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ABSTRACT

This paper introduces approximately median-unbiased estimators for univariate AR(p) models with
time trends. Confidence intervals also are considered. The methods are applied to the Nelson-Plosser
macroeconomic data series, the extended Nelson-Plosser macroeconomic data series, and some annual
stock dividend and price series. The results show that most of the series exhibit substantially greater
persistence than least squares estimates and some Bayesian estimates suggest. For example, for the
extended Nelson-Plosser data set, eight of the fourteen series are estimated to have a unit root, while six
are estimated to be trend stationary. In contrast, the least squares estimates indicate trend stationarity for

all of the series.
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1. INTRODUCTION

This paper focuses on methods for, and applications of, median-unbiased estimation and confidence
interval construction in univariate p-th order autoregressive (AR(p)) models with time trends. This focus
reflects our interest in assessing the degree of persistence exhibited by various economic time series. In
particular, the time series we analyze here include the fourteen Nelson-Plosser macroeconomic time
series, the fourteen extended Nelson-Plosser time series, and six stock dividend and price series that have
received considerable attention in the literature. Our interest in persistence of economic time series is
in common with many recent papers in empirical macroeconomics, which focus on the question of
whether economic time series possess a unit root or are trend stationary.

There are two motivations for this paper. The first is the emphasis placed in the unit root literature
on hypothesis testing. A problem that arises with hypothesis tests in the unit root context is that tests
have low power in many scenarios of empirical interest, including those analyzed here. In such cases,
point and interval estimators can be used to provide more information than that given by unit root tests.

The second motivation is the recent growth in Bayesian estimation methods for the models considered
here (e.g., see the fourth issue of the 1991 edition of the Journal of Applied Econometrics, which is
devoted entirely to this subject). This development of Bayesian methods is very useful. We feel, how-
ever, that a corresponding development of classical estimation methods also is likely to provide useful
tools and applied results. In particular, classical estimation methods that exhibit unbiasedness properties
can provide results that exhibit a degree of impartiality that may not be attainable via Bayesian methods.
This is especially true in the present context in which the specification of objective (i.e., non-informative)
priors is particularly difficult.

The problem with utilizing the standard classical estimators (i.e., the least squares (LS) estimator)
in the AR(p) model with time trend is that of bias. The LS estimators of key parameters exhibit sub-
stantial biases. In particular, for estimating the sum of the AR coefficients, c, the bias tends to be
downward and quite large. For estimating the coefficient on the time trend, 8, the bias is upward and
quite large. In consequence, the LS estimator is a misleading indicator of the true values of & and §.

To deal with the problem of bias, this paper introduces a bias correction for the LS estimator. The

proposed method is an extension to AR(p) models of the exactly median-unbiased estimation method



introduced in Andrews (1993) for AR(1) models. The extended method yields only approximately, not
exactly, median-unbiased estimators.

The first guestion that arises when considering a higher order AR model with time trend is the
question of what are the key parameters of interest. To answer this question we note that our interest
is in the long run persistence properties of the time series under study. These properties are exhibited
by the impulse response function (IRF) of the series. For a series with a unit root, the IRF never dies
out (i.e., it does not converge to zero as the time horizon goes to infinity). For a trend stationary series,
on the other hand, the IRF does die out. In either case, the magnitude of the IRF across different time
horizons indicates how much persistence is present in the series.

It is often useful to focus attention on a scalar measure of persistence rather than consider the whole
IRF, which is an unwieldy infinite dimensional vector. In this paper, we develop a median-unbiased
estimator and confidence intervals for such a measure. The measure we focus on is the cumulative
impulse response (CIR), i.e., the sum of the IRF over all time horizons. This measure has the attribute
that its relation to the persistence of the series is immediate -- it is a simpie function of the IRF. In
addition, the CIR is a monotone transformation of the spectral density function at zero frequency (in the
model under consideration), which also is a measure of persistence of a time series.

In p-th order AR models (with or withcut a time trend), the CIR equals 1/(1 — ), where o is the sum
of the AR coefficients (equivalently, « is the coefficient on the lagged variable in an "augmented Dickey-
Fuller regression” in which the right-hand side variables include a constant, a time trend, a single lag of
the series, plus p~1 lags of the changes in the series). Thus; our analysis can focus on the parameter
a (since median-unbiasedness and confidence interval coverage probabilities are invariant under monotone
transformations}).

The essence of our bias correction method for the LS estimator of « is as follows: If the LS estimate
of o equals .8, say, one does not use .8 as the estimate of «, but rather, dne uses the value of o which
yields the LS estimator to have a median of .8. If the distribution of the LS estimator of o depends only
on « and is monotone in «, as in the AR(1) case, then the resultant estimator is exactly median-unbiased.
If the distribution of the LS estimator of « depends on some nuisance parameters as well as on @, as in

the AR(p) case for p > I, then we use an iterative procedure that jointly estimates o« and the nuisance



parameters and yields only an approximately median-unbiased estimate of a. In fact, simulations reported
below show that the approximation is very good — the proposed estimator is essentially median-unbiased.

Once we obtain the approximately median-unbiased estimator of o, we impose this estimate on the
model and run an augmented Dickey-Fuller LS regression to obtain estimates of the other parameters in
the model. Again, simulations show that the resultant procedure leads to estimators that are essentially
median-unbiased. We obtain standard error estimates for all of the parameter estimates via simulation.

The method for obtaining a median-unbiased estimator of « can be extended to generate confidence
intervals for «. In addition, it leads to an approximately unbiased model selection procedure for
determining whether a data series has a unit root or is trend stationary.

An alternative scaiar parameter that has been considered in the literature to be a parameter of interest
in AR(p) models is the magnitud_e of the largest root of the model. For example, Stock (1991) develops
asymptotic confidence intervals for this parameter and DeJong and Whiteman (1991a, b) consider Bayes
estimators of this parameter.

When considering tests of a unit root, it does not matter whether one focusses on the sum of the AR
coefficients or the magnitude of the largest root, since the nuli hypothesis obtains if and only if both equal
one. In contrast, if one is interested in point or interval estimation, one clearly wants to be able to
interpret the magnitude of the parameter in a meaningful way regardless of its value. In particular, if
the model is trend staticnary we want our parameter to index the degree of persistence of the time series.
For the sum of the AR coefficients, there is no problem — it is a simple monotone transform of the CIR
and of the spectrum at zero. For the dominant root, however, a problem occurs. We show below that
depending upon the values of the other roots, the persistence properties of two series with the same
dominant root can be very different. In consequence, knowledge of the magnitude of the largest root is
quite useful when one is interested in persistence if the magnitude is one. But, if it is less than one, then
knowledge of its value is not sufficient for conveying the series’ persistence properties — the other roots
need to be known. In consequence the empirical results of Stock (1991) and Delong and Whiteman
(1991a, b) are not as informative as is desirable.

Although Stock (1991) focusses on what we view to be the wrong parameter, his method requires

considerably less computational effort than is required by our method outlined above. For this reason,



we provide a trivial extension of his method to the estimation of the parameter «, which we consider to
be of main interest. Using his tables and a simple iterative scheme, one can compute asymptotically
median-unbiased estimates of o and corresponding confidence intervals for it. Since these procedures
are based on local-to-unity asymptotics, they are reliable only if the sample size is large enough and &
is close enough to one. In contrast, the procedure outlined above is less reliant on a large sample and
does not require o to be near one.

The approximately median-unbiased estimation procedures described above are applied here to three
different data sets. The first is the Nelson-Plosser (NP) data set compiled by Nelson and Plosser (1982).
(See the latter paper for a description of the data. All series except the interest rate are logged.) Nelson
and Plosser (1982) applied tests for unit roots on these data series and found that they could reject the
null hypothesis of a unit root for only one of the fourteen series, viz., the unemployment rate. Their
results were initially perceived as establishing that many economic time series possess a unit root.
Subsequently, this interpretation was challenged by several authors, because it became apparent that the
tests employed by Nelson and Plosser have relatively low power against relevant trend stationary altern-
atives given the sample sizes employed, e.g., see DeJong, Nankervis, Savin and Whiteman (1992).

As an alternative to classical hypothesis tests, Bayesian estimation methods have now been applied
to the NP data series, see DeJong and Whiteman (1991a), Phillips (1991a), and Zivot and Phillips (1991).
The results are mixed with respect to the degree of persistence found, depending on the priors employed
and the pafameters considered. DeJong and Whiteman (1991a), for instance, obtain estimates of the
magnitude of the largest root that are substantially less than one for most series. They conclude that most
of the NP series are better represented as trend stationary series than as unit root series. Phillips (1991a)
finds more evidénce of unit root behavior, but still the evidence for it is not strong.

The median-unbiased estimates of o obtained here show considerably more persistence in the NP data
than the LS, DeJong and Whiteman, or Phillips estimates show. For three series (out of fourteen) the
estimates equal 1.0, for seven series the estimates are .96 or larger, and for thirteen series the estimates
are .89 or larger.

The second data set we consider is an extension of the NP data set, which terminates in 1970, to

include observations up to 1988. This extension was compiled by Schotman and van Dijk (1991). The



median-unbiased estimates for the extended Nelson-Plosser (ENP) data set show very high levels of
persistence for many of the series. Eight of the fourteen series, including all of the nominal variables
except money stock, have o estimates equal to 1.0. Most of the real variables, including real GNP, real
per capita GNP, industrial production, and employment have « estimates in the range .86 to .91, which
corresponds to considerable persistence, although less than unit root-like behavior. In fact, for the former
two series, as well as for the unemployment rate, the null hypothesis of a unit root can be rejected at the
5% level using the ENP data. Nevertheless, the overall picture obtained from the ENP data set is one
of noticeably greater persistence than with the NP data set.

The third data set we analyze consists of annual series for Dow-Jones (DJ) dividends and prices
(1928-1978), NYSE dividends and prices (1926-1981), and Standard and Poor's (S&P) dividends and
prices. We use the same data as DeJong and Whiteman {1991b), some of which was compiled by Shiller
(1981). (See these papers for descriptions of the data. All series are logged.) Interest in the unit root
versus trend stationarity question for these data series arises because of theii implications for volatility
tests of the perfect markets hypothesis as initiated by Shiller (1981). See DeJong and Whiteman (1991b)
for details and references. '

DeJong and Whiteman {1991b) have presented some Bayesian estiinates of the magniiude A of the
largest root of AR(3) models with time trend fited to the above data series (also see DeJong and
Whiteman (1992)). Their estimates for A are quite low: .72, .76, .77, .84, .72, and .87 respectively.
As noted above and argued belov? in Section 2, the magnitude of the largest root does not provide a good
measure of the closeness of a series (0 a unit root model in terms of persiStence of the series. In addition,
DeJong and Whiteman’s (1991b) estimates of A are iikely to be biased away from 1.0 in a sampling
theoretic sense, since Bayesian methods generally bias parameter estimates towards the middle of the
parameter space, which in their case is specified to be [.55, 1.055] for A. For these reasons, it is of
interest to see what sort of parameter estimates and Cls are cbtained using the approximately median-
unbiased methods described above.

In short, the median-unbiased parameter estimates show considerably greater persistence than DeJong
and Whiteman’s (1991b) estimates show. The confidence intervals obtained are very wide, however, so

a key feature of our results is that for most of the series it is not possible to make definite statements one



way or another regarding the unit root/trend stationary question. Qur parameter estimates for o for these
series are: .79, .91, .90, 1.0, .82, and .94 respectively. Our corresponding estimates for A for these
series are nearly the same: .79, .92, .90, 1.0, .77, and .94. Thus, the difference between our estimates
and those of DeJong and Whiteman (1991b) is not due simply to a difference in the estimand. It is due
to the bias properties of the estimators. Our estimators are essentially median-unbiased, whereas DeJong
and Whiteman’s (1991b) Bayesian procedure appears to have a substantial downward bias.

