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Abstract

This paper implements a robust statistical approach to regression with nonstation-
ary time series. The methods were recently developed in other work, and are briefly
exposited here. They allow us to perform regressions in levels with nonstationary
time series data, they accommodate data distributions with heavy tails and they
permit serial dependence and temporal heterogeneity of unknown form in the equa-
tion errors. With these features the methods are well suited to applications with
frequently sampled exchange rate data, which generally display all of these empirical
characteristics. Our application here is to daily data on spot and forward exchange
rates between the Australian and US dollars over the period 1984-1991 following
the deregulation of the Australian foreign exchange market. We find big differences
between the robust and the non-robust regression outcomes and in the associated
statistical tests of the hypothesis that the forward rate is an unbiased predictor of
the future spot rate. The robust tests reject the unbiasedness hypothesis but still
give the forward rate an important role as a predictor of the future spot rate.



1 INTRODUCTION

This paper applies some new econometric methodology to test the hypothesis that
forward exchange rates are optimal predictors of future spot rates. The forward
market unbiasedness hypothesis has been the subject of recent research that makes
use of nonstationary time series methods. Some of this work has involved direct
nonstationary regression techniques to fit empirical relationships between forward
rates and future spot rates. In particular, Corbae, Lim and Ouliaris (1993), Moore
(1992), and Phillips et al. (1996) have employed the Phillips—Hansen (1990) fully
modified estimator and Park’s (1992) canonical cointegrating regression technique
in such regressions. Others have used error correction and reduced rank regression
approaches (see Hakkio and Rush, 1989; and Baillie and Bolleslev, 1989). While these
techniques cope with nonstationary data, they were not designed to deal with data
that display strong outlier activity as well as nonstationarity, like exchange rates.
There is good reason therefore to question whether the empirical results from the
use of such techniques are statistically robust. The methods of this paper provide an
avenue for addressing this question and thereby sorting out which effects may be due
to nonstationarity and which to outlier behavior.

Let s; be the natural logarithm of the spot exchange rate (S;) of a given currency
in terms of the US dollar at time ¢, and let f; » be the natural logarithm of the forward
exchange rate (Fy ) of the currency contracted at time ¢ for delivery at time ¢t + k.
Forward market unbiasedness tests can be based directly on the regression model

Strk =+ Bk + wiik (1)
and the hypothesis is couched in the parametric form
Ho:OéZO, 5:1- (2)

Much conventional empirical methodology in this field is motivated by an attempt to
avoid working with the nonstationary levels data s;; 4 and f; ;. To achieve this, (1)
and (2) are often combined under Hy to produce a model whose dependent variable
is the spot return s; 1 — s; and whose regressor is the forward premium f; ; — s¢, as
in the following equation

Stk — St = 4 B (fr g — St) + Up sk

Return/premium regressions such as this are studied in Phillips and McFarland
(1996). It is shown there that such regressions suffer some major disadvantages in
comparison with (1). For instance, they lead to a lower rate of estimator convergence
under the null hypothesis; and, when 3 # 1, the OLS estimator of § converges in
probability to zero, even when the forward rate has predictive content in the original
model (ie when 3 # 0 in (1)). Thus, the potential for spurious inference is high in
such regressions and it is preferable to work with the levels regression formulation
(1) instead. In some earlier joint work (see Goodhart et al., 1992), Patrick McMahon
pointed to weaknesses in return/premium regressions and used subsample estimation
to reveal the unreliability of the coefficients in these regressions.



When the contract period k exceeds the sampling interval (the case of overlapping
data) — as will be the case for daily data — the error ws,y in (1) can be expected
to be serially dependent and possibly temporally heterogeneous. Moreover, since
st and fiyr typically display stochastic nonstationarity in their log-levels form, (1)
involves nonstationary data as well as serially dependent errors. The fully modified
least squares (FM—OLS) procedure of Phillips—Hansen (1990) accommodates both
these characteristics of the regression model (1) and this is why it has been used
in recent research. However, like all least squares regression techniques, FM—-OLS
was not designed to deal specifically with data (like exchange rates) where there is
prominent outlier behavior.

