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ABSTRACT

This paper establishes a correspondence in large samples between classical hypothesis tests
and Bayesian posterior odds tests for models without trends. More specifically, tests of point
null hypotheses and one- or two-sided alternatives are considered (where nuisance parameters
may be present under both hypotheses). It is shown that for certain priors the Bayesian pos-
terior odds test is equivalent in large samples to classical Wald, Lagrange multiplier, and

likelihood ratio tests for some significance level and vice versa.
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1. INTRODUCTION

This paper considers large sample approximations to Bayesian posterior odds test statis-
tics for models without trends. For certain priors, the approximations turn out to be mono-
tone functions of the standard Wald, Lagrange multiplier (LM), and likelihood ratio (LR) test
statistics. In consequence, the posterior odds test for a given prior corresponds in large
samples to a classical hypothesis test for some significance level . In turn, a classical hypoth-
esis test with given significance level o corresponds in large samples to a variety of Bayesian
posterior odds tests based dn different priors. Thus, the choice of significance level for clas-
sical tests is seen to be analogous to the choice of prior for Bayesian posterior odds tests and
vice versa.

The approximation results referred to above provide a Bayesian posterior odds interpreta-
tion of the Wald, LM, and LR tests that are commonly used in econometrics. This may be of
interest to classical and Bayesian econometricians alike. In addition, Bayesian econometric-
ians may find the approximations quite convenient from a computational perspective, because
they eliminate high-dimensional integrations, especially with certain choices of priors.
Bayesian econometricians also may find the approximations of interest because they illustrate
certain robustness properties of posterior odds tests. The results show that posterior odds
tests for a variety of different priors yield equivalent tests in large samples. We note that the
approximations turn out to be exact for tests of linear restrictions in normal linear regression
models with known variance.

There is considerable literature on the relationship between classical hypothesis tests and
Bayesian posterior odds tests. Some of this literature focusses on the question of whether a
p-value can be viewed as a posterior probability of the null hypothesis. In some cases where
one is testing a one-sided null hypothesis against a one-sided alternative hypothesis concerning
a scalar parameter, such an interpretation is possible (e.g., see Casella and Berger (1987),
Berger (1985, pp. 147-148), and Pratt (1965)). In other cases, notably those with a point null

hypothesis and one- or two-sided alternatives, the interpretation of a p-value as the posterior
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probability of the null hypothesis is not possible (e.g., see Berger (1985, pp. 148-151), Berger
and Sellke (1987), and Edwards, Lindman, and Savage (1963)).

In this paper, we consider point null hypotheses with one- or two-sided alternatives (and
allow for nuisance parameters under the null and the alternative). We are interested in the
correspondence between classical hypothesis tests and Bayesian posterior odds tests, but we do
not focus on the question of whether a p-value can be interpreted as a posterior probability of
the null hypothesis. Rather, we ask the question of whether a Bayesian posterior odds test is
equivalent to some classical test for some significance level. In a large sample sense, we find
that the answer is yes for a variety of different priors.

Various results in the literature also are relevant to the question of whether a Bayesian
posterior odds test is equivalent to some classical test for some significance level. A number
of finite sample results show this for particular models and priors, see Jeffreys (1961, Chs. V,
VI), Zellner and Siow (1979, 1980), and for further references Zellner (1984, Ch. 3.7, p. 285).
In addition, there are some asymptotic results that are relevant, including those of Jeffreys
(1961, pp. 246-7, 249-50), Lindley (1961), Schwarz (1978), Kass, Tierney, and Kadane (1988),
Kass and Vaidyanathan (1992), and Phillips (1992). The relationship of our results to the
latter asymptotic ones is discussed below (see Section 7).

In this paper, we also analyze classical and Bayesian tests that are designed to be
impartial between the null hypothesis and a chosen alternative distribution. We find that the
impartial classical and Bayesian tests are equivalent asymptotically for one-sided alternative
hypotheses. For two-sided hypotheses, we find that they are not equivalent asymptotically, but
are quite close to being so. We note that these results are established for models without
trends. For example, they do not apply to tests of a unit root.

The remainder of this paper is organized as follows. Section 2 states the testing problem
of interest and outlines the results of the paper. Section 3 specifies the parametric model
under consideration and states various "high-level" assumptions that it is required to satisfy.
These high-level assumptions include the assumptions that the normalized score function and

sample information matrix satisfy a central limit theorem and law of large numbers, respec-



tively, and that the maximum likelihood estimator is consistent. These assumptions are
replaced by more primitive assumptions later in the paper. The high-level assumptions are
employed, because they help to clarify the essential aspects of the parametric model that are
needed for the results of the paper. Section 4 specifies the prior distributions that are consid-
ered in the paper. Section 5 states the main results and discusses their implications. Section
6 provides primitive conditions for the assumptions of Section 3 for the case of stationary
nonlinear models. Section 7 discusses related results in the literature. An Appendix provides
proofs of the results stated in the paper.

All limits below are taken "as T — «," where T is the sample size. We let wp — 1 denote
"with probability that goes to one as T — =" ~ denote "has the same distribution as," and T

denote pi = 3.14....

2. THE PROBLEM OF INTEREST AND OUTLINE OF RESULTS

The testing problem considered here is the following: Suppose we have a parametric
model indexed by a parameter 6 € 8 « R°. The parameter 6 is of the form 6 = (B’, 8y,

where B € RP, 8 € R9, and s = p+q. We are interested in testing the null hypothesis
2.1) Hy: B = 0 (or equivalently, 6 = 6,, where 8, = (0’, 8,)" for some &, € R) .
In the classical testing scenario, H|; is tested against the alternative hypothesis H; given by

(2.2) H,: P # 0 (or equivalently, 6 = (B’, 5))’, for some B € R?, B = 0,

and some &, € R9).

In a Bayesian scenario, the alternative hypothesis H, is that the parameter § has some distri-
bution that is not pointmass at 0. For the case where p = 1, we also consider the one-sided
alternative testing problem where the hypotheses are Hy: § = O and H, : p > 0.

We note that, although (2.1) and (2.2) involve testing linear restrictions, the results given
below apply more generally. One usually can reparametrize the model under consideration to
convert nonlinear restrictions of the form Hj : h(8) = 0 into linear restrictions of the form

(2.1) in a transformed parameter space. The results given below can be applied with the



transformed parameter space and then mapped back to the original parameter space. (For an
alternative approach to posterior odds testing with nonlinear restrictions, see McCulloch and
Rossi (1992).)

With classical methods, one can test the null hypothesis Hy : p = 0 using a standard
Wald, LM (score), or LR statistic given a significance level ¢. Such tests have well-known
asymptotic optimality properties, e.g., see Wald (1943). Under suitable regularity conditions,
these statistics have a nuisance parameter free asymptotic distribution under H;, and an
asymptotically valid critical value, k,, ;, can be obtained given a significance level a.

Using Bayesian methods, one can carry out a posterior odds test of H, against H;. To do
so, one specifies a prior probability = € (0, 1) for the null hypothesis H, and prior distribu-
tions over the parameter values both under H, and under H;. If = is set equal to 1/2 (e.g., as
advocated by Jeffreys (1961, pp. 246)), then the prior odds are even. In any event, the pos-
terior odds statistic in favor of H, is given by the ratio of the posterior probability of H; to
that of H,. A posterior odds test rejects H; if the posterior odds statistic (in favor of H,) is
greater than 1 and otherwise accepts H0.2

Let W, LMy, and LRy denote the standard Wald, LM, and LR statistics respectively.
(The statistic LRy equals -2 times the log of the likelihood ratio.) The main result of this
paper is that for certain choices of prior, 0, the posterior odds ratio is approximately equal
to a monotone function of Wy, LMy, or LRy in large samples.

To define this monotone function, let S, denote the unit sphere {v € R? : vv = 1} for
p 2 1 and let ST denote the unit sphere in R*, ie, ST = {1}. Let s, generically denote one
of the unit spheres S, or § ‘i’ The unit sphere §, arises with two-sided tests of the value of a
p-dimensional vector B. The unit sphere ST arises with one-sided tests of the value of a scalar
parameter f3.

