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Abstract

This paper considers an alternative asymptotic framework to standard sequential asymptotics
for nonlinear models with deterministically trending variables. The asymptotic distributions of
generalized method of moments estimators and corresponding test statistics are derived using this
framework. The asymptotic distributions are shown to be the same with deterministically trend-
Ing variables as with non-trending variables. That is, the distributions are normal and chi-
squared respectively. The asymptotic covariance matrices of the estimators, however, are found
to depend on the form of the trends. These findings provide a justification for the use of
standard asymptotic approximations in nonlinear models even when the variables have determin-

istic trends.
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1. Introduction

The purpose of this paper is to show that most of the work on nonlinear econometric
models for non-trending variables done in the 1970’s and 1980’s can be extended to cover non-
linear models that are based on variables that have deterministic trends of quite general forms.
We consider a triangular array asymptotic framework, which differs from standard sequential
asymptotics. This asymptotic framework is quite tractable, since methods developed for models
with non-trending variables can be applied to it.

Utilizing the triangular array asymptotics, we find that extremum estimators for nonlinear
models with deterministically trending variables are approximately normal distributed and corres-
ponding test statistics are approximately chi-square distributed under the null -- just as in models
with non-trending variables. The form of the estimators’ asymptotic covariance matrices, how-
ever, is found to differ when deterministic trends are present, Nevertheless, standard estimators
of covariance matrices designed for the non-trending case yield consistent estimators for the
deterministically trending case as well. Thus, estimation and inference for the deterministically
trending case can be carried out in exactly the same fashion as in the non-trending case,

The triangular array asymptotics used here have numerous antecedents in the literature.
Examples include the asymptotics used in some nonparametric regression models (e.g., see
Priestley and Chao (1972)), many structural change models, some linear models with additive
deterministic linear trends (see MacNeil (1978)), some linear models with additive deterministic
nonlinear trends (see Phillips and Hansen (1990)), and some nonstationary models with time
varying coefficients (see Dalhauns (1993)). Additional examples include the use of linear time
trends and deterministically de-trended variables in nonlinear models estimated by GMM (see
Eichenbaum and Hansen (1990)). In spite of these antecedents, the usefulness and generality of
the method has not been fully explored nor appreciated in the nonlinear econometrics literature.
For example, most review articles and treatises on nonlinear econometrics do not mention any
results for models with deterministically trending variables (see Gallant (1987), Gallant and
White (1988), Potscher and Prucha (1991a, b) and Newey and McFadden (1992)). Exceptions
are the review articles by Ogaki (1992) and Wooldridge (1993).



We note that Wooldridge (1986, 1993) has obtained some qualitatively similar results to
thbse obtained here but using standard sequential asymptotics. We view the results of this paper
as being complementary to those of Wooldridge. One advantage of our results is their tractabil-
ity. Wooldridge’s results utilize high level assumptions that can be difficult to verify. Primitive
conditions for his results have been worked out for only one simple model in which a trend
enters the model nonlinearly. Further discussion of the advantages and disadvantages of tri-
angular array asymptotics relative to standard sequential asymptotics is given below,

The usefulness of the results given here depends, obviously, on the preponderance of eco-
nomic variables that exhibit deterministic trends (of one form or another). It is clear that most
macroeconomic variables and many financial variables exhibit trends. What is less clear is
whether these trends are better viewed as being deterministic or stochastic (where a stochastically
trending variable refers to a variable that is integrated). The empirical literature on this question
is extensive and its conclusions are mixed (e.g., for a variety of results using a variety of methods,
see Nelson and Plosser (1982), DeJong and Whiteman (1991), Phillips (1991), Kwiatkowski,
Phillips, Schmidt, and Shin (1992), and Andrews and Chen (1992)). For some variables, the evi-
dence points to the trends being deterministic and for other variables stochastic, but in only a
few cases is the evidence strong. One feature of the empirical results that is relatively clear is
that the evidence for deterministic trends is stronger for real variables than for nominal variables,

The empirical results referred to above consider linear deterministic trends. There is also
a literature on the question of whether macroeconomic variables are better represented as having
stochastic trends or deterministic trends with a break (or several breaks), e.g., see Perron (1989)
and Zivot and Andrews (1992). Again the empirical findings are mixed.

The upshot of the above discussion is that some economic variables are probably better
viewed as having deterministic trends while others are better viewed as having stochastic trends.
Thus, there is some range of applications for the results of this paper, but it is certainly not all
inclusive (since this paper does not allow for variables with stochastic trends). Examples of
papers in the literature where the results are applicable include Fair’s (1984) macroeconometric

model which assumes trend stationary variables and includes nonlinear equations and time trend



regressors, Eichenbaum and Hansen’s (1990) paper referred to above, and various papers that
have appeared recently in the American Economic Review such as Fair and Dominguez (1991),
Hamilton (1992), and Allen (1992). It appears that there are sufficient potential applications
that the results of this paper should be of some interest for both theoretical and empirical
Teasons.

The remainder of the paper is organized as follows. Section 2 motivates and defines the
triangular array asymptotics that are employed in the paper. Section 3 applies the asymptotic
framework of Section 2 to GMM estimators and corresponding test statistics for nonlinear
models based on deterministically trending rv’s. An Appendix provides proofs.