The methodology we use in this paper to estimate regression equations such as (1)
is designed to be statistically robust to outlier activity in the regressors and the errors.
Our procedure is called fully modified least absolute deviations (FM-LAD) and has
the same robust regression features as the least absolute deviation (LAD) regression
estimator (see Basset and Koenker, 1978). Like FM-OLS, the FM-LAD estimator
also corrects for endogeneity and serial correlation and is therefore well suited to
forward market exchange models such as (1) which embody all of these characteristics.
The asymptotic theory of the FM-LAD estimator is derived in Phillips (1995) and
the estimator has been successfully applied to some historical data series that relate
to the 1920’s experiment with floating exchange rates (see Phillips, McFarland and
McMahon, 1996). We will describe the main features of the method here in Section
2.

The present application is to daily exchange rate data for the Australian dollar in
the period following the financial deregulation of the early 1980’s. The data and its
time series and tail slope characteristics are analyzed in Section 3; model selection
exercises including some recursive cointegration analyses are conducted in Section
4; our empirical regression results and tests of unbiasedness are reported in Section
5; nonparametric estimates of the probability densities of the equation errors and
exchange rate returns are computed in Section 6; and some brief concluding comments
are made in Section 7.

2 FM-LAD ESTIMATION AND TESTING

The FM-LAD estimation procedure was developed in Phillips (1995). Here, we briefly
describe the construction of the FM—LAD estimator, its associated test statistics and
the relevant asymptotic theory. It will suffice for this exposition and our intended
application to use the simple cointegrated system

Yy = B'wy 4 uo (3a)

Axt = Uyt (Bb)

where u} = (ugt, 1)) is a stationary m-vector time series (m = 1+ my) with spectral
density matrix fy,(A). The long-run covariance matrix of u; is

Qoo Qo ]

Quu = 27 furu (0) = l Qe O (3)



where the partition is conformable with that of the vector w;. We assume that
Quz > 0 (i.e., gy is positive definite), so that z; in (3a) is a full rank I(1) process
in the sense that the number of unit roots in the stochastic process x: is equal to
my, the dimension of x;. In cases where u; does not possess finite second moments
the matrix €2, in (4) is not well-defined. However, it is still possible in such cases
to construct a pseudo long-run variance of u;, as discussed in Phillips (1990, p. 51),
and we will proceed as if this has been done.

In FM-LAD estimation we also need to work with the transformed error v; =
sign(upt), and we therefore define the long-run covariance matrix of w; = (v, ul,;) as

Q’UU QUCC
wa - Qwaw(O) - [ Qm’u Qz:t ‘| ’

which is partitioned conformably with w;. Note that v; is bounded and has finite
moments of all orders. But this is not true of ug; and in cases where the second
moments of uy; do not exist we may again employ a pseudo-variance interpretation
of Quw-

The LAD estimator of 3 in (3a) is the extremum estimator

Brap = arg mﬁin{nilz? }yt - 3325}} - (4)

When the regressors z; are fixed this estimator has an asymptotic normal distribution
and is y/n consistent for 5 in (3a). When x; is an I(1) process and (3b) holds, this
asymptotic theory no longer applies in general. Instead, the LAD estimator, just like
OLS, suffers from bias and non-scale nuisance parameter problems even in the limit
as n — 0o.

The FM-LAD estimator is designed to address the difficulties that are encoun-
tered by the LAD estimator while at the same time retaining its robustness features
with regard to heavy tailed errors. As with the FM—OLS estimator, we modify LAD
to account for possible endogeneities in the x; regressor variables and serial depen-
dence in the errors. The FM-LAD estimator is defined by

Biap = Brap — (3£(0)) (X'X) H(X'AX —nd},) (5)

where X'X = Star), X'AX = Sta, Az, and f(0) is a consistent estimator of the
probability density of wg; at the origin.

