COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 1040

Note: Cowles Foundation Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment.
Requests for single copies of a Paper will be filled by the
Cowles Foundation within the limits of the supply. References
in publications to Discussion Papers (other than mere
acknowledgment by a writer that he has access to such
unpublished material) should be cleared with the author to
protect the tentative character of these papers.

HYPER-CONSISTENT ESTIMATION OF
A UNIT ROOT IN TIME SERIES REGRESSION

Peter C. B. Phillips

December 1992



HYPER-CONSISTENT ESTIMATION OF
A UNIT ROOT IN TIME SERIES REGRESSION

by
Peter C. B. Phillips”

Cowles Foundation for Research in Economics
Yale University

0. ABSTRACT

It is shown that the fully modified ordinary least squares (FM-OLS) estimator of a unit
root in time series regression is T>/2-consistent. Relative to FM-OLS, therefore, the least
squares and maximum likelihood estimators are infinitely deficient asymptotically. Simula-

tions show that this dominance of FM-OLS persists even in small samples.
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1. INTRODUCTION

It has been known for a long time (at least since White, 1958) that the least squares
(OLS) or maximum likelihood estimator (MLE) is T-consistent in a Gaussian AR(1) with a
unit coefficient. This result was extended by the author (1987) in earlier work to a general
class of time series models with an autoregressive unit root. The limit distribution of the OLS
estimator is asymmetric with a long left hand tail that accords with the well known downward
bias of the estimator in finite samples. This limit theory has caused many difficulties in statis-
tical inference and has been an obstacle to the development of a theory of optimal estimation
that accommodates nonstationary regression.

The possibility that one can improve on the maximum likelihood estimator in nonstation-
ary regression by means of a general estimation method, rather than by simple bias correc-
tions, seems not to have been contemplated in earlier research. The present paper shows that
this possibility is a real one and that a substantial gain not just of efficiency but also in the
actual rate of convergence to the unit root can be achieved by the use of the fully modified
(FM) least squares principle. The FM-OLS estimator was introduced in Phillips and Hansen
(1990) to provide optimal estimates of single equation or subsystem cointegrating regressions
in models of nonstationary economic time series. The method uses an augmented regression
model that involves differences as well as levels of the regressors, but is semiparametric in its
treatment of the coefficients of the differences in this expanded model.

The present paper demonstrates that when the FM-OLS method is applied to a time
series regression model with a unit root the estimator is hyper-consistent in the sense that its
rate of convergence exceeds the rate of O(1/T) that applies for the MLE. Under general con-
ditions we show that the FM-OLS estimator is T>/>-consistent for a unit root and, thus, OLS
and the MLE are infinitely deficient relative to this estimator. Some simulations reveal that
FM-OLS produces very substantial gains in concentration probability in finite samples.

The paper also derives the limit distribution of the FM-OLS estimator in time series



regression with a unit root. Unlike the limit distribution of OLS, this distribution is symmet-
ric, so that the FM-OLS estimator is asymptotically median unbiased. The new limit distribu-

tion is characterized in terms of Brownian motion and a random variable whose distribution

depends on that of the data. 4

The paper is organized as follows. Section 2 gives the model, the assumptions that we
need and describes the FM-OLS estimator in the present context. Our main result is given in
Section 3. Some simulation exercises are reported briefly in Section 4. Section 5 gives some

further discussion of the results and proofs are given in Section 6.

2. THE MODEL, ASSUMPTIONS AND THE FM-OLS ESTIMATOR

Let {y,} be a scalar time series generated by
(1) ye=oay_ g tuy,t=12..
with
@ e=1,

and an initialization y, at ¢ = 0 that can be any random variable including, of course, a con-
stant. It will be convenient, but not essential, in what follows to assume that the error process

{u,} in (1) is a linear process that satisfies
AsSSUMPTION EC (Error Condition)
@  u = CL), = gt zgjzcj’ <w, C(1)#0
) {e,} is iid with zero mean, variance oz and finite fourth cumulant.
Under Assumption EC the fourth cumulants of u, are finite and absolutely summable.
That is, if x4(0, g, 7, s5) is the fourth cumulant of (u,, Uppg Ypap u,,,) then
) Zuk0 a7 9] <=

(e.g., see Hannan, 1970, p. 211). Further, Assumption EC validates a functional central limit
theorem for partial sums of u, and uf (e.g., see Phillips and Solo, 1992, Theorem 3.3).