The posterior odds ratio in favor of H; is shown to be approximately equal to PO(Wp, i),

PO(LM, p), and PO(LRy, p), where

23) POM, ) = 12 [ exp(-rI2)g,(MP)dn()



Here, u(*) is a probability distribution on R* = {r e R : r > 0} that depends on the prior 0,

and g,(*) is a monotone function defined by

g,(x) = | exp(x?sgn(x)€'AU(E)
%
(2.4) -;CXP(KUZ) + %exx’(—x”z) for 5, =5,

= | 2#7ren)[* ep(xu)1-u?)0du for 5, =5, and p 22

i
(%)
—

k exp(xlfzsgn(x)) for 5, =

for x € R, where U(-) denotes the uniform measure on 5, sgn(x) denotes the sign of x, 1

denotes an arbitrary vector in 5, and I'(") denotes the gamma function. (The second equal-

ity for the case of p > 2 follows from Watson (1983, Appendix A, eqns. (1.1), (1.5), (1.6)).)
Of course, the approximate posterior probabilities of H, and H,, denoted PP(H,) and

PP(H ), respectively, can be obtained from the approximate posterior odds statistics via

2.5) PP(H,) = TTFél(M—p) and PP(H,) - T—?%%l(——}t;)m

for M = Wy, LMy, or LRy

If the prior Q, is a certain multivariate normal distribution with variance proportional to
a scalar T > 0 (or the absolute value of a normal distribution for the one-sided testing case),
then the posterior odds statistics PO(Wy, p) etc. simplify. The distribution p = p_ that cor-

responds to Q in this case equals the square root of t times a chi-square random variable

= (=’ . The statistic PO(M, ) of (2.3) simpli-

with p degree of freedom (xz), ie., p
fies in this case to

26) POM, &)

ol

in the two-sided testing case for p > 1 and to

T ()" exp[2 = M}z [[ |M|] sgn(M)]

in the one-sided testing case, where ®(-) denotes the standard normal distribution function.

@7 POM, u) =




Given the approximation of the posterior odds ratio by PO(Wy, 1), it is easy to see that
there is a direct correspondence between a classical test and a posterior odds test. A classical
Wald test rejects Hy if Wy > k, o Here k, . is the (1-a)-th quantile of a xﬁ distribution for
two-sided tests with p > 1 and k, o is the (1-2a)-th quantile of a x% distribution for one-sided
tests. An approximate posterior odds test rejects Hy if PO(Wp, 1) > 1. Since PO(M, u) is a
strictly increasing function of M (provided y is not pointmass at 0), PO(:, ) has an inverse
function PO~1(-, u) and the approximate posterior odds test rejects if Wp > PO, p).
Thus, the classical and approximate PO tests are equivalent whenever PO"1(1, k) =k, o or,
equivalently, whenever PO(k, o» 1) = 1. For fixed « and y, one can always find = such that
equality holds. For fixed ¢ and =, one can always find numerous different distributions p
such that equality holds. Alternatively, for fixed p and =, one can always find o such that
equality holds. It is in this sense that the present paper demonstrates a correspondence

between classical and Bayesian tests of H, versus H.

3. THE PARAMETRIC MODEL

In this section, we define the parametric model, state high-level assumptions that are suf-
ficient for our results, and define the Wy, LM, and LR statistics.

Let Yy denote the random data vector when the sample size is T for T = 1, 2 ... Con-
sider a parametric family {f{yy, 6) : 6 € 8} of densities of Y, with respect to some o-finite
measure Yy, Where © c R®. The likelihood function is given by £{6) = f(Yy, 6).

In many cases, the likelihood function f{6) can be written as a product of two terms, one
that depends on 6 and another that does not. Often the latter term is the product over ¢t = 1,
.., T of the conditional distribution of some weakly exogenous variables at time ¢ given all of
the preceding variables (exogenous or not). In such cases, these conditional distributions of
the weakly exogenous variables need not be known in order for one to construct the classical
or posterior odds test statistics considered here. The results below hold for any such distribu-
tions for which the assumptions on f{8) hold. See Section 6 below for a more explicit discus-

sion of the factoring of f{6) into known and unknown terms.



Let 0(8) = log f1{0). Let Di{(6) denote the s-vector of partial derivatives of 0,{(6)
with respect to 6. Let D2QT(9) denote the s x s matrix of second partial derivatives of ¢{(6)
with respect to 6. We consider the standard case where the appropriate norming factors for
D{(6) and D207(6) (so that each is O,(1) but not 0,(1) as T — «) are T-12 and T-! respec-
tively.

Let 6, denote a value of 6 in the null hypothesis. (Below we consider a pointmass prior
distribution at 6;.) We say that a statement holds "under 6" if it holds when the true density
of Yrisf{(8p) forT =1, 2, ....

The likelihood function/parametric model is assumed to satisfy:

ASSUMPTION 1: (a) 8 is an interior point of ©.

(b) f{(8) is twice continuously partially differentiable in © for all 6 € ©, with probability one
under 0, where 8, is some neighborhood of 6.

(© -T'lDle(G) P, R6) uniformly over 6 € 6, under 6 for some non-random s x s matrix
function 7(8).

(d) #(6) is uniformly continuous on .

(e) 7 = 2(6) is positive definite.
ASSUMPTION 2: T"Y2D0(8,) —4. Z ~ N(0, 7) under 6,

We comment briefly on Assumptions 1 and 2. Assumptions 1(a), (b), (d), and (e) are
fairly common maximum likelihood (ML) regularity conditions. Differentiability in 6 is
assumed for simplicity at the expense of some generality. As is well known, it is not needed
for standard ML estimation results and undoubtedly could be relaxed here with some increase
in complexity.

Assumption 1(c) is a high-level assumption that requires a uniform weak law of large
numbers (WLLN) to hold (since —T'1D207(60) can be written as a normalized sum of
random variables by factoring the likelihood function using conditional distributions). The
"uniformity" in Assumption 1(c) can be established, e.g., by using the generic uniform converg-

ence results of Andrews (1992). As stated, Assumption 1(c) allows one to be relatively



agnostic regarding the temporal dependence and heterogeneity of the data. To verify 1(c),
one needs to be more specific regarding these properties.

Assumption 2 is a second high-level assumption. It requires that the normalized score
function satisfies a central limit theorem (CLT) (since T7-Y2D¢{6,) can be written as a
normalized sum of random variables that are mean zero under weak additional conditions).

Let 8 (= 8;) be the unrestricted ML estimator of 6. That is, § satisfies

@3.1) ¢(8) = sup ¢{6) wp - 1 under 6, .
0eO

Let § (= 0;) be the restricted ML estimator of 8. That is, § satisfies

[: ] ={6 68:e=(0’,6’)'forsomeéeRq} and

t(8) = sup ¢{(6) wp - 1 under 6 .
08

(3.2)

We now introduce two additional high-level assumptions. We assume that the parametric
model is sufficiently regular that the ML and restricted ML estimators are consistent under

the null hypothesis.
AssumpTION 3: 6 £, 6, under 6.
AssumPTION 4: § 2, 0y under 6,

Primitive sufficient conditions for Assumptions 1-4 are given in Section 6 below.

We add a final comment concerning Assumption 1(a) for the case of one-sided tests.
This assumption requires that the parametric model is defined for two-sided alternatives even
though H, is one-sided. It implies that § = (', §') is a two-sided unrestricted ML esti-
mator. That is, § may take values greater than or less than zero, Assumption 1(a) can be
restrictive in the one-sided case. For example, it precludes B from being a variance param-
eter. On the other hand, it does cover many models of interest and it is an assumption that
has been used frequently elsewhere in the literature. For example, it is imposed in the classic
paper by Chernoff (1954) on large sample one-sided tests.

This completes the set of assumptions on the parametric model. We are now in a posi-



tion to define the classical test statistics Wy, LM, and LRy. For the case of two-sided tests
with p > 1, define
Wy = (HTUzé)’[H?}I(G)H'}-IHTUZ() ,
LMy = [TV D48 )| 7' ®)T"De @) , and
-2(60(8) - t{(8)) , where

[I, : 0] = R and 7,(8) = -T"'D?(0) .

(3.3)

LR;

H

Alternatively, one can define 7;{0) to be of outer product, rather than Hessian, form. Note

that only the first p elements of DQT@) are non-zero in the definition of LM, because

36501-(5 ) = 0 by the first order conditions for the restricted estimator § (wp — 1).

For the case of one-sided tests, let Wy, LMy, and LR} denote the expressions on the

right-hand side of (3.3) and define the test statistics W, LM and LRy by
(34) Wy = Wisgn(HO), LMy = LMjsgn(H7; @ )Dty()), and LRy = LR}sgn(H8) .

Note that a test based on Wy is equivalent in this case to the standard large sample ¢-test,

since Wy just equals the ¢-statistic squared times its sign.