Throughout the paper, all limits are taken "as T - =" unless stated otherwise, "2, Q"
denotes convergence in probability, "_4 " denotes convergence in distribution, "wp - 1" abbrev-
iates "with probability that goes to one as T ~ «," E{ denotes 27;1 » I'l denotes the Euclidean
norm, ||, denotes the L9 norm, and A/B denotes the set of points that are in the set A but not

in the set B,

2. The Asymptotic Framework

Here we consider the question of how to construct a suitable asymptotic framework for
handling nonlinear econometric models when the underlying random variables (rv’s) may possess
deterministic trends. The purpose of the asymptotics is to generate good approximations to the
finite sample distributions of estimators and test statistics. It is this purpose that guides our
construction of the asymptotic framework.

To achieve good asymptotic approximations, it is usually desirable to embed the finite
sample problem of interest in a sequence of problems which mimic the finite sample problem as
closely as possible. To implement this principle, one first has to decide what aspects of the prob-
lem should be closely mimicked. In the present case of models based on rv’s with deterministic
trends, there are four characteristics of the underlying rv’s that we focus on. The first is the
shape of the deterministic trend, the second is the magnitude of the deterministic trend relative

to the stochastic component, the third is the magnitude of the deterministic trend in an absolute



sense, and the fourth is the nature of the stochastic components of the rv’s. We seek an asymp-
totic framework in which these characteristics of the finite sample problem of interest are mim-
icked as closely as possible in each element of the sequence upon which the asymptotics are
based.

Let the sample size of interest be denoted by 7*. The observed data consist of T*
RF-valued rv's: Wi, <., Wre. These rv's can be viewed as part of an infinite sequence W, ¢t = 1,
2, ... We write the rv W, as the composition of a stochastic component Z, and a deterministic

function d{¢, -) of Z;
(2.1) W, =d(t,Z) for t =1,2, .,

where d(-, z) : (0, =) - RX, This decomposition is not unique. For present purposes, it suffices
that the decomposition is such that Z, does not contain a deterministically trending component.
For example, we want {Z, : t > 1} to satisfy a condition such as {Z,} are stationary or
sup,,; EIZ,|Y < =forsome y > 0, or {Z,} is a tight sequence (ie., Ve > 0 3B, < o« such that
sup,,; P(IZ,] > B,) < ¢).

For example, d(t, Z,) could be of the form:
(2.2) () d(t) + Z,, (i) diag{d()}Z, , or (iii) d,(r) + diag{d,(1)}Z, ,

where d(-), d|("), and d,(") are functions from (0, =) to R and diag{d(t)} is a k x k diagonal
matrix with diagonal elements given by d(f). Typically, the functions d(), d 1(*), and dy(*) are
smooth, but they could have discontinuities. For example, d(-) in (2.2) could be of the form:

() d(t) =bt + ¢t for ¢ > 0, (ii)d() = exp(dt) , or

(2.3) bt for 0 <t s G

¢t for t > G

(i) d(1) = {

for some 0 < G < =, where b and ¢ are constant k-vectors and exp(-) denotes the element by
element exponentiation operator.

Form (i) of (2.2) plus (i) of (2.3) are commonly used as the form for the logarithms of
"trend stationary” macroeconomic rv’s (often with ¢ = 0). In levels, the same 1v's are of the form

(ii) of (2.2) plus (ii) of (2.3). The logarithms of trend stationary macro rv's with a change in



trend are often given by (i) of (2.2) plus (iii) of (2.3). Of course, more esoteric forms of trend
functions d(t, z) than those exemplified in (2.2) and (2.3) are also possible.

At this point, we could consider "standard asymptotics" in which the sample of interest
(W3 «.n Wr=) is embedded in the sequence of samples {(W;, ..., Wy) : T 2 1}, where W,
=d(t, Z) vVt 2 1. Standard asymptotics have several advantages and several disadvantages. As
an advantage, they guarantee that any approximations they generate are accurate to any given
degree for samples of sufficiently large size. In addition, they allow one to identify "dominating
trends” (i.e., trends that are sufficiently large that they interfere with the operation of a central
limit theorem (CLT)). In such cases, normal approximations for the distributions of estimators
are not appropriate.

On the other hand, standard asymptotics suffer from problems of tractability in nonlinear
models with deterministically trending variables. Asymptotic distributional results using standard
asymptotics either rely on high level assumptions that can be difficult and/or tedious to verify
(e.g., see Crowder (1976) and Wooldridge (1986, 1993)) or they apply only to special models
under restrictive assumptions, e.g., see Wu (1981).

A second potential problem with standard asymptotics is that they depend on the trend
function d(¢, ) for all values of ¢ sufficiently large. In contrast, the finite sample distribution of
(W}, .... W) depends only on d(t, z) for ¢ < T7; its values for t > T* are irrelevant. A problem
occurs if the shape of the trend function for ¢ large (relative to T*) does not reflect its shape for
the sample size of interest.

Third, standard asymptotics typically drive the magnitude of the deterministic trend to infin-
ity as T - =, For samples that exhibit small trends, this form of asymptotics does not mimic the
finite sample problem of interest very well and may lead to inappropriate results. For example,
for rv’'s {W, : t 2 1} of form (ii) of (2.2) plus (ii) of (2.3), a CLT does not apply (even if the rv’s
{Z,:t 2 1} are iid and bounded), because the Lindeberg condition fails. Yet, it may be appro-
priate 1o use a normal approximation for a normalized sum of such rv’s {W, : ¢ < T*} when the
trend coefficient b is small (since such rv’s deviate little from a sample of iid rv’s).

