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0. ABSTRACT

Fully modified least squares (FM-OLS) regression was originally designed in work by Phillips
and Hansen (1990) to provide optimal estimates of cointegrating regressions. The method modi-
fies least squares to account for serial correlation effects and for the endogeneity in the regres-
sors that results from the existence of a cointegrating relationship. Recent work by the author
(1992) has shown that FM-OLS regression produces estimates of a unit root in time series
regression that are hyperconsistent in the sense that their rate of convergence exceeds that of the
OLS estimator, i.c. is faster than O(7) as the sample size as 7 ~ =, That result is extended here
to multivariate unit root models and models with deterministic trends, where it is shown that
estimates of the trend coefficients are also hypercosistent. The paper provides a general frame-
work which makes it possible to study the asymptotic behavior of FM-OLS in models with full
rank I(1) regressors, models with (1) and I(0) regressors, modeis with unit roots, models with
only stationary regressors and models with I(1) and [(0) regressors as well as deterministic
trends. This framework enables us to consider the use of FM regression in the context of vector
autoregressions (VAR’s) with some unit roots and some cointegrating relations. The resulting
FM-VAR regressions are shown to have some interesting, desirable and rather unexpected prop-
erties. For example, when there is some cointegration in the system, FM-VAR estimation has
a limit theory that is normal for all of the stationary coefficients and mixed normal for all of the
nonstationary coefficients. Thus, there are no unit root limit distributions even in the case of the
unit root coefficient submatrix (i.e. J, _. for an n-dimensional VAR with r cointegrating vectors).
When the system is stationary, the FM-VAR estimates are asymptotically equivalent to those of
OLS. When the system has a full set of unit roots the FM-VAR estimator of the complete unit
root matrix (i.e. /, for an n-dimensional VAR) is hyperconsistent, just as in the single equation
AR(1) case; and the FM-VAR estimates of the stationary part of the VAR is asymptotically
equivalent to OLS. These results indicate that FM-VAR regression has some attractive features
compared with conventional OLS levels VAR estimation.

The paper also develops an asymptotic theory for inference based on FM-OLS and
FM-VAR regression. The limit theory for Wald tests that rely on the FM estimator is shown to
involve a linear combination of independent chi-squared variates. This limit distribution is
bounded above by the conventional chi-squared distribution with degrees of freedom equal to the
number of restrictions. Thus, conventional critical values can be used to construct valid (but
conservative) asymptotic tests in quite general FM time series regressions. This theory applies
to causality testing in VAR’s and is therefore potentially important in empirical applications,
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Keywords: Causality testing, cointegration; fully modified regression; fully modified vector

autoregression; hyperconsistency; long-run covariance matrix; one-sided long-run covariance
matrix; some unit roots



1. INTRODUCTION

In recognition of the fact that most economic time series have some nonstationary character-
istics much recent attention in time series econometrics has been devoted to issues of modelling
with, estimation for and inference from such data. As a direct consequence of this attention, a
huge literature has emerged that seeks to confront these issues. Although the field is still very
young (it is still under a decade old) the volume of contributions is so large that it is reasonable
to think of it as having come a long way in a short time. Two early developments in this field
opened up the area for subsequent research and are still of central importance as it begins to
mature. One of these was the careful formulation of models that allow stationary and nonsta-
tionary time series to coexist in the same equation and that relate nonstationary series in long-
ran cointegrating relationships. Although there were many precursors to this research in
empirical error correction modelling (see Hendry, 1993, for a recent overview), the paper by
Engle and Granger (1987) was certainly the primary stimulus. The other early contribution that
has since opened up many different avenues of research in this area was the development of an
asymptotic theory of regression for nonstationary time series. There were precursors to this
work too, coming from research in the statistical literature on univarnate autoregression. But the
development of a regression theory for multiple nonstationary time series came from work in
econometrics on the asymptotics of unit roots and spurious regression (Phillips, 1986, 1987) and
on multivariate functional central limit theory and its application to time series regression
(Phillips and Durlauf, 1986). The arithmetic of I(1) and 1(1)/1(0) asymptotic analysis, as we
might now call this theory (see Phillips, 1988, for a general review of these techniques), enables
us to study the asymptotic behavior of statistical procedures in the context of models that explic-
itly admit nonstationary time series. This means that we also have the apparatus to explore the
statistical implications of one methodology, such as the use of error correction models, against
those of another, like the use of unrestricted vector autoregression.

The present lecture is in one sense an extended illustration of this exercise. But it has a
more basic and (what the author hopes is) ultimately a more important purpose. This is to

develop an approach to regression for time series that takes advantage of data nonstationarity



and potential cointegrating links between series without having to be explicit about their form
and without preliminary pretesting. Cointegrating links between nonstationary series lead to
endogeneities in the regressors that cannot be avoided by using vector autoregressions (VAR's)
as if they were simply reduced forms. This is a point that was explained in earlier work (1991a)
by the author and is illustrated here in Section 2. Nevertheless, we often do wish to use VAR’s
in empirical research without prefiltering to "induce" stationarity, without pretesting to determine
the number of unit roots (or the dimension of the cointegration space), and without prior know-
ledge of either the directions in which the data may be stationary or the transformations that
may be necessary to achieve this, However, least squares (OLS) regressions on levels VAR’s
which are treated as reduced forms do not have generally good properties in models of this type,
especially with respect to the coefficients of (non redundant) nonstationary variables in the sys-
tem. For example, as we explain in Section 2, OLS estimates of any cointegrating relations are
asymptotically second order biased in the sense that their limit distributions are mislocated or
shifted away from the true parameters, even though the estimates are consistent (or first order
unbiased). The reason for this is simple. OLS regressions are not designed to take into account
long-run endogeneities in the regressors and the presence of such endogeneities produces the
aforementioned bias,

Ideally, we need a statistical estimation procedure that offers many of the advantages of an
unrestricted Jevels VAR while at the same time allowing for potential long-run endogeneities.
The procedure suggested in this paper is designed to achieve this marriage of the two principles.
The method proposed here we call fully modified vector autoregression (FM-VAR) and is based
on, but not identical to, a time series regression estimator known as fully modified least squares
(FM-OLS) that was put forward in earlier research by Phillips and Hansen (1990).

The FM estimator was originally designed to estimate cointegrating relations directly by
modifying traditional OLS with corrections that take account of endogeneity and serial correla-
tion. One reason the method has proved useful in practice is that one can use the FM correc-
tions to determine how important these effects are in an empirical application. This has helped

to make the method less of a "black box" for practitioners. In cases where there are major
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differences with OLS the source or sources of those differences can usually be easily located and
this in turn helps to provide the investigator with additional information about important
features of the data. Recent simulation experience and empirical research indicates that the FM
estimator performs very well in relation to other methods of estimating cointegrating relations
-- see Cappuccio and Lubian (1992), Hansen and Phillips (1990), Hargreaves (1993), Phillips and
Loretan (1991) and Rau (1992).

The present paper explores the use of the FM-OLS procedure in a much more general time
series context than earlier research. Our framework includes vector autoregressions with some
unit roots and some cointegrating vectors, withont having to be explicit about the configuration
or the dimension of the stationary and nonstationary components in the system and without the
need to pretest the data concerning these characteristics. The resulting FM-VAR regression, as
we call it, has some attractive and rather surprising properties that emerge from our analysis:

(i) First, when there is cointegration in the system the limit theory of the FM-VAR esti-
mator is normal (and asymptotically equivalent to OLS) for the stationary coefficients, and mixed
normal for all of the nonstationary coefficients including the unit roots. Thus, we get mixed
normal limit theory for the FM-VAR estimates of the identified components of the cointegrating
matrix, just like the optimal (maximum likelihood) estimates in Phillips (1991a) and Johansen
(1988). But, in addition, the FM-VAR estimates of the unit root coefficient submatrix {,, in
the case of an n-dimensional VAR with an r dimensional cointegrating space and n -7 unit roots)
also have a mixed normal limit theory. So there are no unit root distributions and there is po
asymptotic bias in the estimation of the cointegration space in the FM-VAR limit theory.

(i) When the system has a full set of unit roots, the FM-VAR estimator of the complete
unit root matrix (I, for an n-dimensional VAR) is hyperconsistent in the sense that the rate of
convergence of the estimator exceeds the O(T) rate of the OLS and MLE estimators. This
extends earlier work by the author (1992), which showed that the FM-OLS estimator is hyper-
consistent for a unit root in a single equation autoregression. We further show that when an
autoregressive model with a unit root has deterministic trending regressors, the FM-OLS esti-

mator of the coefficients of the deterministic trends is also hyperconsistent. This result is quite



surprising and serves to illustrate the importance of the statistical dependence that exists in the
limit between estimates of the coefficients of stochastic and deterministic trending regressors.

(iii} The normal and mixed normal limit distributions of FM-VAR estimates facilitate sta-
tistical inference in cointegrated VAR’s. Wald tests that are based on the FM-VAR estimator
are shown to have a limit distribution that is a linear combination of chi-squared variates. The
limit variate is bounded above by the usual xz distribution with degrees of freedom equal to the
number of restrictions that are being tested. Thus, conventional critical values can be used to
copstruct asymptotically valid (but conservative) tests in quite general FM-VAR regressions.
This theory includes causality tests and therefore offers an alternative to sequential test pro-
cedures such as those in Toda-Phillips (1992), and to intentional model overfitting procedures
like those in Toda and Yamamoto (1993).

The present work is related to some other recent research contained in papers by Phillips
(1992) and Kitamura and Phillips (1992). Phillips (1992) demonstrates the hyperconsistency of
FM-OLS in an autoregression with a unit root and the present paper extends that result to
vector autoregressions, while at the same time considering models with less than a full set of unit
roots, Kitamura and Phillips (1992) develop generalized method of moment (GMM) and gener-
alized instrumental variable (GIVE) extensions of the FM regression procedure. The resulting
FM-GMM and FM-GIVE estimators are designed to estimate cointegrated regression models,
wherein the stationary components may alsc be endogenous and are consistently and efficiently
estimated because of the GMM and GIVE features that are built into the FM-GMM and
FM-GIVE procedures. Work on this problem relies on the fact that the FM procedure can be
applied to models with cointegrated regressors and even stationary regressors without losing the
method’s good asymptotic properties. This result was originally shown by the author in some
unpublished notes (1991b). Section 3 of the present paper extends those notes and provides a
rather full treatment of the subject, giving a detailed analysis of the conditions under which the
result holds and providing specific limits for the relevant (long-run) moment matrices. The treat-

ment of this section is useful to a wide range of models including those where FM-GMM and



FM-GIVE procedures may be appropriate. Our main use of the treatment in the present paper
will be to vector autoregressions.

The paper proceeds as follows. Section 2 provides an illustration and some background
discussion of the relevant ideas that help to motivate the need for a modified VAR estimation
procedure. Section 3 develops a general theory of FM-OLS asymptotics that covers models with
I(1) and I(0) regressors, models with cointegrated regressors where the directions of cointegra-
tion are unknown, models with unit roots, models with only stationary regressors and models
with I(1), 1(0) and deterministic trending regressors. Autoregressions are studied in Section 4
and some simulations are reported that shed light on the finite sample performance of the
FM-OLS estimator in the stationary and nonstationary AR(1) model. Section 5 develops an
asymptotic theory of regression for the FM-VAR estimator and Section 6 derives the limit theory
for Wald tests of restrictions, based on FM-VAR regression. Section 7 concludes the paper and
summarizes our main results. Derivations and proofs are given in a technical appendix in Sec-
tion 8,

The notation and terminology that we use in the paper for nonstationary regression asymp-
totics is based on earlier work by the author and has now become fairly standard in the time
series econometrics literature, Thus, we call the matrix Q = E:__ £ {uug) the long-run variance
matrix of the {covariance stationary) time series &, and write Irvar(u,) = Q. Similarly, we call
A= E:_OE(ukud) the one-sided long-run variance matrix of u, and write Irvar (¥)) = A. Ina
similar way we designate long-run covariance matrices as lrcov() and Ircov +(). We use BM(Q)
to denote a vector Brownian motion with covariance matrix  and we usually write integrals ke [ ;B(s)ds
as _[;B or simply JB when there is no ambiguity over limits. The notationy, = I(1) signifies
that the time series y, is integrated of order one, so that Ay, = I(0) and this requires that
lrvar(4y,) > 0. In addition, the inequality "> 0" denotes positive definite when applied to
matrices and the symbols ", ;" "y, "a.s.", "=" and ":=" signify convergence in distribution,
convergence in probability, almost surely, equality in distribution, and notational definition,
respectively; and we use |4 to signify the matrix norm {tr{(4'4)}!?, |4| to denote the deter-

minant of A, vec( ) to stack the rows of a matrix into a column vector, [x] to denote the smallest



integer < x and all limits in the paper are taken as the sample size T ~ =, except where otherwise

noted,

2. BACKGROUND IDEAS AND MOTIVATION
FOR MODIFIED VAR ESTIMATION

To iliustrate some of the ideas that come into play in the present paper we will consider in
this section the following first order n-vector autoregression
1) VoA 4 ve, t=1.,T

where ¢, = iid(0, £,,) with 2, > 0 and the initialization y, is any random n-vector. Suppose

the coefficient matrix A in (1) has the simple form

0

A=Oln—r

= (Ag) » Say

for some r x (n-r) matrix B. Partitioning y, = (y},, yi,‘)' conformably with A we have the

following explicit form of (1)

(1a)  yy = Byy.q + £y,
(Ib)  yy =yyy + 2y,

showing that y,, is a full rank I(1) process and that y,, is cointegrated with ¥ Thus, (1) is a
simple VAR with some (7-r) unit roots and some (r) cointegrating vectors that have the form
B' = [I -B]. (This model extends a simple exercise given in Phillips (1992b).)

Premultiplication of (1) by B’ gives the stationary relation
(1a") Bl)’r =Y - Byz: = B't‘ =V, say

which shows the directions in which the n-vector y, is stationary. Since these directions (and
indeed the form of the coefficient matrix A4 in (1)) are not known, we may well consider esti-
mating the matrix 4 directly from (1) as a levels VAR. In such a regression ¥,_1 is treated as
predetermined and the model is usually regarded as a "reduced form." However, because of the

nonstationarity in the data, the endogeneity in the variable y,, that is clear from the form of



(1a%) is also present in the lagged variable y,,_;. This can most easily be seen by noting that
(1a) is really just another way of writing (12') -- we simply add and subtract Be,, to the right
side of equation (1a).

To be more explicit we note that E(ey,y;,_;) = 0, so thaty,,_, appears to satisfy the usual
orthogonality condition of a "good" regressor or predetermined variable. Nevertheless, since
¥2.1 is nonstationary the sample covariance T'IE{e 1¥2;-1 does not converge to zero. Instead,

we have, using standard weak convergence results (see Phillips, 1988),

@ TE{eyys —u [(9B1B;
where B, (r x 1) and B, (n-r x 1) are subvectors of the Brownian motion B = (B1 Bi)'
= BM(Z,,). Now, although E(e,y; ;) = 0, the limit processes B, and B, will be correlated
Brownian motions whenever the contemporaneous correlation between ¢, and e, is nonzero
(ie., when I,, is not block diagonal). This correlation between B, (the limit process of
T w‘ym_ 1) and B (the limit process of partial sums of ¢,) is the manifestation in the limit of
the "endogeneity" of the regressor y,,_; in (1a).

