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Simulation of Multivariate Normal Rectémgle Probabilities
and their Derivatives:
Theoretical and Computational Results?
by

Vassilis Hajivassiliou
Daniel McFadden
Paul Ruud

1 Introduction

An extensive literature in econometrics and in numerical analysis® has considered the problem of
evaluating the multiple integral

(1) P=PB;u,Q)= /b n(v— p,Q)dv = Ey1(V € B),

where V is a m-dimensional normal random vector with mean g, covariance matrix 2, and density
n(v — p, Q), and 1(V € B) is an indicator for the event B = {V | ¢ < V < b}. A leading case
of such an integral is the negative orthant probability, where B = {v | v < 0}.? The problem is
computationally difficult unless the dimension of the integral is less than four or the covariance
matrix ! has a special structure, such as a factorial structure with a small number of factors.
The multinomial probit (MNP} model used in econometrics and biometrics has cell probabilities
that are negative orthant probabilities, with u and  depending on unknown parameters and, in
general, on covariates.5 Estimation of this model requires, for each trial parameter vector and each
observation in a sample, evaluation of (1) and of its linear and logarithmic derivatives with respect
to i and £. This paper surveys Monte Carlo techniques that have been developed for approximation
of (1) and its derivatives that limit computation while possessing properties that facilitate their
use in iterative calculations for statistical inference. Section 2 presents the simulation methods we
consider. An Appendix discusses GAUSS and FORTRAN algorithms implementing these methods.
Section 3 describes the test problems we used to investigate the operational properties of the

methods and summarizes our computational experience with them. Section 4 concludes the paper.

2This paper collects and extends results obtained by the authors in Hajivassilion and McFadden {1990), McFadden
(1989), McFadden and Ruund (1990), and Ruud (1986, 1991).

3See Clark (1961), Daganzo (1980), Davis and Rabinowitz {1984}, Dutt (1973, 1976}, Fishman (1973), Hammersley
and Handscomb (1964), Horowitz, Sparmonn, and Daganzo (1981), Moran (1984), Owen {1956), Rubinstein (1981),
Stroud (1971), and Thisted (1988).

‘Where convenient, we write P(B; u, 1) as P(a,b; 4, 2), or when a = —oc, as P(b; s, §?). Note that P(b;p, 1) =
P(0; p — b, Q) is the cumulative multivariate normal distribution, also denoted A(b; u, Q). This setup covers all cases
of interest, since components V; for which both limits are infinite can be margined out analytically, and components
V; with a; finite and b = +o0o can be converted to the previous case by a reversal of sign.

®For example, see McFadden (1984).



2 Simulation Methods

We begin by deriving the linear and logarithmic derivatives of choice probabilities, and then we
discuss the simulation approaches we consider in this paper. After introducing some notation in
subsection 2.3, we explain the general principles of sequential sampling and acceptance/rejection
techniques in subsection 2.4, of unbiased and asymptotically unbiased simulation in subsection 2.5,
and of importance sampling in subsection 2.6. We then discuss two variance-reduction methods
(antithetic variates in subsection 2.7 and control variates in 2.8). Subsections 2.9 through 2.19
describe the eleven simulation techniques that we analyze in this paper. Table 1 summarizes the
methods and the mnemonics we will adopt. We begin with the most direct method, the crude fre-
quency simulator (CFS), which computes the sample frequency of simulated draws from a binomial
distribution with probability P. Next we describe a generalization of the CFS whick employs the
technique of importance sampling, thereby converting the sample frequency to a weighted sample
frequency that can have a smaller sampling variance. We call this the normal importance sampling
(NIS) simulator. The kernel-smoothed frequency simulator (KFS) generalizes the CFS by replac-
ing the discrete zero-one outcome of the binomial experiment by a continuous outcome on the [0,1]
interval. This simulator overcomes the discontinuities in the CFS with respect to the parame-
ters of the underlying normal distribution, but is biased. The fourth through seventh simulators,
the Stern-decomposition simulator (SDS), the Geweke-Hajivassiliou-Keane simulator (GHK), the
parabolic cylinder function (PCF) simulator, and the Dedk Chi-Square Simulator (DCS), are also
applications of importance sampling like the NIS and are both smooth and unbiased. These simu-
lators differ according to the importance sampling distribution that they use. All of the simulators,
from CFS through DCS, are simulators of P and its derivatives.

A second group of simulators apply specifically to the logarithmic derivatives of P, because these
simulators address the additional difficulties posed by the problem of sampling from a truncated
normal distribution. The acceptance/rejection simulator (ARS) is another importance sampling
technique which additionally filters out draws that fall outside an acceptance region determined by
the truncation. The Gibbs sampler simulator (GSS) is an alternative method for sampling from
the truncated multivariate normal distribution. The GSS is smooth in the distribution parameters,
but the ARS is not. A third approach is taken in the sequentially unbiased simulators (SUS) which
construct unbiased simulators of 1/P. The last method, approximately unbiased simulators (AUS),
comprises a family of simulators that are approximately unbiased for 1/P. The members of this
family can be constructed from most of the simulators of P in the first group.



Table 1
Simulators for P, V,P, VqP, V,log P, and Vqlog P

Subsection | Name of Simulator Mnemonic | Unbiased | Unbiased | Unbiased
for P for VP | for Vleg P
2.9 Crude Frequency Simulator CFS y n n
2.10 Normal Importance Sampling Simulator | NIS y n n
2.11 Kernel-Smoothed Frequency Simulator | KFS ¥* n n
2.12 Stern Decomposition Simulator SDS y n n
2.13 Geweke-Hajivassiliou-Keane Simulator | GHK y n n
2.14 Parabolic Cylinder Function Simulator | PCF y n n
2.15 Deak Chi-square Simulator DCS ¥ n n
2.16 Acceptance/Rejection Simulator ARS - - ¥
2.17 Gibbs Sampler Simulator GSS - - yx
2.18 Sequentially Unbiased Simulator SUS n n n
2.19 Approximately Unbiased Simulator AUS n n 1

« Window parameter must approach 0.

»» Number of Gibbs resamplings must approach oo,

2.1 Derivatives of Rectangle Probabilities

The derivatives of (1) with respect to u and {2 can be written:®

(2)

(3)

V.P(B;p, Q)=

07t [ 10 € B)w - winlo - i Q)i = AEVL(V € BYY - ),

VoP(B;p,0) =

(1/2)0 j e

(1/2)0 "By 1(V € BY(V - p)(V - ) - 0]- Q1.

These formulas imply

(4)

()

(v € B)[(v - p)(v - )’ = Qn(v ~ p, Q)dv- Q7" =

Vulog P(B;u,Q) = V,P(B;u,0)/P(B;u,Q) = Q'Eyp(V — p),

Valog P(B;u,R) =V, P(B; 4, Q)/P(B; 2,0) =

(1/2)07 Byip[(V — u)(V - p) -9 - 07,

where “Ey|g” denotes expectation with respect to the conditional density n{v — 4,Q,B) = 1(v €

B)n(v - p,9)/P(B; 4, Q).