4. SPECIFICATION OF PRIORS

We take the prior probability of H;, to be n € (0, 1) and that of H; to be 1-x. We are
able to obtain approximations that hold for any parameter vector in the null hypothesis. In
consequence, we take the prior over 6 in H to be given by pointmass at 8, where 0 is an
arbitrary parameter vector in H,. By doing so, we avoid placing a prior over the nuisance
parameter vector §. As is desirable, the results hold for any fixed value of the nuisance par-
ameter.

Next we specify priors over 6 in H;. We consider priors that depend on the sample size
T. We do so in order to obtain large sample approximations that hold under the marginal

distributions of the data both under H, and under H; and that capture relatively detailed
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effects of the chosen prior. We do not envisage one changing the prior as T changes in prac-
tice. Rather, in order to generate approximations for a fixed prior and fixed sample size, we
find it useful theoretically to embed the prior in a sequence of priors that vary with 7. The
approach used here is analogous to the use of local alternatives in the analysis of the power of
classical tests. If one does not change the prior with T, the large sample behavior of the pos-
terior odds ratio in favor of H, is degenerate. It diverges to infinity under H, and converges
to zero under H,. Using such fixed prior asymptotics, the effect of the prior is captured only
crudely (see the discussion and references in Section 7).

For 0 in H,, we write
4.1) 0 =0,+ T,

where 6, is as above and h is some R® vector. We consider a prior Q, over vectors h € R
Q, is fixed for all T. This corresponds to priors on 0 that place greater mass on alternatives
near 6, as T increases.

The prior Q, on A is defined as follows. Let V denote the linear subspace of R® defined
by

4.2) V = {6 €eR :0=(0, &) for some & € Rq} .

The null hypotheses can be expressed as H, : 6 € & = © n V. We consider a prior Q u over
h in R® that concentrates on the orthogonal complement of V with respect to the inner
product ¢h, 0), = h’7 for h, ¢ € R%; call it V*. Since V is a q dimensional subspace of R®,
V* is a p dimensional subspace of R’. Let {a,, .., a,} be some basis of V* and define

A = [ay, .., a,] € R, For example, one can take

1 7, 7

I 4 1 42
“4.3) A= _ |, where 7=}
for 7, € RP’?, 7, € RP4, and 7; € R4, In consequence,
4.4) V*-{h eR‘:h=AAforsomeAeR”}.

The prior Q, that we consider concentrates on V* and has contours given by certain
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ellipses. In other respects, the prior is arbitrary. Thus, the results given below apply for a
wide range of priors. The ellipses over which Q,, gives constant weight are the same as those
considered by Wald (1943) in his demonstration of the property of asymptotically greatest
weighted average power of classical Wald tests. The parameter vectors 6 corresponding to
different points on any such ellipse have the property that they are equally difficult to detect
asymptotically - - no direction away from the null is favored over any other.

The prior distributions are assumed to satisfy:

ASSUMPTION 5: (a) The prior probabilities of Hy and H, are n € (0, 1) and 1-x respectively.
(b) The prior distribution of 0 under H is pointmass at 8, where 0 is the null parameter vector
considered in Assumptions 1-4.

(c) The prior distribution of © under H, is given by 6 = 6, + T Y2 and h - Q w Where 0 is as
in part (b). The distribution Q“ of h is such that h/jhji, ~ A(A ’ZA)'UZE, where £ is a random

vector that is uniformly distributed on the p dimensional unit sphere

» and h/\h|, and |h|, are

independent.

Let u denote the prior distribution of Jh},. Assumption 5 allows u to be arbitrary (provided
it is not pointmass at 0).

When p = 1 and H, is one-sided, the unit sphere S, referred to in Assumption 5(c) is a
pointmass at 1. In this case, Assumption 5(c) places no restriction on the distribution of h
other than that it lies in V*. When p = 1 and H; is two-sided, the unit sphere §; equals
{-1,1}. In this case, Assumption 5(c) requires the prior on h to satisfy a symmetry property.
If 2, = 0 (ie, if the information matrix is diagonal between the parameters B and &), the
symmetry property just requires that 4 and -h are given equal prior density (or prior mass)
for all . When p > 1, the unit sphere 5 is non-degenerate and Assumption 5(c) requires the
prior @, to have contours given by certain ellipses, as noted above.

For particular choices of distribution p on Jhl,, the distribution Q and the approxima-
tion to the posterior odds ratio simplify. More specifically, suppose p is the distribution of

the square root of t times a chi-square random variable with p degrees of freedom (i.e.,
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(TS -cx; ) for some t > 0. Then, in the two-sided testing case, h and 6 have prior

distributions given by
h ~Q, =N, <Z) and 6 - N8, (v/T)Z), where

(4'5) -1 ' -1 -1 ’ -1 -1
7 - L% -7 - 57,7 27

S =AU A -
-1, -1:,,'1 -1, -1, )\
~LB\ - BT L\n - LT 1] n,

and N(0, Z) denotes a muitivariate normal distribution with mean 0 and covariance matrix X
(possibly singular). With some algebraic manipulations, one can show that the above prior on

0 corresponds to the following prior on f:

(4.6) B - Mo, (s/mHZH) .
Note that (1/T)H7z !H ' is the asymptotic variance of the unrestricted ML estimator .

In the one-sided testing case, the above prior p ~ \/TX:; on [h|, yields priors on h, 0,
and B given by

h ~Q, = IN(Q, <Z)|, 6~ 8 + [N, (v/T)Z)| , and
4.7)

B~ INO, (s/DHT'H)]
for T as in (4.5), where |N(0, )| denotes the distribution of the absolute value of a random

variable with N(0, ) distribution.

For convenience, we refer to the above cases as Assumption 5*:

ASSUMPTION 5*: Assumption 5 holds with the distribution Q n of h given by N(0, t L) for tests of two-

sided alternatives and by |[N(0, tZ)| for tests of one-sided alternatives, for some constant t > 0.

Under Assumption 5*, the formula (2.3) for the approximate posterior odds ratio can be

simplified:

LEMMA 1: Under Assumption 5*, the expression for PO(M, ) given in (2.3) simplifies to that

given in (2.6) for two-sided tests and to that given in (2.7) for one-sided tests.
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5. MAIN RESULTS

In this section, we state the main approximation results for the posterior odds statistic

and discuss their interpretation.

5.1. Statement of the Main Results
To start, we define the posterior odds statistic PO{Q,) given the priors defined in

Assumption 5:
(5.1) PO1Q,) = =% [£(@ + Th)AQ, ()fr(0y) -

Note that for convenience we have defined PO{Q,) to be the posterior odds ratio in favor of
H,, not in favor of H,. (The latter is just the reciprocal of POL{(Q,).)

Below we say that probabilistic results hold "under H," and "under H," if they hold under
the predictive densities of the data under H, and under H, respectively (i.e., under the mar-
ginal distribution of the data Y, that is determined by the parametric model and the prior on
0 under H; and under H,, as described in Assumption 5). Thus, "under H," is equivalent to
"under 6,," whereas "under H," depends on 6, and Q.

The main result of the paper is the following:

THEOREM 1: Suppose Assumptions 1-5 hold. Then, under both Hy and H,, we have:
(a) POQ,) - POWy, 1) L. 0, (b) POLQ,) - POUMy, 1) £ 0, and () POLQ))
- PO(LRp, ) 2. 0.

COMMENTS: 1. Theorem 1 holds not just for a single vector 8, but for all null parameter vectors
8, for which Assumptions 1-5 hold, since PO{(Wp, 1), ..., PO(LRy, ) do not depend on 6,
2. The result of Theorem 1 suggests approximating PO{(Q ) by PO(Wp, p), PO(LM7, 1),
or PO(LRp, 1). At least in some cases, this approximation is quite good. For example, part
(a) of Theorem 1 holds exactly (i.e., PO{Q ) = PO(Wyp, p)) in the case of a linear regression
model with regression parameter 0, iid normal (0, 02) errors, 02 known, and weakly exogen-

ous regressors.4
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5.2. Interpretation of Theorem 1
Theorem 1 shows that the posterior odds test, which rejects H, when POH{Q,) > 1, is

approximately equal to the test that rejects H, when PO(Wp, 1) > 1, or equivalently, when
(5.2) Wy > PO, p),

where PO~1(-, 1) is the inverse function of the strictly increasing function PO(:, u). (The
same holds with W, replaced by LM or LR1) On the other hand, a classical Wald test of
asymptotic significance level a rejects Hy when

(5.3) WT > kp,a ’

where k,, , is as defined in Section 2. In consequence, the posterior odds test is approximate-

ly equal to a classical test, and vice versa, whenever «, i, and = are such that
(5.4) PO(kp,a, p) =1.