Next, we discuss several related papers that have not been referenced above. First, a method similar
to that considered here has been considered recently by Rudebusch (1992). In fact, Rudebusch (1992)
applies his method to the NP data and his implied estimates for the sum of the AR coefficients o are quite
similar to those obtained with the method considered here, Rudebusch (1992) obtains a median-bias
correction to the LS estimates of each of the individual AR(p) parameters by searching for a vector of
AR(p) parameters such that the medians of each of the LS estimators are equal to the observed LS
estimates when this vector of parameters is taken to be the truth.

Rudebusch’s procedure differs from that considered here in that he aims for median-unbiased esti-
mators of each of the AR(p) parameters, whereas we focus on the main parameter of interest here, viz.,
the sum of the AR(p) parameters. (Note that the property of median-unbiasedness is not inherited by
linear combinations of median-unbiased estimators.) Rudebusch’s (1992) procedure is subject to the
criticism that the existence and uniqueness of a vector that satisfies the requisite properties outlined above
is an open question (although he reports no difficulties in finding such a vector with his algorithm). The
method considered here is not subject to this criticism. Lastly, Rudebusch obtains estimates of the AR
parameters, but does not provide any measure of the variability of these estimates. This significantly
reduces the value of the estimates themselves. In this paper, we provide measures of variability of the
median-unbiased parameter estimates via standard error estimates and via confidence intervals for the
parameter,

Another recent paper that is related to the‘presem paper is Fair (1992). Earlier papers that are
related include Quenouille (1949, 1956), Hurwicz (1950), Marriott and Pope (1954), Kendall (1954), and
Orcutt and Winokur (1969).



The remainder of this paper is organized as follows. Section 2 defines the model to be considered
and provides a discussion of the parameters of interest. Section 3 introduces approximately median-
unbiased estimators and confidence intervals for the main parémeier of interest. It also describes an
approximately unbiased model selection procedure for determining whether a series has a unit root or is
trend stationary. Section 4 extends the local-to-unity asymptotic results of Stock (1991) to generate
asymptotically median-unbiased estimators and asymptotically valid Qonﬁdence intervals for o, the main
parameter of interest in this paper. Sections 5-7 provide the empirical results. Section § gives the results
for the Nelson-Plosser data series. It also provides comparisons of several estimates that have appeared
in the literature for these series. Section 6 presents results for the extended Nelson-Plosser data series.

Section 7 does likewise for the stock dividend and price series,

2. THE MODEL AND PARAMETERS OF INTEREST

2.1. Definition of the model
The model we consider is an AR(p) model with intercept and time trend. It can be written in an
unobserved components form and in a regression form. In unobserved components form, it is given by
Y,=u® + 8%t + Y: for t=-p+l, ..., T,

@.1) Y = all ¢ YAV ¢ 4§ AV 4 U, for t=1, .., T,
U, ~ iid MO, ¢®) for t=1, .., T,

where {Y, : ¢ = —p+1, ..., T} is the observed series. The variable AY} denotes Y — ¥ _,. The
parameters (u*, B*, o2, o) satisfy 4* € R, * € R, ¢* > 0, and « € (~1, 1]. When a = 1 the
model is nonstationary. The parameters (¥, ..., ¥,_;) are such that the AR model for Y7 is stationary
when o € (=1, 1) and the AR mode! for AY7 is stationary when o = 1. The initial values of ¥¥, i.e.,
(¥Zp41s ---» Yg), are taken to be such that {¥7 : r = —p+1} is stationary when a € (—1, 1) and
{AY] 1t = —p+2} is stationary when o = 1. The level of the AY?% series is arbitrary when o = 1.
(That is, when o = 1, the initial rv Y:P_H can be fixed or can have any distribution provided the

subsequent Y} values are such that AY? is stationary.)

The regression form of model (2.1) is given by



Yy=p+fr+al ; + Y AY,  + - + Y AY, , + U, for t=1,..,T,
p=pt(l-a) +(@-y; -¥)8*, and g =6%(1-0),
where (Y_, 4, ..., Yo) and {U,: ¢ =1, ..., T} are as defined in (2.1). The AR(p) model for ¥, in (2.2)

2.2)

is written in "augmented Dickey-Fuller” regression form. It can be written in standard AR(p) regression
form as
2.3) Yiep+sBt ey Y smlg+ v ,Y 0+ U,
The parameter « in the augmented Dickey-Fuller form equals the "sum of the AR coefficients”
(Yis oons 7p)- As argued below, the augmented Dickey-Fuller parameterization is the most useful for the
purposes of the present paper. The parameters (¥, ..., "’p—l) and (y;, ..., 'yp) are related via
V= =yt + v forj=1,..,p-1

Note that the parameter § on the time trend is necessarily 0 when o = 1 in (2.2) and (2.3). This
is a desirable feature of the model because it implies that the mean of ¥, is a linear function of ¢ for all
a € (=1, 11. If 8 # 0 was allowed when « = 1, then the mean of ¥, would be a linear function of
Y, when € (-1, 1), but a quadratic function of ¢ when & = 1. This discontinuity is naturally avoided
in the model above,

2.2. Scalar Measures of Persistence

In this paper, as in many empirical papers in the macroeconomic and financial literature, we are
interested in assessing the persistence of a time series Y. In particular, we are interested in the
persistence of shocks to the series. The impulse response function (IRF) is a suitable measure of such
persistence. The IRF traces out the effect of a change in the innovation U, by a unit quantity on the
current and subsequent values of Y. In particular, if ¥, is the series based on the innovations

{Uy, Uy, ...} and ¥, is the series based on {U,, ..., U,_,, U,+1, U, U,,,, ...}, then

24 IRFh) = ¥,,, - Y, for h=0,1, ...

By linearity, the IRF does not depend on ¢, on the values {U,, Us, ...}, or on the parameters (*, *).
It only depends on (o, ¥y, ..., ¥p-1)- The IRF can be computed by supposing u* = 8* = 0 and then
by calculating the (infinite-order) moving average representation of Y,. The coefficient on U,_,, in this

representation is IRF(h). That is, when u* = 8* = 0, we can write



@.5) Y,=(1-vL - -7 U, = ¥ ¢,U,, and IRF(h) = c, ,
h=0

for h = 0, 1, ..., where L is the lag operator.

Being an infinite vector of numbers, the IRF can be a rather unwieldy measure of persistence. In
consequence, it is often convenient to have a scalar measure of persistence that summarizes the informa-
tion contained in the IRF. One such measure is the cumulative impulse response (CIR). It is defined

by
2.6) CIR = i IRF(h) .
‘ h= .

The CIR yields an especially useful summary of the IRF if one is dealing with different series for
which the IRFs are of the same basic shape. This is the case for the data series considered here. With
few exceptions, the series considered below have IRFs that start at 1, increase monotonically and
smoothly for several periods, and then decrease monotonically and smoothly to 0. In some cases, there
is no increase in the IRF over the first few periods. In a small number of cases, the IRF becomes nega-
tive for some large values of 4, but the magnitudes of such negative values are always small (.03 or less).
Also, in a small number of cases, the decrease to 0 is not completely monotone, but exhibits some small
wiggles.

If one is considering several series whose IRFs are of quite different shapes, then the CIR may not
be sufficiently informative about the difference in their IRFs. Consider the following two examples. The
first example is the case where one series has an everywhere positive IRF and another series has an IRF
that oscillates between positive and negative values. The two series could have equal CIRs, but quite
different IRFs, due to the cancellation of positive and negative terms in the computation of the CIR for
the second series.

The second example is the case where one series is given by Y, = a¥,_; + U, and another series
is givenby Y, = af,_; + U, for some k > 1. The IRF functions of these series are (i) IRF(h) = o
forh=20,1, ... and (ii) IRF(h) = o for h = bkfor b = 0, 1, ... and IRF(#) = 0 otherwise respective-
ly. The CIRs of these two series are identical, but their IRFs are noticeably different with the latter

exhibiting more persistence as X is increased. (We thank Chris Sims for suggesting this example.)
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Fortunately, neither of the two examples mentioned above, where the CIR is noticeably deficient,
are of real concern for the economic applications we consider below. In no cases are there IRFs with
substantial positive and negative terms. In no cases are there IRFs with the non-monotone and non- -
smooth behavior of that of the model Y, = oY, , + U, for k > 1. The one feature of the IRFs that
appears empirically, but is not captured by the CIR, is the difference between a relatively large initial
increase and subsequent quick decrease in the IRF and a relatively small initial increase and subsequent
slow decrease in the IRF. Two series can have the same CIR but somewhat differently shaped IRFs due
to such differences. Ia the empirical applications, differences of this sort arise but they are not extreme.

Based on the above discussion, we conclude that the CIR yields a fairly good scalar summary of the
IRF, at least for the type of data series that are of interest here. In addition, the CIR is a simple function

of the parameters of the model:
@.7) CR = .1 .
l-o

The fact that the CIR is directly related to « in such a simple way means that one can rely on « as a
measure of the persistence of a series. Different values of o can be interpreted easily in terms of persis-
tence since they correspond straightforwardly to different values of the CIR. It is for this reason that we
utilize the augmented Dickey-Fuller parameterization of the AR(p) model in (2.2) rather than the standard
AR parameterization in (2.3). |

The parameter o can be interpreted as a measure of persistence in a second way, viz., via the
spectrum of ¥,. This interpretation is discussed by Phillips (i991b). The spectrum at zero frequency is

a measure of the low frequency autocovariance of the series. For the model (2.1)-(2.3), it is given by

2.8) spectrum at zero =

(-0

Thus, by this measure too, persistence of ¥, depends directly on the magnitude of the parameter o.
Before deciding to emphasize the parameter « as an appropriate scalar measure of persistence, we

need to consider another possibility, viz., the magnitude of the largest root of the AR(p) model. The

latter parameter is relied on by DeJong and Whiteman (1991a, 1991b) and Stock (1991), among others.
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The magnitude of the largest root of the AR(p) model turns out to be a very poor summary measure
of the IRF. The reason is simply that the shape and height of the IRF depends on more than just the
magnitude of the largest root. Depending on the values of the other roots, one can observe a very wide
range of different persistence properties from series that have the same magnitude of largest root. This
is illustrated by Table 1. Table 1 considers four pairs of models. Each model corresponds to an esti-
mated model (estimated via the approximately median-unbiased method described below) using the
Nelson-Plosser or extended Nelson-Plosser data. The reason for considering estimated models is to
ensure empirical relevance of the results. We are not considering pathological cases in Table 1.

In each of the first two pairs of models in Tablz !, the magnitudes of the largest roots are the same
(or almost the same) for the two models, but the IRFs are quite different. For each pair, the IRF of the
second model is much larger, almost uniformly twice as large or more, than that of the first. These
differences are reflected in the o values of the model, but not in the magnitudes of the largest roots. The
o values for the first pair yield a CIR that is twice as large for the second model as for the first. The
a values for the second pair yield a CIR that is five times as large for the second model as for the first!

In the third pair of models in Table 1, the first model is chosen to have a noticeably larger largest
root than the second model (by .08}, but the corresponding « values are reversed in relative magnitude
(with a difference of .10). In this case, it is clear from the IRFs of the two series that the second model
(with the smaller largest root) exhibits noticeably more persistence than the first model. In fact, the
second model’s CIR is approximately 50% larger than that of the first, as is reflected by its larger o
value.

The fourth pair of models in Table 4 illustrates the case of two modeis with identical o values, but
quite different magnitudes of their largest root. The largest root of the first series is .17 larger than that
of the second series. The IRFs of the two models exhibit somewhat different shapes. The first declines
monotonically and slowly to zero from A = 0 whereas the second increases from A = Oto 2 = 1 and
then declines monotonically and relatively quickly to zero. The first model has greater persistence over
horizons h > 4, but less persistence over horizons # < 4. The CIRs of the two models are identical,
since their o« values are. Overall, the persistence exhibited by the two models is similar, though many

may argue that the first exhibits somewhat more persistence. The latter view is supported by the observa-
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tion that the two models have the same area under their IRFs, but the IRF of the first model is distributed
to the right of that of the second model. The CIR measure fails to pick up this difference. On the other
hand, the very large difference in the magnitudes of the largest roots of the two models does not reflect -
the closeness of the IRFs of the two models.