In this paper, we consider an alternative asymptotic framework to standard asymptotics. We



embed the sample of interest (W, .., W) in a triangular array of rv’s in such a way that (i)
only the deterministic trend function d(t, z) for ¢ < T* affects the asymptotics, (ii) the shape of
the determmistic trend in the sample of interest is mimicked in the limit, (iii) the magnitude of
the deterministic trend is bounded in the limit, and (iv) asymptotic distributional results for esti-
'mators and test statistics can be obtained straightforwardly using the techniques developed for
nonlinear models with non-trending observations.

As with standard asymptotics, the asymptotics considered here have both advantages and
disadvantages. Properties (i), (ii), and (iv) listed in the previous paragraph are advantages.
Property (iii) can be an advantage or a disadvantage depending on the circumstances. It is dis-
cussed further below. A disadvantage of the triangular array asymptotics is that they do not
guarantee that the approximations they generate are accurate to any given degree when the
sample size T* of interest is sufficiently large.

The triangular array asymptotics considered here are set up as follows, Let
(24) Wy, = d[Zf: z,} vt<T, T21,

where Z, and d(:, *) are as above. The sequence of samples upon which the asymptotics are
based is given by {(Wry, ..., Wyp) : T 2 1}. Note that this framework embeds the sample of in-
terest, since Wp., = W, ¥t < T*. Properties (i)-(iii) stated two paragraphs above, can be verified
by inspection. (Property (iii} holds provided sup £(0.T") (¢, z)] < = for allz in the supports of
Z,fort s T*, as is usually the case.) Property (iv) holds because the boundedness of the deter-
ministic functions d[r?.t, z] over! < T and T z 1 allows laws of large numbers (LLNs) and CLTs
to be applied to the rv's {Wr, : ¢ < T, T > 1} and to functions of them. In consequence, stand-
ard proofs of the consistency and asymptotic normality of extremum estimators and of the as-
ymptotic chi-square null distributions of corresponding test statistics go through under almost the
same conditions as when the underlying 1v’s exhibit no deterministic trends. One only has to re-
place uniform LLNs and a CLT for sequences of rv's by corresponding ones for triangular arrays.

The form of the limiting covariance matrices of extremum estimators differs when the 1v’s

are deterministically trending as in (2.4) from when they are not, as shown in the next section.



Nevertheless, consistent estimators of the limiting covariance matrices can be defined in the same
way in both cases. Thus, one can use the triangular array asymptotics of (2.4) to provide a justif-
ication for using standard asymptotic approximations (ie., normality for extremum estimators
and chi-square null distributions for the corresponding test statistics) in nonlinear models with
deterministically trending rv’s,

The asymptotic framework of (2.4) could be referred to as one of bounded trend asymptotics
or small trend asymptotics. A disadvantage of the use of such asymptotics arises when the trend
in the sample of interest is dominating. For example, suppose W, = diag{exp(bf)}Z,, Z, are iid,
and the distribution of an estimator depends on the distribution of the sum T W,. If the trend
coefficient b is large, the distribution of E?W: is determined by only the last few observations in
the sample and the averaging effect of the CLT does not operate to yield approximate normality,
In this case, the use of bounded trend asymptotics is inappropriate, because they generate
approximations based on the CLT. On the other hand, if the trend coefficient b is small, then
a large number of observations in the sum E:{*WI determines its distribution, the CLT approxi-
mation is reasonable, and the use of bounded trend asymptotics is appropriate.

The upshot of the above discussion is that one has to be careful when using the triangular
array asymptotics of (2.4). One needs to look at the rv’s to which a CLT is applied (typically
these rv's are functions of the rv's {W, : ¢t < T*}) and decide whether a normal approximation
is appropriate. If the variances of the rv’s in the sum are increasing as polynomials in time, then
the CLT can be applied using standard asymptotics or bounded trend asymptotics. In such cases,
there is no problem using bounded trend asympiotics. If the variances are increasing exponen-
tially, however, then the CLT does not apply with standard asymptotics, although it does with
bounded trend asymptotics. In such cases, one has to decide whether the magnitude of the trend
is sufficiently small that bounded trend asymptotics are suitable, For example, if one believes
that the logarithms of the economic variables of concern are of the form bt + Z,, then these vari-
ables can enter a linear model in logarithmic form without trouble, but if they enter in levels
then they may cause problems if b is too large. Analogous examples for nonlinear models can

be constructed.



3. Generalized Method of Moments Estimators

3.1, Introduction and Definitions

In this section, we apply the triangular array asymptotics of (2.4) to the class of GMM esti-
mators and corresponding Wald, Lagrange multiplier (LM), and likelihood ratio-like (LR) test
statistics. We consider the case where the stochastic components {Z, : t > 1} of the underlying
s {Wp, 1t < T, T = 1} are strongly second order stationary (SSOS) (i.e., the distribution of
(Z,, Z,) depends only on |s-t| Vs, ¢t = 1,2,..). The triangular array framework can be applied
more generally, but the SSOS assumption yields relatively simple conditions and a simple expres-
sion for the asymptotic covariance matrix and should be sufficiently general to illustrate the use-
fulness of the approach. Asymptotically weak temporal dependence of the stochastic components
{Z,:t > 1} is governed by near epoch dependence (NED) conditions.