It can be shown that for any significance level a € (0, 1) there exist pairs of priors (x, p)
such that (5.4) holds. In fact, there are many such (n, u) pairs corresponding to a given «.
Conversely, given any pair of priors (n, i), there exists a (unique) significance level @ such
that (5.4) holds. In fact, given any pair from the triplet («, =, u), there exists a value of the
third element such that (5.4) holds. Thus, for the special case of even prior odds (n = 1/2),
given any significance level « there exists a prior u such that (5.4) holds and vice versa. These
results imply that for any classical test there exist equivalent approximate posterior odds tests
and vice versa. The mapping of posterior odds tests to classical tests is many-to-one.

The discussion above indicates that in large samples there are numerous posterior odds
tests that are approximately equal. Different pairs of priors (n, p) that yield the same value
of PO-1(1, p) generate posterior odds tests that are approximately equal. This is a useful
robustness property for posterior odds tests: The result of a posterior odds test holds not just
for a single pair of priors (%, p), but for the whole family of priors that generate the same
value of PO1(1, ). Note that even if the prior probability n of H is fixed, say at 1/2, there
is still a whole family of priors p that generate the same value of PO~1(1, p).

The p-value of a test based on the statistic Wy, say, is a monotone decreasing function of
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Wy In consequence, the approximate posterior odds ratio is a monotone decreasing function
of the p-value. In turn, the posterior probability of H, is a monotone increasing function of
the p-value. (It will not equal the p-value in general) More specifically, let PWT denote the
p-value of the test based on Wr. Then, by definition, k, Py, = Wr. Hence, the approximate
posterior odds statistic equals PO(kp' PWT’ p), which is a monotone decreasing function of PWT‘

We now analyze the correspondence between classical and posterior odds tests more
closely for two particular families of prior distributions u on k|, The first family
corresponds to priors Q, ~ N(0, tZ) on h for different t > 0, or equivalently, to priors

6 ~ N(8y, (t/T)Z). The prior distributions p in this case equal -cx; . Equation (5.4) holds

for such priors if

5.5 1+0)PPexpll Tk | =T
(5-5) (1+7) xp(Z 1+7 P° 1-=

for the case of two-sided tests with p > 1, and if

(5.6) (1+r)'1/2exp[% _f_klyu}ZQ[[__r_kl’u]m] -

1+7 1+7

for the case of one-sided tests,

Table 1 provides the values of t that solve (5.5) and (5.6) when = = 1/2 for a variety of
different values of ¢ and p. The table shows that as & increases (so that the classical test
rejects more frequently), the value of t that yields an (approximately) equivalent posterior
odds test decreases.

To illustrate the use of Table 1, consider a situation where the upper-left p x p block of
71 equals I,. Then, a posterior odds test with priors n = 1/2 and p ~ N(0, 41/T), where T is
the sample size, corresponds (approximately) to a two-sided classical test with significance
level ¢ = .05. A posterior odds test with = = 1/2 and B ~ |Z| for Z; ~ N(0, 50/T) corres-
ponds to a one-sided classical test with significance level ¢ = .05.

Next, we consider the family of prior distributions p on k], that equal pointmass at r,
for different r, > 0. Such distributions correspond to the prior on 0 being given by the dis-

tribution of 6, + T-Y24(424)"1¢r* and the prior on B being given by the distribution of
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T"VXH7'H)V2¢r,, where £ is uniformly distributed on .5,.

under this prior is (F¥T)H7 'H', which equals r? times the asymptotic variance of the ML

(Note that the variance of

estimator .) Equation (5.4) holds for such priors if

6.7 exp(-r/2)g,(ky o 77) = IL :

-7

In particular, for the case of one-sided tests, this reduces to
2 L n
(5.8) exp(-r‘/z + kl,(! r*) = E .

Equation (5.8) can be solved analytically to yield r, = (k; (x)l/2
t(kyy -2 log(n/(1-n)))Y? provided r, > 0. Thus, for one-sided tests with = = 1/2, we have
r, = 2»’75;: . Here, ‘/kl,_a equals the critical value for the Wald ¢-statistic. Thus, one needs
the prior on B to put pointmass at twice the critical value for the t-statistic times
og = (HZ 1H /T)Y2 in order for the posterior odds test and significance level o tests to be
equivalent (approximately), where o is the asymptotic standard error of the ML estimator B.
In particular, for « = .01, .05, .10, and .25, one has r, equal to og times 4.65, 3.29, 2.56, and

1.35, respectively.

5.3. Bayesian Versus Classical Tests That Are Impartial Between the Null and a Given Alternative

Suppose one wants a test that treats the null and a particular alternative distribution
impartially. A Bayesian test can be constructed in this case by specifying a pointmass prior
distribution at the alternative distribution of interest under H; and by taking the prior prob-
ability of H, to equal that of H, i.e., = = 1/2. In contrast, a classical test can be constructed
that has the property that its probability of type I error (significance level) equals its probabil-
ity of type II error for the alternative distribution of interest.

How do these Bayesian and classical tests compare? Using the results above and those of
Andrews (1989), we find that for one-sided alternatives the two tests are asymptotically equiv-
alent and for two-sided tests they are not asymptotically equivalent, but are quite close.

First, consider one-sided alternatives. Suppose the alternative distribution of interest has
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P equal to B,. Then, for a Bayesian posterior odds test, a pointmass prior distribution on §,
under H; corresponds to the distribution y introduced above being pointmass atr, = B /oy,
where o = (HZ 14 yT)Y2, For this prior, the (approximate) posterior odds test rejects Hy
if Wy > ki ,, where k} , solves (5.8) with = = 172, i.e, k], = (,2)2 = pZ(4o2). |

On the other hand, asymptotic inverse power results in Andrews (1989) give the (approxi-
mate) magnitude of B for which the probability of type II error of a Wald, LM, or LR test of
level ¢ equals «. The magnitude is 2z,0, where z, is the (1-a)-th quantile of the standard
normal distribution. In consequence, for a test to have significance level equal to the prob-
ability of type II error against p = B*, one needs « to satisfy B, = 2z,05 orz, = B,/(20p).
A Wald t-test rejects if the f-statistic exceeds z, = f J(Zop), or equivalently, if Wy (which
equals the squared ¢-statistic times the sign of the t-statistic) exceeds (B%/(4o§). Thus, the
impartial posterior odds and classical tests are equivalent asymptotically.

Next, for two-sided tests, similar calculations can be made, but one does not find that the
impartial posterior odds and classical tests are exactly equivalent asymptotically. Nevertheless,
they do not differ greatly. For example, suppose p = 1 and B, and og are such that B.Jog
= 3.605. Then, by Table 1 of Andrews (1989), the classical test with size equal to one minus
power at B, has ¢ = .05. This asymptotic test rejects if Wy > 3.84, using the x% table. For
the impartial posterior odds test, on the other hand, r, = B, /o, = 3.605 corresponds to a
critical value ky , = 3.98, according to equation (5.7). That is, the approximate posterior
odds test rejects if W (or LMy or LRy) exceeds 3.98. Since the critical values 3.98 and 3.84
are quite close, the posterior odds and classical tests are quite close asymptotically. If B, and
og are such thatr, = B /o, = 4.902 (or 2.926), then the impartial classical test must have «
equal to .01 (.10 respectively) and the asymptotic critical values of the impartial posterior
odds and classical tests are 6.72 and 6.63 (2.89 and 2.71 respectively). In each case, the
impartial posterior odds and classical tests are quite close asymptotically.

We now add several caveats to the results described in this subsection. First, the resuits
are established only for standard asymptotic scenarios, where the ML estimator is asymptotic-

ally normal. They also should apply if the asymptotic distribution of the ML estimator is a
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location shift family of symmetric distributions, such as mixed normal distributions. On the
other hand, they cannot be expected to hold for tests involving unit root parameters in models
with stochastic trends. Second, the results depend on the difference between the prior on the
nuisance parameter & under H; and its prior under H; going to zero as T — «. If one had
different priors on & asymptotically under the two hypotheses, then the results would not
hold. (In finite samples, this cause of a difference between impartial Bayesian and classical
tests can be illustrated by considering tests of Hy : Y ~ N(0, o%) versus H, : Y ~ N(B, o3)
where o% # o%). Third, for two-sided tests, the results depend on the restrictions on the prior

on B under H, (as specified in Assumption 5(c)).