Note that (2) and (3) are partial moments of the density, and (4)

*Equation (3) is derived without imposing symmetry on the elements of {1, and is then simplified by using the
symmetry of {2 at the evaluation point. These formulas are due to Ruud (1986), and they can be demonstrated using
the matrix derivatives 8log | A ) /A = A" and 84~ /A= —A"' @ A™'. T is a lower triangular Choleski factor
of f1, so that ( = T'T’, then Vo P = 2(Vo P)I .




and (5) are conditional moments. It is useful for statistical applications to develop techniques for
approximating (4)-(5) as well as (1)-(3).
Equations (1)—(3) can be written

(6) H=H(Biu0)= [ * (v € BYh(v)n(v — 4, Q)dv = Ev1(V € B)(V),

and equations (4) and (5) can be written
(7) Ho = Eyph(V) = B/P(B; 1, ),

where h(v) is the polynomial array

1 (v - uya?

‘8) M= o) fi9mto - ww - wyam - oo |

Then the northwest element of H gives (1), the remainder of the first row gives (2), and the
southeast subarray gives (3); the analogous elements of H¢ give one, (4), and (5).

2.2 Simulation Procedures

For statistical inference, it is often unnecessary to achieve high numerical accuracy in evaluation
of (1)-(5). For example, simulating P by the frequency of the event 1{v € B) in a number of
Monte Carlo draws comparable to sample size will tend to produce statistics in which the variance
introduced by simulation is at worst of the same magnitude as the variance due to the observed
data. Further, when probabilities appear linearly across observations in an estimation criterion,
independent unbiased simulation errors are averaged out. Then, a small, fixed number of draws
per probability to be evaluated will be sufficient with increasing sample size to reduce simulation
noise at the same rate as noise from the observed data.” This makes it computationally feasible
to treat statistical problems that require repeated evaluation of high-dimensional normal rectangle

"In outline, suppose § is an M-estimator that solves
0= NlnENl(é, n),

where # is an approximation (involving Monte Carlo elements 5) to a function ¢(#) of P and its derivatives that has
expectation sero at the true parameter §°, and Ex denotes empirical expectation over an independent sample of size
N. Then, one can write

0= N7 Ens(6,n) = N**Eno(6°) + N**En[s(6°,9) - o(6°)] + NP En[e(§) — o(0°)]

+N'PEn[s(6,n) - a(8) — 2(8°, 1) + o (0°)).

Under standard regularity conditions, the first term is asymptotically normal, reflecting the noise in the observations,
and the third term is proportional to /N(f — 8°). The last term will be of order o,(1) for simulators that satisfy
a stochastic equicontinuity condition. When s is a smooth function of crude frequency simulators of P, V. P,
etc., obtained using R Monte Catlo draws, the second term will behave like (/N/R times an expression that is
asymptotically normal, so that it will be comparable in magnitude to the first term when K and N are proportional.
If, in addition, there is any averaging out of simulation noigse across observations, the second term may be of order
0p(1) when R and N are proportional, or comparable in megnitude to the first tarm for fixed R.

4



probabilities. McFadden (1989), Pakes and Pollard (1989), and McFadden and Ruud (1990} analyze
the statistical properties of such estimators, and Hajivassiliou (1993) surveys simulation estimation
methods for limited dependent variable models.

The first seven methods we will discuss in this paper, CFS through DCS, simulate H. Methods
ARS and GSS simulate H¢ by drawing from the conditional distribution of V given V € B. Method
SUS approximates Hc = H/P using independent unbiased simulators of  and 1/P. Method AUS
is similar, but uses a biased simulator of 1/ P to speed computation. Some versions of AUS require
a positive simulator of P. This is guaranteed by NIS, SDS, GHK, PCF, DCS, and by KFS if a
positive kernel is used. The number of draws required in ARS is random. The remaining methods
will in general use a fixed number of repetitions, which may in statistical applications increase with
sample size.

To understand what is perhaps the most intuitive simulation method, write the random vector
V as

(9) V =p+Ty,

where 7 is an independent standard normal vector of dimension m and T' is a lower triangular
Choleski factor of 2, so @ = I'l’. A simple approach to approximating (6) is to make repeated
Monte Carlo draws for 7, use (9) to calculate V' for each parameter vector, and then form an
empirical analogue of the expectation in (6). Below we call this the crude frequency simulator
(CFS) of P(B;u,Q) and its derivatives. Similarly, a crude frequency simulator for H¢ can be
formed by rejecting draws of V that do not satisfy the conditioning event V' € B, and then
forming an empirical analogue of the conditional expectation in {7) using the accepted draws. The
advantages and disadvantages of the frequency simulators are discussed in section 2.9 below.

2.3 General Notation

Before discussing the simulation techniques, it is useful to introduce the following notation. For a
vector of indices (1, ..., n), we use the notation * < j” to denote the subvector (1, ..., 5 - 1), and
% _ 47 to denote the subvector that excludes component j. Thus, for a matrix T, T'j<; denotes a
vector containing the first j — 1 elements of row 7, and I'_;-; denotes the subarray excluding row
4 and column j. For a vector 7, 7¢; is the subvector of the first 7 — 1 components, and 7_; is the
subvector excluding component j.

2.4 Sequential Sampling and Acceptance/Rejection Methods

Some simulation techniques, such as the crude frequency simulators for He that reject draws not
in B, require sequential sampling. Others, such as the crude frequency simulator for P, may
employ sequential sampling for some purposes such as approximating 1 /P. Sequential sampling
may involve excessive computation if the yield of accepted points is low, so there is a payoff to
techniques that increase yields. Sequential schemes also introduce the possibility of occasional
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Figure 1: Acceptance/Rejection

lengthy computations. For computer implementation it is desirable to bound computation by
building censoring rules into the sampling algorithms and taking account of the effects of this
censoring on the statistical properties of the simulators.

Acceptance/Rejection methods provide a mechanism for drawing from a conditional density
when practical exact transformations from uniform or standard normal variates are not available.
The following result is standard; see Devroye (1986) or Rubinstein (1981).

Lemma 1. Suppose f(z) s an m-dimensional density, and one wishes to sample from the condi-
tional density f(- | A) given the event z € A. Suppose g(z) is a density from which it is practical
to sample, with the property that

sup f(z)/g(z) € a < +oo.
A

Assume that either the support of g is A, or that it is practical to test if = € A; that it is practical to
calculate f(z) end g(z); and that it is practical to calculate a bound a. Draw z from g and { from
a uniform density on [0,1], repeat this process until a pair satisfying ¢ € A ond f(z) > (ag(z) is
observed, and accept the associated . Then, the accepted points have density f(z|A) = f(z)/f(A).