Alternative conditions which allow for some heterogeneity in the process e, and relax the
independence requirement of EC(b) are also possible. A variety of alternatives of this kind
that still accommodate a functional limit law for partial sums of u, are given in Phillips and
Solo (1992). Yet another alternative is to replace EC(a) with mixing or near epoch depen-
dence conditions directly on the process u,, as in Phillips (1987). As indicated above, the
configuration of error conditions under which our main result holds is wide and the specific
assumptions used are not of great material significance in the following development

We do need to be explicit about the smoothness of the spectrum of the error process u,
in the neighborhood of the origin. This is determined by the size of the parameter q (> 1) for
which

o

= 19 Ew

j--n

t*jut) < ®.

As shown in Phillips and Solo (1992, Lemma 5.10) this holds for ¢ = 2 when Eajc;‘? < e and
this in turn is assured by the summability condition in EC(a).

Under EC the long run variance of u, is
, ) )
@) o? = B_E(ug) = 0,C(1)* > 0.

Applying least squares to (1) we have, in the usual regression notation, & = y'y_/#’,y_;.
Then, as in Phillips (1987), we have the limit theory
6) T@E-1) —y (RBdB + A)/RBZ ,
where B = BM(w?) and 4 = ZoE(uy;) = (@? - of)/Z. The estimator & is T-consistent for
a = 1. ‘

The FM-OLS estimator of « in (1) is based on the OLS estimator & and has the follow-

ing form
6) & =@y oLyt - T8Y
where

-1
(M y' =y -8y 00, and



®) §* = Ay - 000114y, .

In these formulae Q is an estimator of the long run variance matrix of (4, Ay,_,) and is parti-

tioned as

The vector A’ = (A, A,,) is an estimator of the one-sided long run covariance of u, with

(u, Ay, ), ie.
) A" = (Agp Byy) = Ef.oE(uuj(uv By,_1)) .

The FM estimator was originally developed by Phillips and Hansen (1990) to estimate cointe-
grating relations between I(1) variables. Essentially, the new dependent variable y* in (7)
incorporates an endogeneity correction (to allow for the fact that the original dependent
variable y, and the regressory,_; in (1) are balanced in the long run since they differ by pnly a
staﬁbnary process); and (8) embodies a serial correlation correction (to accommodate the
dependence of y,_; on the past history of u,). The motivation for this estimator is discussed
at greater lengﬂ\ in the earlier paper. Note in the present case that y, and y, ; are trivially
cointegrated when @ = 1. (They are also trivially cointegrated when || < 1 in (2) because
both are stationary.)

The estimators Q and A in (7) and (8) are designed to be consistent for Q and A. Given
the generality of the process u,, this requires the use of nonparametric methods. We also esti-
mate u, itself by a preliminary OLS regression giving &, = y, - &y,_;. Kernel estimates of the

long run covariance matrices Q and A take the form
10) O, =Tt wiK)i,G), and Ay = T w(K)T,,G)
ab = “ju-T41 Yabl) » ab = “jug YabV) »

where w(") is a kernel function, §,,() = T™'Z 0,4 Oy (With 9, = &, 9, = Ay, ;) and K is
a lag truncation or bandwidth parameter. The symbol "Z'" in the expression for ¥, (j)

signifies summation over 1 < ¢, t+j < T.



We will need to be more specific about the kernel estimates in (10). In particular, we
prescribe the following class of admissible kernels.

ASSUMPTION KL (Kernel Condition): The kernel function w(-) : R — [-1, 1] is a continuous
even function with w(0) = 1, is continuously differentiable at all but a finite number of points of R

and [g|w(x)|dx < =,

Parzen’s (1957) characteristic exponent r (> 0) of the kernel w( ) is the largest integer such
that

Iim I_Z_W.(ﬁz < oo,
u-0 [ul
This implies that

Em dw(u)/du

= W, < o™,
u-0 Iui"1

We will be using kernels for which r = 2 and this includes the Parzen, Tukey-Hanning and
quadratic spectral (QS) kernels (e.g. see Priestley, 1981, p. 463). We make this explicit in the

following.

ASSUMPTION LR (Long Run Covariance Matrix Estimation):
(a) Any kernel function satisfying Assumption KL and with characteristic exponent r = 2 is used in
the estimation of the long run covariance matrices Q and A in (10).