5.4. Tests Based on Expected Posterior Losses

In this section, we show that the results above, which show a correspondence between
Bayesian posterior odds tests and classical tests, also provide a correspondence between
Bayesian posterior expected loss tests and classical tests.

Let L(8, H;) (resp., L(6, H;)) denote the loss when 6 is the true parameter and H
(resp. H,) is chosen. By assumption, L(0, H;) > 0 and L(6, H)) = 0 VO n H;forj=0,1. A
Bayesian posterior expected loss test rejects H; (i.e., chooses H) if the posterior expected loss
of H, is less than that of H, or equivalently, if the ratio of the posterior expected loss of H),
over that of H,, denoted REPL, is greater than 1. A Bayesian posterior odds test is a special
case for which L(8, H,) = L(8’, Hy) V6 in Hj and V0’ in H,.

Let L(8;, H,) = 1 without loss of generality. Suppose one takes L(6, H,) and the prior
on 6 under H; to be such that their product equals the prior on 6 under H; specified in
Assumption 5 above. Then, under the other assumptions above, REPLy - PO(Wp, 1) L,0
under H;, and under H,, and likewise for LM} and LR, where PO(Wp, p) is as defined in
(2.3) except with (1-n)/x replaced by jL(eO + T2, Hy)dQ (h)(1-m)/n . This result gives a

direct correspondence between classical tests and certain posterior expected loss tests.
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6. NONLINEAR MODELS

In this section, we consider nonlinear dynamic models. We provide primitive assumptions
that are sufficient for Assumptions 1-4 of Section 3. For simplicity, we consider strictly sta-
tionary m-th order Markov models. With some additional complexity in the assumptions, the
results could be extended to allow for non-Markov models with non-stationary non-trending
random variables.

The sample of observations is given by
(6.1) Yr={S.X):t<T},

where {S, : ¢t < T} are endogenous variables and {X, : t < T} are weakly exogenous variables.®

Let
(6.2) {8/8) : 0 € 8} = {g(5,ISy, s S;_p3 Xy, s X,) 2 O € 6

denote a parametric family of conditional densities (with respect to some measure 1) of S,
given Sy, .., S,_;, Xy, ..., X, evaluated at the random variables S, ..., S,, X;, ..., X,, where
6 cR°. Let

(6.3) h' = h'(X' ISI’ sesy Sf-l; Xl’ sasy Xf—l)

denote the conditional density (with respect to some measure) of X, given S, ..., §,_1, Xy, ...,
X, evaluated at the random variables §,, ..., S,_;, X;, ..., X,. By the assumption of weak
exogeneity, h, does not depend on 6.

The likelihood function f{6) and log likelihood function ¢;{6) are given by

T T
T
(6.4) f{(0) = ‘Ulg,(B)'ﬂlh, and ¢6) = 2‘.{ log g,(6) + Z] log h, ,
- t-

where Z7 denotes £T_ 1+ The function #(6) equals -E aeage, log g,(6) .

We consider the case where {(S,, X,) : t > 1} is part of a doubly infinite strictly stationary
ergodic sequence {(S, X)) :¢t=..,0,1, ..} and {S,: ¢t = ..., 0, 1, ...} is m-th order Markov for
some integer m > 0. By definition, {S, : ¢t = .., 0, 1, ...} is m-th order Markov if the condi-
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tional distribution of S, given %,_; = o(.., §,.5, S,.; .» X,_, X} equals the conditional
distribution of §, given S,,, = (S, -+ S;-1) and X, ,, = (X,_,, ..., X)) for all t. The Markov
assumption yields the simplification that the summands log g,(6) in the log-likelihood function
are strictly stationary and ergodic for ¢ > m. Without the Markov assumption this would not
be the case, because the number of relevant observed variables in the conditioning set would
vary with ¢,

The following assumption provides primitive sufficient conditions for Assumptions 1-4 of

Section 3:

ASSUMPTION NL: (a) O is compact and 0 lies in the interior of ©.

®) {(S, X)) :t = ..., 0, 1, ...} is strictly stationary and ergodic and {S, : t = .., 0, 1, ...} is m-th
order Markov under 6.

(c) g,(8) is continuous in 6 on © and twice continuously partially differentiable in 6 on €, with
probability one under 6, where 8 is some compact set that contains a neighborhood of 6.

(d) g,(6) = g,(6,) with positive probability under 6, V0 € © with 0 = 6.

(¢) E sup|log g,(8)] < =, E suplZlog g(8)] < =, El-log g(6))1° < =, and
6ed 6ee, o0 o6

E sup} & -log g(0)] < .
6e8, 90

& N :
) 72=-E 6666’108 8,(8y) is positive definite.
Assumption NL constitutes a fairly standard set of ML regularity conditions for stationary
and ergodic situations.
LEMMA 2: Assumption NL implies Assumptions 1-4.

Thus, Assumptions NL and S are sufficient for the result of Theorem 1 to hold.
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7. RELATED RESULTS IN THE LITERATURE

Here we discuss some asymptotic results for posterior odds tests due to Jeffreys (1961,
Pp. 246-47, 249-50), Lindley (1961), Schwarz (1978), Kass and Vaidyanathan (1992), and
Phillips (1992). In particular, we focus on the relationship between these results and the
results presented above.

Kass and Vaidyanathan (1992, eqn. (2.3)) (hereafter denoted KV) provide a family of
approximations to the PO statistic that depend on the choice of certain functions by and b.
Their approximations do not yield the approximate PO statistic to be a monotone function of
Wp, LMp, or LRy, Their approximations are closest to being such a function, however, if one
takes by and b to equal the priors on the parameters under H, and under H, respectively.

In this case, their approximate PO statistic in favor of H, is given by
1x 3O o 4Tl )]zz)mexp[ 1, Rr] ,

T @) det(T7{(6))

2
where 7(°) is the prior on 6 under H;, (') is the prior on & under H, =, 6, and D are as

(1.1)

above, [7()],, is the lower right ¢ x g sub-matrix of 71(B), and det(4) denotes the determ-
inant of the matrix A. This formula reduces to that given by Lindley (1961) for the case
where p = 1. It is similar to, but different from, the approximation given by Jeffreys (1961)
for the case p = 1.

KV show that the approximation (7.1) is valid to within a multiplicative error of O(1/T)
(i.e., the ratio of exact to approximate PO equals 1 + O(1/T)) with probability one under H,,
and under H, using asymptotics that employ the same prior for all 7.

A direct comparison of KV’s approximations to those given in this paper is not straight-
forward, because different asymptotics are employed. Under KV’s asymptotics, the PO
statistic has limit zero or infinity depending on whether Hj or H, is true. In consequence,
multiplicative approximation errors are considered and the prior only affects the approxima-

tion in a relatively crude fashion. With the asymptotics used in this paper, the PO statistic has



22

a nongenderate limit as T — =, so additive approximation errors are considered and the whole
prior affects the approximation.

KV’s multiplicative approximation errors are O(1/T), which is of second order and is
quite desirable. This does not necessarily translate into additive approximation errors of o(1)
under H;, however, because the true PO statistic diverges to infinite very quickly under H,
using their asymptotics. On the other hand, the additive approximation errors of the approxi-
mations given in this paper are necessarily 0,(1) under H; and under H; using our asymptot-
ics, but the corresponding multiplicative approximation errors are not O,(1/T) in general. It
seems likely that the approximations given here are more accurate than KV’s in some cases
and less accurate in others. The former is known to be true, since the approximations given
here are exact for linear regression models with iid normal errors and known variance for a
wide variety of priors, whereas KV’s approximations are not exact in these cases.

Next, we consider Schwarz’s (1978) asymptotic results for Bayesian model selection pro-

cedures. His results yield the following approximation to the PO statistic in favor of H,:

(7.2) T‘Pﬂexp[%LRT} .

The same formula applies for all prior probabilities = € (0, 1) of H, for all (proper) priors
over the values of 8 in H;,, and for all priors over those values of 6 in H;. Obviously, his
approximation can be quite crude given its extremely broad range of applicability. (One can
make the PO statistic take any value in (0, «) by suitable choice of n. Thus, it is clear that
Schwarz’s approximation does not hold uniformly in = and can have arbitrarily poor accur-
acy.) This crudeness of approximation is both a virtue and a drawback. It is a virtue, if one
wants to construct an asymptotic procedure that is independent of the prior, as does Schwarz.
It is a drawback, however, if one wants a reasonably accurate approximation of the PO statis-
tic, as is desired here.