Proof: Figure 1 shows schematically that this method yields accepted points with the density
f(z)/f(A): One draws points uniformly from the area under ag, and rejects them if they are above
f,leaving a uniform distribution of points from the area f : Prob(z&accept) = g(z)-{f(z)/g9(z)al,
implying Prob(z|accept) = f(z)/f(A), as desired. W

Suppose now that acceptance/rejection is used with a censoring rule that if the first r trials do
not yield an acceptance, then the last draw from g(z) is accepted unconditionally. This method
will be biased, but the bias is bounded at a geometric rate in #:



Lemma 2. Suppose the assumptions of Lemma 1 hold, with A the support of g. Suppose an
acceptance/rejection sampling rule, with censoring after r trials. Let f\T)(z|A) denote the density
of ¢ obtained by the censored AfR rule. Then, for any measurable function h(z) such that the
ezpectation [ h(z)g(z)dz erists,

(10) i f h(z)f(z|A)dz — [ h(z)f") | A)dz

< | [#@lae) - f(e)/ f(Ade

[L— f(A) o]

Proof: The probability of acceptance on a trial, given z is drawn, is f(z)/ag(z), so that the
unconditional probability of acceptance is

[ o(@s(e) ag@)dz = f(A)/e.

Then, the probability of a rejection on the first = trials is [1 — f(A)/a]", and the probability of z
and acceptance on trial i is

(1= F(A)/al "} [f(z)/ag(z)lg(=).
Then, the probability of z is
S zlA) = Y1 - f(A)/al f(z)/a+ [1 - f(A)/alg(z)
=1

LAYl

= f(=]A) + [9(=) - f(2)/f(A)]-[1 - f(A)/a]".

Since ag(z)/f(A) dominates f(z)/f(A), f h(z)f(x|A)dz exists. Then forming the expectation
using the formula above gives the result. o

2.5 Unbiased and Asymptotically Unbiased Simulators

The crude frequency simulators of H and H¢ are all unbiased with finite variance, desirable proper-
ties that guarantee that when these expressions appear linearly in a condition defining a statistical
estimator and the draws are independent across observations, a central limit theorem will operate
to attenuate the effect of simulation noise on the estimator. For H, there are unbiased simulators
that are smooth in parameters; we have not found smooth unbiased simulators for Hg. It may be
advantageous for computation to work with smooth biased simulators, and increase the number of
draws in statistical applications as iterative search proceeds or as sample size increases, to eliminate
bias in the limit.

An important case where bias is an issue is simulation of 1/P in the expressions (V,P)/P
and {VqP)/P for the logarithmic derivatives. Obviously, an unbiased simulator of P such as the

7



crude frequency simulator for (1) does not yield an unbiased simulator of 1/P. One technique for
achieving an unbiased simulator is based on the observation that 1/P is the expectation of the
geometric distribution of the number of independent draws R from (9) required to yield V € B;
this can be simulated by drawing sequentially from (9) until V € B is observed. For P small, this
method can require a large number of simulations. The following result, due to Ruud, refines the
method first by using an upper bound on P, and second by reducing the variance in the simulation
of the run length.

Lemma 3. Assume there is an event A such that

(i) Ey1{V € A) can be computed ezacily,

(ii)) BC A,

and

(iii} it is convenient to draw from n{v — u,§1) conditioned on the event A.

Draw sequentially from the conditional distribution of V' given A until V € B is observed, and let
R denote the number of draws required. Then, R/Ey1(V € A) is an unbiased simulator of 1/P.
The variance in the simulator is reduced by defining

(11) R=1+Qi(1+ Q21+ Qa(1 +--1))),

where each Q; is an independent unbiased simulator of Ey|a 1(V ¢ B), initially the Q; are smooth
simulators, and eventually @; = 1(V; ¢ B), where the V; are draws of V given A.

Proof: ER = Pr(A)/Pr(B) = 1/Eyja1(V € B); then ER/Ey1(V € A) = 1/P. The alternative
form for R has ER = 1+ (EQ1)(1 +(EQ2)(1+ ) = £24(1 - P) = Pr(A)/Pr(B), as required.
m|

If A can be chosen so that Pr(A)/Pr(B) is not too large, then the expected number of draws
required in (11) is not impractically large, even for small P. For example, the event A that
a; < V; < b;, with 1 a specific component of V', has the properties
() Ev(V € A) = 2((b: - )/ Q%) - &((ai — )/ ),

(i) A C B,
and
(iii) it is easy to draw V conditioned on A by first drawing

(12) Vi = &71(CR((bs — )/ U + (1 - OB ((ai — ) /9})),
where { is uniform on (0,1), and then drawing
(13) Voi = poi + 050 (Vi = ) + Lo,

where L is a Choleski factor of 2_; _; - Q_.-,,-ﬂ;}lﬂ‘-'_.-. Choosing the 1 that minimizes Eyv1(V € A)
then provides a practical bound.



A continuous-in-parameters simulator of 1/ P can be constructed, at the cost of some bias, using
a variant of Lemma 3 suggested by Ruud:

Lemma 4. Make the assumptions of Lemma 3, except take

r—-1

(14) R=1+ T[] @i

i=1 5=1

with the Q; smooth independent unbiased simulators of Ey A 1(V ¢ B). Then

(15) 1/P—(ER)/Ev1l{(V € A)=(1- EVMI(V € B))/P.
Proof: From the proof of Lemma 3,

ER - I/EV1A1(V €B)= i f[ EQ; = [EV1A1(V ¢ B)]'/EVLAI(V € B). O

i=r j=1

Suppose one simulates 1/P by a ratio N/rEy1(V € A), where N is the random number of
sequential draws necessary to obtain 7 occurrences of the event V € B given V € A, where the
notation is as in Lemma 2. The following result due to McFadden, applied with U; = 1/Ey1(V €
A) and W; = 1(V € B), with V drawn from the density f(v|A), bounds the bias in this simulator:

Lemma 5. Suppose (U;, W;) are independently identically distributed with U; > 0, 1 > W,
EW; =38 >0, and EU; = a > 0. Let r > 1 denote a positive constant. Suppose N is an
integer-valued random variable defined as the first n such that 3, W; > r. Then

N N
(16) : EZ Ui/ Y Wi—a/B| < 'a/B.

=1 =1

Proof: A lemma of Stein’s (Siegmund (1985), Proposition (2.19)) establishes P(N > n) < Cp™, for
constants C > 0 and 0 < p < 1, implying EN < +o00. Then, Wald’s identity (Siegmund (1985},
Proposition (2.20)) establishes ETY, Ui = aEN and EE?LI W, = BEN. Then, r g BEN < r+1,
implying . .
EY Ui/ Y Wi <aENrt < {a/B)(1+1/r)
=1 i=1

and
ES 0/ 3 W; 2 aEN/(m+1) > (a/B)(1 - 1/(r + 1)) > (a/B)(1 - /7). o
=1 =1

This result can also be applied when correlated draws are used in the numerator and denomi-
nator of expressions like (V,P)/P.



