uodfr(8y + b W)urldQ, ((x) < [[[Erfr(By + b, W)du7ldQ, L(h)d(x) .

REMARK: Remarks 1-5 following Theorem 1 all apply to Theorem 2 (with the references to

asymptotics deleted).

5. PROOFS

First we prove Theorem 1. Let F{(n) denote LR{(n), W{(x), or LM(x). For notational
simplicity, let "sup" denote "sup, ". Forr 2 0, let P, and E, denote probabilities and expec-
tations with respect to the density jf,-(ﬂo + B.;lh)er‘ﬂ(h)dJ(n) . The case r = 0 corresponds to
the null density f{68;). The likelihood ratio of P, to Py is denoted

(51) LRy, = [fr(8y + By H)Q, ,(I(x)f(0p) -
For A > 0 and arbitrary p € R? with || = 1, let

52 4, = [exp(x'p)U,E)
where U,(-) denotes the uniform distribution on the unit sphere in R?.

Define an approximate standardized ML estimator a(n) and an approximate Wald statistic

Wx(n) by
8(x) = 7718y, =)B7'DU(8y, =) and
(5.3) _ ) )
W(z) = (HB(n))'[Hfl(eo, n)H']"He(n) .

The proof of Theorem 1 uses the following lemmas.
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LEMMA 1: Under Assumptions 1, 2, 5, and 7, exp(-r:!/2)J-tlJp(l"ﬁ/'llr’2 (m))J(n)/LRy , £ 1 under
P,

LEMMA 2: For some constants Cy, C,, and C in (0, =),

(@ ¥,(2) < Cy + Gy exp(A) VA > 0and

(b) ¥,(») 2 C3 exp(A)A™CD2 v > 1.

LEMMA 3: Under Assumptions 1-5, sup|Wy{(x) - Fx(n)| ~E~ 0 and sup F(x) —%. sup F(x)
= sup(HG(8,, n))'[HI' l(Be, n)H’]-lHG(Bﬂ, n) under Py and sup F(n) has absolutely continuous
distribution.

LEMMA 4: Under Assumptions 1, 2, 5,and 7, {P, : T z 1} are contiguous to Py for all r > 0.

PrOOF OF THEOREM 1: For simplicity we consider the case where k., equals a constantk, V7T
> 1. For the case of random k.., we must have ky, £ k, for some constant k, by Lemma
3 and the corresponding adjustments to the proof are minor.

To prove Theorem 1, it suffices to show that

(54) 1@ Er(l - ‘Pr)n-l?l P,.(S'Ilp FT(T[) < ku) -0 a5 r — oo,
T-w T-m

Below we show that

(55)  Tm P,(sup Fy{n) < k,) s 2 exp(-P/2)[C, + Cp exp(rkD)] Vr > 0.
T—w

We also show that forsome y > 0and 0 < C; <

(56  Lm E(1 - ¢p) 2 C exp(-*R)explrik, + v)Hrk, + ) CD?
T-=

for r sufficiently large. Equation (5.4) follows immediately from (5.5) and (5.6).
We now establish (5.5)., Define the event D;- , by

67 D, = [exp(-rzﬂ)pr(rlr_Vlrﬂ(n))dJ(n)/LRT,, € [172, 2]} .
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By Lemmas 1 and 4, limy__ P(D7,) = 1 ¥ > 0. In addition, sup Fr(x) - sup Wy(n) 2= 0
under P, by Lemmas 3 and 4.

Using these results, we obtain: Vr > 0,

Im P (sup Fy(x) s k)
T

= Tm P (sup Wy(x) < ko, D7)
Tew ’

= Bm E\LRy,1(sup W(n) < kg, D7)

(5.8)
<2 exp(-rzﬂ);hE Eo[ 4,0 Wi (x))dJ(n)-1(sup Wr(n) < k,)

<2 exp(—rzﬂ)lri:ﬁi Eo[[C, + C; exp(W (=)]d(x)-1(sup Wr(n) s ko)

s 2 exp(-PR)[C, + C, exp(k )],

where the second inequality uses Lemma 2. Note that the first equality of (5.8) actually relies
on the results above plus the convergence in distribution, absolute continuity, and contiguity

results of Lemmas 3 and 4.