Let 0 € © c R” be the unknown parameter to be estimated, The population orthogonality
conditions that are used by the GMM estimator to estimate the true parameter 0, are
:-lrEfEm(WTr, 8;) = 0 for a specified function m(w, 8) from #’x © to R, where #/is a Borel
subset of R¥ that contains all realizations of Wp, Wt <T,T > 1. The underlying rv's {Z, : t » 1}
take values in a Borel subset Z of R,  They are defined on a probability space (Q, # P). By

definition, a rv is Borel measurable,

DEFINITION: A sequence of GMM estimators {0 : T > 1} is any sequence of (Borel measurable)

estimators in © that satisfies

@31 mB)ymp(d) - of mp(8) ymp(0) wp -1,
€
where m{6) = %_E Im(WT,, 6) and ¥ is a random (Borel measurable) symmetric v x v matrix

(which depends on T in general).

As is well-known, e.g., see Hansen (1982), the class of GMM estimators is quite broad, Among
others, it includes least squares, nonlinear instrumental variables, maximum likelihood (ML), and
pseudo-ML estimators,

Next, we define the NED condition. It has origins as far back (at least) as Ibragimov ( 1962).



The NED condition can be used to obtain LLNs, CLTs, and invariance principles for sequences
and triangular arrays of temporally dependent rv’s. It is one of the most general concepts of
weak temporal dependence for nonlinear models that is available, See Bierens (1981), Gallant
(1987), Gallant and White (1988), and Potscher and Prucha (1991a) for examples of its applica-
tion to particular econometric models. Note that the definition below is a slight variant (general-

ization), suggested by Potscher and Prusha (1991a), of definitions in the literature,

DEFINITION: Forq > 0, asequence of rv's {Z, : t = 1, 2, ...} is said to be L9-NED on the strong
mixing base {Y, :t = .., 0,1, .} if {¥,:t=.,0,1, ..} is a strong mixing (ie., ¢-mixing)
sequence of rv's and Limg_, %ETnZt = E(Z,|Y, > w» Yium)ly =0 asm - = wheng > 0 or
fm,.. %zfp(uz, — E(Z,|Y, s o Y,pp)l > €) ~Oasm - o ¥e > Owheng = 0. Forg > 0,
u>0,andbd >0,{Z :t=1,2,..}is said to be LY~NED of size -u on a strong mixing base {Y, :
t=..,0,1,..) of size -b if {v, :m 2 1} is of size ~u (ie, v, = O(m™*) for some 1 > u),
where v, = sup,,(}Z, - E(Z,|Y, s o Yium)lg and {e,, : m > 1} is of size -b, where {a,, :m
> 1} are the strong mixing numbers of {Y,}, as defined, e.g., in Gallant and White (1988, p. 23).

NED triangular arrays of rv’s are defined analogously.

3.2. Consistency
We now provide a set of conditions under which the GMM estimator is consistent within the

context of the triangular array asymptotics of (2.4).

ASSUMPTION 1: (a) {Z,:t = 1, 2, ...} is a sequence of identically distributed Z-valued rv’s that is
LOY-NED on a strong mixing base {Y,:t = .., 0,1, .},

(b) d(-, ) is a function from (0, »} x Zto RX d(t, 1) is right continuous in t almost everywhere
(Lebesgue) on (0, T*] V= € Z d(t, z) is continuous in z uniformly overt € (0, T*} Yz € Z, and
S“Pxe(o,r‘]Id(t’ D <= Yz eZ

©) Wy, = d{ff'r, zt] Wt <T, Tzl

(d) ¥ £~ v for some nonsingular symmetric v x v matrix y.

(e) © is a bounded subset of RP.
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(f) m(w, 8) is a function from # x © to R" that is continuous in w uniformly over § ¢ © W € %/

and continuous in 0 uniformly over © Yw € %/

(g) E supgeg SUP; (0 T.}lm(d(s, Z,), O)II" < = for some ¢ > 0.

(h) m(8y) = 0 and for all neighborhoods 8, of 0,, 'mieee/eom(ﬂ)'ym(e) > 0, where m(0)
. 1T

= l.lmT_m FEIEM(WTI’ e) .

Assumption 1 is quite similar to consistency assumptions in the literature for nonlinear
models with non-trending variables. In fact, if the trending function d(:, z) in part (b) is set
equal to 2, so that no trends appear, then Assumption 1 reduces to a typical set of such assump-
tions. When d(:, ) does not equal z, the only added features are in the definition of the
underlying rv’s (in parts (b) and (c)) and in a slight strengthening of a moment condition (i.e.,
the addition of sup, in part (g)).

Note that the function d(-, z) can be discontinuous at a countable number of points for any
fixed z. This implies that the deterministic trends can exhibit (multiple) breaks.

The identification condition given in part (h) depends on the "asymptotic criterion function"
m(0)'ym(0). Given our assumptions, we can find an explicit expression for the main compon-

ent of this function, viz., m(0).
LEMMA 1: Under Assumptions 1(a)-(c) and 1(e)-(g),

m(6) = lim 2Z{Em(Wr, 6) = L [T'Em(des, Z,), 6)ds
T T T 0

(and the convergence as T - = holds uniformly over 8 € ©).

COMMENT: The Lemma shows that m(8) is just the average over values of the trend component

of the function that arises in the case with no deterministic trends.
Consistency is established in the following theorem.