2.6 Importance Sampling

Importance sampling is a general method for reducing the sampling variance of integrals computed
by Monte Carlo integration. The CFS involves sampling V from the n(v—p, Q) p.d.f. and evaluating
the indicator 1{V € B). A simple generalization of this procedure rewrites the rectangle probability
P(B; 2, ) in terms of another sampling distribution:

P(B;ﬁ,ﬂ) = jl(u € B)n(v — u,Q)dv = j [l(ur c B)n(u’ -p,9)

f(V’; Ky Q) ] f(u’; . n)du'.

By sampling V'’ from the importance p.d.f. f and evaluating the weighted indicator function
1(V' € B)n(V' — p, Q)/ f(V'; 4, ), one obtains an alternative unbiased simulation of P. The first
advantage that importance sampling offers is the ability to substitute sampling from f for sampling
from n. It may be possible to sample f more quickly, or, in a more general setting, sampling from n
may be infeasible. In addition, if f also has an analytical integral over a truncated sampling region
C such that B C C, then this analytical integral can be exploited as an approximation to P:

! f.
P(B;p,Q)=Pr{V'e C}-[C [I(V' € B)nj(cl(}v::'s{;)] P{'(;/,'#E, %)}dv'.

By drawing from the truncated p.d.f. f/ Pr{C}, fewer simulations are “wasted” on outcomes of zero
and, in effect, Pr{V' € C}'}""::: approximates P(B; u, (). When f is a good approximation to

n, so that the ratio of densities n/ f is relatively constant, the sampling variance of the importance-
sampling simulator is small. The sampling variance of the CFS is P(1 — P) and the sampling
variance of the importance sampler is

Var (P - 1{V' € Byu(V")) = P& Py - [V (w(V") | V" € B) + (1 - Pg)-E (w(V") | V' € B)"],

where Pc = Pr{V' € C} and P = Pr{V' € B}. In the extreme case f = n and C = B, the latter
is zero; clearly good approximations to n afford improvements over the CFS.

2.7 Antithetic Variates

The accuracy of simulators may be improved, for a given number of Monte Carlo draws, by use of
antithetic variates. The principle of antithetic variates, which is to introduce negative correlation
between successive Monte Carlo draws to reduce the variance of simulation sample averages, gener-
alizes in the multivariate case to selection of a regular grid of points whose location is random. This
technique can be employed in simulators of H and Hc when the method has sufficient symmetry.

In Monte Carlo simulation requiring draws of m-dimensional standard normal vectors, for ex-
ample the crude frequency simulator, an approach due to Dedk (1980a2,b) has good antithetic
properties: Draw m independent standard normal vectors, and save their lengths p1, ..., pm. Apply
a Gram-Schmidt orthonormalization to these vectors to create a random basis for m-space. Let v,
..., Um denote the unit vectors in this basis. Each pair of unit vectors v; and v; with i # j define a

great circle on the unit hypersphere. Generate 2m equally spaced points on each great circle,

vijk = vicos(mk/m) + v;sin(rk/m), k=0,...2m—1.

10



This gives a random antithetic grid on the unit hypersphere that is particularly useful for
simulations based on spherical transformations. Scale each unit vector v;; by the lengths p,,

Pm to give an array of normal vectors in m-space. A further antithetic refinement uses the fact that
the squared lengths of standard normal vectors in m-space have a chi-squared distribution with m
degrees of freedom. Taking pg = invchi(({ + 7)g, m), 7 = 0, ..., ¢ — 1, where ¢ is a uniform [0,1]
random number and tnvehi(-,m) is the inverse of the chi-squared distribution, gives g antithetic

lengths that are images of a random grid from the uniform distribution.

2.8 Control Variates

Control variates are random variables with analytic expectations that are positively correlated
with the random variable whose expectation is to be simulated. Then, simulation variance can be
reduced by simulating only the difference between the expectations of the variate of interest and
the control variate. A possible control variate for 1(V € B)A(V) is 1(V € A)A(V), where A is the
event a; < V; < b;, with 7 a specific component of V. Then, for any a,

(17) H =aEy1{V € Ar{V) + Ev[1{V € B) — al(V € A)|A(V).

The first expectation on the right-hand-side of (17) has a closed form, given below. The second
expectation requires simulation. This control variate is not guaranteed to reduce simulation noise,
but generally simulations based on (17) will be more accurate than simulations based on (6) if e is
a moderately good preliminary estimate of [Ev1(V € A)A(V)'Ev1(V € B)a(V).

To obtain the analytic expression for Ey1(V € A)h(V), first define the univariate standard

normal partial moment

¢
(18) (¢, k, K) = ] (v — x)*(v)dv.
Integration by parts yields the recursion formulas

(1,0, %) = ¥(1),

(19) §(t’ 1, K) = _Ké(t) - d’(t)
B(t,k, k) = (k— 1)8(t, k — 2,5) — k3(t,k — 1,5) — (¢t — &) 2g(2),

for k > 1.

Now consider a multivariate normal density n(v — g, {1) of dimension m, written as the product
of a univariate marginal density n(y — g, Q,,) and a dimension m - 1 conditional density n(z —
fe — Qoo (vy — iy )y Doz — Q01 Qy,). Consider the array of partial moments

(20) Y(t, k1, Q) =

oo 1 Z=Hs Y= by
/ Wy <thy* [(z—p) (2= pa) (2= ) = Qo (2= p2)(y— 1)~ Uy
e Y=ty (Y~ )z ) - Qe (v — ) — Dy
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o v, ¥,
iz — pg — (y = )V Vyzs az — Q0 In(y — iy, Yy )dedy = (T, ¥, ¥,

¥, v, ¥,
Then, letting @; = Q44 8((¢ — 1)/ vy 5, —/ VIT),
(21) Uy = Op, ¥y = Erpr — iy e Uy = Bies ~ 2y Biar + (1 — Q) i,

v, =0,0000,,,%, =9,0710,,,¥, =0,01¥,0-10,,.

Then, ¥(b,0,u,0) — ¥(a,0,4,Q), with ¥ corresponding to component i of V, gives Ey1(V ¢
AR(V).