Next, we establish (5.6). The fact that ¢ and § are asymptotically distinct implies that 3y
> 0 such that

(5.9)  Lm E(1 - ep)i(sup Fo(r) > k, + 2y) = 872,
T

where & is as in the definition of asymptotically distinct. This follows because the left-hand sides
of (5.9) and (2.11) differ by less than

(5.10) Bm Py(sup F(n) € (ky, ko + 2y]) = Py(sup F(n) € (ko ko + 2Y)) < 6/2,
T
where the inequality holds for some small y > 0 by Lemma 3.

Let K be a compact subset (under the metric d) of the space of continuous R*-valued func-

tions on II. For 6 as above, K can be chosen such that
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(5.11) Po(71(8y, )G(By, ) €K) 21 - 8/4

using Assumptions 1 and 5. For e > 0, let K(¢) = {g € Z: sup, lg(n) - Un)] < ¢ for
some ! € K}. Note that K(t) is a neighborhood of X in (Z, d) by the condition (2.6) on the
metric d. By Assumption 5, 6(-) -7 1(60, }G(8y, *). In consequence,

(5.12) Lim Po(8(-) € K(e)) 21 - 8/4 Ve > 0.
T-=

We claim that given y > 0, 3e; > 0 and £ > 0 such that

(5.13) sup  |W(n) - W{z")] <y VB € K(e,) .

p(x,m)<k
This claim holds because (i) 0, n) is uniformly continuous and uniformly positive definite on
I by Assumptions 1(e), 1(f), and 4, (ii) given any n > 0, 3¢, > 0 and §,; > 0 such that

(5.14) sup  fe(n) -g(z)l < n Vg €K(ey),
p(m, )< §,y

which follows from the equicontinuity of K and the definition of K(e,), and (iii) ve > 0,
SUPgck(e) SUPx e lg(n)| < <, which follows from sequential compactness of K, condition (2.6)

on the metric d, plus the definition of K(e).
For £, as in (5.13), define the event D, by

(5.15) Dy, ={1 - or > 8/8, sup ﬁfT(ﬂ) >k, + 2y, Be K(ey), D-_*r,r} )

Let # be a random element of II that satisfies sup, ¢ ry I»T/T{x) = Sup_.q lf—VT(n) .

‘We now have
] L} 6
Er(l - ¢T) P-4 EPr(I - @T > 6/8) 2 'S'Pr(DT,r) = EEOL’RT,F.I(DTJ)

2 Sep(-PREND) [V Wy ()l ()
(5.16)

2 Cep(-PREDT)[1(x € S(k, DI, OH7 (r)I(r)

> Zexp(-PRE Dy, inf 4,0 () nt JS(x, ),

neS(%,E)

where the third inequality uses Lemma 1.
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Note that Dy, has been defined such that for © € Dy, and = € S(#, £), we have

sup, g Wrln), > ko + 2y, 8(), € K(z,), |Wy(n), - Wi(#),| < v, and

(5.17) Wai(m), > KWg(R)y - Y2 2 rik, + y)2.
Letb = inf_ . J(S(x, £)). By Assumption 6, b > 0.
For r such that r(k, + )2 > 1, Lemma 2, (5.16), and (5.17) combine to yield

E(1 - o) = S2op(-PDENDr,) inf [C; exprHym)EE(x) 0D
(5.18) 16 xES(H,E)

2 C3I;—26XP(-rzﬂ)Pg(DT’r)exp(r(km + Y)w)[r(ku . Y)UZ]-(p-l)/z .

The desired resuit now follows if

(5.19) lim Py(Dy,) 2 8/8 ¥r>0.
T-

We obtain a lower bound on lim;_, Py(Dr,) using (5.9). (5.9) and (5.12) yield
(5.20) ];__._m Eq(1 - p)1(sup F{z) > k, +2y, 0 €K(ey)) » g _ E Py(8 €K(e,)) = g .
This result and Lemma 3 give
8/4 < im Ey(1 - ep)l(sup Wy(n) > k, + 2y, B € K(e,))
T

< lim Py(1 - @7 > 8/8, sup Wp(x) > k, + 2y, 6 € K(¢,))
(5.21) Toe

+ Iim Ey(1 - op)I(1 - o7 < 8/8)
Tue

< lim Py(Dr,) + 88 ,
T

where the last inequality uses Lemma 1, O
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PROOF OF LEMMA 1: Let Gy = B;lm,(eo, %), Iy = 7{(8;, n), and 7 = 70, ). Define

(5.22) o) = sup 178y + ABTh, x) - 76y, ™I .
nell, k' thsr?,
O<icl

Then, for h such that h'7h < 12, a two-term Taylor expansion yields

e{(6y + B;.lh, n) - e{(8p) = Gy - k' Z;h/2 + Ry, where
(5.23)
IRyl < of(DIE < ofP/inf Ay (A8y, 7)) = C,orr)
nell

for some constant C, < .