Schwarz’s results apply to a subclass of the models considered in this paper, viz., iid linear
exponential models. On the other hand, his results apply to a broader class of hypotheses. In

addition to considering hypotheses of the form Hy : p = 0 versus H, : p = 0, which corres-
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pond to choosing between nested models of different dimensions, he also considers choosing
between non-nested iid linear exponential models. The type of asymptotics considered by
Schwarz differs from that considered here. He fixes the values of the (normalized) sufficient
statistics of the linear expomential model for all T. Thus, in his asymptotics, nothing is
random.

Schwarz’s approximations are valid in the sense that the ratio of the true PO statistic to
the approximate posterior odds statistic (6.2) is bounded away from zero and infinity for all T.
Obviously, this is a very weak approximation result. For the purposes of obtaining reasonably
accurate approximations, one would like the ratio to have limit one as T -~ «, as with KV’s
approximations.

Last, we discuss some results of Phillips (1992, Remark 3.2(ii)). Phillips’ results are sim-
ilar to those given here in that they establish an asymptotic correspondence between Bayesian
posterior odds and classical tests. His results differ, however, in terms of the priors consid-
ered, the models considered, and the choice of distributions under which the asymptotics hold.
Thus, his results and those given here are more complements than substitutes.

More specifically, Phillips’ results and ours differ as follows: (i) Phillips discusses the
asymptotic correspondence when the asymptotics are derived under the null, whereas we con-
sider the asymptotic correspondence under the null and also under the alternative, (ii) Phillips
considers a non-informative (improper) prior, whereas we consider classes of proper priors,
and (iii) Phillips considers linear vector autoregressive models that are stationary under the
null and possibly non-stationary under the alternative, whereas we consider nonlinear models
with random variables that are nontrending under the null and the alternative.’

The discussion above shows that there are several useful asymptotic approximations in the
literature for PO statistics. Hopefully, it also indicates that the approximation results of

Sections 2 and 5 provide value-added beyond those results currently in the literature.



APPENDIX

Without loss of generality, we set the prior probability n of Hj to be 1/2 throughout the
Appendix. This simplifies notation, since the multiplicative factor (1-n)/n reduces to 1. The
proofs of Lemmas 1 and 2 follow those of Theorem 1. We start by stating an assumption,

several definitions, and four lemmas that are used in the proof of Theorem 1.
ASSUMPTION 1: T"2D0(8y) = O,,(1) under 6,

Assumption 1’ is implied by Assumption 2. Assumption 1’ is introduced, so that it is evident
below where the full strength of Assumption 2 is used in the proofs.

The unrestricted ML estimator 6, suitably shifted and scaled, can be approximated under
8y by the score function D¢{8;) suitable scaled. We refer to the latter as the approximate

ML estimator 6. By definition,

(A.1) 8 = 7'T°Y2Doyey) .

LEMMA A-1: Suppose Assumptions 1, 1', and 3 hold. Then, TV2(§ - 8p) - 8 -2, 0 under 0.

Next, we define an unobserved large sample approximation to the posterior-odds statistic

POLQ,). This approximation is based on the approximate ML estimator 6. Let

(A.2) POLQ,) = [exp

/

- %(a—h)'f(ﬁ—h)}igp(h)/exp[— %6’76} .

LEMMA A-2: Suppose Assumptions 1, 1' and 3 hold. Then, PO{Q,) - POLQ,) 2. 0

under 0.

For the case of two-sided tests, we define an approximate Wald statistic WT based on the

approximate ML estimator 8 by

(A3) Wy = (HE)'(HfIH')'lHﬁ .
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For the case of one-sided tests, we let ﬁ/} equal the right-hand side of (A.3) and we define
WT to equal ﬁ’,’- sgn(Ha).
The approximate posterior-odds statistic PUT(Q") simplifies to a simple function of the

approximate Wald statistic:
LEMMA A-3: Suppose Assumption 5 holds. Then, POLQ,) = PO(Wrp, p).

Combining Lemmas A-2 and A-3, one sees that the results of Theorem 1 under 6, are

equivalent to
(A4) PO(Wp, 1) - PO(Wy, ) £ 0 under 6,

and likewise with Wy replaced by LM and LRy. The latter results are relatively straightfor-
ward to establish under Assumptions 1-5 (see below).

To obtain the results of Theorem 1 under H,, it suffices to show that they hold under 6,
and that the alternative marginal densities {J’fT(BO + T'mh)dQ“(h) : T > 1} of the data vec-

tors {Y;:7 > 1}, under the parametric model {f{6) : 6 € ©} and the prior Q,, are
contiguous to the null densities {f{8;) : T > 1} of {Y;: T 2 1}.

LEMMA A-4: Suppose Assumptions 1-5 hold. Then, the alternative marginal densities

(JfT(BO + T’w'h)dQu(h) : T > 1} of the data vectors {Yy : T > 1} are contiguous to the null

densities {f{(68y) : T 2 1}.

PROOF OF LEMMA A-1: All probability calculations in this proof are made "under 6,." By
Assumptions 1(a), 1(b), and 3 and the definition of 8, DQ,(@) = 0 wp — 1. Hence, by one-
term Taylor expansions of the elements of DQT(é) about 6, we get, wp — 1,
0 = T'2Do(B) = T"V2De(8y) - 7,7TV*(® - 6y) , where
(A5) 1
Zip = - [ TD%(8; + A(® - 8p))dA .
0

The matrix Iir satisfies



1
177 - 71 < | [ [-T7ID%(8y + (6 - 8g)) - 2(8; + A(B - 6())}dAl
0

(A.6) 1
+ 1 [ [28g + A - 89)) - AdA|
0
= op(l) ,
where the equality holds using Assumptions 1(c) and 3 for the first term and Assumptions
1(d) and 3 for the second term. Equation (A.6) and Assumption 1(e) yield j77} - 71|

= 0,(1). This result, (A.5), and Assumptions 1(e) and 1’ give

0,(1) = ITY2(® - 8)) - 7,77 Dr(8p)]

(A7)

IT2(® - 8)) - 7T V2Der(8p)1 + 0,(1) . O

PROOF OF LEMMA A-2: All probability calculations in this proof are made "under 6,." For

0 < M < «, define

(A.8) POpy = [, 180 + T"V2h)dQ, (n)ff{(8;) and

(A9) POns = [0 - 3@ 2@ o, Gy~ 3570

For any ¢ > 0,
P(|POL{(Q,) - POHQ,)| > €) < P(IPO1(Q,) - POgy| > ¢)

(A.10)

Hence, it suffices to show that (1) given any n, > 0 we can choose T* < « and M < « suffi-
ciently large so that P(IPO{Q,) - POpy| > ¢) < n andP(|POL(Q,) - POpy| > ) < n
forall T > T* and (2) POgy - POppy 2400 < M < =,

We show (1) first. We have



Al P(IPOHQ,) - POry| > €) s e”'E|POLQ,) - PO
A.11
= p-1 -12 -1
= B[, Ly Ur®o + TVPhf0lQ, () = o7!f | do ) ,
where the second equality holds by Fubini’'s Theorem and the fact that
E[f{(8, + T’Uzh)/fT(BO)] =1 Vh. The right-hand side (ths) of (A.11) can be made

arbitrarily small for all T by taking M large.
Next, we have

POHQ,) - POrpyl = expBE'zé'}jH,M exp[- g(é—hw(é—h)}dgp(h)
(A.12)
< exp[-;|T'mDQT(60)I2~IfIIJJMI>M g, (k) ,

where the inequality uses Assumption 1(e). The first term on the rhs of (A.12) is Op(l) by
Assumptions 1(e) and 1’ and the second term on the rhs can be made arbitrarily small by
taking M large.

We now establish (2). A two term Taylor series expansion gives

(A13) 08, + T™V2h) - 0(8,) = W'TV2De(8,) + %h’T‘lD%,(eO)h +rdh)

where the remainder term r;{(h) satisfies

sup brh)l s M>  sup  |T7ID%(6) - T71D%(8y)1
hiM 8:1T2(8-8,) 1M

< M?sup IT'D%0(0) - 2(6)] + M®>  sup 12(8) - 7(6,)I
(A.14) 0e6 0:IT2(8-80) 1M

+ MAIT'D%(8y) + 2(6p)I
= op(l) ’
where the equality uses Assumptions 1(c) and (d). In addition,

(A.15) h'T D (8g)h = -h'2h + ryp(h) , where sup |ry(h)| = o, (1),
h:phisM

by Assumption 1(c). It follows from (A.14) and (A.15) that



(A.16) exp[ryp(h) + rpp(h)] = 1 + sp(h) , where sup |[sp(h)| = 0,(1) .
‘ h:hi<M

Combining (A.13) and (A.15) and using the definition of 6 yields

WA - %h’fh + ry(h) + ryp(h)

048 + T™2n) - 4(8y)

(A.17)

%6’25 - %(E-h)'z(é—h) + ryp(h) + rpp(h) .