In sum, we find that the magnitude of the largest root does not provide an adequate summary meas-
ure of the IRF. The other roots have too great an effect on the persistence of the series to rely solely
on the magnitude of the largest root. The parameter «, on the other hand, is a fairly reliable measure
of the persistence of a series because it alone determines both the CIR and the spectrum at zero of the
series. For these reasons we focus attention below primarily on the estimation of « and secondarily on

the estimation of the other pararmeters.

3. APPROXIMATELY MEDIAN-UNBIASED ESTIMATORS

3.1. Definition of the Approximately Median-unbiased Estimators

In this section, we describe a method for obtaining approximately median-unbiased estimators of the
parameters of the augmented Dickey-Fuller model (2.2). The method is an extension of an exactly
median-unbiased estimation procedure introduced in Andrews (1993) for the AR(1) version of model
2.2).

We start by defining median-unbiasedness and comparing it to the more standard property of mean-

unbiasedness. By definition, a number m is a median of a rv X if

G.1 PX2m21/2 and PX s m) 2 12..
This definition of a median allows for non-uniqueness, but all of the medians considered here are unique.
The definition also allows for the median of X to be a probability mass point of X. This feature of the
definition is used here. If a median m of X is not a probability mass point, then P(X > m=PX < m)
= 1/2,

Let & be an estimator of the parameter «. By definition, & is median-unbiased for o if the true
parameter o is a median of & for each « in the parameter space. The condition of median-unbiasedness
has the intuitive impartiality property that the probability of under-estimation equals the probability of

over-estimation. This holds unless the true parameter value is estimated with positive probability and in
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this case the probabilities of under-estimation and over-estimation are each less than one half. In
scenarios where the magnitude of a parameter is a contentious issue, such as in the (trend) stationary
versus unit root debate, this impartiality property is quite useful. Advocates of one view are not likely
to accept estimates that are biased towards a different view. Median-unbiased estimators are more likely
to be acceptable to a broad audience than biased estimators, because they do not favor any particular
outcome.

The condition of median-unbiasedness is often more useful than that of mean-unbiasedness when the
parameter space is bounded or when the distributions of estimators are skewed and/or kurtotic. When
the parameter space is bounded and closed, it is impossible to have a mean-unbiased estimator because
all estimators are biased at extreme boundary points. Boundary points do not present problems, however,
for the condition of median-unbiasedness. If an estimator is median-unbiased for a parameter space
A C R, then the estimator restricted o a closed subset A* of A is median-unbiased for the restricted
parameter space A*. (The method of restricting the estimator, say &, to A* is to set & equal to the
nearest element of 4 * that is larger or smaller than &.) Next, when estimators have asymmetric distribu-
tions, there is no unambiguous measure of the centers of their distributions. In this case, the median may
be a preferred measure to the mean, especially in kurtotic cases, because the median is less sensitive to
the tails of the distribution,

We note that in the classical normal linear regression model with fixed regressors the LS estimator
is median-unbiased. In fact, it is the best median-unbiased estimator for a wide variety of loss functions
(see Andrews and Phillips (1987)). In the AR(p) model (2.2), on the other hand, the LS estimator is not
median-unbiased, and hence, does not possess the same optimality properties.

Next, we describe the method used in Andrews (1993) for obtaining exactly median-unbiased esti-
mators of « in the AR(1) version of model (2.2). Suppose & is an estimator whose median function m(a)
(= my{a)) is uniquely defined, depends only on «, and is strictly increasing on the parameter space

(=1, 1]. Then, a median-unbiased estimator, &, of a is given by

1 if &> mQ)
&y =1mYa) if m-1) < & < mQ1) ,
-1 if & < m(-1)

(3.2)
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where m(-1) = lim m(x) and m= (m(~1), m(1)} = (—1, 1] is the inverse function of m(-) that
-1

satisfies m~!(m(at)) = o for @ € (—1, 1]. Thus, if the observed value of & is .8, say, one does not use
.8 as the estimate of «, but rather, one uses the value of o that yields the estimator & to have a median
of .8. This method was applied in Andrews (1993) with & equal to the LS estimator of « for model (2.2)
with p = 1. (The general method is not due to Andrews (1993), e.g., it more or less corresponds to the
method discussed by Lehmann (1959, Sec. 3.5, p. 83).)

For higher-order versions of model (2.2) (i.e., p >> 1), the LS estimator of « has a distribution that
depends on more parameters than just «. In consequence, the exact bias correction method outlined
above cannot be applied. In fact, the LS estimator of a, &, has distribution that depends on (e, ¥y,

p-1)- It does not depend on p*, B*, or o2, and when « = 1 it does not depend on the value or
distribution of the initial rv Y:p_,.,, see the Appendix. (Similar invariance properties in the AR(1) model
have been pointed out by several authors. For references, see Andrews (1993).) In consequence, if
Wy - ;bp_]) were known, the bias correction method of (3.2) could be applied.

Since (V¢ ..., P_,) are unknown in practice, we suggest a simple iterative procedure that yields
an approximately median-unbiased estimator. First, compute the LS estimator of («, ¥, ..., per 1 ts )
by regressing ¥, on (Y, AY,_y, ..., AY,_piy, 1, 0, call it (Gzsy ¥y ps1 oo Vpor1,L510 s> Brsy)-
Second, treat (¥ ;5;, ... \lp_l Lsp) a8 though they were the true values of (¥, ..., ¥,,_) and compute
the bias-corrected estimator of a, &y, using (3.2). Third, treat &y, as though it was the true value of
o and compute a second round set of LS gstimates of (¥, ..., \bp_l), cali them (1}, LS2s -+ @/p_l Ls2)
by regressing ¥, — &, Y, , on (AY,_y, ..., AY,_ ., 1, 7). When é;q = 1, exclude the regressor ¢
in the latter regression in order io impose the constraint that § = 0. Next, treat () 163, ..., Vp1 152)
as though they were the true values of (¥4, ..., ¥,,_,) to generate a second round bias-corrected estimator
of a, &p. Continue this procedure either for a fixed number of iterations or until convergence. For the
empirical results below, we specify a maximum of ten iterations. For most of the series, convergence
is obtained in two iterations, while one series took four.

If &g is the final estimate of o, then (¥ 1gjs1s --v» Vpm1r5+1 Arsj+1> Brsje1) are the final

estimates of (¥, ..., 1> B). Let

(3.3) (&MU’ \!’l,MU,---» ‘l’p—u{u, ﬁuu, BMu) = (&m‘j’ \[’1,1.5:;4.1,---, \lfp..l,uyﬂ, ﬂwﬂ, Buj“)
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denote the final round approximately median-unbiased estimators. We refer to these estimators as the
MU estimators.

Simulation methods can be used to compute the bias-corrected estimator defined in (3.2) given a
vector (¥, ..., ¥p—1)- More specifically, for a given value of « and fixed (¥4, ..., 1) St u* =
B* =0and ¢ = 1in (2.2) and simulate a data set {Y, ,: t = —p+1, ..., T} according to the model.
Regress the simulated ¥, ,on (Y, ,_;, &Y, ,_y, ..., AY, , .., 1, #) to obtain a single random draw
of the LS estimator &;¢. Repeat this procedure R times, i.e., r = 1, ..., R (R = 1,000 is used in the
empirical results below) and take the sample median of the simulated LS estimates of & to be a Monte
Carlo estimate of the median of &, ¢ when the true parameters are (o, Vi e p__,). Given the observed
value of &;5, say .8, iteratively determine the value of e such that the Monte Carlo estimate of the
median of the estimator &; ¢ equals .8. This yields the desired estimator &;;. Monotonicity of the median
function of &, ¢ for given (¥, ..., \bp_,,) generally makes the iterative procedure converge quickly.

In keeping with the computer-intensive methods employed above, one can generate standard errors
for all of the MU estimators (g, 1 s s Vo140 Bus Buy) as follows. Treat the observed
estimates, say (&3, V) MU o By, as though they were the true values and perform a simulation
study of the estimators (&), ..., Apy) With these true values. For each repetition of the simulation, one
generates a simulated data set, computes the LS estimates for this data set, and then computes the corres-
ponding approximately median-unbiased estimators of (=, ¥, ..., p~1s #x B) for this data set. Having
completed the desired numbers of repetitions R* (R* = 1,000 for the cases reported below), one has
R* realizations from the distribution of (Bpps oo BMU) (up to simulation error) when the true param-
eters are (&0, ..., ;). The sample standard errors from these R* realizations are used as estimates
of the standard errors of (&, ..., BMU) for the original data series,

The above method of simulating standard errors is straightforward, but computer-intensive, since
each of the R* repetitions involves computing bias-corrected estimates @pgpss s BMU) which by them-
selves requires a simulation procedure. Using a 486 33MHz PC, it took 50 hours to generate the
parameter estimates and corresponding standard errors for each of the data series analyzed below.
Although slow, this performance shows the proposed method to be quite feasible. Hopefully, within a

few years, the required time will be reduced to a few hours on the fastest PCs.
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3.2. Confidence Intervals for o

Approximate Cls for o can be obtained in a similar way to that of the approximately median-
unbiased estimator of o. Suppose & is an estimator whose p; and p, quantiles are uniquely defined, -
depend only on «, and are strictly increasing in o on the parameter space (—1, 1]. Let qpl(a) and qu(a)

denote these quantile functions. Then, an exact level 100(1 — p; — p)% CI for « is given by {¢;, ¢4],

where
>1 ifa > g, ) 1 if& > g, ()
-1,. . - =l ay n
B4 e, = qu‘(a) if g, (-1) < & < ¢, (1) and &y = 14, @ ifg(-1) < & < g, ().
-1 if& < g (-1) | -1 if& < g,(-1)

In (34), fori =1, 2, qpu(—l) = Jim qp,(a) and q;_l : (qp_(—l), qp_(l)] -» (-1, 1] is the inverse
: as—1 i i i

function of qP.-(') that satisfies q;‘, l(q‘,,i(nz)) = o for « € (-1, 1]. In Andrews (1993), this method was
used to construct exact Cls for o for the first-order AR version of model {2.2). (Note that this method
of constructing Cls is time honored, only the application of it in the present context is original.)
Letting & of (3.4) be the LS estimator of o from the regression in (2.2), one finds that its distribu- _
tion depends 'o.n (@, ¥qs «eos \Lp_]) rather than just «. Hence, one cannot obtain an exact confidence
interval for o using the method of (3.4). One can obtain an approximate one, however, by taking the
final bias-corrected estimates of (¥, ..., 11’,,-.;) defined above and treating them as though they were the
true values. Given these values, ¢; and ¢, can be computed by simulation using an analogous procedure

to that described above for computing &,

3.3. An Unbiased Model Selection Procedure

The approximately median-unbiased estimator introduced above can be used to construct approxi-
mately unbiased model selection procedures. By (ieﬁnition, a model selection procedure is unbiased if
for any correct model the probability of selecting the correct model is at least as large as the probability
of selecting each incorrect model. For example, one might want to select between the (trend) stationary
model for which o € (—1, 1) and the unit root (with drift) model for which « = 1. An unbiased selec-

tion procedure in this case has the property that if o = 1 the probability of selecting the unit root model
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is 2 the probability of selecting the (trend) stationary model and if @ € (-1, 1) the P_-probability of
selecting the (trend) stationary model is = the P_-probability of selecting the unit root model for each
o € (-1, 1). Unbiased selection procedures exhibit an intuitive impartiality property that may be useful -
if the selection of one model or another is a contentious issue.

The concept of unbiased selection procedures is a special case of that of risk-unbiased decision rules,
see Lehmann (1959, p. 12). For selection procedures, the space of actions is finite -- one chooses one
model from a finite set of models. If the loss function equals zero when the correct model is chosen and
one otherwise, then a risk-unbiased decision rule for this problem is an unbiased selection procedure.