By Assumption 1, wr{r) 2~ 0 W > 0. Hence, ¥n € Il and Vh with h'7ph < 1%, we have
Kz = exp(-Coor(r))
r i -1
< exp(h'Gy - W' ZLh/{2)/[f1(8g + By h, m)f1(8y)]

< exp(C,0H{r))

= Kor,

(5.24)

where KIT —P—-t 1 and K2T -Lt 1.

In turn, this yields

(525  Kyr < [exp(n'Gy - W2hi2)dQ, (()dI(x)LRr, s Kor .

By Assumption 1(d), exp(h’ 7rh/2)exp(h’ 4/2) £ 1 uniformly over k with h'7h < 7 and
over = € II. In consequence, there exist sequences of constants K5, and K1, such that Ky

N 1, K4Tr —p--r 1, and

(5.26) Kiy, s [exp(W'Gr - h'1hi2)dQ, (WMJ(n)LRy, < Ky, -
For h in the support of @, , we have k’'7h = r? and h = A_ for some 4 € RP. For such

h, h' A1, - A H) = 0, since straightforward algebra shows that A/ KI; - A, H) = 0. Thus, we

have
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[exp(h'Gy - h'/2)dQ, , (h)dI(x)
= exp(-P12) [exp(h' 24 HO(x) + h' 21, - A H)B(r))Q, . (W)dI(r)
= exp(-r*12) [exp(h' 24 HO(m))dQ, ,.(h)dJ(x)
= exp(-r12) [exp(rx' (4, 24,) HO(x))dU, () ()

= exp(-12) [exp(r Wy (=)' w)dU, (x)dI(x)

(5.27)

= exp(-12) [w, (W (m))I(x)
where the third equality uses Assumption 7, p = (4.24,)2H0(x)/I(A,24,) 2 HO(x)|, and
Wi(x) = I(4,24,)PHO(x)I? since 424, = (HI'IH’)_I by straightforward algebra.
Equations (5.26) and (5.27) combine to give the desired result. []

PROOF OF LEMMA 2: This lemma follows straightforwardly from results in the literature. For
example, it follows from equation (15.3.7), equation (15.3.9), and the last equation on p. 431 of
Mardia, Kent, and Bibby (1979). Note that their equation (15.3.7) contains a typo. The
expression (p-1)/2 should be (p/2) - 1 in the two places it appears. [J

PROOF OF LEMMA 3: Under Assumptions 1, 2, 4, and 5,

(5.28) sup]W{r) - Fr{(n)| £~ 0 under P,

by the proof of Theorem A-1 parts (c)-(e) of AP. By Assumptions 1, 4, and 5, the continuous
mapping theorem (e.g., see Pollard (1984, p. 70)), (2.5), and (5.28), the second result of the
lemma holds, Absolute continuity of sup F(n) follows from a result of Lifshits (1982). O

PROOF OF LEMMA 4: We make use of the following result, which follows, e.g., from Thms. 16.8
and 18.11 of Strasser (1985): If (i) LRy, -4+ X, under P; and (i) EgX} = 1, then {P, : T > 1)
are contiguous to Py. Condition (i) holds with X; = exp(-r*/2) [ 4, (FF*(r ))dJ(x ), where F(x)
is as in Lemma 3, by Lemama 1, Assumptions 1 and 5, and the continuous mapping theorem.
Condition (ii) is obtained as follows. Let Z(n) ~ N(0, IP). Then, F(n) and Z(x)'Z(r) have

the same distribution by Assumption 5. We now obtain
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EQX; = exp(-P Do | [exp0FV(m w)dU, o) i)
5.29) - (- [Eq expex 2@ )
- () f|[epx U@ -1,

where the second equality holds by taking the arbitrary unit vector p to be Z(x)/1Z(x)| and
applying Fubini’s theorem and the third equality uses the standard formula for the moment

generating function of a standard normal random vector. O

PROOF OF THEOREM 2: (Assumptions) 1(a), (b), (¢), (¢), and (f) follow immediately from
EP1(b), (c), (d), (f), and (g) respectively. 1(d) follows with B, = VT I, from EP1(a), EP1(e),
and EP2(b) using the uniform WLLN given in the Theorem in Andrews (1987) adjusted to allow
for non-compact parameter spaces according to footnote 1 of Andrews (1992). In particular,
pointwise WLLNs hold for the inf’s and sups of g(W,, 6, n) over small balls in ©, x II by the
ergodic theorem, because such random variables are strictly stationary and absolutely regular
and, hence, ergodic.