(b) The bandwidth parameter K in the kernel estimates (10) has growth rate given by

K = O(TY**" for some «x € (0, 1/4),

ie. KX¥T — 0and K¥T — was T — o,

Part (a) of this assumption restricts our use of kernels to those whose behavior near the
origin is essentially quadratic ¢ = 2). In practice, this is unlikely to be very restrictive
because most of the commonly used kernels are of this type. Part (b) of the assumption

controls the growth rate of the bandwidth parameter to lie within the zone O(Tm) <« K
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« O(TY?). This is somewhat more restrictive, since it explicitly rules out the "optimal"
growth rate O(T') that applies for many of the kernels satisfying Assumptions KL and LR(a)
-- e.g., see Hannan (1970, p. 286) or Andrews (1991). We can, in fact, accommodate growth
rates for K that include the optimal rate of O(TY3), but as the proof of our main result in the
next section makes clear we will not achieve a T>-consistency rate for the estimator &* in

that event, although a T1*3 for some & > 0 is still possible.

3. THE MAIN RESULT

The following lemma is useful in helping to establish our main theorem.

3.1 LEMMA: Under Assumption EC, KL and LR we have 07109 - 1 = 0,(T™/?), as T — «. 0

As shown prior to the proof of this lemma in Section 6, both Q;; and Qy, tend in probability
as T — = to the long run variance o2 of {u,}. The differenoe in these estimates, Q;; - Q 0, is
then op(T'm). The main requirements in achieving this order of smallness in the difference
are the use of a kernel with exponent 7 = 2 and the bandwidth condition that K = O(T4*¥)
for some x € (0, 1/4). When these requirements are not met, we do not achieve the
T32_consistency rate for the FM estimator &* that is given in the main theorem below.
Instead we get a T1+3_consistency rate wherein 3 (> 0) depends on the actual growth rate of
K and the properties of the kernel. Since this weaker result is less interesting we give only the

main theorem here.

3.2 THEOREM: Under Assumptions EC, KL and LR the FM-OLS estimator &% is
T3R.consistent for « = 1. The limit distribution of &* is given by

1) PG -1) —y B(l)uJJ;B(r)zdr,

where B(r) = BM (oz) and is independent of the random variable u, which has the same distribu-

tion as the error u,.



33. DISCUSSION

(i) Theorem 3.2 shows that the FM estimation procedure accelerates the convergence of
the least squares regression estimator & at « = 1. Relative to &, the FM-OLS estimator & * is
infinitely more efficient asymptotically. In effect, as T — = least squares requires increasingly
more data to match the efficiency of @* based on T observations. In the terminology of
Hodges and Lehmann (1970), OLS is asymptotically deficient relative to FM-OLS at ¢ = 1.

(i) When u, = iid N(0, o2) the estimator & is the maximum likelihood estimator (MLE)
of « in (1). Since the results of Theorem 3.2 apply in this case, the estimator &* dominates
the MLE asymptotically. There are many examples in statistics, primarily involving non-
regular estimation cases, where maximum likelihood is not asymptotically efficient. The
present example is, in fact, a regular estimation problem and the log likelihood ratio of the
model is locally asymptotically quadratic (LAQ) in the sense of Le Cam (see Le Cam and
Yang, 1990, Section 5, for discussion of this property). However, in the neighborhood of the
unit root ¢« = 1, the LAQ expression gives neither a normal approximation but instead
involves a Gaussian functional approximation, as discussed in Phillips (1989) and Jeganathan
(1989). In this case a general theory of optimality for ML estimation has not been developed.
What is known is that under the random time change

12 1, = inf{T: 2, > n},

which effectively fixes the (random) information of the data, the new estimator sequence & ()
that is based on 1, observations is uniformly asymptotically normal (see Lai and Seigmund,
1983) and is asymptotically minimax in the sense of Hdjek (1972) as n — «, The latter prop-
erty has recently been shown by Greenwood and Shiryaev (1991) -- see Greenwood and
Wefelmeyer (1991) for some further results on this topic. Under (12) the information content
of the data is rendered nonrandom by the (random) sampling scheme. It is therefore perhaps
not too surprising that classical asymptotic results apply in this event. Theorem 3.2 shows that
if the data is observed according to a conventional time clock then substantial efficiency gains
over the MLE are possible at & = 1. Relative to the MLE &, we call the estimator &* hyper-