2.9 Crude Frequency Simulator (CFS)

Recall equation (9), which states that the random vector V' can be written as V = u + I'y, where
n is an independent standard normal vector of dimension m and T is a lower triangular Choleski
factor of 2, so @ = I'T’. The crude frequency simulator (CFS) of P(B;u, ) and its derivatives
is to make repeated Monte Carlo draws for 5, use (9) to calculate V for each parameter vector,
and then form an empirical analogue of the expectation in (6).2 A crude frequency simulator for
H¢ can be formed by rejecting draws of V that do not satisfy the conditioning event V € B, and
then forming an empirical analogue of the conditional expectation in (7) using the accepted draws.
The CFS are quick to compute and ideal for parallel processing. However, they are not continuous
in parameters, exhibiting jumps at parameter values yielding draws of V on the boundary of B.®
These discontinuities, however, can slow iterative parameter search.!® The accuracy of the CFS
can be improved by use of antithetic and control variates introduced later.

2.10 Normal Importance Sampling (NIS)

Suppose the integrand h(v)n({v — p, ) in H can, with multiplication and division by a factor if
necessary, be written as the product of a density y(v), whose support coincides with or contains
B, from which it is easy to sample, and the remainder. Then, H can be written

(22) H= j{l(v € B)h(v)n(v - &, Q)/v(v)}r(v)dv = E41(v € B)a(v)n(v — u, Q) /().

An empirical expectation using draws from v(v) gives an unbiased simulator that is smooth
in parameters, provided hA{v)n(v ~ u,f)/v(v) is dominated by a function whose expectation with
respect to the density v exists. We term this Normal Importance Sampling (NIS). Importance

*Frequency simulation of probabilities is a traditional method in numerical analysis; Lerman and Manski (1981}
introduced this approach to estimation of multinomial probit modaels.

*These discontinuities do not prevent use of these simulators for statistical inference. If n is not redrawn when
parameters change so that “chatter” is avoided, then these simulators are piecewise constant in parameters, and the
manifolds on which discontinuities occur are linear. These properties imply a stochastic equicontinuity property that
is sufficient to make the simulators well-behaved in statistical inference; see McFadden (1989).

1°See Quandt (1984) for a discussion of iterative parameter search algorithms.
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sampling works well when A(v)n(v — g, Q)/v(v) is fairly flat, and y(v} concentrates probability in
the same region as n{v — &, ).

For fast computation, choose v so that the components are independent, or are obtained as
simple transformations of independent variates. A possible choice of v when the rectangle [a, b} is
finite is the uniform distribution on this rectangle. Independent exponential densities,

(23) 7(0) = [ expl(sc ~ b}/

where ¢; are parameters that can be set as part of the simulation, are feasible; draws from this
density are easily computed using ¥; = b;+¢;-log (i, where {; is a uniform [0,1] variate. This partic-
ular choice of y(v) defines the NISE simulator.!! An alternative that is more likely to concentrate
probability for v in the same region as the multivariate normal is the product of truncated normals,

m

(24) = IT ((vi = eu)/e)/[B((b; — o)/ i) — ¥((ai — @i)/ei)], v €B,

=1

with a; = g; and ¢ = 4/S%;. One can sample from this distribution using
(25} v = o + 6® 7 (GB((bi — ai)/ei) + (1 - G)B((ai — ai)/ai)),

with (; a uniform [0,1] variate. Using ¥(v) given in (24) defines the NIST simulator.'> Reduction
in simulation variance is in principle achievable using antithetic variates, with the {; in dimension
i drawn in repeated trials from a random grid on the unit interval. A variation on (24) for finite
rectangles [a,b] is

(26) ap =4 + n'.—'n:c —s(b-i' + a"")/z
(27) C? = Q- —10:: _,9—1 i

This takes some account of the shift in location of probability mass in the multivariate normal
density induced by correlation and restriction to B.
2.11 Kernel-Smoothed Frequency Simulator (KFS)

The Kernel Smoothed Frequency Simulator (KFS), suggested by McFadden (1989}, replaced the
indicator function 1(v € B) in the crude frequency simulator with the function

(28) Ko (v) = K((v - B)/w) - K((v - a)/w),

where X (w) is a smooth kernel function from R™ onto [0,1} with K(—o00) = 1 and K(+0) = 0,
and w is a window width parameter. The function X ,(v) approaches 1(v € B) as w — 0. Then,

114E” for exponential.
12uT# for truncated normals.
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the simulator is an average of Kp ,(v)k(v), with v = s + 'y, over r Monte Carlo draws of an
independent standard normal vector . This simulator is smooth in parameters, a useful feature
when the simulator is used within an iterative optimization. The simulator is a biased estimate of
H for positive w, but in statistical applications one can shrink w as sample size increases:

Lemma 8. Define C) = {w € R™||w;| > X for all i}. Suppose there ezist Ao, K, and ¢ > 0 such
that fO‘I" A > Ao,

(29) sup |1{w < 0)- K(w)| < KX

weC,

Then there ezists a constant K' > 0 such that for small w,

(30) ‘j[’CB,u(‘U) - 1(v € B)Jh(v)n(v - p, Q)dv| < K'w¥/(+9),

Proof: The conditional expectation of A(V'} with respect to the distribution of V_; given V; = o
is bounded by a function K; + Kj(v; - ui)? for some constants K;, K. Then the integral of
[K((v—b)/w)— 1(v < b)]h(v)n(v— g, Q) over the region (v—b)/w € C, is bounded by KA~%r(2),
and over the region (v — 8)/w ¢ C, is bounded by

m
Z_[ n(vi = i, i) [ K1 + Ka(vi — pi)?ldog
[ —bi] < Aw

=1

m
< Y 22w Ky + Ka((bi — ) + (w)?)].
=1
Take A = w1149 and combine the regions to conclude that the integral is bounded by
w?/(+9) K7/2 for some constant K’. Repeat the argument, replacing b by a, to obtain the bound

(30). m

Ruud has suggested starting iterative parameter search with a large w, and shrinking it as the
search approaches convergence. This avoids many of the problems of handling discontinuities in
search.

A variety of kernel functions X can be employed such as a logistic function K(v) = 1/(1 +e" +
++++ e'"), a normal kernel X(v) = [[, $(—), or a polynomial kernel K(v) = [T;Z; G(vi), where

i=1
1 fory < -1

(1-y(2+9))/2 for-1<y<0
(1-y(2-9))/2 for0<y<1

1 fory> 1.

(31) G(y) =

The polynomial kernel is particularly quick to compute, and will generally be the method of
choice. As in the case of the crude frequency simulator, antithetic draws can be used for 7 in (6).
It is also possible in the case of the polynomial kernel to use a smoothed version [G((v; — b)/w) —
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G((w — a)/w)]h(v) of the control variable 1(a; < v < b;)A(v). Let y denote v;, and z denote v_;.
Then, T(w,b,,0)— T(w,a,u, Q) is the expectation of the smoothed control variate, where

(32) T(w,t,p, Q) =
+oo 1 Z-p, V- Hy
[ G-0/0) |- m) (e mY ) = B (2= V(- ) -
- y=m W-mde-m) - (y-m) -0y
n{z — e ~ (¥ — oy )0} Qs Uiz — Ry 01 Q2 I (y — g2y, Q) 2dy.
Breaking up the domain of integration, one has, from (20),

T(w,t,p,0) = [(t - w)¥(t —w,0,,0) - 279(2,0,4,Q) + (t + w)*¥(t + w,0, 4, 02)] /202

_[(t - w)‘I’(t -w,l,p, n) - 2t‘IF(t, 1,u, ﬂ) + (t + w)!If(t +w, 1,4, n)]/w2
Rt - 0,2,8,0) - 20(t,2, 1 0) + ¥t + 0,2, 1, Q)] /2.