Assumptions 2 and 3 can be verified using Lemma A-1 of Andrews (1993b). We verify its
conditions (a) and (b) for Q{6, ) = - %B{log g(W,, 0,7) and Q(6, n) = -E log g(W,, 8, n).
For 2, the parameter space for 6 is ©. For 3, the parameter space for 0 is & = © n V, the null
hypothesis parameter space. Condition (a) of Lemma A-1 requires that Q{6, =) satisfies a
uniform WLLN over © x II. This follows by the same uniform WLLN as used above by EP1(a),
EP1i(e), and EP2(a). Condition (b) of Lemma A-1 holds for 2 (with parameter space ©) and for
3 (with parameter space &) by EP3.

Assumption 5 holds with B, = VT I; by Theorem 1 of Doukhan, Massart, and Rio (1992)
using EP1(a), EP1(e), and EP4. More specifically, the key condition (2.10) of Theorem 1 of
Doukhan e al. is implied by their equations (S.1) and (2.11) by their Lemma 2. Equations (S.1)
and (2.11) hold with ¢(x) = x* by EP1(a) and EP4 respectively, since |l,, equals the
L'-norm |-], in this case,

Next we establish part (b) of the Theorem, We have: Y8 = 0y, ¥n € I,
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W, e, W, o,
g(W, 11)<10 Eg(, )

5.30 6, =) - Q(8p, =) = E log——— i
(530) Q6 =) - Q(8y, %) W, 0 1) W, O ™

?

where the inequality follows from Jensen’s inequality and is strict by EP3*(a). Since compactness
and sequential compactness are equivalent for psendo-metric spaces, compactness of € x IT under
d (EP3*(b)) implies compactness of 8 and I under dg(0, 8) = d((8, %), (6, ¥)) for arbitrary
% € I and under dy(x, T) = d((8, =), (8, 7)) for arbitrary § € © respectively. Thus, by con-
tinuity in = (EP2(a)) and compactness of I, V8 = 8, 3n* = n*(0) such that

(5:31) sup(Q(8, n) - Q(By, 1)) = Q(6, n*) - Q(6y, %) < 0.

nell

That is, sup_ ;(Q(6, n) - Q(6y, 7)) is uniquely maximized at 6, Since it is a continuous
function of 0 (by EP2(a)) and @ is compact, EP3 holds as desired.

Part (c) of the Theorem holds by Theorem 5 of Andrews (1993a), because 47 'is a type IV
class of functions, as defined in Andrews (1993a), and EP4 is equivalent to Ossiander’s L'
entropy condition, which holds for type IV classes of functions by Theorem 5. O

PROOF OF THEOREM 3: The proof of Theorem 1 goes through with the following changes:

X,(n)IX,(n)

Throughout, By equals I, 7(6, =) and 70, =) equal lzz:‘r_l[ 7 7 |- Inconsequence,
o ¢ t

8(x) equals the unrestricted LS estimator #(x) minus 8, and Wy{(x) = W{r). Lemma 1 holds
with "2, 1" replaced by "= 1". The proof of Lemma 1 simplifies because 7{6, ) does not
depend on 6 which yields w{r) = 0O and K;7 = K, = K3, = K47, = 1. Lemma 2 and its proof
hold without change. Lemma 3 is replaced by the result that W (x) = W,{(x) V= €I, as noted
above, and sup, .z W{n) has absolutely continuous distribution, which follows from a result of
Lifshits (1982) given the assumption that X,(x) is continuous in =. Lemma 4 is not relevant and
is eliminated. In the proof of Theorem 1, limits as T ~ « are deleted, (5.7) is deleted and D;-’ ,
is eliminated in (5.8) and (5.15), G(6j, n) equals %Zf_l U(X (), Z,) in (5.11), (5.12) is
deleted, and (5.14) and subsequent equations hold \;ith K(e) replaced by K Ve > 0. O
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