The effects of the "endogeneity” of the regressory,,_; on a levels VAR regression are simple

to determine. It is most convenient to write the first subsystem of (1) as

Yi = Ay v Ayug + gy

(1a") s Apviey YAy ey

since the true value of 4, = 0. Estimates of 4;; and A,, from a levels VAR on (1) are equiv-
alent to those obtained by OLS on the last equation above, i.c. on (1a"). Since v,_, is station-
ary, the OLS estimator of 4,5 (= B) in (1a") is asymptotically equivalent to the OLS estimator

of B in the restricted model (1a). The limit distribution is given by the following expression

T(B-B) = (T'lzrfld’iq)(rlxlryzr-lyz'r-1)—1 —q (I;dBlBi)(I;BzBi)—l ’

whose far right side we can decompose into two terms (following Phillips, 1991a) as

(381283 [ B2 + Zr2 ([ (BB [1a)



where B, = B, - £1,25,B, = BM(Z1;5) With £y, = £, - £ ,250%,;. The second term
in the above expression is the "simultaneous equations bias" that results from the "endogeneity"
of the nonstationary regressor y,,_; in equation (la). This term leads to a miscentering and
skewness of the limit distribution of B and its dependence on nonscale nuisance parameters that
are impossible to eliminate in fofo at least in general VAR regressions. The first term in the
above expression is the limit distribution of the optimal estimator under Gaussian errors ¢, in
(1), as shown in Phillips (19912).

To deal with the fact that levels VAR’s are not "reduced forms" when some of the variables
are ponstationary we need to find ways of dealing with potential endogeneities of the predeter-
mined variables. Since these endogeneities arise from cointegrating linkages of the type (1a’),
one way of proceeding is to pretest the data for the presence of cointegration and the rank of
the cointegration space, which in the simple example above is just the rank of the coefficient
matrix [-A. Ope can then perform a reduced rank regression to obtain an optima} estimate of
the submatrix B (after suitable transformations), as in Johansen (1988). Other methods, such as
those in Phillips (1991a, 1991c), are also possible.

This paper considers an alternate approach that is more in keeping with the principle of
unrestricted levels VAR regression. Our proposal is to deal with potential endogeneities by
making a correction to the OLS-VAR regression formula that adjusts for whatever endogeneities
there may be in the predetermined variables that is due to their nonstationarity. We seek to
make these adjustments without knowing in advance the directions in which the variables may be
stationary and what the rank of the cointegration space may be. We also seek to avoid pretest
or sequential inferential procedures so that our approach maintains the essential methodology
of the unrestricted vector autoregression. In the absence of prior or pre-test information about
the cointegration space, we need to allow for our correction to be sufficiently general to accom-
modate all potential endogeneities and our procedure must be capable of handling variables that
are stationary in some directions and nonstationary in others without knowing these directions
in advance and while preserving the usual VAR limit theory for the stationary components. Our

method of achieving this is to use in the VAR context a version of the fully modified least



squares (FM-OLS) procedure in Phillips and Hansen (1990). The precise details of our
approach are laid out in Section 5. The next section shows how the asymptotic theory of
FM-OLS regression can be extended to accommodate the type of situations that arise in general
time series regressions where the dimension of the cointegration space is unknown. This theory

is an essential element in dealing with the case of a general VAR with some unit roots.

3. FM-OLS REGRESSION WITH COINTEGRATED
AND STATIONARY REGRESSORS

The basic model we will work with in this section has the form
3) y, = Ax, + ug, ,
where A is an n x m coefficient matrix and x, is an m = (m,+m,)-dimensional vector of cointe-
grated or possibly stationary regressors that are specified according to the following equations
Hyx, =xy =uy, (my x1)
Hz'AI: = szl = u2‘ . (m2 x 1)

Here H = [H,, H,] is mx m orthogonal and rotates the regressor space in (3) so that the model

has the alternative form
3 Yp = Apey, + Agxy + Uy,

where A; = AH, and A, = AH,.
Letu, = (ug, v, ué,)' and ¢, = u,, ® u,, . Itis convenient for our development to assume

that u, is a linear process that satisfies

ASSUMPTION EC (Error Condition)
(a) u, = C(L)e, = E;:OCje,_j, E;j"ICjI < o, |C(1)] # O for somea > 1.
(b) e, is iid with zero mean, variance matrix Z_, > 0 and finite fourth order cumulants.

(c) E(cp‘j) = E(umﬂ- euy)=0forallj >0 0O

By a multivariate extension of Theorems 3.4 and 3.8 of Phillips-Solo (1992), Assumption EC



10
ensures the validity of functional central limit theorems for i, and u ;. In particular, we have
@ 22y By = BM(R), @ = CO)E,CQY
and

(5) n“mz’;@,‘g — N(Os QQQ) ’ QQQ = E;-uE("muduj ® ultul'h-j) '

The variance matrix I and long-run variance matrix (1 of u, are partitioned into cell submatrices
IZ;and Q;(,j=0,1, 2) conformably with u,. We similarly partition the Brownian motion B in
(4) into cell vectors B; (i = 0, 1, 2). When u(, and u,, are independent for all t, s we have
Qoo = E;_UE(uo,ud“j) e E(“u“fuj) and when, in addition, u; = iid(0, Z,;) we have Qo
= 200 -] Ell'

We will also need the one-sided long-run covariance matrices

A= E;.QE(“;'“d) EF-OPU) = (Aij) »

and

A = B EGwu)

Z7.T6) = (Ay) .

where the cell submatrices A i and A‘-j (i,j = 0, 1, 2) again conform to the partition of the vector
u,.

Both Q2 and A are typically estimated by kernel smoothing of the component sample auto-
covariances. Since u,, must itself be estimated, we will use in its place in these calculations the
residuals 4y, = y, - ;ix‘ from a preliminary least squares regression on (5). Under EC(c),
A —p A and the replacement of uy, by G, will not affect our results.

Kernel estimates of Q and A have the general form

A T-1 L E 2 Tel .
(6) Q= i _rawUKITG), and A = Z, o wU/K)LG)
where w(') is a kernel function and K is a lag truncation or bandwidth parameter. Truncation
in the sums given in (6) occurs when w(j/K) = 0 for [j| > K. The sample covariances in (6) are

given by
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fG) = T'2'8,,8, , 8 = (GG uip u3)

where I’ signifies summation over 1 < ¢, t+j < T. The class of admissible kernels that we

employ is made explicit in

ASSUMPTION KL (Kernel Condition): The kernel function w(*) : R - [-1, 1] is a twice continuously
differentiable even function with:

(a) w(0) = 1, w'(0) = 0, w"(0) = 0;

and either

(6) w(x) = 0, | 2 1;

with

limlxl_lw(x)/(li - [x])* = constant ,

or

(b)Y w(x) = O(x2), a5 x| -~ = O
Under KL we have

lim (1 - wx))® = -(1/2)w"(0) ,
x=0

and thus Parzen’s characteristic exponent of the kernel w(x) isr = 2. Under KL with (a) and (b)
come the commonly used Parzen and Tukey-Hanning kernels and under KL with (a) and (b')
comes the Bartiett-Priestley or quadratic spectral kernel (e.g. see Priestley, 1981, p. 463).
Assumption KL is similar to kernel conditions employed in earlier econometric work (see
Andrews, 1991; Phillips, 1992; Kitamura-Phillips, 1992) but is somewhat more restrictive. The
explicit exponent {r = 2 and w”(0) # 0), truncation (KL(b)) and derivative requirements in KL
are helpful in achieving explicit formulae in some of our asymptotic developments. They could
be relaxed at the cost of greater complexity in some of our proofs and with some changes in our

final formulae and convergence rates,
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It will also be useful to be explicit about the bandwidth expansion rate and we assume the

following

ASSUMPTION BW (Bandwidth expansion rate) The bandwidth parameter K in the kemel estimates
(6) has an expansion rate of the form

BW(i) K = O(T*) for some k € (1/4, 2/3) (i.e. K**T ~ 0 and KT - < as T -~ ).

Some of our results require other bandwidth expansion rates which we designate as

BW(ii) K = O(T%) for some k € (1/4, 1/3)

BW(iii) X = O(T") for some k € (1/4, 1)

BW(iv) K = O(T*) for some k € (0,1). O

As noted in Phillips (1992), conditions like BW(i)-(iii) rule out the "optimal" growth rate X
= O(T'5) that applies when minimizing the asymptotic mean squared error of kernel estimates
such as { with kernels that satisfy KL. However, since our objective is estimation of the model
(3) and estimation of Q and A arise only incidentally in this process, it is perhaps not too surpris-
ing that BW is not fully compatible with the "optimal” estimnation of these nuisance parameters.
The reason for Assumption BW and the role of the exponent k that appears in BW(i)-(iv) will
become clear in our later analysis,

We now define u;, = (Auj, us) (= Ax,, = H'Ax, = H'u,, say) using the subscript "h" to
signify that elements corresponding to Au,, and u,,, which occur after use of the rotation H, are
taken together. In a similar way, we define the long-run covariance matrices Q;, Q,;, Agps Apy
and their kernel estimates in terms of the autom§aﬁances and sample autocovariances of u,,.
We observe that the leading submatrix of (2, corresponding to the difference Au,,, viz. Q Aughu, >
is a zero matrix, since Au,, is an I(-1) process and has zero long-run variance. The following
lemma describes the limit behavior of the component submatrices of these long-run covariance

matrices more precisely.
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3.1 LEMMA: Under Assumptions EC, KL and BW, the following hold:
@) K, a0, —p #" @0y

(b) @, 0y = K2w"(0)®g; + O,(IVKT), where &gy = I __G-12)T, ,, (), and
| = KW @)y + O,(IWKT), where & = Z._(G-12), , ();

J--w

(© Ly, = ﬁaOAu, = ﬁuOAu, + O (1T);
(@) Qg = |-(@g; - 005 @05 + O (KM + 0, (KM g0, + %)
(e) KT Buju; - Ay au) —p w'(O{Ay - (12)2);
O Tluguy - B, = KW"(0) ¥y + O,(IWKT), where ¥y = E7,G-12)T, , ();
(8) T'AuiX; - Ayyy, = Tlugpesr + KW' (Q)¥ 5 + O,(IWKT), where

¥y, = B0+ 12T, 0);
(h) ‘S'mmi = uonu = (1/\/-_)

() Agy, 1= By, = Agy *+ O(KMY);

: =17y A 1 .
G) T, - &, = Npop —y deBsz,

=177+ A 1 I
(&) TUGX, ~ B, = Noor —q [ @BoB3;

(O TX;X; —y [BoB3. O

3.2 REMARKS
(a) Result (a) shows that Q Bujbu; = O,(X '2) , giving the rate at which Q Au,Au, CODVErges
to the zero matrix in the limit. Note that one consequence of the explicit representation of the

limit of K°Q,, 4, is that we can describe the behavior of its inverse, viz.
- o -1
K20y, 4, —p (0" (O)Q5] .

(b) Results (b) and (c) show that {2, Au, also converges 1o a zero matrix, but at a rate that
may differ from that of Q By bty depending on the expansion rate of K as T - «. In particular,
if K = O(T%) (with k > 1/4 as in Assumptions BW(i)-(iii)) we get
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K, = w08y + O,T* &0 wi (@)@, , for k < 153

and

AOAul = p(lfm ) = OP(T'(’“I)Q) , for k > 173 .

Thus, for K = O(T¥) with 1/4 < k < 1/3 the rate of convergence of {, Au, 1O ZErO is the same
as that of AuyAuy* But for K = O(T") with & > 1/3 the convergence rate of f)o au, 10 Zero is
slower than that of Q Auybu, - This difference and the way in which it depends on the expansion
rate of K is important, As we will see, it affects the order of magnitude of terms that appear in
the expansion of the estimation errors of the stationary component in the model (3°).

(c) From result (d) of the lemma we see that the first block submatrix of ﬁmﬁ}:}: has ele-
ments that are of order O((K3ﬂ')1/2) K= O(T") with k > 1/3 then these terms dominate and

the elements of this submatrix diverge as T - «. However, when 1/4 < k < 1/3 we have
0.0} (@, - Qi0 )0 ,05)
&y —p (Do - QpaQp ®2)R ;¢ Qpafyy

and this matrix is well behaved as T - . Thus, even though some elements of f);: diverge as
T ~ = (corresponding to the fact that some elements of u,, = (Au,,, u,,) are I(-1) processes with
a null long-run covariance matrix) the matrix product f)mﬂ;z has a finite probability limit, at
least when K = O(T") and 1/4 < k < 1/3.

(d} Remarks similar to (a} and (b) above apply also to the results (e), (f) and (g) for the
correction terms that involve one-sided long-run covariance matrix estimates. These remarks
indicate that the bandwidth expansion rate has an important role to play in the asymptotics of
the FM estimator when there are stationary components in the estimated model, like x;, in (3°).

(¢) Combining the results in Lemma 3.1 we obtain expressions for the asymptotic behavior
of the component elements (or correction terms) that appear in the FM estimator that is defined

in equation (7) below. We give these expressions in the next lemma.
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3.3 LEMMA: Under Assumptions EC, KL. and BW we have:
-1 - . -
(@) Q@[T X, - &,
- . -1 -
= [0,(K™2) + O,(INKT) i QpQ5Nyyr + O,(T™ 1) + O,(K**T) + 0,(1)]

1 ‘.
where Nosp —iy J'OdeBz,
s A =limelyy, - -2 -
®) T2 ORIT X, - Buau) = O,K2T?) + 0,(K 712,

© TTUX, - Bogy ] = TRUX, + O, (K1) —; N(O, Q,,). D

3.4 REMARKS

(a) The partition in the matrix that appears in part (a) of Lemma 3.2 corresponds to the
separation of the FM correction terms into those that relate to the stationary and ponstationary
coefficients, respectively. Part (b) gives the stationary coefficient correction more explicitly (and
when it is scaled by T'2, as it is in the analysis of the limit distribution of the FM estimates of
the stationary coefficients). The correction term in this case has magnitude of order OP(K’ZTm)
+ OP(K -lﬂ) which is 0,(1) when the bandwidth expansion rate K = 0(7*) satisfies k > 1/4.
Part (c) shows that the FM correction term for serial correlation also has no effect asymptotically
and is Op(K'm). Both these results indicate that, at least for the stationary coefficients, the
faster the bandwidth expansion rate K = O(T¥), the closer the FM estimates will be to the OLS
estimates which under Assumption EC(c) are consistent,

(b) The second submatrix in the partition that appears in part (a) relates to the FM endog-
eneity correction for the nonstationary coefficients. For the endogeneity correction to work we
want this matrix to be O,(1) and to be as close to its dominating term, viz. QOZQ;szT' as
possible. Note that the error in this case involves a term of order Op(Km/T). Thus the correc-
tion term operates satisfactorily provided K = O(T*) with 0 < k < 2/3. In this case, therefore,
we do not want the bandwidth to grow too fast with T.

(c) Combining the effects of the error terms for the stationary and the nonstationary coeffi-
cients we see that the correction terms work satisfactorily provided the bandwidth expansion rate

K = O(T*) satisfies 1/4 < k < 2/3, i.c. the rate BW(i) given in Assumption BW. O
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3.5. THE FM-OLS ESTIMATOR

Lemma 3.3 makes it easy to derive a limit theory for regression estimators that depend on
long-run covariance matrix estimates like the FM-OLS estimator. The FM estimator given in (7)
below is constructed by making corrections for endogeneity and for serial correlation to the least
squares estimator 4 = Y'X| (XX)'1 in (3). The endogeneity correction is achieved by modifying
the variable y, in (3) with the transformation

s -l
¥ =y - Qo bx, .

In this transformation @, and Q are kernel estimates of the long-run covariances, Qg,

= lrcov(ug,, Ax,) and Q= Ircov(Ax, Ax,). The serial correlation correction term has the form

2+ 2 A A-lz

Ag = 8¢ - Qq, Ar

where Ay and A, are kernel estimates of the one-sided long-run covariance matrices Ag,
= lrcov (ug, Ax,) and A, = Ircov (Ax, Ax;). Combining these two corrections we have the FM-

OLS regression formula

(7) A* = (Y'X - TA(X'X)™ .