Consider the problem of selecting one of two models defined by a € I, and a € [, where /, and
I, are intervals that partition ﬁe parameter space (—1, 1] for «. For example, one might have
IL=(110Dand], = {l}orl, = (~1, .975) and J, = [.975, 1]. (The latter are considered in Delong
and Whiteman (1991a) and Phillips (1991a).)

The selection procedure we consider here is
(3.5) "choose I if Gy, € I, for k=a, b ."

This procedure is exactly unbiased, if &,,;; is exactly median-unbiased. To see this, suppose I lies

to the left of J,, and &, is exactly median-unbiased. Then, forall @ € I,
X X 1 ) .
B6)  Plopyy €E1) < Py > a) s 5 S Poliyy < o) < Polapy € 1),

where the second and third inequalities use the median-unbiasedness of &,,;,. For o € I,, the argument
is analogous, so the selection procedure of (3.5) is unbiased. We note that the selection procedure of
(3.5) is also a valid level .5 (unbiased) test in this case of Hy : @« € 1, versus H; : « € I, and of H :
a € [yversusH, 1 € 1,

Since &,y is only approximately median-unbiased when p > 1, the model selection procedure of
(3.5) is correspondingly only approximately unbiased. In fact, simulations reported in the next section
show that &,y is very close to being median-unbiased for several scenarios of empirical relevance. In
consequence, the model selection procedure also is very close to being unbiased at least in these

scenarios,
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3.4. Properties of the Approximately Median-unbiased Estimators

We now state several asymptotic properties of the MU estimators. Since we have not written down
a formal proof of these properties, the reader may wish to treat them as conjectures. Consider first the
model (2.2) (with normal errors). All of the MU estimators (&, -, ) and their standard error
estimators are consistent and the coverage probability of the CI [£;, &,] is asymptotically correct (because
the initial LS estimators are consistent). In addition, &, is asymptotically median-unbiased (because
it would be exactly median-unbiased if the true values (¥, ..., ¥,_) were used in the bias-correction
step and the values actually used differ from the true values by an asymptotically negligible amount),
We conjecture that the estimators (V1,mv» ---» Bagy) are close to being median-unbiased, because of the
removal of the bias of the estimator of .

Next, consider the asymptotic behavior of (&, ..., 8),y) When the errors in (2.2) have mean 0 and
variance o2 but are not necessarily normally distributed, The MU estimators (&,,y), ..., BMU) and their
standard error estimators (appropriately normalized) are still consistent in this case and the CI [¢;, &,]
has the correct coverage probability asymptotically (because (i) the LS estimators are consistent, (ii) the
magnitude of the bias-correction declines to 0 as T— oo, ahd (iii) the asymptotic distribution of the LS
estimators is the same for errors with any mean 0 variance o2 distribution as for normal errors). In addi-
tion, &y, is asymptotically median-unbiased for any mean 0 variance a? error distribution (for the third
reason listed immediately above). These results hold whether one considers asymptotics with a fixed
value of a for all T or with a sample-size dependent value of «, as in local-to-unity asymptotics.

Consider, now, the finite-sample properties of the MU estimators (&MU; BMU). The main
features of these estimators that are of interest are their median-bias properties and their variability
relative to the LS estimators. These properties can be éssessed using the same simulation procedure as
is used to generate the standard error estimates. In particular, given a data series and the corresponding
observed MU estimates (&2, ..., B¢, the simulation procedure generates R* random draws from the
distribution of the LS and MU estimators of {(a, ¥y, ..., 13 P B). In addition, one can compute
estimates of the IRF at different time horizons and of the magnitudes of the roots of the AR(p) model

corresponding to both the LS and MU estimates for each repetition.
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The difference between the sample median of any of these parameter estimates over the R* repeti-
tions and the true value gives a Monte Carlo estimate of the median-bias of the LS and MU estimators
when the true parameters are (&%y, ..., BSy). Corresponding Monte Carlo estimates of the standard
deviation, root mean squared error (MSE), and interquartile range of the LS and MU estimators can be
computed analogously.

Table 2 provides the results of the above simulation procedure when the true parameter values are
taken to mimic those of three different series that exhibit varying degrees of persistence. The series
mimicked are the Nelson-Plosser series for real GNP, GNP deflator, and consumer prices whose « values
are .88, .96, and 1.0, respectively (as estimated by &)

The results for the « = .88 (real GNP) and o = .96 (GNP deflator) cases with p = 2 show the
following. The median-bias of the MU estimator for all estimands is essentiaily zero. The median-bias
of the LS estimator, on the other hand, is substantial for «, g, 8, the magnitudes of the two roots, and
the IRF at most time horizons. The standard deviation of the MU estimator is the same or somewhat
larger than that of the LS estimator for all estimands except the IRF at long time horizons for which it
is substantially larger. The root MSE of the MU estimator is noticeably smalier than that of the LS
estimator for estimation of a, u, 8, and the IRF at short time horizons. It is approximately equal for y,,
o2, and the magnitudes of the roots, and is substantially larger for the IRF at long time horizons. The
interquartile range of the LS estimator does not include the true value for the estimands o, u, 8, and
IRF(h) vh 2 3. On the other hand, the interquartile range of the MU estimator includes the true value
and is symmetrically centered about i.t for these estimands. For the other estimands, the interquartile
range results for the two estimators are more comparable.

Next we describe the results for the « = 1.0 (consumer prices) case with p = 4, The MU esti-
mators of (o, Yo, V3, i, 8, 02) are essentially median-unbiased, while that of ¥ has a small downward
median-bias. In contrast, the LS estimators of (&, ¥, ¥, ¥3, u, 8) are all significantly median-biased.
The MU and LS estimators of the magnitudes of the roots each have median-biases. Those of the MU
estimator are smaller. The MU estimator of the IRF is downward median-biased, especially at long time
horizons. Its downward bias is quite small, however, in comparison to that of the LS estimator, which

is huge, especially for long time horizons. The standard deviations of the MU and LS estimators are
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approximately equal for all estimands except the IRF at long time horizons, for which the MU estimator
has considerably larger standard deviations. The root MSE of the MU estimator is substantially smaller
than that of the LS estimator for the estimands o, u, 8, the magnitudes of the two largest roots, and
IRF(#h) for all &. For the other estimands, the MU and LS estimators have comparable root MSEs. The
length and location of the interquartile ranges of the MU and LS estimators corroborate the results based
on the standard deviations and median-biases.

Central 90% ClIs for o calculated as described in Section 3.2 are found to have simulated confidence
levels of 88.9%, 89.7%, and 86.9% for the o = .88, .96, and 1.0 case respectively. These simulated
confidence levels have standard errors of approximately .7% each. Thus, there appears to be a tendency
for the ClIs’ coverage probabilities to be somewhat too low.

In conclusion, we find that the MU estimator achieves a substantial reduction in median-bias over
the LS estimator for almost all of the estimands considered. The MU estimator is essentially median-
unbiased for most of the estimands with the greatest exception being the IRF when o = 1. The MU esti-
mator pays a negligible to small price in terms of increased standard deviation for its improved median-
bias properties, except when estimating the IRF at long time horizons, in which case the price is large.
In consequence, the root MSE of the MU estimator is noticeably smaller than that of the LS estimator

for many estimands, with the wmain exception being the IRF at long time horizons when o < .96.

3.5. Properties of the Approximately Unbiased Model Selection Procedure

Here we briefly investigate the properties of the approximately unbiased model selection procedure
introduced in Section 3.3. We consider the two models defined by I, = (—1, 1) and 7, = {1}. The
selection rule is to choose the unit root model [, if &,y = 1 and otherwise to choose the trend stationary
model.

Table 3 shows how the probability of selecting a unit root model varies as a function of the true
parameter o for a number of AR(3) models, This probability also depends on the parameters ¥, and ¥,
and on the sample size T7+p. The a, ¥, ¥,, and T+p combinations considered were chosen to mimic
different Nelson-Plosser data series. (That is, the true parameters listed correspond to the MU estimates

for the data series listed.) The probabilities of selecting a model with « = 1 were calculated by
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simulation using 1,000 repetitions. The simulation standard errors for these probabilities range from
.0062 for the o« = .81 case to .017 for the @ = 1.0 case.

The first eight rows of Table 3 show the probabilities of erroneously choosing a unit root model for
different o values less than 1.0. When the value of & is < .95 the probabilities are small (< .20) for
the sample sizes considered. For o values closer to 1.0, the probabilities are larger. For example, for
o = .97, the probability is .44 when T+p = 100. The last four rows of Table 3 show the probabilities
of correctly selecting a unit root model when a = 1 for several different sample sizes. These probabil-
ities are just above .5. They are much lower than the corresponding probabilities for a level .05 test of
a unit root null hypothesis, because the unbiasedness condition precludes giving the unit root model

favorable status a priori.

4. AN ASYMFPTOTICALLY MEDIAN-UNBIASED ESTIMATOR OF «

A recent paper by Stock (1991) uses local-to-unity asymptotics to obtain confidence intervals for the
magnitude of the large.st root in model (2.2). His work builds on the loca_l--to-unity testing results of
Bobkoski (1983), Cavanagh (1985), Phillips (1987, 1988), Chan and Wei (1987), and Chan (1988) and
especially on the local-to-unity CI results of Cavanagh (1985). Cavanagh (1985) considers asymptotic
CIs for « in an AR(1) model without intercept or time trend. Stock (1991) extends these results to the
empirically relevant case of AR(p) models with intercept and time trend.

As argued in Section 2, point or interval estimates for the magnitude of the largest root of the model
(2.2) are not very useful summary measures of the persistence of a series as meas-ured by its IRF or its
spectrum at zero. In consequence, it seems worthwhile to introduce a trivial extension to Stock’s methods
that focusses on point and interval estimation of the parameter «, the sum of the AR coefficients, rather
than on the magnitude of the largest root. The method is based on local-to-unity asymptotics and yields
estimators and CIs that are easy to compute given the tables provided by Stock (1991).

In comparison with the computer-intensive methods described in Section 3, the methods considered
here are very quick to compute. On the other hand, they are probablj less accurate, especially when the
sample size is small or « is not close to one. In addition, they do not yield estimates and standard error

estimates for the wide range of estimands considered in Table 2, as does the method of Section 3. As
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noted in Section 3, the methods there can be given asymptotic justifications even if the errors are non-
normal, just as the methods here can. Thus, there is no inherent advantage of either method with respect
to robustness against non-normal errors (with several moments finite).
Our asymptotically median-unbiased estimator & ,,,., of o and central CI (£, O] for « of asymptotic
confidence level 100(1 — pg)% are defined by
@.1) G =1+ € h1)/IT and
. (£,0] = {1 + coh(INT, 1 «c;61)/7) ,
p-1
where B(1) is a consistent estimator (defined below) of 5(1) = 1 - lej v
The rv’s ¢, Co, and ¢; are determined using Stock’s (1991) Table A.1 Part B as follows, Let %7
denote the -statistic for testing Hy : o = 1 in the regression of ¥, on (¥,_,, AY, |, . AY, .1 1,0,
where o is the coefficient on ¥,_;. (It is often convenient for computing 37 to note that it equals the
r-statistic for testing whether the coefficient on Y,_; is zero in the regression of AY, on (Y,.1, AY,_y, ...,

AY,

1—p+1> 1, 9).) In the column labelled "Stat" in Stock’s Table A.1 Part B, one finds the row corres-

ponding to the observed value of 7 . The value ¢, in (4.1) is the number in the column labelled
"Median" that is in the aforementioned row. The values ¢y and ¢; in (4.1) are the nuinbers in the
columns labelied ¢ and ¢, (corresponding to the desired confidence level 100(1 — py)% being equal to
95%, 90%, 80%, or 70%) that are in the aforementioned row. (If the model (2.2) of interest does not
contain a time trend, then one computes c,,, ,.co, and ¢, from Stock’s Table A.1 Part A and one omits
the time trend in the regressions used to calculate " and in the regressions described below used to
calculate 5(1).)