consistent at ¢ = 1,



(iii) Examples of super efficient estimation have been well known since the Hodges
example given in Le Cam (1953). As shown by Le Cam, the set of points of super efficiency
has Lebesgue measure zero in conventional vT-consistent and asymptotically normal estima-
tion problems. In the present case, these latter conditions do not apply, and « = 1 is already
well known to be a critical point in the parameter space where T-consistent estimation rather
than vT-consistent estimation is possible. Theorem 3.2 shows that an even higher rate of
consistency is possible at « = 1. We remark that the FM-OLS estimator &¢* has the same
limit distribution as the MLE & when |¢| < 1 and & is vT-consistent for & (ie. when {u,}
= iid N(O, 03)). This latter property follows from a treatment in other work by the author
(1991b) of the FM estimator’s asymptotics in models with cointegrated and stationary regres-
SOTs,

(iv) The outcome of the theorem indicates that there is information in the data about
« = 1 that is not fully exploited by the MLE. The MLE relies on a simple regression of y, on
¥;-1 in (1). The FM-OLS estimator &* uses an augmented regression model that involves the
difference Ay, ; as a regressor but is semi-parametric in its treatment of the coefficient of
Ay,_y in this regression. The fact that &* is hyper-consistent relative to & suggests that there
is information in the differences Ay,_, and their long run covariance with the regression errors
that is not fully exploited by maximum likelihood in the levels regression of y, on y,_;.

(v) The limit distribution given in (11) is symmetric about the origin. This is easily seen
from the fact that B(r) =, -B(r) and thus

B(l)u,,lLl)B(r)zdr = —B(l)u,/Ll)(-B(r))zdr - -B(l)u,/ﬁB(r)zdr .
Note that in the case where u, = iid N(0, 02), the limit variate (11) has the same distribution
as W(1)&/[sW(r)%dr, where W(r) = BM(1) and £ = N(0, 1). This distribution will be plotted in
the next section of the paper. Given the symmetry of the limit distribution (11), we deduce
that &* is an asymptotically median unbiased estimator of ¢ = 1.



4, SIMULATIONS

We report briefly some simulation evidence on the sampling properties of the FM-OLS
estimator &* in comparison with the OLS estimator & in the model (1) when « = 1. Using
10,000 replications we computed &* for sample sizes T = 75, 150, 300 (using the correspond-
ing fixed bandwidths K = 3, 6, 9 and a Parzen kernel in the computation of the long run
covariance matrices) and graphed the sampling distributions in Figure 1. This figure shows
kernel estimates (using a normal kernel) of the densities of &* for these sample sizes against
that of & for T = 150. The results are quite dramatic. The FM estimator &* is more
concentrated about « = 1 for the sample size T = 75 than the OLS estimator & is when T =
150. As T increases, the distribution of &¢* concentrates about « = 1 and also becomes

increasingly symmetric about unity.

Figure 2 graphs kernel estimates of the densities of the centered and scaled quantities
T(B-1) for f = &*, &. Notice that we use the O(T) scaling that is appropriate for the OLS
estimator & in all of the graphs in this figure. As is apparent from the figure the densities of
T(&*-1) continue to concentrate about the origin as T increases, reflecting the higher rate of
convergence of the estimator &*. The density of T(&-1) displays the long left hand tail that
characterizes both the finite sample and limit distributions of & As noted in Figure 1, the

distribution of T(&*-1) is more concentrated and is more symmetric than that of T(&-1).

Figure 3 graphs kernel estimates of the densities of the FM estimator centered and scaled
as 78’2(&+-1). The figure also graphs the limit density given in formula (11) of Theorem 3.2
by using 10,000 replications of 500 observations generated from a Gaussian random walk to

approximate the right side of (11) by the sample quantity T‘lyT_lur'T ‘22}%_1. As is appar-
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ent from the figure, the densities of T>2(&*-1) approach the limit density slowly. Even for
T = 300 the sampling distribution of T>2(&*-1) is some way from the limit density. In spite
“of this slow convergence to the limit density, Figures 1 and 2 show that at substantially

dominates & in terms of concentration about ¢ = 1 in finite samples.