The matrix Ajv in (6) is a consistent estimator of the one-sided long-run covari-
ance matrix

AL, =322 E(ugovy)) (6)
where
+ _ 1
vy = vp — Qe Ay (7)
and
vy = sign(ugy) - (8)



To estimate A}, we need first to estimate the modified error v;", and this involves

the estimation of v;. To do so, we run a first stage LAD regression which produces
the error estimate o = y+ — BLap®t. Setting 9 = sign (o), we construct

o = 0 — Qa0 Ay (9)

using conventional kernel estimates of the long-run covariance matrices €2,; and g,
whereupon we can estimate A}, by using a kernel estimate of the one-sided long-run
covariance of u,; and U, (see Park and Phillips, 1988) . Note that we can write

AL = Apy — Dua0 Qpy, where Ayy = 552 0 E(ugotr), Auw = D520 F(ugottly,),
(10)
so that the estimation of Wyp.e = Quy — Qw251 Quyp effectively involves the estimation
of the four submatrices Ay, Agz, 2, and Q. Once again, when variances are
infinite we can employ pseudo-variance interpretations of these quantities and these
pseudo-variances may all be estimated in the usual way with finite samples of data.
The asymptotic theory of the FM-LAD estimator ﬁ}f Ap 1S given by

Biap = B~ N (0, (1/2f(0))wro(X' X)) (11)

where Gyp.p = ﬁw — vaﬁgxlﬁm. Hence, Wald statistics can be constructed in
the usual way from this mixture normal approximation to test restrictions on the
parameter vector # and such statistics have limiting chi-squared distributions with
degrees of freedom equal to the number of restrictions.

When the system (3) has infinite variance errors, it is shown in Phillips (1995)
that (11) still holds but with wyy.y = Q. Thus, the FM-LAD estimator has an
asymptotic mixed normal approximation whether or not the error variances in the
underlying system are finite. So the FM-LAD estimator has the attractive feature
that its limit theory in the case of cointegrated systems like (3) may be used for
statistical inference irrespective of the tail thickness of the errors. This feature makes
the estimator ﬁfAD and its associated Wald tests very useful in the context of non-
stationary data with heavy tails.

3 THE DATA AND OUTLIER CHARACTERISTICS

The data employed in this study consist of daily spot, one-month forward and three-
month forward exchange rates for the Australian dollar against the US dollar over
the period beginning 3 January 1984 and ending 2 April 1991. There are 1,830 ob-
servations in total. This period follows the decision made in December 1983 by the
Australian government to float the Australian dollar and to abolish a major part of
existing exchange controls. Not all exchange controls were abolished at this time
however and, in particular, trading banks alone retained the privilege of dealing in
spot and forward exchange markets until 1988 when access to the foreign exchange
market was given to nonbank licensed foreign exchange dealers by the Reserve Bank



of Australia. Juttner (1990, ch. 22) provides a recent history of institutional arrange-
ments and exchange rate regimes in Australia and the reader is referred to this source
for further details.

Figures 1 and 2 graph the levels of the series and the figures show the spot rate
(SR) at t + k (i.e., Seyx) against the two forward rates (i.e., F} ;) for the one-month
and three-month contracts. The data are aligned so that the spot rate is shown for
the date when the forward contract matures. As is apparent from both figures, the
data behaves as if they have no fixed mean.

Figures 3 and 4 show the spot rate and forward rate return series (i.e., As; =
InS; —InS;—1 and Af;p = InF; —InF;_1) over the same historical period. Both
these graphs show evidence of some large outlier activity, especially the one-month
forward rate over 1989-1991.

The outlier activity in the data can be studied by estimating the tail slope para-
meter ( «, say) of the data distribution, using order statistic methods as explained
in Phillips, MacFarland and McMahon (1996). These methods rely on the use of the
s largest order statistics of the exchange returns in each tail. The choice of s can
be data-based (as described in Hall and Welsh, 1985), but this relies on the further
assumption that the tails are asymptotically of the Pareto form and can be expanded
in powers of x~%. While this further assumption is restrictive, it does enable us to
provide entirely data-determined (or adaptive) estimates of the tail slope. Estimates
and adaptive estimates of a for our data are given below in Table 1.