. -1
Our suggested estimator of b(1) is an iterative one. Let 5,(1) = 1 - Yy ij,m, where Q«j’mt is the
j=1

LS estimator of y; (the coefficient on AY, ) from the regression of ¥, on (¥,_;, &Y,_,, ..., AY, 410 1,

p-l n
7). Let&gpuy = 1 + g By(1/T. Let by(1) = 1 - J)_‘; ¥; 152> Where ¥, ;o> is the LS estimator of v
(the coefficient on AY,_) from the regression of ¥, — &5, Y, on (AY,_,, ..., AY, 4o 1,8 Let

Ggpqin = 1 + Cppg By(1)/T. The estimators B5(1), By(1), ... and & g0, 6 4sp4 .. are defined analog-

ously to 52(1) and &,,;». The estimator (1) is then defined to equal either 5,‘(1) for some fixed integer
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k or the limiting value of 51(1), 52(1), ... (provided convergence occurs). In practice, we find thatk = 2
is sufficient to achieve convergence to within two decimal places for 5,(1) and & ps1n for many series,
although k = 6 is required for one series reported below.

The asymptotic justification for & ;,,;, and [, U] is sketched in the Appendix. It is a straightforward
extension of Stock’s results. Note that the use of &, and (L, 0] is appropriate only whei: the sample
size is not "too" small and « is "near” one.

Lastly, we briefly mention a theoretical issue concerning the CI [£, 0). The CI [L, 0] for « can
be usex to obtain a CI for the parameter ¢, where o« = 1 + ¢cb(1)}/T. Since ¢ cannot be estimated consis-
tently, it may seem odd that one can construct a CI for c. In fact, the fact that ¢ cannot be estimated
consistently mearis that the length of the CI for ¢ does not go to zero (in some probabilistic sense) as
T — oo, but it does not preclude the construction of a CI for ¢ whose coverage probability is correct

asymptotically.

5. RESULTS BASED ON THE NELSON-PLOSSER DATA

In this section we apply the approximately median-unbiased (MVJ) estimation method to the Nelson-
Plosser (NP) data series. The first subsection gives the main empirical results. The second subsection

compares MU estimates to other estimates in the literature.

5.1. Empirical Results for the Nelson-Plosser Data Series

Table 4 provides the MU and LS estimates of a variety of different estimands for the fourteen NP
data series. The simulated biases and standard deviations of the estimates, taking the MU estimates to
be the truth, are given in parentheses below each estimate. The lag lengths (p) of the AR(p) models that
are estimated are taken to be the same as in Nelson and Plosser (1982).

The results can be summarized as follows. First, consider the estimates of the key parameter o.
The MU estimates of a show a dichotomy between real variables and nominal variables. The MU esti-
mates of « for the real variables are all < .92, with all but the unemployment rate being between .88
and .92. The corresponding estimates for the nominal variables are all = .94, with three series having

estimates equal to one. These results indicate strong persistence, though less than unit root persistence,
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for all real series except the unemployment rate. They indicate very strong persistence, equal to or
bordering on unit root persistence, for each of the nominal series. The 90% Cls for o« and the standard
deviation estimates reveal considerable variability in the MU estimates. The unit root null hypothesis can
be rejected only for the unemployment rate series. At the same time, the lower bound of the 90% ClI
for o is as low as .76 for a few of the series (and it is lower for the unemployment rate series).

The MU estimates of « are uniformly closer to one than the LS estimates. The differences vary but
many are quite large — around .06. The smallest difference, .026, is for money stock, but even this
translates into a 45% larger CIR estimate for MU than for LS. Turning to the IRF estimates, one sees
a corresponding large difference between the MU and LS estimates. The MU estimates are much larger
for all series except the interest rate, for which the LS estimate exceeds one. The estimates of the
median-biases of the MU and LS estimators of a and the IRF show the MU estimators to be quite close
to being unbiased, while the LS estimators are strongly biased towards zero.

As argued in Section 2, it is not wise to focus too much attention on the magnitude of the largest
root. Nevertheless, since this estimand has received considerable attention in the literature, we briefly
summarize the resuits for it here. The differences between the MU and LS estimates of the magnitude
of the largest root are larger and more varied than for «. For example, the diﬁ‘erenceé for nominal GNP
and the unemployment rate are .22 and ~--.02 respectively. Except for the unemployment rate, all MU
estimates are closer to one than the LS estimates, often substantially so. The estimates of the bias show
LS to be substantially biased away from one in inany cases.

The MU estimates of 8 in Table 4 are quiie small. They range from .0000 to .0035. The LS esti-
mates are uniformly larger, with the exception of the unemployment rate. The LS estimates range from
~.0005 to .0067. The estimates of the bias show the LS estimator to be biased upward and the MU
estimator to be essentially unbiased.

Our main conclusions from Table 4 are the following. The nominal variables exhibit very high
persistence. The real variables exhibit less persistence, but it is still substantial. The precision attached
to these conclusions is not great, since the Cls for « are wide. The MU and LS estimates differ substan-

tially in terms of the amount of persistence they indicate. The LS estimators of a and the IRF are
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strongly biased towards zero, whereas the MU estimators are essentially unbiased (except for the case

of the IRF when o = 1, in which case it too is biased towards zero but much less so than LS).

5.2. Comparison of Different Estimates Using the Nelson-Plosser Data

Here we compare the MU and LS estimates for the NP data series with other estimates given in the
literature including those of Rudebusch (1992), DelJong and Whitemm; (1991a), and Phillips (1991a).
In addition, we make comparisons with estimates given by Stock’s (1991) asymptotically median-unbiased
estimator of the magnitude of the largest root (alihough not with results actually reported in Stock
(1991)). We also make comparisons with the asymptotically median-unbiased (AMU) estimator of «
considered in Section 4 above. Since different authors use different lag lengths p, comparisons across
all methods are not always possible. Rudebusch (1992) uses the Nelson and Plosser (1982) choice of p.
DeJong and Whiteman (1991a) and Phillips (1991a) use p = 3. Also, different authors choose to report

different estimands. Rudebusch (1992) gives estimates of v,, ..., Tpr from which an estimate of

P

o= E y; can be obtained. DeJong and Whiteman (1991a) report only estimates of the magnitude of
j=1

the largest root, A, and the time trend parameter 8. Phillips (1991a) reports only estimates of er. First

we compare the MU estimates with those of Rudebusch for models with the Nelson-Plosser choices of
p. Next, we consider all models with p = 3 and compare the MU estimates with those of LS, DeJong
and Whiteman {1991a) (DW), Phillips (1991a) (Ph), and AMU.

Rudebusch’s (1992) estimation method has been described briefly in the Introduction. DeJong and
Whiteman’s (1991a) estimators of A and § are Bayesian posterior means where the prior is chosen to be
uniform over the AR coefficients vy, ..., v5 and over the time trend parameter £ subject to the restriction
that A € [.55, 1.055] and 8 € {.000, .016). Phillips’ (1991a) estimator is defined here to be the
posterior median of his posterior distributions for o obtained using the Jefferies prior and some analytic
approximations. (Phillips does not report posterior medians. The Ph estimates reported in Table 5 are
obtained by eyeballing Phillips’ posterior distributions given in his Figure 4. In consequence, these
estimates are subject to (our own) computational error.)

Summing Rudebusch’s (1992) estimates of v, ..., T yields the following estimates of a. We give

the Rudebusch estimate first and the MU estimates second for the series as ordered in Table 4 (with the
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NP choice of p): (.898, .885), (.946, .958), (.882, .875), (.919, .919), (.900, .914), (.773, .765), (.968,
.960), (.985, 1.00), (.974, .970), (.913, .896), (.947, .942), (.995, 1.00), (.984, 1.00), and (.984, .970).
(Rudebusch does not provide any measure of the varjability of his estimates, 50 none can be given here.)
Overall, the differences are small. They vary from .000 for industrial production to .017 for real wages.
Thus, the Rudebusch estimates are much closer to the MU estimates than to the LS estimates. This is
to be expected, because the MU and Rudebusch methods are quite similar.

Next, we turn to comparisons of MU, LS, DW, Ph, and AMU estimates for AR(3) models, see
Table 5. Results are reported for estimates of «, 8, and the magnitude of the largest root A. Bias and
standard deviation estimates are provided in parentheses beside each of the MU and LS estimates. These
were obtained by the simulation method outlined in Section 3.1. The standard deviation of the posterior
distribution of A is provided in parentheses beside the DW estimates. Asymptotic 90% central CIs for
o and A are provided in square brackets beside each estimate for the AMU estimator. The CI for A is
as defined by Stock (1991); that for « is as defined in Section 4,

First, we summarize the results for the main parameter of interest o, The comparison between the
MU and LS estimates is quite similar to that in Table 4. The MU estimates are uniformly closer to one
than the LS estimates. The differences between the two %iimat&s range from .02 to .09. These differ-
ences correspond to MU estimates of the CIR that are from 38% to o % larger than those of the LS
estimates.

The Ph estimates are slightly larger (i.e., larger by .01 or .02) than the LS estimates for all series
except the industrial production, velocity, and interest rate series. For the latter two, the Ph estimates
are much larger. The latter two are the serics with the largest LS estimates. For these series, the Ph
estimates are much larger than the LS estimates beéause of the large weight that the Jefferies prior puts
ona > 1. Since the Ph estimates of o are just slightly larger than the LS estimates for most series, the
MU estimates are noticeably larger than the Ph estimates for most series.

The MU and AMU estimétes of o are quite similar. The differences are between .00 and .02. The
differences in the lower bounds of the MU and AMU ClIs for o also are fairly small in most cases,

although they differ by .03 for real wages.
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Next, we compare estimates of the magnitude of the largest root A. Although A is not a parameter
of great interest by itself, as argued in Section 2, these comparisons indicate whether the differences
between the MU estimates and other estimates in the literature, such as those of DeJong'and Whiteman
(1991a), are due to differences in the methods employed or just to the choice of estimand considered.
The differences between the MU and DW estimates of A are very large. They range from —.10 to .14,
with most being in the .07 to .10 range. The MU estimates are usually significantly closer to one than
the DW estimates, but not always. For many cases the bias of the MU estimator is smatl, though for a
few cases it is large. In each case where it is large, the DW estimate is in the direction of the bias
relative to the MU estimate, which suggests that the D'W estimator is mbre biased than the MU estimator.
The LS and DW estimates of A are closer together than the MU and DW estimates are, but there still
are noticeable differéncm. Unlike the estimates of «, the MU and AMU estimates of A differ noticeably
for a few series.

Lastly, we compare estimates of the time trend parameter 8. The LS and DW estimates of § are
almost the same. The MU estimates are noticeably closer to zero than the LS and DW estimates. The
difference between the MU and LS estimates of § are approximately the same as the upward bias of the
LS estimator. The MU estimator of § is essentially unbiased. One might conjecture based on these
results that the DW estimates of § have an upward bias roughly equal to that of the LS estimates. Bias-
correction of the LS and DW estimates, then, would yield estimates approximately equal to the MU
estimates.

Overall, the results of Table 5 lead to the foillowing conclusions. There are noticeable differences
between the MU and AMU estimates on one hand and the LS, DW, and Ph estimates on the other. The
former show considerably greater persistence for most of the series than the latter. The differences can
be attributed to the fact that the MU and AMU estimators of « and A are not biased towards zero and

those of # are not biased away from zero.
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6. EMPIRICAL RESULTS FOR
THE EXTENDED NELSON-PLOSSER DATA

Table 6 presents MU and LS estimates of numerous parameters for each of the series in the extended
Nelson-Plosser (ENP) data set compiled by Schotman and van Dijk (1991). In the table, simulated esti-
mates of the biases and standard deviations of the estimators, computed using the MU estimates as the
truth, are given in parentheses below each estimate. As in Section 5.1, the lag lengths (p) of the AR(p)
models that are estimated are taken to be the same as in Nelson and Plosser (1982). This choice is made
because it facilitates comparison with the results of Section 5.1 and because an analysis of the residuals
of the estimated models did not provide evidence that the NP lag lengths are inappropriate. (The only
exception is some weak evidence that a longer lag length than p = 1 may be appropriate for velocity.)
Of course, a data dependent method of choosing p may very well choose differeni iag lengths.