In deriving a limit theory for A* we need to pay attention not only to the sample moment
matrices of the data and their orders of magnitude (which in turn depend on the directions of
stationarity and nonstationarity in the regressors), but also to the behavior of the kernel esti-
mates Ay, A, Qg and Q,, that appear in the correction terms of A*. The latter is especially
important in the present case because the presence of stationary components (viz,, x,,) in the
regressors x, means that the kernel estimator Q,, tends to a singuiar limit due to the fact that
0, o= H{Q _H, = 0. Lemmas 3.1 and 3.3 enable us to take this singularity into account in the
asymptotic analysis and determine the impact it has on the asymptotic behavior of the estimator

A* in both stationary and nonstationary directions. In this regard, the bandwidth expansion rate

of K is especially important in determining the error rate of convergence and this is why the
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results given in these lemmas are stated with several explicit error orders of magnitude, which
arise from possibly different sources but which all need to be monitored to ensure that the given
limit theory applies.

Thus, with these preliminary results in hand, we can proceed to derive the limit theory for
the FM-OLS estimator A*. It is helpful in formulating our asymptotic theory to consider the
component submatrices A, = AH; and A, = AH, in the model (3") that correspond to the sta-

tionary and nonstationary elements of the regressors. We have:

3.6. THEOREM: Under Assumptions EC, KL and BW

@) YT@A*-AH; —y NO, (I @ Z;)Q,, @ 2})),

(b) TCA"-A)H —y ([ dBosBI)[(BBs)” .

where By, = By - 09205582 » BM(Qyy5) and Qpqs = Qg - 00202‘21002. Part (a) holds for
the bandwidth expansion rate BW(iii), i.e. K = 0(7“) with 1/4 < k < 1. The bandwidth expansion
rate required for part (b) to hold is 0 < k < 2/3. Parts (a) and (b) both hold when K = O(Tk) and
1/4 < k < 2/3, i.e. under BW(i). O

3.7. COROLLARY (Stationary regressor case): When m, = 0 in model (3') and under Assump-
tions EC, KL and BW with bandwidth expansion rate K = O(T“) for 1/4 < k < 1 we have

VTA*-4) —g NOU © 2Ry, ® Z;7)) . O

3.8. COROLLARY (Full rank integrated regressor case). When m, = O in model (3') and under
Assumptions EC, KL and BW with bandwidth expansion rate K = O(T") for 0 < k < 1 we have

TA" -A) —y ([iaBoB7)([{BB5] " . D
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39. REMARKS

(a) Corollary 3.7 shows that the FM estimator A* is consistent and has the same limit dis-
tribution as the OLS estimator A in the case where A is itself consistent, i.e. under Assumption
EC(c). Note that EC(c) allows the equation error u, to be serially dependent and in this event
the estimator A (and hence/i*) is not necessarily efficient. However, efficient GLS-type exten-
sions of A% can be constructed along the lines of the FM-GIVE estimator developed in
Kitamura and Phillips (1992). They will not be explored in this paper.

(b) Let n, = (ug, uiul)' and 7, = o(n, n,_y, ...) be the o-algebra generated by (nj)_',,.

The condition
EC(c'): (ug, fm) is a martingale difference sequence (mds)

ensures that E(ug, ,; 41,) = 0 for allj 2 0 and hence EC(c) holds. Moreover, under EC(c") we

have

0 forall j =0

E(ug ug,,; ® uyuj, ) =
(o iy ® Hyrlssog) Zgo ® Zyy for  j=0

and therefore Q= Zoy @ Z;;. In this case, the asymptotics

(8) JT(A*-4) —; N(O, Zyy © Z]1)

correspond to those of the usual multivariate linear regression model with mds errors.

(c) One case where condition EC(c’) is especially relevant occurs when there are lagged
dependent variables in the regressor set. Suppose some linear combinations of the dependent
variable y, in (3) are stationary and are also independent of future realizations of the equation
error u,, which are pure innovations. If the stationary variables x;, in the transformed system
(3') include these variables in lagged form, then EC(c’) holds and we get the limit theory given
in (8). This situation arises in stationary autoregressions and will be examined further in the
next section of the paper.

(d) As it stands Theorem 3.6 says nothing about possible dependence between the limit dis-
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tributions of the stationary and nonstationary components given in parts (a) and (b) of the
theorem. It turns out that with a slight strengthening of condition EC(c') we can establish that
these distributions are independent. Let n, = (ug, ¥y.y, uz'“l)' and 7., = o(n, 0.y, .) be
the o-algebra generated by (r;j))f,,. This enlarges the o-algebra used in condition EC(c') in
Remark (b) above. The condition

EC(c"): (rqp Fy) is a martingale difference sequence with E(ug up, |7, 1) = Zgp as.

is stronger than EC(c’) and ensures that, in addition, E(x,,;ju3) = 0 forallj > 0. As the proof
of Theorem 3.6 makes clear, the limit distribution in (a) depends on that of T'mU{,X 1
= T'm}‘..ruofti, = T'wzrumuit . The limit distribution in (b) depends on that of T‘IU(']XZ,
T‘lUéXz and T'2X5X2, which in turn depend on the limit of the process T'mE[lT'}(u(),, uﬁ,)' .
Under EC(c") we have

E(ug, ® g ® uy) = E[I © I & u,)[E{(ug, @ ug, & 1)|7,,4}] = 0,
and

E(ug, @ u;, ® uy) = E{Efuy, e u;, & u,, [};"_l]} =0,

so that the limit distributions of TY28Tugu;, and T2l s, us) are uncorrelated and,
being Gaussian, are therefore independent. The functionals of these limit processes that appear
in parts (a) and (b) of Theorem 3.6 are therefore also independent. Hence, under condition
EC(c"), VT (ﬁl; - Ay} and VT (;l; - A,) are independent in the limit. An important case where
condition EC(c") holds is the vector autoregressive model with some unit roots and this will be
our subject of analysis in Section 5.

() The limit theory for the ponstationary coefficients that is given in Theorem 3.6(b) and
Corollary 3.8 applies without making any condition like EC(c) or EC(c") on the stationary com-
ponents of the system. This limit theory corresponds to that of the optimal estimator obtained
by maximum likelihood under Gaussian errors which was derived in Phillips (1991). Thus, even
if EC(c) does not hold and the OLS and FM-OLS estimators of the stationary components are
inconsistent, the FM-OLS estimator of the nonstationary component is still an optimal estimator.

This is because we still have a negligible contribution from the 1{0) component in the I(1) asymp-
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totics. In particular,
=177 A -2 T
and
- : -2
T AU, - Bap,au, = OpK™)

as in the proofs of Lemma 3.1(e) and (f). Hence, referring to the proof of Theorem 3.6, the
first term in (P31) -- which carries the effects of the estimation of the stationary components on

the asymptotics for the nonstationary coefficients -- is 0,(1) as T - = and can therefore be

neglected.

(f) From Theorem 3.6 we get the (potentially degenerate) asymptotics for the full coefficient
matrix A ¥, viz,
VT(A* -4y = J(A*-AHH' = T(A] - ADH| + JT(A; - A)H;
-1 -1,
9) —sg N0, (I & HIEH)Q‘W(I e I,,H)))
-1 .
(10) = N(0, £y @ H,Z,/H}),

the last line holding under EC(c’).
(g8) When EC(c’) holds we can construct a consistent estimate of the covariance matrix
Zg ® H,Z[jH; of the limit distribution (10) directly from the matrix £4, ® T(X'X)"!. This s

because
a1  TXX)! —, HEZH|
(see Phillips, 1988, p. 95) and since 4, A* —p A,
00 = T2 T804 = T B uu, + 0,(1) —, Zoq -

The covariance matrix in (9) can also be consistently estimated. We may use the matrix

0o T8 o I @ TXX)T]
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where fl'-P b is the kernel estimate
xvx
- K-l -
Qéxéx = A E wO/K)Fi’;i’,O) ’
J=-K+1

and §,, = @, 6%, Noting from (11) that T(X'X)™) = H,Z[1H{ + 0,(1) and Hix, = xy, = u,,

we have (/ e H|)¢,, = 6y, @ u;, = ¢, and s0

Qinb —p Qw .

12) (e H;)f)ézéza e H))

Combining (11) and (12) we obtain
r - A (] - -1 -1 ’
13) [ e T(X'X) I]Q"xé;[‘l e T(X'X)™1 —p (I @ Hy2)Q (I T, H{) .

{h) Results (9) and (13) suggest that inference about 4 can be performed using the asymp-

totic approximation
(14)  JTA*-A4) - N(o, e TXXN) A, . [T T(X‘X)'l]) .

Suppose we wish to test the restrictions
Hy:RvecA =r, R(g xnm)ofrankgqg .

A natural test statistic is the Wald statistic
R ' ¥ -15 4 i - i -1 ..
(1) W, =T(Rvec A’ -7) {R[] e TX'X) )0, , [I & TX'X) 1]R} (Rvec A* - 7).
In view of (9) and (13) and provided the following rank condition holds
-1 -1 [ [
(RK,) rmankR{(J e HyZ,)Q_ (I e Z HDIR] =¢g,
we have
16y W 2 T-w
( ) o d Xq y as

and so conventional chi-squared asymptotics apply.
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(i) When Assumption EC(c’) holds, the limit distribution (10) applies and we can use the

asymptotic approximation

(14")  JTA*-A4) ~ N, £, & T(X'X)")) .

To test 7, the natural statistic in this case is

Woo = T(R vec A* - r)’[R{ﬁoo ® T(X’X)‘I}R']'I(R vec A* - 1)
and if
(RK) rank{R{Z,, @ H,Z7H{}R] = g
. 2 .
we have Wy, —; X, as in (16).

() We now consider the interesting case where the rank condition (RK) fails. This occurs
when the restriction matrix R isolates some of the nonstationary coefficients. Thus, suppose
R = R, ¢ R; and the hypothesis % has the form
(17) "{'O:R].ARZ =}_'\’, VeC8=r,

G131 mxq,
where R, and R, are of rank q; and g,, respectively. If R;H | is of deficient row rank, then (RK)

fails. In this case we may write

18 R, =[R,; : R = [H :
(18) 2 = [Ry; ¢+ Ry)) [sz]O 5, 5,

m 4912

= [H Sy, H\Syy + HySpy i HySy)

for some matrices Sy, S, S;; and S,,. Without loss of generality (and by rotating the
restrictions (17), if necessary) we may assume that the matrix S,; has full column rank. The
hypotheses about A that correspond to the columns Ry, of R, relate solely to the nonstationary
coefficients in 4, i.e. to A, = AH,, because RAR,, = R,AH,S,, = RA,S;;. Now Ry,H, = 0

and then we have



23

Ry H,

“l,,,
o [EulHiRy, 0],

R{Zy e H S H{}R' = RiZyR;{ 6

which has rank g,95; < q,(¢3; + 922) = g. What is the limit distribution of the statistic W, in

this case when Condition RK fails? The following theorem provides the answer.

3.10, THEOREM: Under Assumptions EC, EC(c'), KL and BW the Wald statistic W'EO for
testing the restrictions H : RiAR, = R has a limit distribution which is a mixture of x2 variates. In

particular, when R, has the form given in (18) we have

+ a9 2 ., 4 2 .. 2 q; 2 ..
(19) Woo —u 2.‘.11,;21(‘) ¥ zf‘ldf 7"‘1220) " Xgygy * zj'ldj x‘hz(’) ’
where x> (i) = iid(x.), x> G) = iid(x> ) and x> (i) and x> (j) are independent for all i and
921 an”’ "4n 9 921 9
J. The coefficients d; in (19) are the latent roots of the matrix (RIQGO_zR]’)(RIEOORI')'l . QO

3.11. REMARKS

(a) Under EC(c), Qgop = Qgp - QOZQ;QZD = Zgo - 00202'21020 < Zpo- Thus
(RIQOOQRl')m(RlEOORl‘)'I(RlQm,le’)m < I and therefore the latent rootsd, (j = 1, ..., q,) that
appear in (19) as weights satisfy 0 < d; < 1. It follows that in the limit (19) is bounded above by
= x;ﬂ:u + xzz‘?zz = le 4 Tests of conservative size (asymp-
totically) can therefore always we constructed for W, using the xﬁl a distnbution.

. 2 a2 .
the variate Yoy * Zix 9120)

(b) Now suppose we construct the Wald statistic nsing the variance matrix estimator 600- Ax
= Qg - ﬁﬂxﬁnf}xﬂ = f)m - ﬁﬁhf); ﬁho constructed from the long-run variance and covariance
matrices of 2y, and Ax,. Since Q.4 —p Ko - 00202'21 0,0 = Qyo,,We obtain in the same way

as Theorem 3.10 and under the same conditions the limit result
Woox = TR vec A* - 1)'[Rif2p0.0, 8 TXX) IR 'R vec 4* - 1)

9 2 .. 2
—a S G+
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It follows that in the limit W§, is bounded below by the limit distribution 32, . An asympt-
otically liberal test of the hypothesis H; can therefore always be constructed using W,

(c) Note thatd; = 1 (i = 1, ..., q;) when Iy, = Qg5 i.e.,, when Qg, = 0 or when ug, and
u, = Ax, have long-run zero covariance. Observe also that when there are no nonstationary
components (ie., x, = I(0)) we have Q.,, —p Qoo = g under EC(c’) and then both
W&], W;O_x —ig x;l s in the limit. When there are no stationary components in the model we
have Q¢g.,, —, Qg2 and again Woox —d leqz . Thus, W}, has the desirable property of
being asymptotically x: 1‘12 in both extreme cases (stationary regressors only or full rank nonsta-
tionary regressors). It will be interesting to explore the finite sample performance of W0+0 and

W*

00, iD intermediate cases where there are both stationary and nonstationary components to the

Fegressors,

3.12, EXTENSIONS TO MODELS WITH DETERMINISTIC REGRESSORS

The main results given earlier in this section continue to hold (with some modifications to
the formulae) when there are deterministic regressors in the system (3) and when the regressors
x, may have deterministic components. The limit theory for the FM-OLS estimator and associ-
ated Wald tests can be developed as in Theorems 3.6 and 3.10. These generalizations are not
difficult and we will therefore only illustrate what is involved here. For example, suppose the
model (3) is replaced by

3" y, =Ax, + Ok, + uy, = &z, + ug, , say

where k, is a p-vector of deterministic regressors and the vector x, can be decomposed into 1(0),

I(1) and deterministic components as
¥ = Hpy + Hyxy + Fk, |
for some m x p matrix F.

The regressors k, will usually involve polynomials in time, in which case we can write

5 .1 s’
k;*(‘l,lz,---:l’)’ 0$sl<52<...<sp’
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for some integers s; (i = 1, ..., p). Note that s, may be zero and we therefore allow for the
presence of an intercept in (3”), a possibility which seems to be excluded in work by Hansen
(1992) on FM cointegrating regressions with deterministic trends. For such regressors we use the

weight matrix 5, = diag(7", ..., 77) and then
-1 PAY
6T k[TI'] - k(r) = 031! e ’P)
uniformly in r € [0, 1). The limit functions k(r) are linearly independent in L,[0, 1] and
_[lkk' > 0.
0
The FM-OLS estimator of ® in (3") is

& =4 : 1) = (Y"Z - [Ty, : ONEZ'2)",

which is an augmented version of (7) and a formula that was given originally in Phillips and
Hansen (1990). But in the above expression the long run covariance estimates that arise in
A(L = &, - ﬁﬂxf);lﬂn are based on (i, 2,,), where i, = y, - Ax, - #k, is a first stage OLS
residual and @,, = Ad,, wherein 4, = x, - Fk, is the residual from the OLS regression of x, on
k,. We remark that if k, involves an intercept as its lead component then the corresponding
column of F is inconsistent (and, in fact, diverges) when m, > 1. However, this component of
F is eliminated by the difference transformation &, = Ai,, and the remaining columns of £ are
consistent since s; > 1 (i > 1) and the regressors k; (i > 1) dominate the stochastic trend and
stationary components of x,. Thus, 4, = H;Ax,, + HyAx,, + (F—F)Ak‘ = HiAxy, + H,Ax,,
+ op(l) and therefore the correction terms work in the same way as those in regressions with no
deterministic trends.