Table 1
Point Estimates of Tail Slope Parameter for Exchange Rate Returns

Series s Left tail Right tail
10 | 2516 (0.397) | 3.769 (0.595)
50 | 2.450 (0.346) | 3.405 (0.481)
Spot rate 75 | 2.214 (0.255) | 2.829 (0.326)
100 | 2.011 (0.201) | 2.741 (0.274)
§ | 2452 [58] (0.322) | 3.377 [58] (0.443)
10 | 2.457 (0.388) | 2.878 (0.455)
50 | 2.499 (0.353) | 3.005 (0.424)
1-month forward rate 75 | 2.680 (0.309) | 2.658 (0.306)
100 | 2.471 (0.247) | 2.674 (0.267)
§ | 2661 [73] (0.311) ] 2.568 [83] (0.281)
0 | 2.877 (0.454) | 4.076 (0.644)
50 | 3.033 (0.429) | 3.925 (0.555)
3-month forward rate 75 | 2.747 (0.317) | 3.076 (0.355)
100 | 2.769 (0.276) | 3.082 (0.308)
5 2856 [70] (0.341) | 3.023 [76] (0.346)

[ ] = 8, adaptive estimate of order statistic number.
() = standard error of &

There is evidence from the estimates given in Table 1 that spot exchange rate
returns are asymmetrically distributed with heavier left tails than right tails. The
left tail slope coefficient estimate &; = 2.452 is 2.87 standard deviations from the
right tail slope coefficient estimate &; = 3.377. The asymmetry in tail slope is
also apparent from the graphed return series shown in Figure 3, where we see large
negative outliers in 1985, 1986, 1989 and 1990 and smaller positive outliers for the
same years.

The one-month forward rate return series has right and left tail slope estimates
that are much more balanced. There is no evidence of asymmetry in this series. But
the slope estimates show strong evidence of thick tailed distributions. The adaptive
estimates &3 are more than one asymptotic standard deviation less than 3.0 and more
than two standard deviations less than 3.30. The three-month forward rate tail slope
estimates are a little higher (&z = 2.856 for the left tail and &3 = 3.023 for the right
tail). These are still significantly lower than 4.0, so that there is doubt whether a
finite fourth moment distribution is an appropriate model for the data and strong
evidence in each case against Gaussianity.

4 MODEL SELECTION, UNIT ROOTS AND COIN-
TEGRATION

We first set out to find the most suitable model for each of the series in the autoregressive-
moving average (ARMA) with deterministic trend (Tr) class. This process not only
helps to characterize the time series features of the data but also enables us to address



the question of whether the data is better modelled with a deterministic trend and
whether there is a unit root in the model. Our methodology in this exercise follows
that of Phillips and Ploberger (1994). Specifically, we set up a general reference
model in the ARMA(p, q) + Tr(t) class of the form

Ys = Qys—1+ E?;fgoiﬁys—i + i1 j + E;-:Objsj + e, (12)

for each series and used the model selection algorithm of Phillips and Ploberger
(1993) to empirically determine the trend degree (¢) and ARMA orders (p,q). The
version of that algorithm that we employ here makes use of: (i) the BIC criterion
(Schwarz, 1978) to select the lag orders and the trend degree; and (ii) recursive least
squares estimation of (19) along the lines of Hannan-Rissanen (1982). In addition,
we evaluated the model that was chosen and estimated this way with the same model
estimated with an autoregressive unit root imposed.