Eight of the fourteen MU estimates of « equa! 1.0. All of the nominal variables have an MU esti-
mate of « equal to 1.0 except money stock, whose estimate is .96, Real wages is the only real variable
for which the MU mtirhate of a is 1.0. The other real variables, except the unemployment rate, have
MU estimates of « in the range of .86 to .91. The unemployment rate has the lowest estimate of o; it
is .76. The 90% Cls for o for the nominal variables are relatively short with the lower bound ranging
from .91 to 1.0. The 90% Cls for « for the real variables are noticeably longer ranging in length from
.18 to .25. The null hypothesis of a unit root {« = 1) can be rejected at a S% level using a one-sided
test for three of the series: real GNP, real per capita GNP, and the unemployment rate,

The MU estimates of o are substantially ¢loser to 1.0 than are the LS estimates. The range of
differences is .02 to .07. These differences are due to the downward median-bias of the LS estimator.

The MU estimates of the time trend paraméter B are fairly small. The LS estimates of § are larger
than the MU estimates for every series except the.unemployment rate. The bias of the MU estimator of
£ is essentially zero. In contrast, the LS estimators of 8 are upward biased by approximately the amount
that the LS estimates exceed the MU estimates.

The unbiased model selection rule introduced in Section 3.3 says to choose a unit root model if the

MU estimator is 1.0 and to choose a trend stationary model if the MU estimator is less than 1.0. This
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rule selects eight series as being unit root models and six as being trend stationary. The unit root models
include all nominal variables except money stock, plus real wages.

Now we compare the MU and LS estimates for the ENP series with those for the NP series. For
convenience in making these comparisons, the {ast two columns of Table 6 provide the estimates of « for
the NP data. The biggest changes occur with the real wage series. The LS and MU estimates increase
enormously when the new data is added from .83 and .82 to .93 and 1.0 respectively. The 90% CI for
a shrinkages in length from .22 to .09, The graph of real wages is flat over the period of new data 1971-
1988, whereas it increases throughout the period of the NP data 1900-1970. The next largest changes
occur for the nominal GNP, GNP deflator, nominal wages, and common stock price series. The LS and
MU estimates for each cf these series increased by .03 or .04 with the MU estimates going from .96 or
.97 to 1.0 in each case. The lengths of the 90% ClIs for « for these series shrink from .14 to .07, .11
to .03, .12 t0 .08, and .12 to .09. For the first thres of these series, the graphs of the series show a
steeper slope (presumably due to increased inflation) over the new period of data 1971-1988 than prev-
iously. '

Next, the interest rate series shows a large drop in the LS estimate of « from 1.03 to .95 with addi-
tion of the new data, but the MU estimate stays constant at 1.0. The real GNP and real per capita GNP
series show little or no change in the LS and MU estimates of o, but the increased precision due to the
addition of data allows onz to reject the null hypothesis that a = 1 with the GNP data, whereas one
cannot reject this hypothesis with the NP data. The consumer price and velocity series exhibit a small
increase in the LS estimates of « by .02, but rio change in the MU estimates of « which equal 1.0 with
both data sets. The industrial production, employment, and unemployment rate series show little or no

change in the parameter estimates between the two data sets.
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7. EMPIRICAL RESULTS FOR THE STOCK DIVIDEND
AND PRICE DATA

In this section, we present empirical results for the stock dividend and price data referred to in the
Introduction. We use an AR(3) model for each series, as in DeJong and Whiteman (1991b). This choice
is made for comparative purposes and because residual analysis did not indicate that this choice is
inappropriate.

Table 7 presents MU and LS estimates of a variety of estimands for the stock market data series.
In addition, the DW posterior mean estimates of the magnitude A of the largest root and the coefficient
$ on the time trend are provided. Bias and standard deviation estimates for the MU and LS estimators
(computed using the simulation method outlined in Section 3.1 and taking the MU estimates as the truth)
are given in parentheses below each estimate. The standard deviations of the posterior distributions of
A and 8 are given in parentheses below the DW estimates of these parameters.

We now discuss the results of Table 7. Four of the six series show considerable persistence; two
show noticeably less persistence. In particular, DJ prices, NYSE dividends and prices, and S&P prices
all have MU estimates of o equal to .90 or greater, whereas DJ dividends and S&P dividends have MU
estimates of « equal to .79 and .82 respectively. Only NYSE prices have an MU estimate of o equal to
1.0. Thus, the unbiased model selection procedure of Section 3.3 chooses a unit root mode! for NYSE
prices and trend stationary models for ail other series.

The 90% central Cls for « are extremely wide for the DJ dividend and price and S&P dividend
series with widths of .45, .31, and .28 respectively. The Cls for o for the NYSE price and S&P price
and dividend series are also wide, but much fess so, with widths of .19, .21, and .16. The principal
explanation for the excessively wide ClIs is the smail number of observations (T'+p) for the DJ and NYSE
series, viz., 51 and 55, respectively.

The LS estimates of « and of the IRF are much smaller than the MU estimates, especially for the
DJ and NYSE series. The differences in LS and MU estimates of & for these series range from .10 to
.21, which are very large. In all cases, the LS estimates are closer to zero than the MU estimates. This
is due to the downward bias of the LS estimators, which is particularly large for small sample sizes.

Given these biases, we do not believe the LS estimates give impartial estimates of the amount of persis-
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tence in the series, as measured by « or by the IRF. The MU estimates of o and the IRF, on the other
hand, are essentially median-unbiased in most cases. Hence, they provide a more objective estimate of
the amount of persistence. |

The MU estimates of o and of the magnitude A of the largest root are approximately the same for
each series except S&P dividends.‘ The same is true of the LS estimates. In consequence, for five of
these series, the magnitude of the largest root can be given an interpretation related to the persistence of
the series.

Comparing the DW estimates of A with those of LS, we find that the DW and LS estimates are
approximately equal for all series except DJ dividends and S&P dividends. Comparing the DW estimates
of A with the MU estimates, we find that the DW estimates are uniformly smaller than the MU estimates.
The differences for the six series are .07, .16, .13, .16, .05, and .07, which are substantial. Thus, the
MU estimates indicate conside.rabiy' greater persistence in the series than the DW estimates do. The
explanation for the differences is the difference in the bias properties of the MU and DW estimators.

We conclude that the MU estimates differ noticeably from the LS and DW estimates. Of the point
estimates given, we believe the MU estimates of « and the IRF to be the most informative regarding
persistence, since they are approximately median-unbiased. The interval estimates for ¢ also are quite
informative, since they make clear that the level of uncertainty about the "true” values of a is quite high,
The MU estimates of « indicate a high degree of persistence for four of the six series and a lesser degree

for two series. One of the six series is estimated to have a unit root and five are estimated to be trend

statiopary.
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A.l. Invariance of 6; ¢

First we establish the claim made in Section 3.1 that &, ¢ has distribution that does not depend on
u*,8*, ) orwhena = 1o0n ¥X,,1. Infact, we will show that these invariance properties hold for
the distribution of (&, ¥ 15r --» Vp—y L9)-
~ Consider successive regressionsof ¥, ¥,_,, AY,_,, ..., AY,_ppyon(l,Hfore=1,.., T Then
(G ﬂrl LS ves Q:p_ 1) equals the LS estimator from the regression of the residuals from the regression
with ¥, as dependent variable on the vector of residuals from the regressions with Y_. &Y, ..,

AY,

t—p+1 as dependent variables. Since ¥, = p* + 8% + ¥} by (2.1), all of the residuals above are

invariant with respect to (u*, 8*). In consequence, the distribution of (G ooes ﬂ‘p-l Ls) is invariant
with respect to (u*, 8%).

Given this invariance, we can suppose u* = §* = 0and ¥, = Y; inthe remainder of the proof.
Multiplication of ¢2 by a positive constant ¢ in (2.1) causes Y and ¥, to be multiplied by the same
constant ¢ for t = —p+1, ..., Twhen o € (—1, 1) (using the fact that stationarity of {Y;:t2 -p+1}
requires that the initial rv’s Y2, ..., Y are scaled by the same constant ¢). In consequence, the
residuals from the regressions of ¥, ..., AY,_ .,y on (1, 1) are multiplied by the same constant. This
constant cancels out in the expression for the LS estimator (a5, ..., er,] Ls) given by the regression of

the residuals from ¥, on those from (¥,_,, ..., AY,__‘D +1)- Thus, the distribution of & is invariant with

respect to o> when o € (~1, 1).

i
Now suppose a = 1. We can always write ¥," = Y.+ Y AY]. By assumption, when
s==p+d

a =1, {AY] 11 2 —p+2} is stationary with level that is arbitrary. That is, a change in Y:p_,_; has
no effect on {AY} : ¢ = —p+2}. In consequence, since ¥, = Y 7 » the residuals from the regressions
of ¥, ..., AY,_,, on (1, 1) are invariant with respect to the value of Y2, 41 and (&g, ..., 'Z’p—l.u') is
likewise. Given this invariance, suppose ¥* p+1 = 0. Then, the multiplication of ¢® by a constant ¢
causes AY7, Y7, AY, and ¥, to be scaled by the same constant. As above, this leaves (G5 s

-~

¥p—1,s) unchanged. The proof is now complete.



A.2. Asymprotic Properties of &g,y and [L, U]
Next we consider the asymptotic justification for & and [L, U]. We use the same model and

assumptions as Stock (1991). The parameter « in his notation is a(1) = 1 + cb(1)/T, where c is a
p-1

constant and b(1) = 1 - E %-- Equation (5) of Stock (1991) gives the local-to-unity asymptotic dis-
j=1 _

tribution of the statistic #”. This distribution depends only on c. Let /3 P(c) and £, P(c) denote the lower

and upper p quantiles of this distribution.

Consider the following Ci for o
(A.1) Cl={a:a=1+ fb‘(l)lTandf,,p!(c) =¥ <f pu(c)} .
This CI has asymptotic confidence level 100(1 - p, — p,)%:
P, (a7 € Cl)
= Polfe, p(0) < ¥ < f,, p,(€) for defined by ar = 1 + eb(1)/'1)
= Py lfy, p (eBB() < 77 < f,, , (cb(1)/B(1))]

-1—-p—-p,asT—> e,

(A.2)

where oy = 1 + cb(1)/T and Par(') denotes the probability measure when a is the true value of . The
convergence to 1 — p, — p, above uses the fact thatf; p(c) and f, p(c) are continuous functions of ¢ and
#" has absolutely continuous limit distribution.