The limit theory for the components of the FM-OLS estimator ®* can be deduced in much
the same way as Theorem 3.6. But some care needs to be taken over the extra partitioning in
® corresponding to the 1(0) and I(1) components. Again, we will just provide the basic approach

here.
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In making the construction it is useful to employ a composite weight matrix of the form

[H, : H,T?] F&;

D
T 0 &r
Then
H; H ]F Xy,
- ’ - -UZ + - -

pi = |[TVH;| [TPHi[ || and D7, = [Ty

-1 821k

0 61’ T ™

which reorganizes and suitably weights the components of the regressors z,. Note that for some

fivedr > 0

-1 : i " '
Dy2igy —g (yes Bo(Y, k(1)) = 6y, J()') , say,
giving the limit processes that correspond to these standardized regressors. The limit theory for

®* is now
yT($*-0)D; = [ﬁ(ﬁ‘-A)Hl i TA*-A)H, ﬁ{(ﬁ‘-n) + (,&*-A)F}aTJ

R

— [N(O,(I ® 210y, (I 8 21 ¢ | ;dBOQJ‘( [ é]]‘)-l
which extends Theorem 3.6 to allow for deterministic trends. The component of this limit
distribution corresponding to the stationary part of x, is identical to part (a) of Theorem 3.6,
where there are no deterministic regressors. The component that corresponds to the nonstation-
ary part of x, differs from part (b) of Theorem 3.6 in that it involves the deterministic function
k{r) as part of the limit function J(r). The coefficients of the nonstationary part of X, and the
deterministic regressors k, in (3“) are taken together in the limit variate ( _[ dBo-zj)q” N1,
However, like part (b) of Theorem 3.6 this limit variate is mixed normal and this limit distribu-
tion facilitates statistical inference in the same way as before,

For instance, if we wish to test #{ the patural Wald test is

Wy = TR vec A* - r)’[R{Em e T(X'QKX)'I}R'J-I(R vec A* - 1),
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where Qy is the orthogonal projection matrix onto 4(K)* and K is the matrix of observations of
k,. It is easy to show that T(X 'QKX)'l —tp H IE;IIH 1 and then W;< — xz , provided condition
RK holds. If RK fails and the hypothesis is of the form %] given in (17) ther W} has the same
limit as (19) and Theorem 3.10 applies.

In addition to these extensions of our theory, we can also consider the case where the
regression equation (3”) does not include all of the deterministic regressors k,. Again, closely
related results are obtained. As in the case above, the limit theory for the FM-OLS estimator
of the coefficients of the nonstationary part of x, and the included deterministic regressors must
be taken together but the limit distribution is still mixed normal. In consequence, Wald statistics
that are formed in the usual way have limit chi-squared or mixed chi-squared distribution, just
as in Theorem 3.10.

Finally, we remark that extensions of our theory to include deterministic regressors with
breaking trends may also be accommodated. In this case the corresponding limit functions will
involve some simple cadlag functions, as in Park (1992). The other aspects of our limit theory

for &+ go through as before, as does the limit theory for the associated Wald tests.

4. APPLICATION TO AUTOREGRESSION

4.1. FM-OLS IN THE STATIONARY AND NONSTATIONARY AR(1)

An important application of the theory of FM regression is to the simple AR(1) model
(20) Y=oy g +uy, t=1,2 .. T

where the initialization y, at t = 0 can be any random variable including a constant.

The case of a unit root @ = 1 in (20) was dealt with by the author in recent work (1992),
where it was shown that even for general stationary errors u, in (20) the FM estimator &* is
hyperconsistent. Under BW with a bandwidth expansion rate K = O(T*) with 1/4 < k < 1/2 the
author showed that &* is 72-consistent for « = 1. The intuition behind this hyperconsistency
result is as follows. Since the dependent variable y, and the regressory,_; in (20) are cointegrat-

ed and y,_, is a full rank I(1) process when « = 1, we can expect the limit theory of Corollary
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3.8 to apply. But note that uy, = 1, and Ax, = Ay, ; = u,_, so that the corresponding Brownian
motions, i.e. By(r) and B,(r), are identical. Moreover, if w? is the long-run variance of u, then
Qup =0y = ©? also, because the long-run covariance of , and Ay, , = u,_; is the same as the

long-run variance of u,. Let B(r) = By(r) = B,(r), say. Then, in the present case we have
Byo(r) = By(r) - Rupf5;By(r) = Boolr) = B(r) - B(r) = 0,
and so the limit theory from Corollary 3.8, viz.

@) T(@-1) = ([}dBooB)[ (B0 = 0

is degenerate. Thus, &+ =1 + op(T'l) and &% is hyperconsistent.

Next, consider the stationary case of (20) with |« | < 1 and suppose u, = iid(0, 02). In this
model the OLS estimator & is conmsistent and its limit theory is given byyT(a-«)
—4 N(0, 1-¢?). The limit theory for the FM-OLS estimator &* in this case is covered by
Corollary 3.6. Since the error i, is an mds the limiting distribution of yT(&*-«) is given by

formula (8) with Z4 = o? and £,, = var(y,_,) = 0%(1-¢?). Hence, we have

(22) {T(&*-a) —y N(O, 1-¢%)

and &% is asymptotically equivalent to & in the stationary case. Since & is hyperconsistent at
¢ = 1, this confirms that the OLS estimator has an infinite deficiency relative to 4% at & = 1,
while (at least asymptotically) &* is not penalized in the stationary region.

The bandwidth expansion rate for K = O(T*) under which both (21) and (22) hold is given
by the intersection of the regions that apply separately for Corollaries 3.7 and 3.8, i.e. {1/4 < k
<1} n{0 < k < 1} = {1/4 < k < 1}. Thus, there is a common bandwidth rate for which & *
and & are asymptotically equivalent when |« | < 1 and for which & * dominates @ when « = 1.

+

Under these conditions &7 is certainly the preferred estimator in large samples.

Figures 1-3(a & b) graph the sampling densities obtained from 10,000 Monte Carlo

replications of the standardized and centered estimators {7 (& -), yT(&* -a) from the model
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(20) with u, = iid N(0, 1) and y; = 0. The figures show the estimated densities (based on a
normal kernel with a plug in adaptive bandwidth) of these estimators for the parameter values
o = 04,08, 0.90 and T = 50 (Figure a), 100 (Figure b). The case where « = 1 is shown in
Figure 4(a & b) and here the estimators are scaled as T(& -1) and T(a* - 1) for comparative pur-
poses. For all these cases the FM estimator &* is computed using the quadratic spectral kernel
and the bandwidth employed was K = T>* for each value of u. As is apparent from the proofs
in Phillips (1992), with this bandwidth choice &* is hyperconsistent at « = 1 (just as shown in
(21) above) but does not achieve the T2 consistency rate. In fact, when K = O(T*) the rate
of consistency is 7% at @ = 1. Issues of bandwidth selection in autoregressions are presently
being explored by the author and will be reported in another paper. The present computations

are designed to illustrate the gains that are achievable even with rather mechanical rules.

TABLE 1

Bias and RMSE of OLS and FM-OLS Estimators of a in the AR(1) Model (20)
with T = 100 (10,000 replications)

Mean Bias Median Bias RMSE
o OLS FM-OLS OLS FM-OLS OLS FM-OLS
1.00 -0.017 -0.013 -0.008 -0.004 0.035 0.031
0.96 -0.018 -0.010 -0.009 -0.001 0.044 0.043
0.90 -0.017 -0.009 -0.007 -0.000 0.053 0.055
0.80 -0.016 -0.011 -0.008 -0.004 0.067 0.069
0.70 -0.014 -0.011 -0.007 -0.004 0.075 0.078
0.60 -0.011 -0.010 -0.006 ~-0.005 0.082 0.084
0.50 -0.011 -0.010 -0.004 -0.004 0.089 0.091
0.40 -0.008 -0.009 -0.006 -0.007 0.092 0.094
0.30 -0.004 -0.005 -0.000 -0.001 0.096 0.097
0.20 -0.005 -0.005 -0.005 -0.005 0.097 0,099
0.10 -0,002 -0.004 -0.001 -0.002 0.099 0.099
0.00 -0.001 -0.002 -0.002 -0.003 0.100 0.100

Figures 1-3 show that the sampling distributions of & and & * are very close for ¢ = 0.4, and
quite close for « = 0.8, At a = 0.8 and more so at ¢ = 0.90 the distribution of &* is shifted to
the right and appears to be somewhat less asymmetric than that of &. The characteristic long left

hand tail of the distribution of & is also evident in the distribution of &*. It is interesting to
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pote that for « = 0.80, 0,90 the distribution of & * is less biased than that of & in terms of both
of the median and the mean. Table 1 gives these and other summary statistics from the Monte
Carlo simulation for values of & € [0, 1). As far as central location is concerned, the estimator
@* has very good performance characteristics over the whole region [0, 1] and actually reduces
the bias of the OLS estimator for « € [0.5, 1]. This bias reduction comes at a slight increase in

dispersion, which is reflected in the RMSE statistics in Table 1, for a € [0, 0.9).

4.2. THE NONSTATIONARY AR(1) WITH DETERMINISTIC TRENDS

Qur theory for the stationary and nonstationary AR(1) model (20) can be extended to AR
models with deterministic trends in much the same way as our analysis of Section 3.12, Since
some of the results are of special interest we will briefly comment on them and illustrate their
derivation here. Later work by the author will provide a more complete derivation and discus-

sion.

We will take as our example the AR(1} + Tr(p) model
(20)"  y, =ay,_; + Bk, +upg = @'z, + ug, , say
where ¢ = 1,k = (1,4, ..., t") and B = (B, By, ..., ﬂp) with BP = 0. Then we can write

f—l 4 ‘-l 0 F]
Yicg = 0o *+ Z ug) + B'E) kja_v,_1 + 'k, , say

where y? = I(1).
The FM-OLS estimator of ¢ in (20') is

' = [a% B = (Y2 - [Thg, + O)(z'2)™ .
In this formula 36} = A()y - f)oyf)’;lﬁw and the long-run covariances that appear in this
expression are calculated from (8, 4,) where dg, =y, - dy,; - Bk, and @, = A, with
4y = ¥,.1 — Tk, (from the OLS regression of y,_; on k,).
As in Section 3.12 we employ a composite weight matrix to separate out the I(1) and deter-

ministic regressors in (20’) and their associated coefficients. Here we use
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1 n'}|T2 o
br=lo 1} U R
12 L3 T2 T2,
= = -l

with 6, = diag(l, ..., 7P). Note that (20') has the following form in transformed coefficients

and regressors

(20) y, = (p'EE'lz, +up = uy?_l + E’k, + U,

where f' = B’ + an’ = B’ + n’ and z, = (y?_l, k;)'. With these transformations we have

Byr)

= J{r) ,
k(‘)} 0 s

-1
dy 21 —d

and the limit theory for $* and § now follows in a straightforward way.
-1
Note that Qg = Q, = w? = lrvar(ug,) and hence Byo(r) = By(r) - Qoyﬁyy B(r) = 0.
(Here the affix 'y" signifies the use of 4, = Ady, = 8y, ; - ®'Ak, =up,_; + 0,(1)). For the

OLS estimator ¢ we have the limit

whereas for the FM-OLS estimator $* we have the limit

T(a"-a)
VTo(B*-B)

showing that the estimator $* is hyperconsistent. The most interesting feature of this result is

VIDH(*-¢) = —y (j'(l)u')“l(jgjdsg{,) -0,

that B* is hyperconsistent as well as &*. Thus, the FM-OLS procedure accelerates the rate of

convergence of the OLS estimates of the deterministic coefficients in (20") as well as that of the
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unit root @« = 1. Note that we have established this result for general stationary errors ug, in
(20").

The hyperconsistency of the FM-OLS estimates of the deterministic coefficients in (20")
may seem surprising. It is, however, explained by the fact that if we knew ¢ = 1 then we know

that y, , = y?.l + n'k, and we can write equation (20') as

0 -1 0 '
) /e yg-l = Q(]}:Q” Ayg-l = Ekl + uﬂl - uOt-l »
that is as
(20’”) Zf = .B_'kf t e, with € = Ug ~ Up-g -

Now OLS regression on (20™) yields an estimator of B that is O(T?) consistent, as distinct from
the T°2-consistent OLS estimator g . Of course, we cannot presume that « = 1 is known, but
since & * is hyperconsistent for ¢ = 1 there is a spillover effect of this accelerated convergence
on the estimation of p by FM-OLS that operates in the same way as when o« = 1 is known, i.e.

by effectively transforming the error in equation (20”) to an I(-1) process just as in (20”).

5. FM VECTOR AUTOREGRESSION WITH SOME UNIT ROOTS

In this section we will consider the use of FM-OLS regression in VAR models where there
are possibly some unit roots and some cointegrating relations. The model we will adopt is
similar to that of Johansen (1988) in that we will allow the levels coefficient matrix (in a VAR
in differences) to be of reduced rank, but our approach is different in that we do not employ
reduced rank regression. Thus, our procedure will be ap alternative to unrestricted levels VAR
estimation.

The n-vector time series y, is assumed to be generated by the following k’th order VAR

model

(23) Y, =dL)y, g + g, t= 1,2 ..T

where J(L) = Ef_l.ll.L"'l. The system (23) is initialized at¢ = -k+1, ..., 0 and since our asymp-
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totics do not depend on the initial values {y_, . ..., Yo} we can let them be any random vectors
including constants. However, it is sometimes convenient to set the initial conditions so that the
1(0) component of (23) is stationary (rather than asymptotically stationary) and we will proceed
as if this has been done. We define

k-t ep - . * k
I'(L) = 5 LY, with D= -E, 1

i=14

4=11),
and then (23) can be written as

Q4 p=I'L)Ayy +4yg * g

or in the equivalent error correction model (ECM) format

(25) by =T'L)Ay; + A-Dyy v g, .

To fix ideas in what follows we need to be more specific about (23), its allowable roots, the
dimension of the cointegration space and the form of the cointegrating coefficients. The follow-

ing assumption is convenient for this purpose.

ASSUMPTION VAR (Vecitor Autoregression)

(a) g, satisfies Assumption EC(b), i.e. is iid with zero mean, variance matrix 2., > 0 and finite
fourth cumulants.

(b) The determinantal equation |I, - J(L)L| = O has roots on or outside the unit circle, ie.
L] 2 1.

() A =1+ aP’ where a and P are n x r matrices of full column rankr, ¢ <r <n. (Ifr = 0
then A = I, if r = n then B has rank n and B 'y, and hence y, are (asymptotically) stationary).

(d) « (1) - I))B, is nonsingular, where « _and B, are n x (n-r) matrices of full column rank

suchthat ¢ (o = 0 = BB, (Jfr = OQthenwetake o, =1, = p ). O

Under Assumption VAR, y, has r cointegrating vectors (the columns of B) and n-r unit

roots. Condition VAR(d) ensures that the Granger representation theorem applies, so that Ay,
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is statiopary, f’y, is stationary and y, is an I(1) process when r < n. These conditions are now
standard in the study of VAR’s with some unit roots and are discussed more fully elsewhere, e.g.
Johansen (1988, 1991) and Toda and Phillips (1991).