Table 2
Model Selection

Trend | ARMA(p,q) | Long-run AR | PIC odds in favor
Variable (log-levels) degree orders coefficient of a unit root
t P q a
Spot Rate -1 1 1 0.999 1765
1-month Forward Rate -1 1 1 0.999 1553
3-month Forward Rate -1 1 0 0.999 1798

The results of this model selection exercise are shown in Table 2 and Figures
5-6. The chosen trend degree in each case is £ = —1, so that a model of the form
(19) is selected with no intercept or trend. The algorithm chooses an AR(1) model
for the spot rate and the three-month forward rate but chooses an ARMA(1, 1) for
the one-month forward rate. In the latter case the fitted model is (with ¢-ratios in
parentheses):

Ys :(105'5969(?5) Ys—17 (930%76) sl
The moving average effect is small, negative but quite significant in this case. The
long run AR coefficient (the parameter a in model (19)) is, in fact, unity to the fourth
decimal place, as it is for the other series (although the fourth digit is not shown in
Table 2). When the algorithm is restricted to choose from autoregressive models the
selected model is an AR(2) with the following fitted form

s = 0.999 y,_1— 0.0832 ys_» .
Y (1597.15) Yol (—3.566) Yo

The final column in Table 2 gives the value of the posterior information criterion (PIC)

in favor of a unit root. The PIC criterion is derived in Phillips and Ploberger (1994,

1995) and compares the ARMA(p, §) + Tr(#) model for ys with the ARMA(p — 1, §)

+ Tr(t) model for Ay,. In each case the criterion favors the model with a unit root

present.



Figures 5 and 6 give model selection graphics (for the spot rate and one-month
forward rate) which help to show how well determined the selected model is in the
given class. Fig. 5 displays the surface of PIC values against an array of (p,t) values
for an AR(p) + Tr(¢) model with p < 5 and ¢t < 1. Since we choose the model with
the highest PIC value (i.e., highest likelihood odds in its favor) it is clear from Fig.
5 that (p,t) = (1,—1) is quite well determined for the spot rate. For the one-month
forward rate, we see from Fig. 6 that the choice is (p,t) = (2,—1), and again this is
quite well determined.

We also performed model selection exercises in vector autoregressions for jointly
modelling the spot rate and forward rate. The model is a vector version of (12) with
no moving average component and has the form

Ays = Ays1 + S0 ®iAy,_; + B_gbjs’ +e5, s=1,.., T (13)
with the levels coefficient matrix A taking the possibly reduced rank form
A=af, (14)

for certain n x r matrices o and 3 of rank r (here n =2 and 0 < r < 2).

When the rank » = 1 in (14), there is cointegration between the components of
the integrated time series y,. However, since the autoregressive lag length p in (13)
is also unknown a priori, the problem of determining the rank r cannot be separated
from the problem of order selection. Indeed, as argued recently in Phillips (1996),
there is good reason to consider the cointegrating rank as an order selection problem
in itself. As such, it is possible to treat (r,p) as a pair of parameters which can be
jointly determined by order selection techniques. This approach was taken in the
present paper, and we computed BIC values for an array of (r,p) values for the fitted
model (13) using the formula

BIC(r, p) = In |S(r, p)| + {n*(p — 1) + 2nr — r*}In(T) /T, (15)

where fl(r,p) is the residual error covariance matrix from a fitted reduced rank re-
gression of the form (13) with A matrix of rank r and p autoregressive lags.

Figures 7-8 provide graphs of the results of this joint model selection exercise
for two VAR systems: one with the one-month forward rate and the other with the
three-month forward rate. In each case Figure (a) shows the surface of BIC values
for an (r,p) array with 0 < r <2 and 1 < p < 6. (The BIC value for an equation
with no autoregressive lag is so large that it distorts the scale of the surface and is
therefore omitted — clearly p > 1). Also Figure (b) shows a cross section of the
surface to exhibit the BIC values for 0 < r < 2, given the chosen autoregressive
lag p. For the two systems, the BIC criterion (15), with (7,p) = argmin BIC(r,p),
leads to the same choice of 7 = 1, p = 1. The lag length seems in both cases to



be a little better determined than the cointegrating rank. Interestingly, this is true
for the system involving the spot rate and the one-month forward rate (Figures 7(a)
and (b)), where an AR(2) was earlier selected for the one-month forward rate as a
univariate series (refer to Table 2).