2.12 Stern Decomposition Simulator (SDS)

The Stern Decomposition, suggested by Stern (1992), writes V ~ N (;u, M) asasum V=Y + W,
with ¥ ~ N(; p, A2I) with W ~ N(+ 0, @ — A2I). That is, V equals the sum of a “small”
independently distributed normal vector and a second normal vector that carries the information
on the covariance matrix of V. Then, by the law of iterated expectations,

b ™m
(33) g= { [_mw) LH (s — wi - ,u.-)/x)/x] dy} n(w,Q - \2I)dw.

=1
The term in braces can be integrated analytically; then the SDS averages this interior integral
over r Monte Carlo draws w = [ = 22I]"/?7, where 7 is a standard normal vector and [ — A2[]1/2
is a Choleski factor of {1 — A2I. The array H can also be written, by multiplying and dividing by
the density n(v, Q - A%I), as

(3) H=C j {l(v € B)exp{~A¥'(0 - X2 1) Q" 1v/2 4 ,u.'ﬂ_l'v}} n(v, - A2 dv,

where C = exp(~u'Q~1u/2)[det(0 ~ A\2I)/det(02)]'/2. There are two possible interpretations of this
simulator. First, (33) can be viewed as a kernel-smoothed variant of the integrand in (34). Second,
(34) can be interpreted as a form of importance sampling, with n(-, @ — A2I) the convenient density
from which Monte Carlo draws are made.

To obtain the analytic form for the term in braces in (33), define

by — g — wy 2wy e — i — 2w,—)]
4 = \F . SOt "R " et o =2
(35) gik = A [§ ( by K, by ) 4 ( b kK, by v
where $(t, k, k) is the partial moment function (19). Define
(36) Q= H %0,

=1
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(37) 3 = (11/9105 s Tm1/Gmo)’s

and

(38) | D = diag{qi2/gi0}-

Then, (33) becomes

39 :{ f ! s (0,0 - A1)d
= . nlw - .
(39) o (ot 10-D4s. s —qomt | M Jdw

The SDS provides an unbiased smooth simulator. Again, accuracy can be enhanced using
antithetics when drawing % to comstruct the simulated values w = (£ — A%I)'/2y. This simulator
is fast to compute, but it can be computationally burdensome to determine A such that £ — A2J
is positive definite, and accuracy fails when m is large and the eigenvalues of {2 are uneven. The
extension of the Stern simulator to derivatives is due to McFadder.

2.13 Geweke-Hajivassiliou-Keane Simulator (GHK)

This simulator is based on sampling from recursive truncated normals after a Choleski transfor-
mation. The approach was suggested by Geweke (1989), and has been developed by Hajivassiliou,
who proposed the weighting used here. Keane (1994) independently developed a weighting scheme
of essentially the same form for a problem of estimating transition probabilities.

Consider the triangularizing transformation V' = p 4+ I'np, where T is the Choleski factor of Q.
The indicator 1(v € B) is then transformed to 1{u + I'7 € B), which can be written recursively as
the product of indicators of the events

(40) Bj(n<;) = {njl(aj — #j — Tj,<in<i )/ Tij < mj < (b; — 15 — Tj,<51<;)/ T35}

for § = 1, ..., m. Define ¢(n;|Bj(n<;) = ¢(n;)1(n;j € B;(n<;))/&(Bj(n<;)), the conditional distri-
bution of 7; given the event B;{#¢;). Define a weight

(41 o(n) = [T #(B,(nci).
Then
(42) #= [ b+ Taoto) [T 6018y trcs)dn.

The following result gives the GHK simulator:

Lemma 7. An unbiased simulator of H is an average of h(p+T'n)w(n), where w(n) is the weighting

function (41), over draws construcied recursively from the one-dimensional conditional densities
¢(ﬂj|Bj(ﬂ<j)) by taking

(43) 7 = 87 H(5®((a5 — i — Ticimei)/Tii) + (1 = (YB((b; — i — Tjeines )/ Tis)hs
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where the {; are draws from the uniform [0,1] density. When B is a finite rectangle, there is a
constant ¢ > 0 such that for each e, 0 < e < 1,

(44) Prob (E‘t:‘;:(i:j(‘::))w(m) - He > e) < exp(-rce?).

Proof: It is immediate from (42) that the GHK simulator of H is unbiased. Now consider the

simulator of Hc in (44). Write A = {n|p + 'y € B} and let 7 denote a random vector in A drawn
recursively using (43). Then,

Jnea B+ Tn) [Tit, &(me)dmk
n;':l:l ¢("Ik)dﬂk

Jnea R + Tn)w(n) TEeLs ($(m)/ @(Bar(n<k))] dmk
Joeaw(n) [Tizy [#(me)/ @ (Bi{n<r))] dmn
= [Egh(s + T7)] /Eqw()-
To obtain the bound (44) when B is finite, note that in this case there is a bound ¢; on every
component of the array A(u + I'n)w(n). Then, by Hoeffding’s inequality,

EVIVEBh(V) = En[n&Ah(ﬂ + I“r;) =

(45) Prob (1_l zr: h{p + Toiw(m) — H > el) < exp[—red /2c3].

¥i=1
Choose ¢; = €P? /(2 + ¢;). Suppose the event in (45) does not occur. Then,

T . . 1gr . Yy iy Y-
2!:1 h’(y' + rﬂ:)w(m) _ HC S r =1 h(ﬂ. + P'rh)w("h) H + |HC| . r E:.—.l W(Th) P

=1 w(m) Iy w(m) Iy w(m)

<&a/(P-ea)+eae/P(P-e)<e

so that the event in (44) does not occur. Therefore, letting ¢ = P*/2¢3(2 + ¢1)?, the probability of
the event in (44) is at most exp(—rce?). o

The GHK simulator can be interpreted as importance sampling using the recursive truncated
standard normal densities. It has prover fast, with low noise, even when probabilities are small.
Borsch-Supan and Hajivassiliou (1993) use this simulator!® to define the method of smoothly sim-
ulated maximum likelihood and show that this method exhibits excellent properties for limited
dependent variable models that are otherwise difficult to estimate. In principle, it is possible to
use antithetic variates in (43), starting from a random grid of size ¢ drawn from the uniform dis-
tribution in each step of the recursion. In practice, this produces ¢™ points, which is impractically

large in many problems.!*

which they term the “Smooth, Recursive Conditioning” simulatar
45ome of the desirable features of antithetic variates can be obtained by sampling without replacement from a
large random grid.
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2.14 Parabolic Cylinder Function Simulator (PCF)