Our attention will focus on unrestricted estimation of the system (24), where the regressors
have both stationary and nonstationary components but the dimension (n-r) of the latter is
unknown a priori. In studying this problem it is helpful to transform the system so that it con-
forms to our analysis in Section 3 of the paper. We can do so without loss of generality in the
following way,

First let the columns of B be orthonormal. (This can be achieved with no loss of generality,
and no issues of identification of individual cointegrating relations will arise in our work, so we
need not be concerned with the problems raised in Park (1990) and Phillips and Park (1991).)
Construct the orthogonal matrix H = (B, B ] = [H, H,], say and definey, = H’ ¥, The system

(24) transforms to

(24’) Y = ]‘(L)Ayr-l + Ay:-—l M

where the transformed coefficients are

(26) A =HAH, J'L) =HI'LH, ¢, =He , L, =HZ H.

[ 44 et

We emphasize that / is unknown but that the asymptotic properties of regression estimators in
(24) can be studied via the properties of the corresponding estimators in (24') by simply revers-
ing the transformations given in (26). For example, if 4 is the unrestricted OLS estimator of A
in (24’) then A = HAH' where 4 is the OLS estimator of 4 in (24), and so on,

We partition y, according to the partition of H as

u| Hy| o) r
€0l =[1(1)}

n-r

Note that the matrix 4 in (24') has the specific partitioned form
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28 A - 1 A2 =I,+B'm 0 .
un Az Pie I,

The r x n-r zero submatrix Ay, in (28) delivers r(n-r) restrictions on the matrix A. These
restrictions on A4 correspond to the reduced rank (or cointegration) restrictions on the matrix
A-1 = ap’. Observe that there are 2nr parameters in the matrix product «f’ but only
nr+r(n-r) = 2nr - 7 identified parameters. We can, of course, choose to write the cointe-
grating matrix B’ as 8§’ = [I, B] leading to r(n-r) identified parameters in the submatrix B.
These parameters together with the nr "factor loading" parameters in the matrix ¢ produce the
2nr - r* identified parameters of the o’ matrix product. The r(n-r) zero matrix 4, in (28) on
the other hand is clearly identified as a submatrix of the coefficient matrix A4 in the system (24').
As such it can be regarded as the parameterization in (24") of the identified components of the
cointegrating matrix p’ in the original system (24) with4 = I + af’.

Notice, in addition, from (28) that the submatrix.4,, has the special form Ay, = I, .. Here
the coefficient matrix 4,, embodies the n -r unit roots that occur in the original system (24) and
relates these unit roots specifically to the subsystem of (24') that corresponds to the generating
mechanism for the I(1) process y,,.

Define z, = (Ay,_y, o Ay,'_k,l)‘ and J = [J], .., J;_1]. Then (24’) can be written more

simply as

(29) y, =Jz, + Ay, + g

or, in partitioned form, as

(302)  yy =Jpz Ay Ay * e

(30b)  yy =Joz, + Aypyq Y Axyyg * ey -

Using the explicit form of A;, = 0 and A,, = J from (28), the true form of this system is

(31a) yy, =Jpz, + Ay * ey
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(B1b)  yy =yp_q + Uy, Uy = ey + oz ¢ Ajyy .

In (31a) we can arrange initial conditions so that the variables y;, and z, are stationary. Hence,
Ay, = 0 in (30a) necessarily, otherwise the regression would be spurious. In (31b) y,, is I(1),
there are n-r unit roots in the equation and the error u,, is stationary.

We will need the long-run covariance matrix of n, = (e, u:_',,)' in the theory that follows

and we accordingly introduce the matrix

z z Q

tey “egey el

sz 022
0y, Qp

=2

PN Eczez 0222 ’

Qi 0, QO

(32) h"’al'('l:) = Qqn =

partitioning the final matrix above conformably with (¢,'uy,) = (ey, €4, u,,). With this notation

in hand, we define the conditional lopg-run variance matrices

-1 -1
(33) Q ez © Eee - QeZQZZQZE ’ 0818]'2 = zzlel - 081292202% .

4

Observe that in (32) and in the formulae just given we use the fact that ¢, is iid under
Assumption VAR(a) and therefore Q,, = Z ..

We now estimate (29) by FM regression. Write (29) in matrix form as
(29) Y =JZ' + AY, + E' = FX' + E'

and let 0, = I - Z(Z'Z)™'2" and AY!; = Y.; - Y,. The FM regression estimator of F in
(29') is

-

F*t=pP*: A=Yz :Y"Y, - TA:Ay](X’X)‘i

¢ . t A ~1 4 A ! -
(G4 =[YZ:YY,-Th,, - f)cyﬁyy (AYLiY ;- TApp X L.

In these formulae

ey f)w are kernel estimates of the long-run covariance matrices of (£, = y,

- Fx,, 8y, ) and Ay, ,, respectively. Similarly, A,,, and & , , are kernel estimates of the one-

eAy

sided long-run covariance matrices of (£, = y, - Fx,, Ay,_;) and Ay,_;, respectively.
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Note that in constructing F* we use the endogeneity correction that involves the use of Y™
only where it is needed, i.e. with respect to the levels regressors Y_; in (29’). The regressors z,
in (29) are lagged differences Ay, (i = 1, ..., k-1) which are known to be I{0) and therefore
correction with respect to the estimation of their coefficient matrix J is known to be unnecessary.

In addition, under Assumption VAR(a) the error ¢, in (29) is a martingale difference and
it is therefore not necessary to make a serial correlation correction with respect to the term
E'Y_,. More specifically, under VAR(a) we know that Agpy = E;_oE(chy_l) = 0 and, hence,
we can exclude the term TA in (34) with no affect on the asymptotics. (We did not mention
the fact earlier, but this could also be done in FM estimation of the single equation AR(1) as
studied in Section 4.) Although the limit distribution is unaffected by the inclusion or exclusion

of TA there may be some advantage arising from reduced variance in small samples from

eAyr

excluding the term. This gives us the following adjusted formula for £+

’ 't . '’ A A1 I A ' -
B0y B =[YZ YV, - Q0 (AY,Y | - TAy, )X .

A further partitioning of (29°) is useful in the development of our asymptotic theory. This
is because some elements of Y, are stationary (corresponding to y,;,_;) and some are nonsta-

tionary (the elements of y,,_;). We therefore write (29') as
(29") Y =FX| + F,X5 + E',

where x;, = (z,, y1,-1) is the composite vector of stationary regressors and x,, = y, _, is the
vector of full rank nopstationary regressors. In this form, (29") corresponds with the earlier
model (3') of Section 3 and we can therefore avail ourselves of the earlier theory that relates to
this model more readily.

The limit distribution of F* is given as follows.

5.1. THEOREM (FM-VAR Limit Theory): Under Assumptions KL, BW and VAR
(a) VT(E] - F;) —4 N(O, T,, & I])) where T, = E(xy,x{); and

+ , A1 -1
®) T(F; - Fp) —y (.[(l)dBe-sz)U(l}Bsz) where B,, = B, - Q.05 B; = BM(Q,,;) and
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Q,,,=0Q,, - Q, 9521 Q,, =2, -0, Q;; Q,,. The bandwidth expansion rates under which
(a) and (b) hold are the same as those given in Theorem 3.5. In particular, both (a) and (b) hold

when the bandwidth K = O(T*) and 1/4 < k < 23, i.e. BW(i).
The limit distributions given in parts (a) and (b) above are statistically independent. [}

5.2. COROLLARY (Stationary VAR case): Whenr = n and under Assumptions VAR, KL, and
BW with bandwidth expansion rate K = O(T") for 1/4 < k < 1 we have

ﬁ(F"F) d N(O, zu @ 2.;1)

where ., = E(xx)).

5.3. COROLLARY (VAR with n unit roots): Whenr = 0 and under Assumptions VAR, KL and
BW with bandwidth expansion rate K = O(T%) for 0 < k < 1 we have

VT(E*-F) = T(*-1) —; N(O, Z,, & Z}))
and

T(F, -1,) =TA*-I) —, 0

i.e. F3 is hyperconsistent for I .

5.4. REMARKS
(a) Theorem 5.1 shows that the limit theory for the FM regression estimator £* is normal

and mixed normal. Note that in the case of part (b) of Theorem 5.1 we have

( ;dB!.zBi)(I;BzBi)'m = N(O, Q,,, & ])
and then

N(0, Q,,, e G1)dP(G) .

T3 - F)) —y IG-_[';B,B5>0

Of special significance is the fact that a submatrix of F » involves the n-r unit roots of the system.

Thus, from (28) we have
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Fa ay
Fa

In consequence, part (b) of Theorem 5.1 can be decomposed into the following two parts

(%) Th;, —q (4B, BB
and

(36)  T(Rjy 1) —y (1B, B3 [{B:B)" -

The latter result (36) shows the rather remarkable outcome that in FM-VAR estimation when
there are some unit roots in the system, there are no limiting distributions of the unit root (or
matrix unit root) type! All the limit theory is normal or mixed normal irrespective of the
number of unit roots or dimension of the cointegrating space (provided r > 0).

(b) When r = 0, there are no cointegrating vectors in the system and the nonstationary part
of the system is a full set of unit roots of dimension ». In this case Corollary 5.3 applies and we
have hyperconsistent estimation of all of the unit roots in the system by FM regression. This
gives a matrix generalization of the earlier result by the author (1992) on hyperconsistent esti-
mation of a unit root in a single equation model with one unit root. Interestingly, the presence
of the stationary component z, in the model (29) does not interfere with this hyperconsistency.
As shown in the author’s (1992) paper in the single equation case, the precise rate of hypercon-
sistency depends on the bandwidth expansion rate. The arguments given in that paper can be
extended to the present case, but we will not do so here (to help keep the present paper at a
manageable length).

(c) The mixed normal limit given in (35) for the submatrix F; relates to the cointegrating
space restrictions. As explained in the discussion following (28) the submatrix Fy; (which is the
same as the submatrix A, in (28)) has true value zero and in the transformed system (see equa-
tions (29) and (31a)) this can be regarded as a parameterization of the identified components of

the cointegrating matrix p’. In other words, when B’ is a cointegrating matrix y,, = B’y, is sta-
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tiopary and equation (31a) for y,, involves only stationary variables, because F,, = 0 (equiva-
lently, 4,5 = 0 in (28)) climinates the nonstationary variables y,, = By, from this equation.
Loosely speaking, therefore, we can regard the limit distribution of TF'3 | given in (35) as relating
to the errors of estimation of the identifiable components of the cointegrating matrix. The
following simple example taken from Section 2 will help to illustrate. Suppose B’

= (I, + BB")"\2[I, -B ] for some r x n-r matrix B and the original system (23) is

0 B 0 B
= » A = .
L 0 In-r -1 * 'g‘ o 0 In-r

The first subsystem of this equation is the cointegrating relation
BT yy = Bya,y + £y
and the second is the I(1) relation

(38) Yy =Yyt

We now transform this system using the orthogonal matrix

H=[p:B)-= (7 + BB,

I s
(I + BB") 12 [
-B’ 1

We obtain, following (24) and (26), the new system
(39) y,=HAHy,_, + ¢ =Ay,_ +¢,,

with

0 0 ¢ 0
A= = :
(1+B'B)?B'(1 +BB) V2 | _ T

Explicitly,
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BTy yi = ey
(38)  yy =Aay-1 *Yur * Ex -
The cointegrating relation (37) is replaced in the transformed system by the stationary relation
(37’). What was, in (37), the matrix of identified cointegrating coefficients (viz. B) is replaced
in (37') by the zero coefficient matrix for the nonstationary variable y,,_;. The I(1) relation
(38) is replaced in (38’) with a system of full (n-r) unit roots and some additional stationary
inputs (viz. A19y,.1).

(d) The explicit form (38") helps to explain why the FM-VAR estimates of the unit root
coefficient matrix F,, = I, _, have a mixed normal limit distribution rather than the conventional
matrix unit root distribution. The latter would arise if we ran the regression of y,, on y,_;

giving the estimate Fy, = (Y3Y; _)(Ys ;Y5 1)"!, which has the limit theory
Lz poffip gl
40) T(Fy, -1,.) —y (IOdBZBZ)(JGBZBZ) :

What happens in the case of the FM-VAR estimator F7, is that the coefficient of y,,_, in (38’)
is treated as a cointegrating coefficient matrix and because of the endogeneity correction in the
FM procedure the FM estimation errors depend on the "endogeneity corrected” errors from this
equation, viz. a:; = gq - chuzﬂ;;zum where u,, = €5, + Ay, 1. Thus, because of the
presence of the stationary component A,y,,_; in (38’) var(e 3,) > 0, and &3, has long-run zero
covariance with u,,. Consequently, the limit Brownian motion B 2;(r) = Be,-uz(’) that arises from
partial sums of 5'5, is independent of the Brownian motion Buz(r) that arises from y,,_,, i.e.
from partial sums of u,. In contrast to (40), the limit distribution of the FM estimator is
(I;dB¢2,2Bz’)U (‘}BZBZ')“‘ and the independence of B, , and B, ensures that this limit distribution
is mixed normal.

(e) The explanation of the mixed normal limit distribution for the unit roots estimator 1'5‘*2'2
just given in Remark (d) also applies to subsystem estimation of unit roots. Thus, suppose we
treat (38') as a subsystem of (39) but estimate (38’) independently. The limit theory for the

FM estimator of the unit roots matrix F,, = I is the same and is mixed normal, again because

of the presence of the stationary component y,,_; in this regression. When this additional sta-
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tionary component is not present in the regression the FM estimator is hyperconsistent because
in this case €5, = uy, and so £3, = 0 a.s.,, which leads to the fact that T(F3, - I) —, 0, just as
in Corollary 5.3,

(f) The limit theory given in Theorem 5.1 can be compared with that of the OLS estimator
F=[F : £,) = YX(X'X)1. Wehave

5.5. THEOREM (Levels VAR Limit Theory): Under Assumption VAR the limit theory for the
OLS regression estimator F = [F 1 1 Fa)is

@ VT(Fy - Fy) —4 N, Z,, ® Z3)),

() T(F; - Fy) —y (f;dBeB:i)U;Bzﬂz')_l

(1) = ([34B,B)([BoBs)" + 020z (BB [ (BB -

5.6. REMARK

Note that the limit theory for the stationary component F; in Theorem 5.5(a) is identical to
that of the FM estimator. The limit theory of F 2 given in (b) has two components. The first is
identical to the limit theory for the FM-VAR estimator F%. The second is a matrix unit root
distribution whose overall importance depends on the magnitude of the coefficient matrix
Q.2 Q;é Note that from (31b) we have the representation uy = £5, + Joz, + A5y, , S0 that
u,, involves ¢, as one of its components. Consequently, Q,, will be nonzero. Indeed, when
there are no additional stationary elements in equation (31b) (i.e. when J, = 0, 4,; = 0) we
have u,, = ¢,. In this case, Q, 2205; = szzzn;:cz = I, and only the second component of
(41) is retained in the sub block corresponding to F,, because B, o = 0 as. When this occurs,

the limit distribution of the levels VAR estimator £ 52 is the matrix unit root distribution, i.e.
L 1 ’ 1 '
TFp - 1) —y ([ odﬂsz)qoBsz) .

This is precisely the case when the FM-VAR estimator £}, is hyperconsistent for F,, = J and

therefore when F* dominates £ 77 by virtue of its faster rate of convergence. [J
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Finally in this section we will consider the limit theory for the FM estimator in the origina!l
coordinate system. Recall that in the original VAR coordinates (see equations (23) and (24)) we
have y, = Hy,. Using the matrix H to transform (24’), and hence (29), back to the original

coordinates we obtain
(29) y =HI,_ e H) +HAHy, | + & =]z + Ay, +

(42) =E

+

with F =[], A] = HF(I, e H') .

£
J—‘r—t'

The FM-VAR estimator of F is
43) E*=HF'(, e H') =H[' A*|(I, e H') .