Tests were conducted to assess the adequacy of the cointegrating regression model
(1) over the sample period. The residual based Z, and Z; tests of Phillips and Ouliaris
(1990) are reported in Table 3. The tests were computed using: (i) a fixed lag (set
at ¢ = 10) long-run variance estimator; (ii) a data-based long-run variance estimator
based on the Andrews-Monahan (1992) AR prefiltered and recolored procedure; and
(iii) the data-based long-run variance estimator of Lee and Phillips (1993) that uses
ARMA model selected prefiltering and recoloring. Similarly, the ADF tests used a
fixed AR lag length (p = 10) and a data-based (BIC) AR order selector p. All of the
tests confirm that the relationship (1) is cointegrating for the two forward contract
periods, although the evidence is marginal in the case of the three-month relationship.
The 5% critical values given in Table 3 are from the COINT 2.0 regression package
(Ouliaris and Phillips, 1993). Table 3 also includes the results of the Phillips and
Ploberger (1994, 1995) PIC unit root test applied to the residuals from the regression
(1) for each currency. This test involves a data-based model selection procedure
prior to the construction of the odds ratio. The odds in favor of cointegration are
4.8 x 107 : 1 in the case of the one-month forward rate relationship and 1.055:1 in the
case of the three-month forward rate relationship. These outcomes corroborate the
conclusions of the residual based tests, including the strong (marginal) conclusion in
the one-month (three-month) relationship.

Table 3
Residual Based Tests of Cointegration
Data-based Data-based Data-based PIC odds in favor
Equation =10 1 =10 1 p=10 P of cointegration
Zg Zy Zy Zy ADF ADF
I-month Forward Contract 103 86.184 7.300 6.663 4.876 6.511 1.88 X 107
3-month Forward Contract -26.093 -22.690 -3.704 -4.280 -4.280 -3.512 1.055

g ov=-19613; Lt v = -3.465

5% critical values (ev’s):

To exhibit the evidence in support of the cointegrating equation (1) over subpe-
riods, the Z, test was computed recursively over the historical period starting from
the 100’th observation. The results for the one-month and three-month forward rate
relationships are shown in Figures 9 and 10. The relationship between the spot rate
and one-month forward rate is strongly supported by the nearly monotonic declining
graph of the Z, statistic in Figure 9. If equation (1) holds at this contract horizon,



this is exactly the behavior in the statistic that we would expect as the sample size
grows and more information on the relationship accumulates, since Z, diverges to
—oo as the sample size n — oo when (1) holds.

We note a similar generally declining value in the recursive Z, statistic for the
three-month forward rate shown in Figure 10. But the evidence is not as strong
and the recursive statistic is marked by subperiods, notably mid-1984 and 1987—
1988, when the evidence shifted against the existence of a cointegrating relationship
between the spot rate and three-month forward rate. As noted earlier, the period
1987-1988 involved some further important deregulation in the Australian foreign
exchange market that admitted nonbank licensed participants to the market and the
changes of this period may well have had a destabilizing influence on the relationship
between the spot and forward rates over the longer contract horizon.

By the end of the sample period the evidence in favor of a cointegrating relation-
ship in both cases seems quite strong. Since the time horizon is much longer in the
case of the three-month forward contract we would naturally expect the forward rate
in this case to be a less satisfactory predictor, as indeed is apparent from the data
graphics in Figures 1 and 2. In addition, we might expect the residual in equation
(1) to show longer temporal dependence in this case. To allow for this in the calcu-
lation of the recursive Z, tests, we used a data-based long-run variance estimator,
so that the lag truncation or bandwidth parameter naturally accommodated itself to
the degree of temporal dependence in the data. Also the bandwidth parameter was
selected on a period by period basis in an optimal data-based way as the recursive
calculations proceeded, so that as the sample size grew the bandwidth parameter was
adjusted accordingly.