Consider a spherical transformation V' = b + p - v about the upper limit & of B, where v is in
the unit sphere and p is a non-negative scalar. The Jacobean of the transformation from V to
(V1, ooy Um—1, 2} 18 p™ /Uy, where v,y = [1 — v} — ... — v3_;]Y/2. Then, the multivariate normal
density n(V — u, Q) expressed in terms of the transformed variables is

Flplv)a(vlp - b,9) = (25) /2|01 exp[~(pv - (1 - B)Y2 ™ (pv — (1 - 8))/2]6™ /1.
In this expression, the conditional density of p given v is
(46) f(plv) = g™V exp[—(p = (1 - b)Q 7 v /V'Q )2 (v'Q7 ) /2] / K (v),

with
K@)= [ expl—(o - (- /2 o/ )i (v ) 2lds,

and the marginal distribution of v is

g(vlp-5,90) =
K(v)(27)~™Q|"Y/? exp[— (1 ~ b)'Q~ (1 — b)/2 + (v'Q N — B))2/20'0 0] fvm.

When g — b =0 and 2 = I, so that the distribution of v on the unit sphere is uniform, g(v[0,I) =
(2x)~™/2 [ p™—1 exp[—p?/2]dp/Vm = ¥ ™/2T(m[2) /2Um. Define an importance sampling weight

(47) s(v) = g(v|p - b,Q)/q(v[0, 1)K (v)
= exp[—(p — 8YQ7} (4 — b)/2+ (VA7 (1 - b))}/ 20"Q7 10}/ T(m/2)2™/ 2 Q2.
Define
(48) p(v) = minn(a; - b;)/v;,

and note that it is positive for v < 0. Then,

)
(49) A= (/ h(b+pv)f(p|v)dp) K(w)s(v)a(wl0, dv.
v<<0 p=0
Define
. T .
(50) Cli, o, B,7) = fo ¢ expl—a(p — B/a)/2)dp.

This function satisfies

(51) C(0,a,8,7) = (2r/a)**[&((ay - B)/Va) - #(-B/+/a)),

(52) C(1,a,8,7) = (exp[-B*/22] — exp[~a(y - B/a)*/2])/a + C(0,a,8,7)8/«,

18



(53) Ci,a,6,7) = Cli - 1,a,8,v)8/a+ Cli - 2,0, 6,7)(i~ 1)/a

~7"*exp[~a(y - f/a)?/2])/a,

with (53) obtained by integration by parts for i > 1. Then, C can be computed by recursion in 7. We
term C a parabolic cylinder function, as it is closely related to a standard class of mathematical
functions with this name; see Abramowitz and Stegun (1964, p. 685) and Spanier and Oldham
(1987). When g = 0, this function is proportional to a chi-square cumulative distribution function,

Cli, e, 0,7) = 20702 D((1 4 1)/2) - "2 5 (ar).

The function K(v) in (46) satisfies K(v) = C(m - 1, v'Q v, (u ~ 5)'2~ v, o). Define

Bv)
(54) Ci(v) = K(v) [’ P (ploMp = O+ m - 1,v/ (k= Y v, 5(v)).
_ | Hn Hi .
Then H = [Hn sz] satisfies
(55) Hy1 = EyCo(v)s(v),

Hy = Hyy,= Q7' Ey [Ci{v)v + (b~ p)Co(v)] s(v),
Hyp= %Q_IEu [Ca(v)vv' — Cofv) {v(u — b)' + (1 — b)v'} + Colv) {(k — b)( — B) — Q}] s(v)Q 7,

where the expectation is with respect to the uniform density on the unit sphere. The PCF simulator
is obtained by averaging the array (55) over a sample of draws of v from the uniform distribution on
the unit sphere intersecting the negative orthant, and can be interpreted as importance sampling
with this comparison distribution. The draws can be made by first drawing a standard normal vector
7, reversing the signs of positive components so that it is negative, and then defining v = 5//7'n.
This has the effect of drawing from g(v|0, I) conditioned on v < 0. To remove this conditioning, the
simulation average must be divided by 2™, the number of orthants. This simulator was suggested
by McFadden (1989).

2.15 Dedk Chi-Square Simulator (DCS)

A spherical transformation about the mean of the multivariate distribution is V' = u + p - v, where
again p is a scalar and v is a point in the unit sphere. We use the notation of the previous section,
with g replacing b, so that s(v) = 1/2™/2-1T(m/2)|Q|/? and, analogously to C;(v),

(56) Di(v) = K(v) [ 1(u+ pv € B)S'f(plv)dp.
This expression can be evaluated analytically using (46)-(53), yielding

Di(v) = Cli+m = 1,v'Q70,0,0(v)) - C(i + m - 1,0'Q7 1,0, p"(v)),
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where p’(v) and p"(v) are the largest and smallest values of p satisfying the inequalities a - p <
pv < b—p. Then, 0 < p""(v) < p'(v),

57) p'(v) = min { min(b; — )/, min(a; — 1)/ v;

p(v) = max {0, max(a; - ps)/vsmax(e; - w3)/v3) |
where by convention 0/0 = 0, and 0 = p”(v) = p’(v) whenever (57) fails to yield a non-degenerate

interval in the positive half-line. Taking the expectation of D;(v)s(v) with respect to the uniform
distribution on the unit sphere,

(58)  EvDi(v)s(v) = K'(v'Q 0) ™ pd (v 0p!(v)) — xim (v 0p"(v)?),
with X’ = 2/20((m + i)/2)/T(m/2) |2|*/%. Then

E,Dg(v)s(v) E,D;(v)v's(v}2~!

(9) B =1 -1E, Dy (v)us(v) 10-1E,[Da(v)vv’ — Do(v)s(v)2" |’

with (58) used to evaluate the terms. The DCS simulator is obtained by drawing an antithetic
random grid of points v on the unit sphere, as described in paragraph G, and forming the empirical
expectation corresponding to the array in (59). It is unbiased for H and smooth in parameters.
This simulator for P is due to Dedk (1980a,b); the extension to obtain the derivatives of P was
suggested by Chunrong Ai.

2.16 Acceptance/Rejection Simulator (ARS)

An Acceptance/Rejection simulator calculates an empirical analogue of the expectation He =
Evvesh(V) by constructing draws from the conditional distribution of V' given B. The crudest
form of ARS is to sample from the unconditional distribution of V using (9), reject points not in
B until r accepted points are found, and form an average of A(V) over the accepted points. More
generally, the procedure in Lemma 1 permits improvement in the yield of the method by sampling
from a comparison distribution that puts little or no weight outside B and has the property that
the ratio of the comparison density to the target density is uniformly bounded above by a small
number. Nevertheless, yields tend to be low, making computation heavy, for small P.