Using this representation and the limit theory for F* given in Theorem 5.1, we obtain the

otentially degenerate) a totics for the matrix E"’ viz.
(P lly deg ) asymp '

5.7. THEOREM (FM-VAR Limit Theory in original coordinates); Under the conditions of
Theorem 5.1

-1,
(a) ﬁ(ﬁ" ~E) gy N(O,L" @ GI; G’) where E_u =X _and

I
fra

Ik-l eH O
0

G = nk x n(k-1) +r.

Alternatively,
@) VT(E*-F)G —y N(O, Z,, ® Z}}) ; and
®) TE-DG, —, (] ;ng,zB;;)(f;Bsz')"l, where G' = [0 : B'}(n-r) x nk. O

5.8. REMARK
The limit theory for the OLS levels VAR estimator £ is obtained in the same way as (a‘)

and (b') of Theorem 5.6 using the results of Theorem 5.5. For this estimator we have:

49) VTE-BG —; NQ©, Z,, ® Z7) »



and

(45 TE-BG, —y ([1aB,B3)[ (B8] -

So, in stationary directions, £ is asymptotically equivalent to the FM estimator £+. But the
estimators differ in nonstationary directions, where the rate of convergence is O(T). The limit
theory for the FM-VAR estimator in nonstationary directions is mixed normal. This involves:
(i) the identified components of the cointegrating matrix, where the limit theory of the FM
estimator corresponds to that of the optimal estimator (see Phillips, 1991); and (ii) the matrix of
unit roots in the system, where the limit theory of the FM estimator is again mixed normal and,
when the system has a full set of unit roots, is actually hyperconsistent. The levels VAR esti-
mator £ is O(T) consistent in nonstationary directions, but involves: (i) second-order bias (i.e.
simultaneous equations bias) effects in the estimation of the identified components of the cointe-
grating matrix; and (ii) a composite of a matrix unit root distribution and a mixed normal in the
estimation of the system’s unit roots. The bias effects and matrix unit root distribution arise
because of the dependence of the two Brownian motions B, and B, that appear in (45) and
were discussed earlier in Remark 5.6. Asymptotic theory therefore clearly favors the FM-VAR

estimator because of its better properties in nonstationary directions.

6. HYPOTHESIS TESTING IN FM-VAR REGRESSION

For testing purposes we use the VAR model (24) in original coordinates and write this for

convenience in condensed format as we have done earlier in (42), to repeat here:
(42) y=Exve, E=[ 4], g =iid0, E,) .

Suppose we wish to test restrictions such as

(46) Ay : R vec(F) =7, R(g x n%) of rank gq .

When R has the Kronecker structure R = R & R; then % has the simpler form

(47) A5 :RFR, =R
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for some suitable matrix B. This set up corresponds to the framework used for our analysis of
hypothesis testing in Section 3 -- see the earlier Remarks 3.8(h) and (i). A special case of %}
that arises in VAR modelling that is of particular importance in practice is the case of causality
restrictions. In the notation of equation (24) the hypothesis that the subvector y;, (n; x 1) has

no Granger-causal effect on the subvector y,, (n; x 1) would be formulated as

(48) #:Jj3=0 (=1 .,k1), 4,=0.

In (47) this would correspond to the following settings of the restriction matrices

0
I

n

@9) Ry=[, :0, Ry=I,e|, |, R=0.

For unrestricted levels VAR estimation of (42) Wald tests of the causality restrictions (48)
have been used extensively in past empirical research. An asymptotic theory for such tests that
accommodates nonstationary data has recently been developed for trivariate systems in Sims,
Stock and Watson (1991) and in full generality by Toda and Phillips (1991). These authors show
that when the VAR system has some unit roots and some cointegrating relations the asymptotic
theory of Wald tests of (48) involves nuisance parameters and nonstandard distributions that
make a valid asymptotic basis for inference very awkward. Toda and Phillips (1991, Theorem 1)
show that the form of the limit distribution depends on the rank of a certain submatrix of the
cointegrating matrix. But the cointegrating matrix is estimated only indirectly in levels VAR
estimation, and since, as we have discussed earlier in Remark 5.8, the limit theory for these VAR
estimates of the cointegrating matrix involve nonstandard distributions and nuisance parameters,
it is not possible to provide an asymptotic theory that justifies the general use of VAR regres-
sions for causality testing at least in correctly specified models.

On the other hand, we can artificially augment the correct order of the VAR so that normal
asymptotics obtain with respect to the coefficient matrices up to the correct lag order (much as
F, is asymptotically normal in Theorem 5.5(a)) and then asymptotic chi-squared tests of causality
restrictions can be applied to the submatrix of the coefficients up to the correct order. This idea

was explored in some recent work by Toda and Yamamoto (1993) and relates to a similar sug-
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gestion made by Choi (1993) for avoiding nonstandard distributions in scalar unit root tests. The
method is interesting but does involve the inefficiency, which may be costly in terms of the
method’s power properties, of having to estimate coefficient matrices for surplus lags.

The alternative approach we explore is to use Wald tests based on the FM-VAR regression
estimator. From Theorem 5.7(a) we have yT(£*-F) —,; N(O, Z, e GE;;G’), and since

TX'X)™! —p GE;IIG' we consider using the asymptotic approximation

(0) VTE*-B) - N©, £, oT@X'X)™")

just as in (14’). To test A the natural Wald statistic is then
I, e -1 e
(51) W;=TRvec F*-DIR{E o TX'X)}R| (R vec F*-F) .

When

(RKg) rank[R{Z, e GI[{G'}R’] =q

we have Wi —y xg, and standard limit theory applies.

When (RK) fails the situation is different. We follow the analysis in Section 3 of this case,
now in a VAR setting. (RKg) fails when the restrictions in % relate to some of the nonstation-
ary coefficients. We therefore focus again on the case of ) where R = R, ¢ R; and R,
= diag[R,;, Ry4] is nk, x (q; + q,), so that the restrictions can be written out explicitly as

RyER; = Ry[J : AR, = R, or

# :RJRy =R, and RARy, =R, .

Next suppose that R, has the form

520 SM i 0
G2) Ry =[Ry i Ryp] = [HuHh)| - o 1 o | = [H1Sy0 HiSpy + HySyp # HyS2)
m  9n h2 022
with g, = g,; + g5, and for some matrices Sy, Sj;, S;, and S,,, just as in (18). The
hypotheses about 4 that correspond to the columns Ry, of R, in %} relate to nonstationary

coefficients, Observe that
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(53) R4G = 0 R;B| = 0 Rz1B
0 Ry,p 0 0

which is of deficient row rank and therefore condition (RK;) fails. The situation is entirely
analogous to the one studied in Remark (i) of Section 3. We have the following analogue of

Theorem 3.9 for the VAR case.

6.1. THEOREM (FM-VAR Wald test asymptotics): Under Assumptions KL, BW and VAR with
0 < 1 < n, the Wald statistic W} for testing the hypothesis %}, : R,FR, = R has a limit distribution
that is a mixture of 12 variates. In particular, when R, has the form R, = diag(R,;, R,,) whose

dimension is nky x (q; + q,) and where R, , is given by (52), we have the limit

2
922

+ 2 2 .. 94 2 .. .2 41
(54) W —y quq; + Ei-lan(‘) + Ej-ldjan(;) = x‘h(‘b*‘i’z]) + Ej_ldjx

6}

2, . 2 , , 2
where y ‘?zzo) = id(y ‘122) ( = 1, ..., q)) and are independent of the ‘?1(‘11’921) member of the last
equation of (54). The coefficients i:iJi ( = 1, .., qy) that appear in (54) are the latent roots of the

matrix (RyQ_ RO)RZ RN, O

6.2. REMARKS

. -1 . : ,
(@)Since Q, . = Z - 0,00, < IZ_,thelatent roots d;(j = 1, .., q,) in (54) satisfy

2 e =

0 < dj < 1, just as in Theorem 3.9. Hence the earlier Remarks 3.10(a), (b) and (c) are also rele-
vant here. In particular, tests that are conservative asymptotically can always be constructed
using a le(‘h q,) limit distribution as this is an upper bound for (54). Similarly, asymptotically
libera] tests can be constructed using the x:l( ard) limit distribution when the Wald test statistic

Wi using the error variance matrix estimate 8 =L, - flng)z';ﬁzg in place of £,, in

formula (51).

(b) It will be of interest to explore how close the actual size of the tests suggested in Remark

2

41(2,+2.0) in finite sample simula-

(a) are in relation to the nominal size of the bounding variate
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tions. This approach could also be usefully compared with the sequential testing procedure
suggested in Toda and Phillips (1993) and the lag augmented regression procedure of Toda and
Yamamoto (1993) that was mentioned earlier. An extensive Monte Carlo study designed to
assess the relative merits of these three approaches would be useful. It is outside the scope of
the present paper.

(c) The case r = 0 is rather special. In this case there are no cointegrating vectors and the
limit theory of Corollary 5.3 for the FM-VAR estimator F* applies. Obviously, in this case a
VAR in differences could be run. But since the fact that there is a full set of # unit roots in the
system is unknown in general we do need to consider the effects on F* and related tests. From
Corollary 5.3 we know that f-_‘z‘ = A" is hyperconsistent for the unit root matrix /. In this case,
also, tests based on the statistic W}.’- and a xé (g = q,(q; + gq,4)) limit theory will be conservative,

as the following theorem shows.

6.3. THEOREM: Under the Assumptions of Theorem 6.1 but with r = 0 (so that there is a full set
A = I, of n unit roots in the system (42)) the limit distribution of the Wald statistic W}",— for testing
Ay R{ER, = Ris given by

+ 2
(55) W.F —d quqJ N
where q; = rank(R,) and R,; is the leading submatrix of the restriction matrix R,

6.4. REMARK

When g; = 0 we have W} —, 0 in place of (55). This follows directly from the hypercon-
sistency of A*. In this case we would accept the null hypothesis with probability tending to unity
as T - = (i.e. the actual size of a test based on a x:‘; (9 = g9,9,) limit would tend to zero as
T - =). Use of a more efficient estimator, like A* in this case, therefore does not always lead
to a better test. The estimator also needs to be efficient under the alternative and the correct
size of the test must be employed. When the number of unit roots in the system is unknown, as

we assurme in this paper, the size of a test based on W will inevitably be conservative in large
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samples, as we have seen. How this conservatism affects the power of the test in finite samples

can be investigated by simulation.

7. CONCLUSION

This paper has developed a general asymptotic theory for time series regression using the
principle of fully modified least squares. While the method was originally developed for esti-
mating cointegrated systems, where it delivers optimal estimators of the identified components
of a cointegrating matrix under Gaussian assumptions, we have shown that FM-OLS has some
attractive features as a general method of estimation in a wider class of time series models. Our
main results are as follows.

(i) FM-OLS is applicable in models with either full rank or cointegrated I(1) regressors. In
such cases, the limit theory for FM estimates of the stationary components of the regressors is
equivalent to that of OLS, while the FM estimates of the nonstationary components retain their
optimality properties (i.e. they are asymptotically equivalent to the maximum likelihood estimates
of the cointegrating matrix). When the OLS estimates of the stationary components are optimal
then this property is shared by the FM-OLS estimator.

(ii) FM-OLS is applicable even in models with stationary regressors and in this case has the
same limit theory as OLS. A case of special importance in practice is the stationary autoregres-
sion. For this model FM-OLS and OLS have the same asymptotic distribution. In finite
samples, simulations indicate that the FM-OLS estimator of the coefficient in a stationary AR(1)
is less biased than that of OLS, especially for larger values of the autoregressive coefficient,

(iti) FM-OLS is hyperconsistent with a convergence rate that exceeds O(T) for a unit root
in autoregression. This result, which was shown by the author in an earlier paper (1992) is
shown here to apply to higher order autoregressions with a unit root and to autoregressive
models with a unit root and deterministic trends. A surprising result in the case of the latter
model is that FM-OLS is hyperconsistent for the coefficients of the deterministic regressors,

(iv) FM-VAR (fully modified vector autoregression) estimation also has good properties,

For the case of a VAR with a full set of unit roots the FM-VAR estimator is hyperconsistent for
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all elements of the unit root matrix J,. This includes diagonal and off diagonal elements. When
there are stationary components in the VAR, the corresponding FM estimates of these coeffi-
cients have the same asymptotic distribution as the (levels VAR) OLS estimates.

(v) In VAR models with some unit roots and cointegrated variables, the FM-VAR estimator
has some remarkable asymptotic properties. First, estimates of the identified components of the
cointegrating matrix have a mixed normal limit theory, just like that of the optimal estimator in
Phillips (1991a) or the reduced rank regression estimator in Johansen (1988). Second, and this
is the most surprising, the FM-VAR estimates of the unit roots in the system also have mixed
normal limits. This means that the limit theory for the FM-VAR estimator is normal for the
stationary components of the VAR and mixed normal for the nonstationary components. In
other words, there are no unit root limit distributions or matrix unit root limit distributions in
FM-VAR estimation. Correspondingly, the FM-VAR estimates of the stationary and nonstation-
ary components of a VAR are all asymptotically median unbiased. This gives the FM-VAR
procedure a distinct advantage over OLS levels VAR estimation, where the estimates of the
cointegrating vectors suffer in the limit from a second order simultaneous equations bias and
estimates of the unit roots in the system have a limit theory that involves unit root distributions.

(vi) The normal and mixed normal limit theory for FM time series regression estimates helps
to simplify inference. Wald statistics are shown to have a limit distribution that is a linear com-
bination of independent chi-squared variates when the hypothesis under test involves both
stationary and nonstationary coefficients. If g is the total number of restrictions then the xg
distribution is shown to be an upper bounding variate and therefore the usual x2 critical values
cap be used to construct tests that have conservative size. This avoids problems of pre-tests,
nuisance parameters, overfitting and nonstandard limit distributions that arise in other

approaches. The theory is applicable to VAR models and causality testing in VAR’s.
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8. PROOFS

To simplify the presentation of our arguments it will be convenient to assume in our proofs
that we are working with long-run covariance matrix estimates that satisfy Assumption KL(a) and

(b). This leads to estimates of the form

O - }:;‘,'_}mw(ilx)f‘(i) , and A = 2 w(mEG)

which correspond to (10) when the lag kernel is truncated as in KIL(b), i.e. w(x) = 0 for |x|
> 1. Thus, the proofs given below for Lemmas 3.1 and 3.3 hold directly under KL(a) and (b)
and therefore hold for the Parzen and Tukey-Hanning kernels for example. The results stated
also apply for untruncated kernel estimates that satisfy Assumption KL(b'), like QS kernel esti-
mates, but the proofs need some modification to deal with the fact that the sums in (6) are not
truncated.

To illustrate the type of modification needed we look at the proof of part (a) of Lemma 3.1

given below. In this proof we have expression (P1) whose second and third terms now become

(PO)  w((T-1YK)E,, 4, (T-1) = w((-T+1)/K)T,, o, (-T) .
We need (PO) to be o (K “2) for the remaining arguments in the proof to hold. To show this we

observe that

NT-1), ’(-T) = 0,(TY),
and

w((T-1)/K), w((-T+1)/K) = O((KT)?) ,
in view of KL(b’). Combining these expressions we deduce that (P0) is OP(KZIT Nas T - =,
Thus, (P0) will be 0,(1/K?) as required if K%/T° - 0, i.e. for K = O(T¥) with 0 < k < 3/4. This
is certainly true under the bandwidth condition BW(i) of Assumption BW whereby K = O(T")

with k satisfying 1/4 < k < 2/3. Similar modifications elsewhere in the proofs of Lemmas 3.1
and 3.3 help to establish the stated resulits under KL(b').
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8.1. PROOF OF LEMMA 3.1
Part (a): By definition

Qo pu, = J--quOIK)PAulAu 0) = ﬁ.ilml“’(f/K)(T-lz'“mjA“is -T7 B Uy, Aup)
,..K+1W0/K)[Pu,zxul(l) Pyt 0-D)]
(P1) - SK2 | WGK) - WG, 5, G) + WK1V, o, (K-1)
- w((-K 1K), 5, (-K) -
Under EC(a) we have
ZLo PPN 2 128 0P B gICelIC, 1 = 12,12, ICIZ o IC, )
(P2) s IZAELHICD(ES°IG]) < =

Hence I'(K) = E(u, xi,;) = a(llKl'“’) as K ~ =, Further, var(i'(K)) = O(T1), as shown for

example in Hannan (1970, p. 212). Therefore, since a > 1 we have
(P3) T(K-1), T(-K) = 0,(T?) + o(K™?) = 0,(T7?)
under BW. Moreover, KL implies that

(P4)  w((K-1)/K), w((-K+1)/K) = O(K™?) ,

so that the second and third terms of (P1) are op(K'z).