Combining (A.7), (A.8), (A.16), and (A.17) gives
POny = [0 SP[tr(G0 +T7%) - tr(8) 0, (k)

(A.18) i exp

ez 1z 0. =
i P8R - 2(@H) y(e-h)}u + s{(RMQ, ()

POy, + op(l) ,

where the third equality uses PO, = Op(l), which follows from a close analogue to (A.12).

This completes the proof. [

PROOF OF LEMMA A-3: Let P and P* denote the projection matrices onto V and V*, respec-
tively, with respect to {;, -),. The projection matrix P* is given by P* = AH, where A and
H are as in the text. To see this, note that HA = I, and, hence, (AH)(AH) = AH and AH is
an oblique projection matrix. Furthermore, forv = (0’, 6’)' € V, AHv = 0, so AH projects
onto a space orthogonal to V. On the other hand, for m = (m;, mé)' eV vim =0
WeViHf[0:L]am =0iff [%:5)m = 0iff my = -751m; iff m = Am;. In con-
sequence, AHm = AHAm, = Am; = m Vm € V*. That is, AH projects onto the entire
orthogonal complement of V' with respect to (-, *),.

Now, the integrand of PO(Q,,) can be rewritten as follows:

155 - %(h—g)’z(h—a) -- %h'fh R = - %h‘zh + h'2P*8

[ 8]

(A.19)
- %(P*g)’IP*ﬁ - -;-(h _ P8y 2(h - P*B),

where the second equality holds because h € V* implies h ‘7P = 0.
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Define Z = (4 ’ZA)I/ZHE. Let £ be a random p-vector with uniform (U) distribution on
the unit sphere, as in Assumption 5. Let R be a real random variable independent of { with
distribution p(-). Let i = A(4'74)"V2%E. Let J() denote the distribution of . Note
that Ji|, = 1. Define b = Rh. Then, h ~Q,(*), as desired.

Using these definitions, (A.19), and P* = AH, we obtain

POLQ,) = [ exp[%(AHE)’ZAHé . %(h —AHBY 7(h -AHg)}iQu(h)
- [ chp[%Z’Z _ %(rA(A’ZA)'mE — AHBY 7(rA(A’ 24) ™ 2¢ -AHE)]dU(s)dp(r)
" Jexp[-;Z'z - %(rE—Z)'(ra—Z)}fU(s)du(r)

- [ exP[— L rz'z}w(s)du(r)

- [exp

- %ﬂ}jexpuzura'(znzn]dv(s)du(r)

= PO(Xv u) ’

where X = |Z|? for two-sided tests and X = |Z Izsgn(HZ) for one-sided tests. The last
equality of (A.20) holds by the definitions of gp(x) and PO(, u).

It remains to show that |Z|2 = P-VT for two-sided tests and |Z |Izsgn(HZ) = ITVT for one-
sided tests. Since |ZJ2 = (HO)'A’Z4HO and sgn(HZ) = sgn(H0), the latter results hold
provided A'74 = (HT 1441 By simple algebra, 424 = 7, - 2273'125. On the other hand,
(H7'H)™! equals the inverse of the upper p x p submatrix of 7 1 which equals

7, - 2,717, by the formula for a partitioned inverse. [

PROOF OF LEMMA A-4: The following assertion is verified below using results of Strasser
(1985). If (i) POH{Q,) 4, PO(X, p) under 6, for some random variable X and
(i) E[PO(X, p)] = 1, then the result of Lemma A-4 holds. Condition (i) is obtained as
follows: By Lemmas A-2 and A-3, PO(Q,) - PO(Wr, 1) £ 0 under 6,. Next, POWp, 1)
4, PO(X, p) under 6j, where X = Z’Z for two-sided tests, X = Z%sgn(Z) for one-sided

tests, and Z ~ N(0, 1), by Assumptions 1(e) and 2, continuity of PO(:, p), and the contin-
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uous mapping theorem. Condition (ii) is obtained as follows: For X as above, by (A.20),

EPOX, W) = Effexpl- 17 + rezuopanc)

- ffe

where the second equality holds by Fubini’s Theorem and the third uses the expression for the

(A.21)

-grz}exp[grzz's}dv(z)du(r) =1,

_%,2}5 explrE'Z|dU(E)du(r) = [ [exp

standard normal moment generating function.

It remains to verify the assertion above. Let (Q, 4) be a measurable space. Let Py and
Qr be a null distribution and an alternative distribution on (Q, 4) for T > 1. Let Ey
= (Q, 4, (Pp Qp)). Er is called a (binary) experiment and {Ey : T > 1} is a sequence of
experiments. One can define equivalent experiments and one can put a metric A, on the
space Z,/~ of equivalence classes of experiments, see Strasser (1985, pp. 74, 75). By Theorem
18.11 of Strasser (1985), if Ay(Ep E) — 0 as T — « for some experiment E = (Q, 4, (P, Q)),
then {Qr: T > 1} is contiguous to {Pr: T > 1} if and only if Q is absolutely continuous with
respect to P, i.e., if and only if [gxpg(dx) = 1, where pg is the distribution of the likelihood
ratio dQ/dP under P, 4(dQ/dP |P).

Also, by Theorem 16.8 of Strasser (1985), (%£,/~, A,) and (44 7) are homeomorphic,
where 47 is the set of all probability measures p on [0, «) with [pxu(dx) < 1 and 7 is the
topology of weak convergence, with homeomorphism T defined by T(E) = <(dQ/dPP),
where E is the equivalence class of experiments that contains E and E = (Q, 4, (P, Q)). In
consequence, for any experiment E = (Q, 4, (P, Q)) and any sequence of experiments {E :
T21} = {(QA, (Pp Qp):T 21}, Ay(Ep E) - 0 as T — = if and only if (dQ/dPr/P7)
= L(dQ/dP [P) as T «, where "=" denotes weak convergence (or equivalently, convergence in
distribution). This result and the result of the previous paragraph establish the assertion

above. O

PROOF OF THEOREM 1: Suppose parts (a)-(c) of Theorem 1 hold under 6. Then, the prob-
ability of the set {|PO{Q,) - PO(Wp, )| > ¢} converges to zero as T — = under 6
Ve > 0. By contiguity (Lemma A-4), its probability also converges to zero under H;. The
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same holds with Wy replaced by LMy and LRy. Thus, it remains to establish parts (a)-(c) of

Theorem 1 under 6,
Given Lemmas A-2 and A-3, to establish parts (a)-(c) of Theorem 1 under 8, it suffices

to establish (A.4). Since PO(:, ) is a continuous function, (A.4) holds if
(A22) (@) Wp-Wp2.0, () Wp-LM7 2.0, and (c) LMy - LR7£,0 under 6,.

For two-sided tests, part (a) of (A.22) holds because HTY2§ - H6 £, 0 under 6, by
Lemma A-2,
(A.23) 127(8) - 71 < sup 12(6) - 28)1 + 128) - 71 = 0, (1),

€0

and 7 is positive definite (Assumption 1(e¢)). The inequality in (A.23) holds wp — 1 using
Assumption 3 and the equality in (A.23) holds by Assumptions 1(c), 1(d), and 3. For one-
sided tests, part (a) holds for the above reasons plus the fact that P(sgn(Hg) = sgn(HH)) — 1

under 6, since HO - HTY26 £, 0 and HO —4, N(0, H7 'H") under 6;,
Part (b) of (A.23) is established as follows. By (A.5) with 8 replaced by B, we obtain

(A.24) T2Do(8) = TV2Dey(8y) - 7,,TV*@ - 6y) ,

where 7,7 is defined with 8 in place of 6. Equation (A.6) holds with 7, so defined using

Assumption 4. In addition, as established below, T'mD[T(ﬁ) = OP(l). In consequence,
HZ'\®)T 2D (®) = HZT2Doy(8) + 0,(1)
(A25) - HZIT2De(8,) + HTA® - 6y) + 0,(1)

= HT'T"V2Do(8y) + 0,(1) = HTY3(8 - 6) + 0,(1) = HT'§ + 0,(1) ,
where the third equality uses HTV?§ = HTUZBO = 0 and the fourth equality holds by Lemma
A-1. For two-sided tests, (A.25) yields Wy - LM% -£_, 0 under ), where

(A.26) LMY = (T"V2Du,(B)) 7' ® )H'(Hz;l(é )H')'lm;’(é YT 2D (@) .