THEOREM 1: Under Assumption 1, every sequence of GMM estimators {8 : T > 1) satisfies

6 2. 86,.
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3.3. Asymptotic Normality

This section contains the main result. We show that the GMM estimator is asymptotically
normal in nonlinear models with deterministically trending random variables under the triangular
array asymptotics of (2.4). First, we define the asymptotic covariance matrix V of the GMM
estirnator. Define

V = (M'yM)" IM'ySYM(M'yM)™! | where

_ 1 (1T ¢
M = ;J’O E—m(d(s, Z,), 8)ds and

S = —lz_l.;-tEm(d(s, Z), 8p)m(d(s, Z,), B,)'ds
(3.2) T

+ E iI(I)-.Em(d(S, ZI)’ eo)m(d(s, Zf—j)! eo)lds
j=1 T
ao 1 . ’

s J)_“{ ;jg Em(d(s, Z,.), 8p)m(d(s, Z,), 0p)'ds .

Note that when the trend function 4(¢, z) equals z, so that no trends exist, the asymptotic
covariance matrix ¥ simplifies to its well-known form for models with non-trending rv’s as given,
e.g., in Hansen (1982). As with the function m(8), when d(t, z) does not equal z, various com-
ponents of V are given by averages with respect to the trend component of the matrices that

arise in the case with no time trend.

Sufficient conditions for asymptotic normality of § are given in the following assumption.

ASSUMPTION 2: (a) Assumptions 1{a)-(d) and 1(f) hold.

(b) {Z,:t = 1, 2, ...} is a strongly second-order stationary sequence of rv’s.

(c) For somer > 2, {m(Wy, 6,) : t < T, T > 1} is a triangular array of R"-valued n’s that is
L2-NED of size -1 on a strong mixing base {Y,:t=.,0, 1, ..} of size -2r/(r-2) and
Esup, g 7+ m(d(s, Z), 8)F < =

(d) Em(Wp, 00 =0 Wt <T,T>1

(e) 8 2.8, €0 cR and O is in the interior of ©.

(f) m{w, 8) is partially differentiable in 6 V0 € 8, Yw € %] where € is some neighborhood of 8,
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l+e
%m(w, 0) is continuous in (w, 0) on % x ©,, andE SUPgeq, supsE(O,T.]Bé%m(d(s, Z), B)H
< = for some ¢ > 0,

(g) M'yM and § are nonsingular.

As with Assumption 1, Assumption 2 differs very little from typical NED-based conditions
for the asymptotic normality of GMM estimators with non-trending 1v’s, e.g., see Andrews
(1993). The only differences are those referred to above in Assumptions 1(b) and 1(c), plus a
slight strengthening of moment conditions (by the addition of sup,) in Assumptions 2(c) and
2(f). We note thatif {m(Wy,, 8y) : £ < 7, T > 1} is a martingale difference triangular array, then
Assumption 2(c) can be replaced by sufficient conditions for a martingale difference CLT to hold
for ?lrlem(WT,, 8;), €.8., see Potscher and Prucha (1991'b, Theorem 4.1). We also note that
(more primitive) sufficient conditions for Assumption 2(c), which rely on NED conditions placed
on the underlying rv’s {Z, : ¢ > 1}, can be obtained with some loss of generality by applying
Theorem 4.2 of Gallant and White (1988) or Theorem 6.7 of Pétscher and Prucha (1991a).

The source of the matrices M and S that arise in the definition of the asymptotic covariance

matrix ¥ of 6 is made clear in the following result.
LEMMA 2: (a) Under Assumptions 2(a) and 2(f),

NS iy gy
?m ?ElEa‘m(WTN 80) = M .

(b) Under Assumptions 2(a)-(d),

lr Va.{‘/_l?.zfm(wn, e{,)] =5,

Asymptotic normality of 8 is established in the following result.

THEOREM 2: Under Assumption 2, every sequence of GMM estimato.rs B:7T:21} satisfies

VI (8 - 6p) -4 N(O, V).
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COMMENT: Theorem 2 relies on {m(Wp, 6g) : ¢t < T, T > 1} satisfying a CLT. Under the
bounded trend asymptotics of (2.4) and Assumption 2, such a CLT is guaranteed to hold. On
the other hand, as discussed at the end of Section 2, the use of bounded trend asymptotics can
be inappropriate if the deterministic trends are sufficiently dominating, In particular, what
matters is whether Ef-m (W,, 6y) can be approximated reasonably well by a normal distribution.
If this sum, suitable normalized, is asymptotically normal using both bounded-trend asymptotics
and standard asymptotics (Le., if {m(Wp, 8p):t < T,T > 1} and {m(W,, 0,) : ¢t > 1} both satisfy
CLTs using suitable normalizations), then the normal approximation is certainly valid, at least for
T* large.

If {m(W,, 6,):t = 1} does not satisfy a CLT (using standard asymptotics), however, then the
normal approximation needs to be scrutinized more closely. For example, consider a linear
regression model ¥, = P'x '8y + U, and the least squares estimator 8. Suppose Z,=U,X ;)'
are iid, E}Z,|* < =, b > 0, EUX, = O, W, = d(t, Z,) = (¥, ¢"'X)), and m(W,, 65) = Ue"X,. In
this case, {m(W,, 8;3) : t > 1} does not satisfy a CLT (because the Lindeberg condition fails),
even though {m(Wy, 65) : ¢t <T,T > 1} does. A normal approximation for E-{-U{ebe, is appro-
priate in this case only if the trend coefficient b is sufficiently small that the distribution of the
sum is not dominated by a relatively small number of observations. Note that if the expon-
entially trending regressors e?'x , are replaced by polynomially trending regressors
E"il bjtj + Zﬁl cjthr in this example, then there is no problem, because the CLT holds with

the latter regressors under both bounded trend asymptotics and standard asymptotics.