This leaves us with the first term of (P1) which we write as
K 2
ZX % awGIK) - (GO, 4, O)
(PS) = (S5, + Zp)w(K) - w((+ DKL, 4u, ()

where #, = {j : |j| s K*'} and #* = {j : |j| > K*, -K+1 < j s K-2} for some K* = K with
0 < & < 1. Under KL we can use the following Taylor development for w((j+1)/K) when ;|
<K*andK ~ =

The first sum in (P35} is then
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w((i+1)/K) - w(iK) = w'GIK)K) + (12w (0)(LK2)(1 +o(1))
= w"(0)G/KD(1 +0(1)) + (12w" (O} LK)(1 +0(1)) .

K O @) + (DT By I o)

The mean of the term in braces is

2 J uyhuy ) + (1f2) 2 15”10)

bi<K* blsK*

~ B _oiTu au,0) + [Ty au,()

EJ--wJ ugAu, 0) J--w] gty 0) ,.-.Jru,ul(i*l)

(P6) =%, Tyu @) =19y,

J--ﬂ ulul

The second sum in (P5) is

E[WO/K) w((+1)IOIE, 4,,0) = 'l):w (60, 40,0
where j/K < ; < (j+1)/K. This expression has mean given by

K2 W' (8)0, 44, () »

whose modulus is dominated above by

(sup i W' BY DK VE ;1 a2 DD

< constant K12 |;|>K'Es-0|C Gl

s constant K™K*E B0 o(s+)°ICNIC, 1

< constant K'lK““""E:'GICSIB:_d" IC,1

= O(K 1%y ,
Note from EC(a) that @ > 1. We may therefore select K* = K’ with0 < b < 1in such a way
that @b > 1 (i.e. choose b so that 1/o < b < 1). Then the mean of the second sum in (P5) has
order o(K™2) as K - = and therefore the mean of (P5) is dominated by the first term, as we have

seen in (P6).
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Next we consider the variance matrix of (P5). We start by writing
ik WGIK) - WG+, 0) = -KTE W GIOR, ,au, D1 + O(UK)]
= KIS W GIOR, o () - WGIOT, , G+ DI + O(UK))
= kMK WG - w (G-I, 0) - wK-2VK)F, , (K-1)
+ W ((-K+2YK)Ty  (-K+2)H[1 + O(VK))
®7) = K22 (G-, 0) + 0 (UKD
using the fact that under KL
W' (K-2)/K), w'((-K+2)/K) = O(1/K) ,

and f‘ulul(K~i), f‘ulul(—K+2) = OP(T'm), as in (P3) above. We now consider the variance
matrix of the leading term of (P7). Following Hannan (1970, p. 280, Theorem 9), we have
(88) lim KT VarlveslK 25w (G-1VKE,, 00

- lim K3TK™4 Var{vec{?..}. k(G- l)IK) 1(j)}]
T

- m Tvar[vec{z 2 (G-DIOR, o)}]

= constant .

Hence the variance of the dominant terms of (P7) and (P5) is O(1/T K3)
Leaving aside terms that are o (K '2) we deduce from (P1), (P6) and (P8) that for ¢ > 0

Pl gy, au, = {-K 2w (O30 1 > €] < tr{Varfvee(Qy, 5, ))M/e? = constant/e’K°T as T - «,
Now set & = K?¢ and we have
P[IKzf)AulAnl — (W (@)}l > 8| = OKT) -0, as T~ =.

Letting & be arbitrarily small we have the required result for part (a), viz.

24 "
K QAH:AMI —Op -Ww (O)Qll .

Part (b): Part (b) of the lemma is proved in a similar way. We have
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Qquu1 = 2.:'c'-'}("lw(J‘/K)IL“‘“{)‘3"‘1(".)
= 5 kWK, 0) - wOOE,, G+1)]
= Eﬁ-_lx+2[WO/K) - w(("l)/K)]fuoulO) . w((K_l)/K)f‘unul(K)

+ w((-K+1)/K)T,

o (K+1)

(P9) = T Ty oW GK) - w(G-1/KIE, , ) + 0,(K™D)
as in the analysis following (P1). We write the first term of (P9) as
(P10) (Z, + Z,)W0K) - w(G-1/KIT, L 0)
and using the Taylor development of w(j/K) - w((j-1)/K) the first sum in (P10) is
(P11) K30 (OB ko G-Dly G) + ARE 4Ty, M +0(1)] .
The mean of the term in braces in (P11) is

B k0Dl G} + DB Dy 6) = EL_G-12)T, , () -
The second sum in (P10) is

K™'Z W' (G-DIOL, , (1 + O(K)]
whose mean is given by
(P12)  K™'Z W' (G-1)K)T, , ()1 + O(UK)) .

The modulus of (P12) is dominated above by

(supiw (Y DKIE | keI DI +O(VK)) = OK)
as in the proof of part (a), and for 1/a < b < 1 this expression is therefore o(K™2) as K, T - =,

It follows that the mean of @, ,, is dominated by the first term of (P9) which is O(K3),

as in (P11). In particular,
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KE®, 5,) - w0, _G-12T,, () -

ughu,
Next we consider the variance matrix of the leading term in (P9), i.e.
=KL W GIK) = w(G-D/K) g, () = K755 T ' (-1, )1 + OCKT)] -
As in the analysis of (P8) above, we now have

lim KT Var{vec{K'lzf.jhz‘”'(U'1)/K)f“W1U)}]

T==

= lim T Vau‘[\mc{zl'.b1 w'((-1)/KT U)}]
roe K jouK+2 Ughy

= constant .

Thus, the variance matrix of the dominant term in (P9) is O(1/KT). We deduce that

VKTIQ, 4, - (K" (O)Z,_G-12)T,, (O} = 0,(1) ,
ie,

»

0, pu = KW(O)E]_G-12)T,, () + O,(IWKT) ,

ugAu,

as required for the first expression in part (b). The second expression, for the limit behavior of

Q is proved in precisely the same way.

UZAUI !

Part {¢): To prove part (c) we need to show that

Qoau, = Qagau, = Qugau, + Op(UT) .

Now
Qg pu, = Duopu, + Zpego A -As, 6)

(P13) = Q, 5, - WIK-D/KYA -, (K) + w((-K+1)K)A -A)T, (-K+1)
+ Bk aWUIK) - w(G-DKNA -A),, 0) -

The second and third terms of (P13) are op(T'l) because w((K-1)/K = O(K'z), A-A
= 0,(1/YT) and [,(K) = O,(1). Hence

since K = O(TY**0) for some G > 0. The third term of (P13) is
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w((K-1)/K)A -A), (K) = Op(KT™I%) = o (T")

2K kWK - w(G=1K]A ~A)E, ()
(P14) = 27y WGIK) - w(G-D/K)IA, - ApE, , )
+ Bk WO - w(G-1/K0)A; - AE, , G) -

The first sum in (P14) can be decomposed as in (P10) and (P11). Using the fact thatﬁl -Ay
= op(r-m), we find that the first term of (P14) is O,(WKT)O,(INT) = 0,(T""). For the

second term of (P14) we note that }iz -A; = P(T'l) and
N (91 -1/, ) = K2X D @), () = 0,0
j..Kg.Z[wo K) - W(O )K)] “2"10) = j--K¢2w ( ]) xzulo) = p( ) ’

as in the proof of Theorem 3.1 of Phillips (1991, pp. 432-433). Thus (P14) is at most OP(T’I)
and part (c) of the lemma follows.
Part (d): We prove part (d) of the lemma by using the partitioned inversion of Q,:; , which
yields
Qo = Donu Q5 au = O au Qa0 2 Qa5

oh™hh Gauy " AuyAu, AuyAuy " Bu gty Mgy Auy MUy Auy M Aug Auy

-0 0, 07 s -0 G ! o

T M AugAuy Mt Au gy M uuyAu, Ouy MugiyAuy AUt Augduy T MTuguylu,

= [Xo1 ¢ Xpo) . say

- - s =1

ugtyduy = Qugy ~ ngt\ulQAulbulQAuluz . Using parts (a)-(c) of the lemma we find that

where Q

ﬁ“z“z‘ﬁ% = ﬁu-_,uz + OP(K'z) + OP(K/T) = ﬁuzuz + op(l) — Q,, >0,
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- - _1 - _1 - - ..l - -
Xo1 = Qosu,Qauau, ﬁ““:05"15"10A"x“znuz“z'ﬂuxo“zb“l05"1““1

- -1 a a
- n()uzﬁuzuz-Aulnuzduln Au lAul

[~y +0, (KT 2))Q]} -[0,(K2) + 0,(KM)][Qy; +0, (1} -0y, + O,k T 07
- [Qgp +0,(DH O +0, (D' [-®y +0, (Km0
= [0y - BRAR®HIALL + O,KZT?) « o (KT'7)

and
Xy, = -0 O 0, 07 + Q07
02~ " 0Au, BuqAuy Auyu, uquyAuy 0142 Ugliy By
- - -1
= ~[Dgy + O,(KANKD][-8yy + 0,(D][0,(K 2) + 0,(INKT)] + QgyQ3; + 0,(1)

-1

This establishes part (d).

Part (e): To prove part (e) we consider

-1 ' A -1 . K-1  .pne :
TTAUU - By puy = TAULU; = 20 wlK)T sy 4, 0)

- p K-1 . L . - .
TAULU, - 2 WG s, 4 0) - T G41)]

-/, WGIK) - w((-1K)IE 5, 0 G) - (K-, , (K)

(P15)

k-1, . . R . -
“Zj. WGK) - w(G-DKIT s, ) + 0,(K)
using (P3) and (P4). As in the analysis that follows (P9) we rewrite the first term of {P15) as

K.

(P16) -[zj,l + Eﬁ;’.ﬂ][w(i/K) - w((G-1)/KE 5, G) -
Upon the expansion of w(j/K)} ~ w((j-1)/K), the first summation in (P16) becomes
KB OB (G-1) + 12y, , ()

whose mean is
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K OG- 12T g §) = K" OZSHG-12IT, , 6) - G-12)T,, G-}
- -K'Zw"(O){zf_;"{(i-llZ) - G2, 6) « K*-12)T, , (K*) - (1/2)1‘u,u1(0)}
= K" (OEN T, ., 0) + (ln)ru,u,w)} * oK) .

Thus

KZE{_K-ZWH(O)E){‘IG-lfz)f‘Aulul(i)} - W"(O){z;:lrulu](i) + (Uz)Pulul(O)}
(P17) = w(0){Ay - (AR)Z,} .

The second sum in (P16) is
"B WK = w(G-DIRIE )
whose mean is given by
(P18) KB w/(G-1/K)T gy, 01 + OK™)] .
The modulus of (P18) is dominated above by
(sup W' () DKTIE, 4ol ()11 + O(UK)) = OK™') = o(K7?)
for 1/a < b < 1, as in the proof of part (a). It follows from (P15)-(P19) that

K E[TAUU, - & suyau) = W OBy - (U224}

The variance of the dominant term of (P15) may now be shown to be O(1/7K3), just as in the

proof of part (a), and it follows that

Kyrlavu, - & suypu) —p W (OHAy - (1/2)2;}

as required,
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Part (f): To prove part () we proceed in the same way as the proof of part (b) the only

difference being that the sums are one-sided rather than two-sided. The mean of

TW4U; - By, is O(K™) and satisfies
KET WU, - B, 4] = ' (OZ,G-12)T,, () = w'(0)¥,,; .

The variance matrix is of O(1/KT) and hence
VKTUT'U3U; - B, 50} - {K20"(0)¥ 11 = 0,(1)

giving the stated result for part (1).

Part (g): To prove (g) we first note that
TUAUX, - Agyy = TWX, - TWLX, - By,
(P18) = T huypiy - T Up = By, -
Next, observe that

A =177+ K-1 .. - . .
AAu1u2 +T Ul-lUZ = Ej-O WO/K)PAuluZO) + Puluz(-])

2 WOOE s 0) = TG + T (-1)

T WGIK) - w(G+ DRI, G) + w(K-1)/K)E, , (K-1)
P19) = BLZWGK) - w(G+DKOI, . 0) + 0K D) .

We now proceed as in the proof of part (b) but with a one-sided sum. We find that, for the
mean, we have

K-2 , . , " w . .
K2E2iK) = w(GH 1D, () = w* ()27 +1/2)T,, )
and the variance matrix of the first term of (P19) is O(1/KT). Hence (P19) is

K™%w"(0)¥; + O,(INKT)

and combining this with (P18) we get the stated result for part (g).
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Part (h): To prove part (h) we write
Biotuy = B WK gopu ) = Efig WOy, G) - By, Go1)
= Zj WG - G-IV, 6) + Ty, (O) - w(K-1/K)T,, ()

(P20) = B GIK) - w1y, () + O,K2T17)

since [, , (0) = T'04U; = T-104X, = 0 by least squares orthogonality, w((K-1)/K) = O(K™?)
and £y, (K) = O,(T""%). Now

Bagn® = T, ) + A-A)l, )
and (P20) becomes
(P21) 2L, W) w1 ) + (A=A BJ4 (W GIK) - w(G- DRI, () + O, (K272

The first term of (P21) has mean zero because

I‘u%(j)--o forall j 20

in view of EC(c). The variance of the first term of (P21) is O(1/KT), just as shown in part (b).

Hence,
(P22)  B{0GIK) - w(G-1/KIE,,0) = O,(WRT) .

Next, the second term of (P21) can be shown to be OP(T'l) just as (P14) in the proof of part
(c). Thus, combining (P20) and (P22) we have A aghu; = o ( WWKT ), as required for part (h).
Part (i): To prove (i) we write
2 K-l .one oo K-l o.a . oKl o
B, = Ejng w(]/K)I‘,iw:(]) =Z, w()IK)Fuouz(:) + (A-A)Ej,,0 w(]/K)I‘mz(]) .

The first term is

Zjo WK, 0) = Boy + O,(KMY?)
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since its mean is
K-1 . . o .
Ej..g WOIK)PuDUZO) - Ejnﬂru@;z(’) = Ay

and its variance matrix satisfies

. T K-1 ;i poms ,
Lim z v vec{L‘J. -0 w(j/K)T, 01‘20)} = constant ,

T

as in the proof of part (b). This establishes (i).
Parts (j)-(8): Parts (j)-(¢) follow directly from the weak convergence theory for sample
covariances developed in Phillips-Durlauf (1986), Phillips (1988) and Park-Phillips (1988).

8.2. PROOF OF LEMMA 3.3: Using parts (d), (e), (f), (g) and (j) of Lemma 3.1, we have

s Al lyrs -
Qo [TUX, - Bp)

-1 -1 . -1
= [(Dgy - QpaQpy P20y + Op((K3mm) oy, + 0,(1)

-1 ' a -1 i A
TTAUU) - Bpyau, | TTAUX, - By,

O,(K?) + O,(IWKT) | Ny
(P23) = [op(x-z) + O,(IWKT) : QRN + 0,(T™?) + O,(K**T) + 0,(1)

where Nyop —y J‘(l}deBz‘ . This proves part (a). Part (b) follows directly from the first block
submatrix of (P23) after scaling by 717,
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Part (c) follows from Lemma 3.1(h) and CLT (5). Thus,

(P24)  TYTTIUGX, - Aoy, ) = TV2UGU, - TAgy, = TV2UU; + 0,(1HK)
—a N0, Q,,) .