Now, wp — 1, T'UZDQT(G) = -H’) for some random p-vector of Lagrange multipliers A.

In consequence, LM} = LM(} wp — 1 and part (b) is established. For one-sided tests,
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P(sgn(H 8) = sgn(H 2;.1(5 YD (B ))) -2, 1 under 6, for the same reasons as for the analogous
result in part ().

It remains to show that T2De(8) = 0,(1) for part (b). By (A.24),
HAAT 2D ®) = 0,(1), since HT2(® - 6y) = 0. In tumn, this yields HZHH "
= 0,(1), 4 = 0,(1), and T"V2Der(B) = -H's = O,(1) under 6,

Last, we establish part (c) of (A.22). A two-term Taylor expansion of ¢{8) about §

gives
(A.27) @) = 0 (8) + (T -8)'Der(d) + %(é-a)vzof(e*)(é-ﬁ) ,
where 6" satisfies 8 £, 0, under 6,. Since Do(8) = 0 wp — 1, and T%(8-T) = 0,(1)
(which follows from (A.30) below)), we obtain for two-sided tests:
(A.28) LRy = (TY*(6-8)y 7(8)T'?(6-8) + 0,(1) .
One term Taylor expansions, as in (A.5), give
(A.29) T V2D (8) = TV2Dey(B) - 7,,7V*® -6) ,
where 7, is as defined in (A.5) with 6 - 0, replaced by §-6. In consequence,
- . -1 - =
(A.30) T26-8) = 7;772Du(®) + 0 (1) = 7. @)T2De(B) + 0,(1) .

Substituting this result in (A.28) yields part (c) of (A.22) for two-sided tests. Part (c) holds

for one-sided tests by the same argument plus the fact that

P(sgn(Hé) = sgn(HJ;l(E YD A{B ))) -2, 1 under g, O
PROOF OF LEMMA 1: Let M = M2 sgn(M). By definitions (2.3) and (2.4),

POM, v) = [ exp[— %rz] [ explMre  1]4U(E)du(r)
S

?

(A31)
- [ exp[-;-M'M - 0t - B1y e -m)]dv(wum.
S
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Now, in the two sided case with R ~ p = tx; , we have R = w ~ N(O, -r]p). Thus,

using (A.31), we obtain

prexp[%M'M _ %(Q—M)'(Q-M)}(z'ﬁt)-p/zexp[— %w’w}iw

R i & o (o

1 —M'M]
2 1+7

POM, v)

(A32)

X €Xp

- (1+z)‘Pf2exp[- —M}

where the last equality holds because the integral of a normal density equals one.

Next, in the one-sided case with R ~ y = -cxf , we have RE ~ |N(0, t)|. Let

o ~N(0, t) and let RE = |w|. LetZ ~ N(0, 1). Then, using (A.31), we have

PO(M, 1) - JRexpEMZ - (o] -M)z](zfrrmexp[— -i‘;wz}dw

=2 f (Zﬁt)'uzexp[— E(sz - Zﬂ?w]}lw
0 2 T

oc

(A.33) = (1+1) Vexp % Lmz}z [ O(zz_’_]'mexp[-% kﬁ[m ot M]z”dw

1471 1+t 1+

= (1+7) Pexp 21+1M}2 \JT: +-i:M>O
1 < M]Z [[ |M|} sgan(M)| .

PROOF OF LEMMA 2: Assumption 1(a) holds by Assumption NL(a). 1(b) holds by NL(c).

\

= (1+0) Vexp - 0

1(c) holds with 76) = -E%aa,log g,(6) provided a uniform WLLN can be established. The
Markov property (NL(b)) ensures that {ae;i&log g(0):t> m} is part of a doubly infinite

stationary and ergodic sequence. Thus, using NL(b) and (e), the ergodic theorem implies that
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-T1p%(6) L. 76) V6 € 6, A generic uniform WLLN (e.g., Assumptions TSE-1D,
BD, DM, and P-WLLN and Theorem 4 of Andrews (1992)) strengthens this result to uniform

convergence over 8, using NL(b), (c), and (e).

Assumption 1(d) holds, because 7(0) is continuous on 6, by the dominated convergence
theorem using NL(c) and (e) and 6, is compact. 1(e) holds by NL(f).
To verify Assumption 2, note that {(a—ilog £(6p), f,_l] > m} is a martingale differ-

ence sequence (MDS), because

) 0
E[é-élog g‘(eo) lf"-lJ = E[—aelog 31(00)|St,m’ Xt,m]
(A.34)

= [Z8(00dA6) = = [a(O)da(s) = 0,

where the third equality holds by the dominated convergence theorem using NL(c) and (e).
Using the Cramer-Wold device, Assumption 2 now follows from the univariate CLT for sta-
tionary ergodic square-integrable MDS with positive variances (e.g., see Brown (1971)).

Sufficient conditions for Assumption 3 are: (i) © is compact, (ii) log g,(6) is continuous
in 6 on © with probability one under 6, (iii) zlelg|%2f(log &(6) - E log g,(0)| -£~ 0 under
8¢, and (iv) E log g,(0) is uniquely maximized over © at 0, (e.g., see Amemiya (1985, Thm.
4.1.1, pp. 106-107). Parts (i) and (ii) hold by NL(a) and (c) respectively. Part (iii) holds by
the same argument as for 1(c) above. To obtain part (iv), note that for 6 = 0,
(A35)  Elogg(6) - E log g(6p) = E loglg,(6)/g,(69)] < log Eg,(6)/g,(6p) = 0,
where the inequality is an application of Jensen’s inequality and is strict by NL(d).

Assumption 4 holds by the same argument as for Assumption 3 with & in place of 6. O



FOOTNOTES

IThe author thanks Peter Phillips, Peter Rossi, Chris Sims, and Arnold Zellner for helpful
comments, He also gratefully acknowledges the research support of the National Science
Foundation via grant number SES-9121914.
2Bayesian tests also can be based on ratios of posterior expected losses (e.g., see Zellner
(1971, pp. 295-6)). Such tests are more general than posterior odds tests. The application of
the results of this paper to tests based on posterior expected losses is discussed briefly in
Secﬁon 5 below.
31t is sometimes of interest to a Bayesian from a robustness/sensitivity perspective to compute
the maximum of the PO statistic over certain classes of priors, e.g., see Edwards, Lindman,
and Savage (1963), Berger (1985, Sec. 4.3.3), and Berger and Sellke (1987). If one considers
the class of multivariate normal priors referred to above, then for two-sided tests the maxi-
mum of the approximate PO statistic (2.6) over © > 0 is given by

L] el
*To see this, one can go through the proof of Theorem 1 in the Appendix and verify that all
of the op(l) terms are 0 in this case, provided one defines 7 = —T'1D207(60).
5The proof of this result holds by the same argument as used to establish Theorem 1 with the
prior on 6 under H, replaced by the product of L(6, H;) and the prior on 6 under H, divid-
ed by its integral over 6 in H; (ie., by [L(6) + T"Y?h)dQ (h)) in order to ensure that the
product integrates to one, and hence, is a proper distribution.
éWeak exogeneity of {X, , i t < T}, defined in Engle, Hendry, and Richard (1983), implies that
the likelihood function for Y7 can be factored into two pieces, one of which contains condi-
tional distributions of S, and depends on 6 and the other of which contains conditional distri-
butions of X, and does not depend on 6, see below.
"Note that Phillips (1992) considers general non-stationary linear models in most of his paper,
but the section dealing with an asymptotic correspondence between Bayesian and classical

tests considers a null hypothesis under which the random variables are stationary.
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TABLE 1

Values of the Prior Parameter t for Which Classical Tests of Significance Level «
Are Equivalent to Approximate Posterior Odds Tests When n = 1/2

o

p 01 .05 10 25 52
1 (one-sided) 881. 50. 14. 1.6 0

1 (two-sided) 750. 41. 11. 79 --
2 94, 16 6.3 1.0 --
3 38 9.5 4.5 95 --
4 23 6.9 3.6 88 --
5 16 5.6 3.0 81 --

%For « sufficiently large, there is no distribution p of the form \/rxﬁ that solves (5.5) or
(5.6). This accounts for the dashes in the table.