5. IMPLICATIONS

. The results of this paper have implications that seem intriguing for both theory and
empirical practice in nonstationary time series regression. At the theoretical level, the dom-
inating property of the FM-OLS estimator over the OLS and MLE estimators indicates that
the maximum likelihood principle of estimation does not use information in the data fully
efficiently when that data has nonstationary characteristics. To the extent that the FM esti-
mator uses both levels and differences of the series it would appear that there is information
content in the differences that is untapped by maximum likelihood. The explanation lies in
the fact that the long run covariance matrix between the regression errors and differences of
the regressors is zero when the regressors are stationary but non zero (and, in fact, equal to
the long run covariance matrix of the errors) when the regressors have a unit root. The FM
estimator uses this information (in the construction of a semiparametric estimate of the coeffi-
cient of the differences), whereas the MLE does not. Obviously, this is a very interesting
matter of statistical theory that deserves further investigation.

At the practical empirical level, improved estimation of a unit root in time series regres-
sion seems likely to be quite important. First, there is the opportunity to develop unit root
tests which exploit the new estimator and have more power than conventional tests. The dis-
tribution theory in Theorem 3.2 provides an obvious starting point here. Note that tests
based on the FM estimator &* will automatically have an asymptotic power of unity in local-
to-unity regions of the form « = 1+¢/T for ¢ # 0. This means that, at least in large samples,
tests based on &* should dominate all unit root tests that are based on T-consistent estimators
of a. Furthermore, since the FM estimate of a unit root is hyper-consistent while the FM

estimates of cointegrating coefficients are T-consistent and optimal (Phillips-Hansen, 1990)
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and those of stationary coefficients are vT-consistent (Phillips, 1991b), it would seem that
these estimates can be used to construct asymptotic chi-squared tests of hypotheses such as
noncausality and neutrality in vector autoregressions, which is generally not possible with OLS
estimates (see: Phillips and Durlanf, 1986; Sims, Stock and Watson, 1991; and Toda and
Phillips, 1991). These and other possibilities will be explored by the author in future research.

6. PROOFS

Throughout this section it will be convenient to assume that we are working with long run

variance matrix estimates that are of the same general form, say
A K-1 LA LS a K-1 .o nace
®1) @ = Z wiK)IG) . and & = EWGEKT0)
where 7() = T'Z'9, +j’t- (P1) corresponds to (10) when the kernel is truncated, as in the
case of the Parzen and Tukey-Hanning kernels, where w(x) = 0 for |x| > 1. The results
given also hold for untruncated kernel estimates like QS kernel estimates, but the proofs are a
little more complicated because we need to deal separately with sums over |j| < K and
li| 2 K in expressions like (10). To keép matters simple we will work with estimates of the
form given by (P1). ,
In the autocovariance §(j) that appears in (P1), ¥, is defined by
a, U, (e-&)y, 4
+ 8

®2) 9 = =

Ay, q) |4 Uy

Now & is T-consistent for « and T'lzy,_lu‘ = Op(l). Moreover, as shown in the proof of
Theorem 3.1 of Phillips (1991c, pp. 432-433)
=2 1
®3) K E w(/K)(T™ Eluujyt—l) = Op(l) .
j=-K+1
Since K/T = op(T'”z) under Assumption LR, we can therefore replace {(j) in (10) by y(j) =

T-1Z',,;, Where v, = (u, 4,_;)', up 1o an error of 0,(T"?). That s,
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®4) Q= 250 wGKY0) + 0, (T2, & = BLWGK)YG) + 0, (T2) .

Now, using (10) we deduce that

Q —p 2 =X .-QE(Vuj":) = ’

and

A . (0 + 03)/2 (0? - 03)/2

A —, A =32 _EV,v) = .
y t+)t

! (m2 - 03)/2 (mz + 03)/2

6.1. Proof of the Lemma
Using (P1) we have

-1 T-1 Nm
(P5) Q50 -1-= ,-_T,IW(IIIQ[Ym(J) - fu®)E ..T.1W(I/K)Yu(1) -
We can write the numerator of this expression as
T-1 , =y 2
2j--7‘+1w(1/K)T (z ut-l-sjat -Z “t-loj“t-l)
T-1 . -1 -1g -
(P6) = I, WK Bu,_y u, - T,y ju, 4] + 0, (T,