3.4. Covariance Matrix Estimation
The covariance matrix V of § can be estimated by
Vo= M) M8 IM 98T, where
O 18T 2mry, ),
{ is as in Assumption 1(d), and § is some consistent estimator of S. A suitable choice of §

depends on the dependence properties of {m(Wy, 0y) : ¢t <7, T = 1}. If the latter is uncor-
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related across time, then
(G4) 8- 1lrz{(m(wi,,,, 8) - mp(8)m(Wy, B) - mD))
is a suitable choice, where m{6) = -17-_2 {m Wy, 6). H {m (W, 6,} is correlated over time, then
an estimator designed for m-dependent data or a heteroskedasticity and autocorrelation consis-
tent (HAC) estimator may be suitable. See Gallant and White (1988) for consistency results for
HAC estimators under NED conditions, See Andrews (1991) and Andrews and Monahan (1992)
for results concerning the choice of HAC estimator,
An important point to note is that a suitable choice of S, just as with X7, is.the same in
models with deterministically trending variables as in models with non-trending variables,
Under Assumption 2, M 2. M and § _2, y. (See the proof of Theorem 2 for a proof
that 1 -2 M ) 1f, in addition, {m(Wy,, 8,)} are uncorrelated, then $ defined in (3.4) satisfies

§ _2. S. Otherwise, for brevity, we simply assume that § has been chosen to be consistent.
ASSUMPTION 3: § 2., §.

In consequence, under Assumptions 2 and 3, ¥ is a consistent estimator of V.,
Note that an optimal choice of asymptotic weight matrix y is $71. Correspondingly, if

¢ = 871, then ¥ simplifies to (A&7'$714n)1,

3.5. Hypothesis Tests

Here we consider tests of nonlinear restrictions of the form H, : h(6,) = 0. The upshot of
the present section is that standard test statistics have asymptotic chi-square null distributions in
nonlinear models with deterministically trending data using the asymptotic framework of (2.4).

The R'-valued function h(-) defining the restrictions is assumed to satisfy:

ASSUMPTION 4: h(0) is continuously differentiable in a neighborhood of 6y and H = %h(eo) has

full rank r (< p).

The Wald statistic for testing H, is defined to be

(3.5) Wy = Th(B)'(HVA")'h(8) , where H = -a%h(é) .
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Next, we define the LM and LR statistics. For brevity, we do so only for the case where the
weight matrix § is chosen optimally: § = § “land y = §71. These test statistics depend on a
restricted GMM estimator B, By definition, a sequence of restricted GMM estimators {9 :
T > 1} minimizes m{(8) ym{8) over {6 € € : h(8) = 0} wp ~ 1. Under Assumption 1,
§ 2. 6, when the null hypotheses is true, by the proof of Theorem 1. In consequence, the

second part of the following assumption is easily verifiable.
AsSSUMPTION 5: (a) § = 8§ land y = S71. (b) § 2. ¢,.

Let ¥, M, and 3 be defined as in (3.3), but with & replaced by 8. The LM statistic is
defined by

(3.6) LMy = Tm (@) sM@GIS 8 M 3 (@) .
The LR statistic is defined by
(3.7 LRy = Tmp(®B) ymp®) - Tmp(8) ym0) .

The asymptotic null distribution of the Wald, LM and LR statistics is shown in the following

theorem to be chi-squared with r degrees of freedom (xf).

THEOREM 3: Suppose 8 satisfies the null hypothesis Hy : h(0g) = 0. Then, (a) Wr 4, xrz under
Assumptions 2-4, (b) LMy 4, xf under Assumptions 2-5 (with 3 in place of § in Assumption 3),

and (c) LRy A, xf under Assumptions 2, 4, and 5.

Given Theorem 2 and its proof, the proof of Theorem 3 is quite similar to proofs in the litera-
ture for nonlinear models with non-trending variables. In consequence, we omit its proof for

brevity.

COMMENT: Theorem 3 shows that, in the case of deterministically trending rv’s, one can define
the Wald, LM, and LR statistics just as one would in the case of non-trending rv’s and their

asymptotic null distributions still are x% using the asymptotics of (2.4).
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Appendix of Proofs

PROOF OF LEMMA 1: Let {{u, 2} = d[%‘([Tu]+l), z] foru € [0, 1), £4(1, z) = d(T", z), and
E(u,z) = d(T'u, z) foru € [0, 1] and z € Z. By Assumption 1(b), {{u,2) ~ E(u,z) as T ~ =
for (Lebesgue) almost all u in [0, 1] ¥z € 2. We have

1Ti?: zggM%zfm[d[?r, z], e] - Ti | g'm(d(s, 2), B)ds}dP(z)

< m I, sup [[-t, z], e] fim(e@, 2), e)duﬁdp()
TSR ——

J Em supnj [m(Ex(u, 2), 8) - m(E(u, 2), 6)]du|'dP(:)

T-= BeB

j f lim supfr(£(u, z), 8) - m(&(u, z), O)dudP()

T-=» BB

=0,

The first equality holds using Assumption 1(g) by the dominated convergence theorem (DCT)
with dominating function 2 supg.q sup €(0.T"] Jm(d(s, z), 8)}). The second equality holds by the
definition of §{u, z). The second inequality utilizes the DCT with dominating functions for
each fixed z given by the constant function on [0, 1] with value

2 supg g SUP, co.r ¥ (d(s, z), 0)I. The last equality holds by Assumption 1(f) because &{u, z)
- &(u,z) as T — = for (Lebesgue) almost allu € [0, 1] Vz € 2. I

The proof of Theorem 1 uses the following two lemmas.