5 ROBUST ESTIMATION AND TESTS OF FORWARD
MARKET UNBIASEDNESS

Equation (1) was estimated for the one-month and three-month forward contract
periods by OLS, reduced rank regression (RRR), FM-OLS, LAD and FM-LAD. The
results are shown in Table 4. Standard errors, ¢t-ratios and Wald statistics for testing
the joint hypothesis Hy : « = 0, § = 1 are given in the table for the FM—-OLS
and FM-LAD procedures only. Note that conventional tests are not asymptotically
valid in the case of the OLS and LAD estimators because of the nonstationarity and
temporal dependence of the data for the reasons explained in Phillips—Durlauf (1986)
and Park—Phillips (1988). However, the OLS and LAD coefficient estimates are both
consistent, even though they suffer from second order bias, and it is therefore of some
interest to report these estimates and determine the impact of the FM-OLS and
FM-LAD estimator modifications.

10



The main empirical results are as follows:

(i) There are big differences between the FM~OLS and FM-LAD coefficient es-
timates, especially with regard to the slope coefficient 3. For the equation involving
the one-month forward rate we have 3, = 0.910 and 35 ¢ = 0.980, which differ by
more than three FM-LAD asymptotic standard errors. For the three-month contract
rate equation we have BJ(SLS = 0.883, which is more than four FM-LAD asymptotic
standard errors greater than the FM-LAD estimate 3, = 0.70.

TABLE 4
Empirical Estimates of Equation (1)
Equation Estimation Method Parameters, standard errors and t-ratios Joint Test
« Sq | ta = % 6} sg | tg= ﬂgj F
OLS 0.023 0.904
l-month RRR 0.001 0.998
Forward FM OLS 0.002 0.009 0.202 0.980 0.032 0.593 1.518
Contract LAD 0.022 0.894
FM-T.AD _0.017 | 0.006 | 26110 0.910 0.022 —1.035% 29.307%
OLS 0.085 0.680
3-month RRR -0.004 0.934
Forward FM-OLS -0.025 0.029 —0.866 0.883 0.092 -1.256 2.485
Contract LAD 0.077 0.681
FM-T.AD —0071 | 0012 | -5611°€ 0.700 0.040 —r351¢ 70.838%
Legend (i) One tail: (ii) Two tail
asigniﬁ(,anl at 0.1% level significant at 5% level
csigniﬁcanl‘ at 0.1% level

Note that the FM—OLS estimates are in both cases much closer to the value 8 = 1.
This has a major impact on the inferred statistical properties of the risk premium

Pk = fik — Ei(Si4x) = (1 = B) frp — @ — Ey(ugy) -

for, if 3 # 1, this implies that the risk premium p; j is nonstationary.

(ii) In testing the hypothesis Hg : (3 = 1 there are similar major differences
between the procedures. For both contract periods Hpg is clearly rejected by the
data using the FM-LAD, but not rejected using FM—OLS. Thus, robust regression
methods do seem to make an important difference in inference about this parameter.
There are similar differences in inference with respect to «. In testing H,, : « = 0, the
FM-LAD tests reject the hypothesis (strongly in the case of the three-month forward
contract equation), whereas the hypothesis is not rejected using the FM—-OLS test.

(iii) Tests of the joint hypothesis Hy : a = 0 and § = 1 also lead to big differ-
ences between the procedures. The FM-LAD chi-squared test statistic is large and
significant beyond the 0.1% level for both the one-month contract and three-month
contract equations. On the other hand, the FM-OLS test does not reject the hy-
pothesis Hy. Again, the use of robust methods makes an important difference in the
inferences that are drawn from the regression.
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(iv) Looking at Table 4 we see that the biggest differences in the regression co-
efficient estimates arise between FM—OLS and the other three procedures. The en-
dogeneity and serial correlation corrections lead to substantial changes in the OLS
estimates, e.g., from 3 = 0.680 to ﬁéLS = 0.883 in the case of the three-month con-
tract equation. On the other hand, the LAD estimate is 0.681 and FM-LAD estimate
is 0.700, both quite close to the OLS estimate. This reveals that the correction terms
in the FM—OLS procedure carry much more weight and lead to much bigger changes
in the estimate than they do for the LAD procedure. A possible explanation for this
difference is that the LAD corrections rely on the residual function v; = sign(ag:),
which is bounded rather than the residual g itself — see formula (6) and equa-
tions (7)—(11) above. The LAD corrections are therefore less likely to be affected by
outliers in the equation errors than the OLS corrections that lead to the FM—-OLS
estimate.