Let ff.lp(y) = sup{c : f, p(c) < y} and j:;,(y) = inf{c L, o) 2 y}. Iffe p ) and f, 5 (c) are
monotone increasing functions of c, then f, , () < #7 < f, ,(O) iff 1 + f;' J,,,“('?-")13(1)10' <1
+ hINT < 1 + [ ,,GDEANT. In this case, Cf = [L, O] with cg = £} , (") and ¢; = £} (")
and [L, 0] is an asymptotically valid 100(1 — p, — p)% Clfora. Iffy , t(c) or f, pu(c) is not every-
where monotone increasing in ¢, then CI C [£, 0] and [Z, 0 is an asymptotically valid CI for o with
confidence level = 100(1 - p, — p)%. In fact, f, p'(c) and f, p“(c) are almost, but not quite,
monotone in ¢, see Stock’s (1991) Figure 2. In conseguence, [L, O] has asymptotic significance level
just slightly above 100(1 — p, — p)%. (To obtain a CI with asymptotic confidence level exactly
100(1 — p, — p )%, if this precision is deemed necessary for some reason, one can use Cl defined

above in conjunction with Stock’s Figure 2.)
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Furthermore, if f; 1(c) is monotone increasing in c, then for (p,, p,) equal to (0, 1/2) and (172, 1)
the two corresponding Ci Cls are of the form [& oy ) and (—oo, & 3,0], Tespectively. These Cls
have the property that their probabilities of covering the true « are both 1/2 asymptotically. In conse-
quence, &gy, is asymptotically median-unbiased. In fact, f ,5(c) is not quite monotone increasing in
¢, see Stock’s (1991) Figure 2. The extent of non-monotonicity is sufficiently small that & MU IS very
close to being asymptotically median-unbiased (close enough for practical purposes), although it is not
exactly so. Furthermore, the small region where non-monotonicity occurs is just above « = 1, 50 if one

restricts the parameter space to be (—1, 1], then this problem disappears.
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Table 1. Comparison of Impulse Response Functions for Several Pairs of Models

Order Magnitude Magniiudes Impulse Reaponse Function

Data Scries of AR of Largest of
Mimicked Model Root o Other Roots ‘ Y ¥ | 2 3 4 s 7 10 15 20 25 30
Industrial Production-NP 6 95 92 .80,.80,.78, .05,-.08,.01, 1.0 3 N 6 a 3 4 2 2 2 N

.78,.70 -.08,-.26

Nominal Wages-NP 3 94 96 36,.36 53,-.12 1.5 16 15 14 13 1.2 9 b} 5 4 3
Unemployment Rate-ENP 3 81 80 .50,.50 22,-20 10 6 A 4 3 2 1 o4 01 01 00
Money Stock-ENP 2 81 96 .81 .65 1.6 1.9 2.1 21 29 1.7 1.1 5 2 06 02
Unemployment Rate-ENP 4 T2 76 .72,.65,.65 .36,-.23,.22 1.1 T 5 5 3 07 .03 .0l 00 00 00
Real GNP-ENP 2 64 86 .62 . -39 1.3 1.2 1.0 3 b 3 N} 02 00 00 .00
1 3 5 7 9 11 13 15 17 19 21

Industrial Production-NP 3 86 87 24,24 .10,-.05 1o 7 5 4 3 2

o
8

05

Real GNP-NP 3 59 87 .60,.02 39,0 13 1.0 6 4 2 .1 05 02 .01 01 00




Table 2. Properties of the Median-unbiased (MU) Estimators for Various Parameters
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Table 3. Properties of the Approximately Unbiased Model Selection Procedure

True Parameters Probability of Data Series

Selecting a Model Mimicked
o ¥ Vo T+p with a = 1 (using NP data)
.81 21 -.20 81 04 Unemployment Rate
.87 .10 -.05 111 .04 Industrial Production
.87 39 .01 62 A2 Real GNP
.89 .23 -.02 1 .20 Real Wages
.92 .39 -.11 81 19 Employment
95 70 -.08 82 19 Money Stock
96 42 05 82 .34 GNP Deflator
97 .27 -.18 100 .44 Common Stock Prices
1.0 .74 -.27 111 .56 Consumer Prices
1.0 .10 -.05 102 .55 Velocity
l.g .18 37 71 .59 Interest Rate
t

.50 ~-.14 62 54 Nominal GNP




Table 4. Median-unbiased (MU) and Least Squares (LS) Estimates for the Nelson-Plosser Data Series

Esd- Magnitado of Roow in Desccading Onder Tpuiss Rasporse Frnation
Do Serics  mator - a % % ¥ . 00x8 10
for o
1 2 3 4 1 2 3 4 5 10 15 x -

Roal GNP MU L I P AF ] » 54 3 35 n | L2 L4 1.08 » R 21 06 o 00
(1909-1970, (.00,.08) {00,.12} (.M,.JS) (00,26 (00,06 (01,.12) (.40, lﬂ (=011 (-0L.22) {00,299 (00,36  (—01,41) (—02,.45) (-0L.47 (00,.41) (00,41}
T+p = 62) LS 525 A2 56 34 45 1.24 113 = £2 Al 00 -0 00 00

(- 06,07) 3,.12 n R0 (0108 006 (1te 0419 (-13,.2) (~2i2N (B (-0 (-48,05 (-0400 (-0,00 (00,0
Nomiral GNP MU 958 86,1.0) 46 A5 2 ™ R ] 50 1.42 i 1.54 1.4 1.» 2 80 - 23
(1906-£970, {:00,.06) (- .Ot, 12) (- 05,61 (04,30 (OL.19) (0L.ID (-.01,16) (=02,.13) —05,.25) (-06.36 (-04.49 (- -02.-5‘) (06,75) (06,82 (05,85 (0687
T+p = 62) LS 59 1.06 56 16 o -0 i39 1.4 1.2 113 <] 04 o0 A0

(- .06,.00) (-m -12) (62,386 (.3 (-0514 (—.1500 (1416 (0143 (—.18,25) (-31,.34 (-89 (- -52. ) (-7, (-55.24) (-39 (-.24,.14
Real per MU S5 L761.0) 38 E 23 33 ] 52 1.26 1.2 i 0 L 16 04 ful 00
Capita GNP (.00,.08) (-W- 12} (.00,.54) (m, 16) (00,07 (-W. 12) (N' 19 -00,.1) (-62,.20) (0,29 (-0L30 (00,38 (- .Ol 40 (00,38)  (00,3T) (00,36
(1909-19%), LS LIt 1.28 35 .3 1.10 B » a7 00 E 0.
T+p ~ €2) (— 106,07 (m lll (43,.47) (12. 15} {(-01,0M (- m.m 3 13. 14 05,13 (-.13,.2) (2.2 (-273M (-20.20 (—.lo..m (—04,08 (-.0L,0%) (00,02
Industrial MU My M0 05 - o1 N a2 96 54 80 E ] . k0 L 4 At 0 A2 24 21 15
Production™ (.00, 10y (W. 1) (-01,.00)  (0L.10) (-.01,.00) (-m- 40} (00,..4 (00,07 (-OI.M (01,08 (-0L,O7 (-01,10 (—.03,.19 (- 02- 5 (- 01. ) (—M -23) (-ﬂl.-z‘) (00,25 (00,27 (00,27
(1360-1970, LS B35 —-.04 N4 10 hg) s . . k] B o7 03 02
T+p=Lth (—09,.09) (-03 10) (04,10 (95,100 (03,08 (35. B} (-02%.1) (-.07.00 (01-»05) (01,00 (-05,00 (-05.100 (—.10,.19 (-. 12. 1m - lﬁ. 19 (- lﬁ' m (- -21. 15) (-.19,.10) . (-.16,.08 (-.13,47
Employment MU S14 (81,10 3 ~.11 = 13 43 8 38 33 11 1 L33 . . 40 | Al L
(1#90-1970, (00,07 (W- ll) 00,.11) (00,74)  (00,.11) (00,00 (-00,.12 (09,44 (00.IT) (~0%.12) (-03,.20 (—02.2n (-0L,31) (00.3) (—0L.48) (—01,.46 (- -01. 4N (-01,.47
T+p = 1) s 861 -07 1.4 21 W12 » a1 31 .7 113y 50 & 2 14 04 L

(—.06,.06) (-N. 10) (05,.11) (42,65 (0910 (00,00 (-.12.11) (14,19 {07,180 (-06.1) (-.1L,30 (-18,.29 (-24.20 (-2,.20 (-3, (-2 (- IZ’--M (—07,.0M
Uenploy- MU 1.62,.89] a8 -2 A A oz 18.7 n 45 45 112 46 54 2 30 - -0l A0 00
et Rave (-ﬂl. 10) (00,.12) (00,11} (-01.17) (00,21) (6. 4,29 (.Il. 1 (-04. I m. m 0.2 (-04.12 (-0fL.19 (- -W.-Zl) (—0,.3) (0,24 (0219 (0213  (00,.11) (00,10
{189%0-1970, LS k] -0 24 5t -0 145 L 108 A0 » 46 - 00 00 o0
T+p =81} (- Ms 10} (03,.11) (03,11 (0211}  (10,2)  (0,.39) 1,29 (-I' -08) (07.-09) (- 02. 1} (-04.16) (~05.12) (-07.18% (- lﬁ. (=132 (4200 (-02.H) (0204  (00,07) (00,00
GNP MU S0 (89,100 M A2 Rl 22 97 1.4 1.5 1.5 1.44 1.35 n £ E - F
Delfuor (.00,.05) (-0,.10 (00,.13) (~01.13) (00,04 (00,.10) (m. 14) (0L (-02.21) (~02,.29) (-0, (-0, 4D (0,60 (00.T) (-01,79 (-91,.%)
(18891970, LS N3 43 ] 2t U 50 1.31 1.42 132 1.16 9 a7 .13 4 o1
T+p = 82} (—.05,.04) (0,.1 (1212 (00,.13) (00,00 (-.12,4% (10. 15) =8411 (—.1321) (-2 IID (-BM (-R3I) (-SW (-¥.18 (-.2,.19
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Table 5. A Comparison of Differen; Estimates for the Nelson-Plosser Data Series Using AR(3) Models

90% CI Magnitude of Magnitude of
Data Series Estimator o fora 1003 Largest Root Data Series ~ Estimator o 100x8 Largest Root
Real GNP MU .87 (.00,.09) [.75,1.0] .45 (.00,3]) 69 (.12,.12} Consumer MU L0 (.00,.03) 200 (.00,.05) 1.0 (.00,.07)
{1909-1970, LS 81 (—.06,.08) 61(21,27  .70(.07,.09) Prices Ls 98 (—.05,.03) 05 (.05,.06) .95 (—.10,.08)
T+p = 62) DW 6 (2 .76 (09) (1860-1970, DW 0 0 95 (.04)
Ph -~ .82 T+p = 11D Ph  -~98
AMU B8 {.76,1.03) .81[.61,1.04] AMU 101 1.021.95,1.04§
Nominal GNP MU 1.0 (.00,.07 [(.88,1.0}] .00 (.00,.45) 96 (.00,.11) Nominal MU 97 (.01,.06) 14 (—06,28) .95 (.02,.10)
(1909-1970, LS 91 (-.11,.07 52(59,57)  .78(-.19,.11) Wages LS 91 (—.06,.06) 38(.28,28) .79 (—.13,.09)
T+p = 62) DwW S 82 (.0%) (1300-1970, DW 4 L) .82 (.09}
Ph  ~92 T+p =T1) P ~.93
AMU 1.02 [.87,1.04) i.03{.81,1.04] AMU 99 .98 {.80,1.05]
Real per MU 86 (.00,.09 [.74,1.01 .28 (00..19} 65 (.09,.12} Real MU .89 (.01,.09) 24 (-.02,.21) .85 (.01,.13)
Capita GNP LS 80 (—.07,.08) 38(13,.17) .70 (.04,.09) Wages LS 82 (- 07,.08) 38(15,.18) .71 (-.11,.10)
(1909-1970, DwW 4 (1) T5 (.09 (1900-1970, DW 4 (D .76 (.09)
T+p = 62) Ph - 82 T+p =71} Ph  ~.83
AMU 87 [.75,1.03) .79 [.60,1.04] AMU 87 .83 [.66,1.04]
Industrial MU .87 (.00,.07) [.76,1.0] .53 (.01,.30) .86 {.00,.10) Money MU 95 (.00,.04) 29 (—-.01,.22) .79 (.07..09)
Production LS .82 (—.05,07) 75 (.22,.28) 830 (—.07,.10 Stock LS 92 (—.03,.09) A7 (17,.20) .80 (.02,.06)
(1860-1970, DW N IRE)) .78 (.09 (18891970, DW S D .83 (.07
T+p = 111) Ph ~.86 T+p = 82) M ~.93
AMU 87 [.76,1.02) .86 [.75,1.02) AMU 95 .88 [.74,1.04)
Employment MU 91(00,0n [81,1.01 .13(.00..11) 88(-.01,.12) Velocity MU 1.0 (00,05 00(00,0n 1.0 (00,07
(1890-1970, Ls .86 (—.06,.06) .21 (.09,.10) 76 (—.12,.11) 1869-1970, LS .94 (—.09,.06) —.04 (—.08,.100 .94 (-.10,.08)
T+p = 81) DW 2 (0 18 (.10) T+p = 102) bw £ 99 (.02)
Ph .88 Ph ~1.01
AMU 93 [.82,1.03] .90 [.76,1.04) AMU 102 1.02 {.95,1.04]
Unemploy- MU .81 (.00,.i1)  [.65,.97 ~.17(.03,.2T) 82 (~.01,.13) Interest MU 1.0 (.00,.05) .00 {.00,.55) 1.0 (.00,.08)
ment Ratc* LS 73 (~.08,.10) —20(-.05,33) .T2(-.10,.12) Rate LS  1.03 (-.07,.05) J32(.53,86)  1.05(—.14,.06)
(1890-1970, DW d D 75 (.10} {1900-1970, DwW 3 L) .98 (.06)
T+p = 81) Ph ~.75 T+p =T71) Ph ~1.15
AMU 82 [.67,1.02] .82 1.67,1.03] AMU 1.03 1.05 [1.03,1.08]
GNP MU 95 (00,.05) [.88,1.0] .13 (.00,.13) .89 (.00,.10) Common MU .97 (.00,.06) A8 (—.02,.31) .97 (.00,.08)
Deflator LS 91 (—.05,.05) 22 (.12,.13) 75 (—.10,.07 Stock LS 91 (—.07,.06) 32 (.34,.32) .89 (—.08,.09)
(1889-1970, DW 2 (0 22(07) Prices DW 3 88 (.07
T+p = 82) A -9 (1871-1970, Ph ~93
AMU 9 [.88,1.02} 92[.77,1.04) AMU 101