LEMMA Al: Suppose & minimizes a random real function Q8)over 0 e® cRPwp -1, If
(a) supgglQr(8) - Q(8)| —&~ O for some real function Q on © and (b) for every neighborhood €,

(C 9) Of 60, IDIGEQ/GOQ(B) > Q(BO) y then 6 —L 60 .
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LEMMA A2: Suppose (a) Assumptions 1(a), 1(b), and 1(c) hold, (b) ©, is a bounded subset of R®,
() f(w, 0) is an R°-valued function on %’ x ©, that is continuous in w for all 6 € ©, and continuous
in © uniformly over 0 € €1 Vw € %/ and (d) E supgeg, SUp, o (s, Z,), )'*t < = for
some ¢ > 0. Then, supgeq, I%EI[f(WT,, 6) - Ef(Wp, 8))] -£- 0.

T
and Q(8) = m(0)' ym(0). Condition (b) of Lemma Al holds by Assumption 1(h). Using

PROOF OF THEOREM 1: We apply Lemma A1 withQ{(6) = [%E{m(Wﬂ, e)] ?[‘zfm(wn, e)}

Assumption 1(d), condition (a) of Lemma A-1 holds if supeeeﬂ%ZIm(W’Tr, 6) - m(0)] £~ 0.

The latter holds if
r ‘
(A.2) :l;g”?lrzl[m(wn, 8) - Em(Wyp, 6)] -, 0 and

(A.3) sup
6cB

I«T
}?BIEm(WT,, o) - m(B)ﬂ -0.
Equation (A.2) holds by Lemma A2 under Assumptions 1(a)-(c), and 1(e)-(g). Equation (A.3)
holds by Lemma 1. O

PROOF OF LEMMA A-1: This lemma is well-known. For example, a proof of it is given in

Andrews (1993, Lemma A-1). O

PROOF OF LEMMA A2: By Theorem 4 and Lemma 4(a) of Andrews (1992) with (Z,, q,(Z,, 6))
set equal to (W, f(Wy, 0)), it suffices to verify the conditions BD, P-WLLN, DM, and TSE-1B
of Andrews (1992). BD holds by Assumption (b). DM holds by Assumption (d). TSE-1B holds
by Assumptions (a) and (c), because %_L‘IP(WT‘ € A) - p(A) = ;1_ J'g-‘P(d(s, Z)) € A)ds by an
argument analogous to that given in the proof of Lemma 1, It remains to show P-WLLN.
Assumption (a) allows one to apply Theorem 6.5 of Potscher and Prucha (1991a) to obtain that
Jf![.";_..t, Z,] it <T, T2 1} is L%-approximable by the strong mixing base {Y,: ¢ = .., 0, 1, ...},
This result and Assumptions (a), (b), and (d) allow one to apply Theorem 6.5 of Pétscher and
Prucha (1991a) to obtain that {f(Wy, 6): ¢ < T, T = 1} is Lo-approximable by the base {Y,} for

all 0 € ©,. (The assumptions that {Z,: ¢ > 1} are identically distributed and sup, E(‘:)‘.‘,..]I(;i(s, H
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< o guarantee that {J[T?.t, Z,] 1t <T, Tz 1} is tight, as is required for Theorem 6.5.) By
Assumption (d) and Theorem 6.1 of Pdtscher and Prucha (1991a), the approximators can be
taken to be the conditional means {E(f(WT,, )Y s vr Yypp) it s T, T21,m > 1}, Incon-
sequence, {f(Wr, 0) :¢t < T, T 2 1} is LY-NED on the strong mixing base {Y,} forali & € ©,.
The WLLN given in Lemma A-2 of Andrews (1993) with X1, equal to an element of the c-vector
f(Wp, 0) - Ef(Wy,, 6) now yields P-WLLN. 0O

PROOF OF LEMMA 2: Part (a) holds under Assumptions 2{a) and 2(f) by an argement analogous
to that used to prove Lemma 1.

To establish part (b), we make the following definitions: Let §; equal § with the sums
¥, replaced by the truncated sums 3, . LetR, = 5 - S,. Let Syp = Var(yT mir(6y)
- %EL S Em(Wr)m(Wy,)' , where m(Wr,) = m(Wp, 6g). Let Sy, equal Sy with the
sums over s and # restricted to include only (s, £) pairs for which |s-f| < J. Let Ry
= Srr - Sy

Below, we show that

(A4) lim sup{Rp] =0,
J-= T:1

(A.5) imS; =5, and
J=oc

T-x

Then, given any & > 0, we can choose J* sufficiently large that supz, IR < ¢/3 and

IS;+ - S1 < ¢/3. Next, we can choose T, sufficiently large such that VT 2 T,, IS« - Sl
< ¢/3. This yields the result of Lemma 2(b): VT > T,

IS'IT - SI = lSTJ‘ + RT]‘ - J* + SJ. - SI

AT
( ) < HSTJ‘ - SJ'E + ;ul)lﬁRTIJcH + HSJ. - S" < £ .
12

It remains to show (A.4)-(A.6). To show (A.4), we write
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S“P Ryl < ST“P E E IEm(Wr)m(Wp)'|
s-l =1
ls=t|>7

< C sup + vy
(AS8) sup r§ ‘Z;( (e * Vi)

|s—tj>7

T

= 2C sup (l—] oy
e 2 [ + vl

-0 as J - =,

where the second inequality holds for some constant C < « by a covariance inequality for
L"-bounded LZ-NED 1v’s, see p. 110 of Gallant and White (1988), and the convergence to zero
holds because Y, |«

Rl "j) < = by Assumption 2(c).