8.3, PROOF OF THEOREM 3.6: We write the FM-QOLS estimation error as

(P25) A*-A = (Uy'X - TAQX'X)™

where Ua’ =l - ﬁﬂxﬁ;lAX’ . Transforming this system by / and partitioning into stationary

and nonstationary coefficients, we have
(P26) [(A*-A)H, : (A*-A)H,) = (A*-A)H = (Uy'X - TAQHH'X'XH)'H'H .
Note that by partitioned inversion

-1

voroirlirn X1 XiXa{ 1 (X1QX)"
(HXXEHH = Lex, x| o] ™ |- ovio sty ax eyl
and
-1
, Xy XiX| fo] |-XX) X X(X50,X5)
(P27) (H'X'XH)'H'Hy=|_ ~ - ,
X XX U

X;0:Xy)!

where Q; = I - X;(X;/X)"'X; (i = 1,2). It follows that
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JTA* -AH, =TT - 0,87 (T 1axX) - A7)

(TX{0:X)™
" e ) KXy A K x)!
= TITWEX - Qg0 (T1AXX) - BL)H (T X;x,)™ + 0,(TY)]
= JTIT WX, - QuHH' Q) H (T 1AXx'X))
- (8o, - Qo B OHNT XX + 0 (TR
(P28) = yTHT 'UgXy - Bopu} - 00 Qpp (T710;X, - Buau T XX + 0(T17
= [{T2UgX, + Oi(K7P)} - {0, (K2 T'2) + O, (K VNI XX )™ + 01713,
by virtue of Lemma 3.2(b) and (¢). Thus
(P29) YT@A*-H, = (T2UX )T X (X)) + 0,K1?) + 0,(K2T'7)
— N(o, (I e 2])Q,, 8 2D,
as required for part (a). From (P29) we also see that the stated result holds for a bandwidth

expansion rate K = O(T¥) with 1/4 < k < 1.
Next, using (P26) and (P27) we have
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(P30) T@A'-AH, = [TUX - Qo 0T 'ax'x) - &3]

(T XX ) T XX)(T2X50,X,)™
(T"2X;0,X,)

- 3 A A -1 - ’ - 'y - [ - - ’ - ’ -
= TUgX - Qo0 (T AXX)™ — AL IH (T XX ) (T X X)(T- 250, X,) !
+ [TWeX - Qo 00 (T1AX'X) - AL HL(T2X50,X,)
- ’ A A A1 m- [ A - ' - - ‘
(P31) = -[(T'UgU; - Bgay) - Qulp, (T U, - B au NT XX (T IX1X)

x (T2X30:X) ™ + [T, - Ry, - Q@ d(T0Xy) - &), NT2X50,X,)

(P32)

-HOL(T™2) + O(KTY ') - 0,(KT) 2)[0,(1)]
+ [{Ngar + 0,(1)} - {0,055 (Nyor + 0,(1)) + O (K MHT2X;30,X,)
—d [fédﬁoBé - ﬂozﬂiéff,deB;il[ﬁBsz'}'l

- 1[;4B02B][;B23]”

as required for part (b). From (P32) we see that the stated result holds for a bandwidth expan-
sion rate K = O(T*) with 0 < k < 2/3.
Parts (a) and (b) of the theorem hold simultaneously when the bandwidth expansion rate is

K = O(T%) with 1/4 < k < 2/3.

8.4. PROOF OF COROLLARY 3.7: We work from the proof of Theorem 3.3. Since there is
no second block in (P26) and no need for a rotation of the regressor space we have from (P28)
provided K = O(T*) for 1/4 < k < 1, as stated.

8.5. PROOF OF COROLLARY 3.8: This follows from the original analysis in Phillips-Hansen

(1990). We can deduce the result directly from (P31) noting that when m; = 0 there is no first

term in this expression and then
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JTA*-A) = JTUT WX, - Bogy ) - Dup(TUX, - By, NT XX
= VTUT WX, - Bpau} - Dosu,Dpu au, (TAUIU; - 8y a0 NTX1X)) ™
= {TV2Ugx, + O, (K1)} - T-12{-0,,0]] + O,((K*M'H}Ho, K}
(P33) = (TV2UX )T X{X ) + 0(TVK?) + 0,(K™1?)
Mo, @ 0 20,0 ¢ 21D,
TA*-4) = [(TIUgX, - Ag,) - Bu@u{T VX, - &, (T 25X
= [TV, - Bu,) - BOLT VX, - B NT2XiXp) !
= [Ngar + 0,(1)} - {Q4203; + 0,(DHNpr + 0, (DT 2X3Xy)!
- ([idBogB3)[BB3)

as required. The only restriction on K for this result is K - =, T/K ~ < as T ~ «, This applies

when K = O(T*) and0 <k < 1.

8.6. PROOF OF THEOREM 3.10: Under the null hypothesis %4}, the Wald statistic W* has the

form
Woo = T{(R, @ Rj)vec(A*-4)} {R,ExR] & RZ'T(X’X)'IRZ}'I(RI ® Rj)vec(A*-A)
= T tr{(Ry2ooR{) [Ry(A"-A)RR;TXX) Ry] ' [Ry(A*-A)R,] } .

Since Rz = [HISZI’ HzSz?J we have
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’ F r -l I I td -
SHH{X'X) " H Sy SHH{(X'X) H,S,,

(P34) RH}X'X)'R, = o . »
SpHH X' X)"H S5 SpHi(X'X) HyS5,

and
(P35) Ry(A*-A)R, = Ry{(A] - A)Sy; : (A5 - A))Sy] .
Set Dy = diag(] ot Tmlqn] and then we can write

(P36) Wy, = u{(Rli]mRI')"[Rle(ﬁ*—A)RZJDT{DTRZ‘T(X'X)‘IRZDT]'IDT[RITm(f!‘-A)RJ} :

Now
1X1 X1X;
TX'X)™! = THH'X'XH)'H' = ‘
2Xy X3Xp
(X{Q@2X)™ -(X102X1) XXy (X;X5) ™
-(X3Q,X) XX (X px )™ (X3Q: %)™
and
TH{(X'X)"'H, = TX{QX) ™" —, 25y,
TPH{(X'X) " Hy = -TVHTX10,X) N (TX{X)(T2X3X,) ™ = 0T,
- 2% - -1
THYX'X)H, = (TX0,X)™ —, (j (1]5232) :
Hence,

.

T 52113521 0

DRITX'X) R,Dy — |

0 Szz(foBzﬂz) S22
Also R{ER; —, R{ZpR, and

[RiTA*-A)R,)Dy = [R,TV2(A] - 41)S5 ¢ R{T(A; - A))Sy)]

: -1 . 1 l 1 r -1 . -
—s |N(O, RyZgoR, ® §5,2715,y) Rl(_[odBo,sz)UoBsz) szz] = [Zy ¢ 2] .
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Combining these limits we have
‘ 01z (54250550 21 + 2,558,815 5023
Woo —a TR 2R ™1 Z1\8 011150 21 + 2, zz(_ro 232) 2222
Nz fs42is) 2 RyZooR1) 12,55 ['BoB3) 2,25
= trfR;ZooR{) " Z\S21235n) Zif + R ZgoR1) ™2, 22(J0 2 2) 2723
= w(Vy¥]) + tr{(Ry Qoo R ARy E 1R Ry R0 2RIV, V)

where
(A% ’ -1 -
Vi = (RiZooR{) ™ 2Zy(S421152)) 7 = N(o, Iga,) >

and

Vy = (RQg2R)) 2,
= (RyQ002R) " A(R, [1dBy ;B 3)([ BB 5,154 [B,B; 15 17 N, I, )
14200281 1) 8%0282)4 | P282) ©22p22( [ B252] 922 v Igiay)

Now let C be an orthogonal matrix for which

C’'(RyQ002R1) (R ZoR{) ™ (R Q00 2R{)C = D = diag(@d,, ..., d,) ,
and let V, = C'V, = N(0, I‘h‘iz:)' Then

Wo - tr(V,V)) + t(DV,V5) = x°  + B2 dy® (@)

o0 171 272 quqn iwl ix‘]zz ’

where xjn(i) = iid(x;n), i = 1, .., g5. Thus, the limit distribution of W* is a linear

combination of xz variates and the stated result follows,

8.7. PROOF OF THEOREM 5.1: The matrix X is partitioned into stationary and nonstationary

components as
X=[2.Y4]=1Z, YY) =[2,V:iY; 4] =[X :X].

Using this partition and the formula for £* given in (30’) we have in an obvious subscript nota-

tion
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+ ' ' A A-l ) y
(P37) F'-F =[E'Z, E'V - Q0 (Y)Y - TA, )

s ' -1 [} A ] -
HE'X) - 0,0 (AY 41X - TAy, JIXX)T .

Now, partitioning the inverse of X’X we obtain

VIE] -F)) = TITE'Z, TIEV - 0,0 (T IAY AV - B4, )T 1X{0,X,) "
- TVATTE X, - B 0T IAY X = By 0 DT 2X32) T X3, (T X10,X ) ™)
= [T2E'X, + O,(K2TY?) + 0,(K V)T XX + 0,(T?),

where the error orders of magnitude follow from Lemma 3.1 much as in the proof of the first

part of Theorem 3.5. We deduce that
(P38) VT(F] - F)) = (TPEX)TX:X)™ + 0,(1) —; N, Z,, ¢ 2})),

where Z(; = E(x;,x;,) and is positive definite, as shown in Lemma 1(iii) of Toda and Phillips

(1991).
Next we consider the second block of (P37), i.e.
VT(ES -Fy) = -[TEX| + 0,(K%) + O,(K T T-X[0,X) T X[ X,)(T2X3X,) !
+ [TE'X, - f:,yﬁ);l(r-lw_',xz - B ppac NT K30, X))

- o =1 e ; 2 i, -1y1-
= 0,(T™Y%) + [TE'X, - Q05T AKX, - & ax,ae)NT2X3X, +0, (TN
using Lemma 3.1, Now

- r l r aad * l !
TEX, —y [(@BB . TX3X, —y [(BoB; .

-1 ! 1 r A
TIAXX, —, _[odeBz + By s and Ay, — AL,

Hence

(P39)  T(F; - Fy) —g ([(dB,2B)[18:85)"
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where B,, = B, - Q,,05)B; = BM(Q,,5) With Q. = Q,, - Q,,05,Q,,
=3, - 0,00,

Again, the error orders of magnitude in these derivations follow as in the proof of Theorem
3.5. Consequently, the bandwidth expansion rates under which (P38) and (P39) hold are the
same as those given in Theorem 3.6 for the stationary and nonstationary components. The

stated result follows directly.

8.9. PROOF OF COROLLARY 5.2: This follows directly from Theorem 5.1 because the sub-

matrix F, is null when r = n,

8.10. PROOF OF COROLLARY 5.3: Whenr = 0,F, =1 and A = I, in (24'). We then

have the model
(I - J*(L)L)Ay, = ¢,

or

(P40) y, =y, +u,, with u, =[I -J*L)L] e, .

In this case the subscript "2" that appears in our various formulae, like the limit theory in part
(b) of Theorem 5.1 refers to the entire vector u, or ¢, as the case may be. From (P40), the long-

run covariance matrix of u, is
Q, =CQ,C =CE,,C, C=[I-11)"t.

Let B, (r) = BM(Q,,) and B, (r) = BM(Q,,) be the limits of the partial sum process T'wxfl"’]u,
and T'mEETrls,. Then, necessarily, B, (r) = CB,(r) (e.g. see Phillips and Solo (1992)), and

B,.() = B,() - Q,,0,B,0) = B,() - Q,,C'(CQ,,C)'CB,(r)

=B,(r) -B,(r) =0 as.
Hence, the limit distribution given in Theorem 5.1(b) for this case wherer = 0 is

and thus T(F; - I,) -, 0.
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(o@BeB|[BB) " =0, as.

8.11. PROOF OF THEOREM 5.5: The error in the levels VAR estimator is F-F
= E'X(X'X)". Partitioned regression yields:

VI, - Fy) = TPEQX )T X[0,X)™" —, N@, £, o 27))
giving part (a); and
T, - Fy) = (TEQXONT 250%™ —, ([ ;deBi)(I;Bsz')-l .
Using the decomposition B, = B, , + Qez();;Bz (from Phillips, 1989, Lemma 3.1) we get the
stated result for part (b).
8.12, PROOF OF THEOREM 5.7: From {42) and (43) we have
B - F = HE* - Fyi, o H') .

We now partition £* - F on the right side of this equation as £* - F = [F3-F, : F3 -F)

with the corresponding partition of I, & H’, viz.

(1, e H 0]
k 10 | G
I, e H = S I
_______ c
0 B. *
Note that
Gl
+ - ‘ -1 ’
VT(E' -E) = HYT(F] - F) : 0,(T¥3)]|~ - -| —, N, HZ,,H' & GE]|G')
G,

using part (a) of Theorem 5.1. Observing that Z , =ZI,, =HE,H' givesthe stated result (a),

and (a') follows immediately.
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To prove part (b) we write

T(E* - )G, = H[T(E| - Fy) : T(F; - F)))G'G,

0

= H[T(F; - Fy) + T(F; - F)) 0 | = HT(F; - F))
!

o H(JaB, B ([ BB = (L4808 ['8.85)

giving the required result.

8.13. PROOF OF THEOREM 6.1: The proof is essentially the same as the proof of
Theorem 3.10. The additional xglq; term that appears in the limit (54) of W} comes from the
quadratic form associated with the restrictions R,JR,; = R, in %[ that relate to the known
stationary coefficients / in the model (42). The remaining components in {54) arise precisely in

the same manner as those in Theorem 3,10.

8.14. PROOF OF THEOREM 6.3: Whenr = O we have F = [{ : 4] = [F, : F,]. From

Theorem 5.7 we have
-1,
(P41) VT(E' - E) —;4 N(O, Z_, ® G4Z{,G})

where

Ik-] @

H
Gy = nk x n(k-1)

and

(P42) T@A' -1) —, 0.

Next the test statistic is
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We=T u{(le,l"Rl’)'I[RI(E‘—E)RZ][RZ‘T(X‘X)'IR,j‘I[RI(F; -DR;)'}
(P43) = tfR,E, R)MRTQ DRy + RTA* DRy,
DrRTEX)'RD AR T -DRy ¢ RITA -DR,]'}

where Dy = diag(l,, 7?1, ). Now, writing X = [Z, Y_;) and performing a partitioned inver-

sion of (X’X)"! we have, in a conventional notation,
DAR;TX'X)'R,Dy

1T 'z0,2) T2 T2y )T Y )
2Ty )T 2T20,2) Ty L0 )T

Ri(T7'Z2'Q,Z) "Ry, 0,(T"1%)

0,(T™1?) Ry(T2Y,0,Y )Ry,

R;(T7'2'2)'R,, 0

(P44) = " y
0 R2:4(T X-'IZ-I) R?A

+op(1) .

Inverting (P44) and using the fact that T(4* - I,,) = o0,(1) from (P42), we deduce that
W = tr[(R1§uR1')-l[R1Tm(z+'DRm][Réj(T-IZZ)-lRy]-I[Rle(r“-DRy}'} + 0,(1) .
Finally, from (P41) we have

ﬁ(E; - El) = JT{*-) —d N(O’ Eee & (py 0 H)E;:(]k-l ® H)’)
and

TZ'2)™" = TNy ® HZ'Z(4y @ H)|' —, (g © H)E[} Uiy @ H) .

+ 2
Thus, WF - quql, as stated.
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Figure 2a: T = 50, a = 0.80
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