(v) Table 4 also gives the RRR estimates of the coefficients for the two equations.
These estimates are closest to the FM—-OLS estimates and like FM—-OLS are very
different from the robust estimates. For the two equations considered, the RRR
estimate of 3 is actually closer to unity than the FM—-OLS estimate and this is
particularly so in the three-month contract equation. These outcomes indicate that
RRR estimation is very susceptible to the presence of outliers in the data. The results
reported were obtained from a vector autoregression with six lags and very similar
results were found when the lag length was varied from p = 1 to p = 20. So there
does not appear to be much sensitivity to lag length in this case.

6 NONPARAMETRIC DENSITY ESTIMATES

Using the estimated residuals g, from the FM—OLS and FM-LAD regressions, to-
gether with the exchange rate returns u,; = Az, for one-month and three-month
contracts, we computed kernel estimates of the probability density of ug: and wug.
A normal kernel was used in these computations in combination with a data-based
(“plug in”) optimal bandwidth based on Silverman’s (1986, p. 45) recommendations.

Figures 11-12 graph these densities for the one-month forward contract equation.
For comparison purposes, each of these figures also graphs a N(0, s?) density with
variance s? equal to the sample variation of the data (either the residual g or the
return uz: = Ax¢). The leptokurtosis and heavy tailed properties are evident in each
of these nonparametric estimates and these features stand out clearly against the
fitted normal curve. The heavy tail is especially marked in the case of the equation
error density shown in Figure 11. Similar results were obtained for the three-month
forward contract equation residuals and return data.

In Figure 11 the equation errors ug; are estimated using the FM—-LAD residuals.
In view of the important differences noted earlier between the FM-LAD and FM-
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OLS coefficient estimates, we thought it useful to graph the nonparametric error
densities based on the FM-OLS residuals as well. Figures 13 and 14 graph these
error densities against those of the FM—LAD residuals for ease of comparison. The
results are quite revealing. In both cases the FM—-OLS residual density is noticeably
skewed, with a mode that is substantially shifted away from the origin. The FM-
LAD residual density is much less skewed and is better centered on the origin with
a mode that is actually quite close to the origin. These estimated densities suggest
that the corrections in the FM—OLS procedure are influenced by outliers in the data
and result in a skewed residual density that compensates for the large correction that
occurs in modifying OLS to FM—-OLS. On the other hand, the FM-LAD estimate
and fitted residuals do not seem to be strongly affected by outliers in the data.

This conclusion is corroborated by the data and regression line plots which are
shown in Figures 15 and 16. The scatter plots of the data reveal some distinct
outliers from a forward rate prediction model of the form (1). The fitted regression
lines show how the FM—OLS coefficients are clearly influenced more by these outliers
than FM-LAD. This is especially noticeable in the case of the three-month forward
contract relation. These figures also show the regression lines fitted by reduced rank
regression, which seem to be even more influenced by outliers in the data than the
FM—-OLS estimates.

7 CONCLUSION

This paper reports an empirical application of robust nonstationary regression to
the Australian foreign exchange market over the period 1984-1991. Both one-month
and three-month forward exchange rates are found to have substantial predictive
content for future spot rates. But, unlike optimal Gaussian regression techniques,
the robust regression tests do not support the hypothesis that these forward rates
are unbiased predictors of the future spot rate. Adaptive point estimates of the tail
slope of the distributions of the equation errors and exchange returns, together with
nonparametric estimates of the densities of these distributions all give strong evidence
of heavy tails and support the use of robust, nonstationary regression methods.
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