To show (A.5), we write

s-sis2y L - [TUEm(dGs, Zym(@Gs, Z,.)' s
jul+ T

(A9) ~ | 12-14

< 2C E (ﬁ{j/4] " + \"D-ldl)
jael

-0 as J -~ =,

where the second inequality follows by the same covariance inequality as used above,

To show (A.6), we write

J J
STJ-SJ=EGTJ +EGT’}-, Where
J=0 j=1
(A.10)
Gy E Em(Wp)m(Wr,_;)' + i '[.T Em(d(s, Z))m(d(s Z,))ds .
I=}+l

Thus, for (A.10), it suffices to show that limr_lele =0 vi =201, .. J. For notational
simplicity, let m(¢,, ¢,) abbreviate m[ --tl, ], 60]. We have
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(A.11)

< swp EMm@, 14)P

0slimdAd
T=x

(A.12)
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exj+l tuj+l ﬂ

T+

=1

T T
= %E Em(t, tym(t—j, t=)" - %E Em(t, Hm(t, t-jy

;2 Em(t+], 1+4){m(t, 1)' - m(t+j, 1)'1ﬂ

y
J15 (Eme, 1) - meed, D)

tsT,T21 t=1

= Cy- J';-ff"[EHm(ET(u, Z)) - m[e,{u + iT Zl]]lr]mdu ,

where {{u, z) is defined in the proof of Lemma 1 and the last inequality holds because
Eru + J;, z] = d[-?([Tu] +1+j), z}. We now have

. 1
TjsCO;_un_[-O

y1/2

Elm(Eru, Z)) - m[a,{u + !f zlnz du

1/2
du

N
sk
—
—
[

= C, IS{E limjm(Eu, Z,)) - m(E){u L

T-x

=0

where §{u, ) = 0 by definition for u > 1, the first equality holds by the DCT applied twice,

and the second equality holds because §{u, =) - {(u, z) and Equ +

-3 [N

,:J-E(u,z)asT-w

for Lebesgue almost all u vy € 2. Using (A.12), we obtain

lim GTj
T

(A.13)

= lim

T =

lim
T=ex

T-j .
% Em(t, 1+)m(t, 1)’ - Ti jg Em(d(s, Zy,))m(d(s, Z))'ds
1

1-4
JO TEm(Er(u, Z1,))m(Er{u, Z)))'du - I;Em(i(u, Zy.)m(E, Zl))’duu

<[ E gfcum(af(u, Zy ImEr(s, D) - m(E, Zy,)m(E, Z,)) Ju

0,
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where the inequality uses the DCT and the last equality uses the facts that £ {u, z) - E(u, z) for

Lebesgue almost all u Vz € Z and m(w, 0) is continuous in w. This establishes (A.6). O

PROOF OF THEOREM 2: Since § minimizes m(0) ym{0) over © and is in the interior of ©

wp ~ 1 by (Assumption) 2(d), we have

(A.14) [ mp(0) yﬁiﬁ,{é) = 0,(1) .

Let m;(8) denote the j-th element of m{(6). A mean value expansion gives
oot A - g ~ * A
(A15)  JThp(8) = Tmp8) + =mp(0"WT(® - 6 ,

where 08* (= 9;) is a rv on the line segment joining § and 85 ¥ = 1, ..., v, and hence
6" £, 8.

Below we show that (i) %fir(ﬁ‘) -2, M and (ii) T mp(6p) 4, N(0, 5). Results (i) and
(ii), equations (A.14) and A.15), and Assumptions 1(d) and 2(g) combine to give the desired
result: T(8 - 8y) = ~(M'yM)'M'yJT fr(8g) + 0,(1) 4. N(O, V).

To establish result (i), we write

ﬂ—mT(B ) 'M“ u-mﬂﬂ ) = E=ir(0)]g.q: ﬂ

“E—mr(ﬁ) 600 = Emr(8g)| +

(A.16)

ﬂs%ﬁﬂeo) - Mﬂ :

The first summand £ 0 under Assumption 2 by Lemma A-2 with f(w, 6) = %m (w, 6). The

third summand £ 0 by Lemma 2(a). The second summand £~ 0, because

lim supﬂE—m «0) - ,fir(eo)ﬂ

"BO TE].

(A17) < lim E sup I-a%m(d(s, Z), 0) - %m(d(s, Z) eﬂ)ﬂ
8-8p  se(0,7

=E lim sup
8-8g 5¢(0,7°)

3 5 .
Zm(d(s, Z), 0) - Zm(dG, Z), eo)u -0

where the first equality holds by the DCT with dominating function
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under Assumption 2(f) and the second equality holds by

g
2 subge, $UP,c -y @ Z). 80)
the continuity of ~£—7m(w, 0) in (w, 6) under Assumption 2(f).

Result (ii) holds by the Cramer-Wold device, Lemma 2(b), and a CLT of Davidson (1992,
Theorem 3.6) with X,, = a'm(Wg, 0p)/Var/2(JT «'m{0,)) andc,, = Var VA(yT a'm{(6;))
for arbitrary v-vector ¢ =* 0, using Assumptions 2(b)-(d). (Davidson’s CLT yields
VT o' (B Var?(fTa'mp(8)) - N0, 1).) O
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