J

where we use the same argument to justify the order of magnitude of the error as we did in
reaching (P4) earlier.
The sum in (P6)can be rearranged as
K-1 '
2]--K+IWO/K)T- By gt - T'up g 8]
]__m{w(,/x) w(G-DENT 2w,y ju, + w(K-DK)T w5 g,
- w(-(K-D/K)T'Z'u,_gu, + 0,(T?)
®7) = Bk WK - w(G-DKIT 2w,y u, + 0, (TP

since E(u,_gu,) = 0(K™?) = o(T'm) under assumption LR, and because w((K-1)/K) — 0 as
T (and hence K) — =,
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Over intervals where w(*) is continuously differentiable we have

w(IK) - w(G-1)/K) = K™’ G*/K)
where j° € (j-1, j) and is defined for eachj. Then (P7) can be written in the form

K-1
(P8) K“g 0D + X, WGy - w((-Dh1G-1) + 0, (T,
J=-K+ j

where "= ™" signifies summation over subintervals where w(-) is continuously differentiable and
"Z." signifies summation over the finite and bounded above (as T, K — ) number of intervals
which contain a point where w(-) is not continuously differentiable. Let r. > O be such a
value and suppose j/K — r« as T — =, Then if M > 0 is such that |w’'(x)| < M for all points x
where w( ) is differentiable we have by the mean value theorem (e.g. Dieudonné (1969,
Theorem 8.5.2, p. 160)

|G - w(G-DO0)Y13G-1)| < MK yy;G-1)| = 0,(T?) ,

The last order of magnitude follows because yy;(-1) = v;1(-1) - E(uyj_q4,) + E(u,4;_1u,)
= E@4j-14;) + Op(T"'?) and E(u,,;u) = O(K™®) = o(T17) because j = [r.K] + 1 - =
as K - = with 7. This shows that the second sum involving Z. in (P8) is negligible asymptot-
ically. We can now write (P8) as

k-1
®9) KTY* PO jsir-tir-ly G-1) + 0 (T) = Fp + 0, (T2) , say.
jake2 K| F g

By assumptions EC, KL and LR, the expectation of the first term, F, of (P9) is easily seen to
be of order O(K™) = o(T'm) since r = 2 for the kernels considered. Moreover, as in

Hannan (1970, Theorem 9, p. 280) we have

K-1
lim KT var(Fy) = lim KT varK™! Y% w'(i*/K)v1,1G-1)
T-o T~ j=-K+2
K-1
(P10) = lim| T var] T°* w'G*/K)yy4(-1)[| = constant .
T-«|K j=-K+2

Combining (P10) with the order of magnitude of the mean of F we have
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(P11) Fy = O(K™) + O,(UKT) = o, (T"7) .
This shows that

A-1a -

Q1 Q50 -1 =0,T 2y |

as required.

6.2. Proof of the Theorem
Using (6)-(8) the FM-OLS estimator is

ad ’ - ’ ' A=-1a Y A A -1
&" = 0ly.1) I{Y-LY —y Ay 84 Qy0 - Thgy + TAuQquo} :
So, under (2), we have
A+ -4y, ! - -1 -1, A-1a A a~la A
T(a*-1) = Ty 1{[7 Yiw - T4y )R8y + [By iy - Aoﬂ}
(P12) = Ty ™Al + B}, say.
As in Phillips (1987), T3’ y_, ~4. [3B% as T _, = where B = BM(»?). We therefore con-

centrate on the numerator terms [4] and [B] of (P12).

We start with [4]. Using the lemma we obtain
] = T - T u 1 + o (T3]
= Ty - @Yy + Tlu ) + o (TR
(P13) =T Y ur - Tulpy + 0, (T7)
Next, turn to [B]. We have
[B] = A0y, - Agy = {EXWERILOHL + 0D} - 2K () 010)
= S i{v10) - Y0100} + 0, ,

in view of (P4) and the lemma. This last expression can be written directly as
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2 WORNT B u g g -~ TBw gu ) + 0, (T
= w(-VKT 8l | - w(K-1OT U, g qu,q + 0, (T2
(P14) = T2 (1 + OK™D) + 0T,
since 1 - w(-1K) = O(K™?) and E(u,,x_u,_;) = O(K?), both of which are o(T"1?) under

assumption KL, and w((K-1)/K) - 0 as K ~ =,
Combining (P13) and (P14) we have

(P15) [A] + [B] = Ty qur + 0,(T%) .
Now
TV,  —;B(1), and up —yu,,
so that (P12), (P14) and (P15) lead to
T32(3*-1) —, B(l)uJI;Bz ,

which establishes the theorem.
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