1.01 [.87,1.04]



Table 6. Median-unbiased (MU) and Least Squares (LS) Estimates for the Extended Nelson-Plosser Data Series

Magnitude of Roots in Deacending Order

NP Data
90% CI
Data Series Estimator a for a ¥ ¥y V3 ® 100x8  100xe? 90% CI
1 2 3 4 [ for o

Real GNP MU 864 77,99 .39 64 A4 27 67 58 885 [L77,1.0]
(1909-1988, {.00,.06) (-.01,.10) (-.01,29) (—.02,21) (00,05) (07,100 (—.05,.17) (.00,.08)
T+p = 80) LS 824 Al 82 57 27 64 64 825

(~.04,.06) (.01,.10) (.19,.26)  (14,.19) (—.01,.04) (.0L,.0T) (.04,.14) (~.06,.00
Nomim! GNP MU 1.00 (93,107 45 035 .00 64 1.00 45 958 [.86,1.0)
(1909-1988, (.00,.04) (-02 .10} (00,.03) (.00,27) (-.0L.11) (.00,.09) (oo 13) (.00,.06)
T+p = 80) LS 939 64 At 61 87 899

(~.07,.04) . 01 A1) (00,.05) (41,31 (~.04,.10) (—.14,.09) (07 15) (—.06,.06)
Real per MU 858 .77,97] .38 99 28 28 67 K1 875 1.76,1.0]
Capita GNP (.01,.0M (—.01,.11) (- .03,.46) (-.01,.14) (.00,.05) (os w) (-.01,.17 (.00,.08)
(1909-1988, LS 816 40 1.29 36 28 63 818
T+p = 80) (- .04,.06) (02,.10) (28,43} (08,13) (00,05 (02 (m (.05,.14) (- 06,07
Industrial MU 910 (.79,1.0] .06 -.10 00 .10 34 86 94 79 79 .76 919 [.78,1.0)
Production® (.00,.09) (01 10) (- .01,.10) (oo 10) (00,.04y (01,33) (00,.12) (00,07 (.02,.06) (m, 06) (- 01 on
(1860-1988, Ls 841 ~.06 11 63 85 83 78 835
T+p = 129) (—.08,.08) (os lO) (.03,.09) (04.09) (.03,05) (.30,30) (~.01,.11) (—.06,.06) (.01,.06) (00.07) - 01 on
Employment MU S04 [82,1.00) .40 -.11 98 A8 1 .86 36 36 914  [.81,1.0]
(1890-1988, (.00,.06) (—.01,.10) (—.01,.10) (—.04,64) (-.01,.100 (00,02) (OL.I) (.09,.13) (.0L,.16) (:00,.00
T+p = 99) LS 864 41 -.08 138 21 .10 78 32 32 861

(— .04,.06) (00,.10)  (.03,.10 (43,57 (07,09 (00,02) (~.08,.10) (10,19 (-.03,17 (—.06,.06)
Unempioy- MU 756 [.63,88] .36 -3 o n A0 04 13.7 n n 65 65 765 [.62,.89]
ment Rate (.00,.09) (oo w) (00,.10) (~.0L,.10) (- 01 16)  (.01,.15) (-—07208) (04,070 (.01,.09 (00,09) (-02 A7 (oo w)
(1890-1988, LS 715 -.21 23 .03 74 T4
T+p = 99) (—.05,.08) (03 10) (.03,.10)  (.02,.10 (01 11) 02,17 (-. n,z 0D (03,07 (03,08 (Ol 09) (oo 14 (-05 10)
GNP Deflastor MU 1.00 [97,1.01 .50 014 00 20 1.0 .50 960  [.89,1.0)
(1389-1988, (oo oa) (-.oz..oo) (oo KU)) (oo m) (.00,.03) (oo o (.00,.10) (.00,.05)
T+p = 100) LS 19 .50 815

- os oa) (14 m 05,

——

(-0109}

(0002)




7 e 6. _ ntinu

Magnitude of Roots in Descending Order NP Datz

90% CI
Data Seties Esimator o for a N ¥ ¥ B 1008 100 x o2 0% CI
H 2 3 4 a for

Consumer MU 1.00 {1.0,1.0} T ~.31 13 007 00 A7 1.0 60 46 A6 1.00 [.97,1.0]
Prices (.00,.02) (—.03,.09) (.0L,.11) (-.01,.09) (.00,.00) (.00,.05) (.00,.02) (00,06) (.02,.i3) (.03,.10 (—.02,.16)
(1860-1988, LS 987 i -.29 .10 026 05 .16 97 .52 43 43 969
T4+p = 129) {~—.03,.02) (-03,.09 (02,.100 (.01,.09 (.00,.02) (.05,.06) (—.01,02) (—.09,.06) (.09,.i9) (.04,.10 (.01,.15)
Nominat MU 1.00 [.92,1.0 54 -.13 026 .00 31 1.0 36 36 970 [.88,1.0}
Wages (.00,.04) (=.02,.11) (01,.1D) (.00,.02) (.00,.20 (—.01,.05) {00,.09 (04,13 {00, 03) (.01,.06)
{1900-1988, LS 939 .53 -.08 I8 30 20 .38 32 28 910
T+p = 89) (=.07,.08 (—.03,.10) (.04,.11) (.00,.03) {.30,.22) (-.02,.05) (—.13,.09 (12,.1% (- .05,.18) {—.06,.06)
Real Wages MU 1.00 [.91,1.0 22 01 00 .13 1.0 22 896 [.78,1.0]
(1900-1988, (.00,.05) (.00,.100 (.00,.01) (.00,.08) (.00,.02) (.00,.08) (.01,.1%) (.00,.09
T+p = 89) LS 929 27 22 A2 A2 9 A6 831

(—.08,.06) (.02,.11> (.00,.02) (.11,.09 (—.01,.00) (—.11,.09) ({.05,.14) (—.07,.08)
Money MU 958 [.92,1.0 .65 on 26 20 5 51 942 [.89,1.0]
Stock (.00,.03) (- .01,.08) (00,.04) (~.01,19) (00,03  (.05,08) (-.05,12) (00,.04)
(1389-1988, LS 937 67 097 39 19 - .82 81 918
T+p = 100} (~.02,.03) (.00,.08) 02,080 (.13,.1T) (.00,.05) (.02,.05) (.00,.09) (—.03,.03)
Velocity MU 1.00 {.96,1.0} -.00% .00 41 1.0 1.00 [.93,1.09
(1869-1988, (.00,.05) (.00,.02) {.00,.06) (—.01,.09) (.00,.05) (.00,.05)
T+p = 120) LS 962 018 50 40 962 941

(—.08,.05) (00,03 (—.06,08) (-.02,05) (~.08,.05) (—.09,.08)
Interest MU 1.0 [.95,1.0] 20 —-.18 068 .00 36.3 1.0 43 43 1.00 [ .6,1.0]
Rate {.00,.07 (.00,.11}y (.01,.1D) .00,.200 (.00,.72) (—.55,597) (.00,.08) (01,.11) (.00,.13) (.00,.05)
(1900-1988, LS 953 22 —.16 078 .50 35.¢ 95 4 41 1.03
T+p = 99) (—-.10,.07 (:02,.100  (.05,.11) (—.03,.35) (.65,1.07y (-1.83,5.69) (—.11,.09) (-.01,.12) (—.03,.14) (—.07,.06)
Common MU 1.00 [.91,1.0) 23 -.19 03 00 2.40 1.0 Kk A3 970 {.88,1.0)
Stock Prices (.00,.0%) (.00,.09 (01,.10) (.00,.04) (.00,.Z1) (~.08,.31) (.00, 06y (00,11}  (.00,.13) (.00,.06)
{1871-1988, LS 932 24 ~.16 06 29 2.30 93 41 4 o908

T+p = 118) (—.07,.0%) (02,09 (03,.10) (.00,.08) (.24,25) (~.14,.32) {(-.08,.07) (—.6],.]1) (-.02,.19) {-.07,.06)

*For the industrial production series, the MU estimates of ¥4 and g are —.07 (.00,.10) and —.23 (.01,.09), the LS estimates of V4 and Y are —.05 (.03,.09) and
=.20 (.04,.09), the MU estimates of the magnitudes of the 5-th and 6-th largest roots are .76 (—.01,.08) and .68 (—.02,.13), and the LS estimates of the
magnitudes of the 5-th and 6-th largest roots are .75 (—.02,.09) and .67 (~.04,. 14).



Table 7. Median-unbiased (MU), Least Squares (LS), and DeJong-Whiteman (DW) Estimates for Stock Dividend and Price Series

Magnitude of Roots in
Duta Sorkes  Eati- e WKy - [ 0oxg 100X Desornding Ordor Tenilve Reoponss Pation
metor for o
t 2 3 t 2 3 4 3 10 1% » 2
DowJoe MU .76 [3510) % —.25 A2 Al 18 - 56 .56 109 5 M » 2 o8 o o o0
Dividonds (=017 (0014 (0016 (80,M} (-.01,3N (-01,41) (- -02.14) (04.12) (-D01,.15) (- 02.16) (-OI 25) {.01.29) (00,31} (00,31 (-0L,29) (-01,39 (0.2 (00,2
928197, Ls &5 M -8 £ .1 e 52 5 L2 09 0 o 0 00 00
T+p =351 (—.13,.19 (05,13 (08,14 (2,20 (24.-37) (—.06,.39) (-Il 1) (04,.17)  (~.07,200 (-09,.15) (-. IS 24} (-»21.24) (=220 (-.19,.18 (-07,06 (-42,03) (-0L02) (.00,001)
bw 1
(m) (4L
Dowloos MU 912 (8910 00 —.10 e n 53 ” » n kL n - £ x » 26 A7 AL
Prices -N.l-’) (0,19 (00,14 (~.02,.69) (-.15,.4% (- -0‘.12) (00,14 (07,15 (m lﬂ (--03 16 (08, 23) (02,26 (m.l'h (81,37 (0,37 (A3 (0,40 (01,41
(9281978, LS o7 -0 118 56 6 19 A5 2 06 02 00 00
Ttp = 51) ow -. :6, 14 (08,.14)  (06.14) (4,60 (38,850 (-, zo,n 1) (=184 (10,16 (m.ls; - 11. 19 (- n ) (-2 (- .3:.:1) (-35,30 (-M.00 (303 (-I7.0D (-0,.04
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