A point V = u+ I'n may, for given 1, move from the rejection to the acceptance region
with small changes in the parameters, introducing discontinuities in the ARS. Using an approach
suggested by Ruud, Hajivassilion and McFadden (1990) show that the ARS nevertheless has a
stochastic equicontinuity property that enables its use in statistical applications.

Possible comparison distributions for A/ R sampling are independent exponential or truncated
normal distributions in V-space, but greater yields can be obtained using the recursive truncated
normal distribution (43) employed in the GHK simulator. The following lemmas give protocols for
use of independent exponential or recursive truncated normal comparison distributions. Lemma 8§
is due to McFadden (1989), Lemma 9 to Hajivassiliou and McFadden (1990).
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Lemma 8. Draw v; = b; + (log &)X, 1 = 1, ..., m, where the A; are positive constants chosen for
the simulation and the {; are uniform [0,1], and accept v if

log o < =(v— u)'Q (v —p)/2 - N(v-p)- NQA/2.

Then, the accepted V are distributed n(v — p,§d) conditioned on V € B, and the average of (8) over
the accepted points is an unbiased simulator of Hg.

Proof: Apply Lemma 1 to the density [JT_, Miexp[Ai(v; — ;)] on v < b. O

A suitable choice for A might be A; = /0.
Lemma 9. Draw n sequentially using
5 = @71((;8((a5 — 45 — Tici<i)/Tii) + (1= G)2((45 — 85 — Ti<in<i)/T35))

and accept v = u+ I'n if (o < [1%,[8(Bi(n<:)/ i), where the {; are uniform [0,1] random
variates, a; = B((b; — a;)/20y) — ®(—(b; — &;)/2T) < 1, and

Bi(n«:) = {mlai — s — Ticinei)/Tis < 1 < (bi = g = Tij<inei) /Tic}-

Then, the accepted V are distributed n(v — u, 1) conditioned on V € B, and the average of (8) over
the accepted points is an unbiased simulator of He.

Proof: The protocol samples sequentially from the recursive truncated normal density g(n) =
1 &(m)/ B(Bi(n«i)), with 7 € Bi(n«:). For this density,

fenplo(n = T #(Bi(n)

implying

(60) 1> a2 sup [] 8(Bi(n)) 2 f IT &(Bi(n<:)} - g(m)dn = P.
n€B ¢ c=1 -

In particular,

(61) &(B1) = ®((bs — #1)/T11) — &((a1 — 1)/T11) =

and

(62) sup  B(Bi(n«i)) < sup [®((bi — p — 2)/Tii — ¥((ai — i — 2)/Tai)],s

MmEBi(nci) z

$((bi — a;)/2T) — B(~(bi — &)/2li) =

and one can take o = [[/2; a; £ 1. The result then follows from Lemma 1. a

We term the acceptance/rejection variant that is defined by Lemma 8 the ARSE simulator,
while we use ARSR to refer to the method of recursively sampling from truncated normal densities,
as described in Lemma 9.1°

181 may be possible to increase the acceptance level in Lemma 9 in special cases by considering the structure of B
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2.17 Gibbs Sampler Simulator (GSS)

The Gibbs Sampler Simulator for H¢ is based on a Markov chain that utilizes computable univari-
ate truncated normal densities to construct transitions, and has the desired truncated multivariate
normal as its limiting distribution. The simulator was developed by Hajivassiliou, starting from
stochastic relaxation methods studied by Geman and Geman (1984). The following result estab-
lishes the theoretical properties of the simulator:

Lemma 10. Suppose B is finite. Start from any v() € B. Define a recursive procedure with
stepsi=1,.., min rounds j = 1, ..., r. Suppose at step i in round j, v(7-1) and v(<"3 have been
determined. Define

(63) o) = mij + 08 (GsB((b: = 5i5)/00) + (1= G5)%((a = mi5)/ ),
where the (;; are independent uniform [0,1] variates,
O TG
(64) Kii = i + Qi,—iQ:,',_,' [ (_-,'_<1‘} (?.1)] s
Vi T Hy
and
(65) . o; = [Q,‘,‘ - Q;_-;Q:}l_iﬂ_‘,,i] 1/2 .

Note that v € B. Let E(,) denote ezpectation with respect to the distribution of the vector V obtained
after v rounds of (63). Then, there exists p € (0,1) and K > 0 such that

(66) [Ee)h(V) - Hol < K.
Proof: See Hajivassiliou and McFadden (1990).

2.18 Sequentially Unbiased Simulator (SUS)

A family of unbiased simulators of Hg = H/P can be formed from independent unbiased simulators
of H and of 1/P. Lemma 3 describes an unbiased simulator for 1/P : Let A denote the event
a; < V; < b;, where i is a specified compenent of V. For r > 0 initial steps, independent unbiased
simulators Q; of 1 — Pr(B)/Pr(A) are constructed, using the analytic expression for Pr(A) and
any of the smooth unbiased simulators of Pr(B) provided by NIS, SDS, GHK, PCF, or DCS. After
the initial 7 steps, V; are drawn, conditional on A, as detailed in (12) and (13). This sampling
proceeds sequentially, setting Q; = 1, until the event V; € B is observed. Then (11) provides an
unbiased simulator of 1/P. The purpose of the smooth simulators in the first 7 steps is to reduce
the variance in the simulation of 1/P. For numerical purposes, this method coincides with the
following simulator when an extremely large censoring point r, the predetermined limit for the
number of steps, is used.

in more detail. For example, when the below-diagonal terms of ' are all non-negative, the supremum in (62) can be
defined recursively, using the previous bounds on ;.
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2.19 Approximately Unbiased Simulator (AUS)

Assume B compact. The Gibbs Sampler Simulator for Hc is only approximately unbiased, although
convergence is at a geometric rate. The GHK simulator (42) for Hc was also shown to have
geometric convergence. Using the method in Lemma 4 for simulating 1/ P, it is also possible to use
the NIS, SDS, PCF, or DCS simulators to get smooth, approximately unbiased simulators of Hg
with the property that the bias converges to zero at a geometric rate in the number of repetitions
r. The KFS with a positive kernel, such as the normal or logistic, satisfies Lemma 6 for all ¢ > 0.
Taking w proportional to e™*" for some a > 0 then implies that Lemma 4 can be used for this
simulator, with the bias introduced by kernel-smoothing contributing an additional bias term of
order e~7%/(1+4) to the geometric bias coming from the truncation at r in Lemma 4. Again, a
geometric rate is achieved overall.

In principle, the method in Lemma 5 could also be used to construct approximately unbiased
simulators of Ho. This method might be better than the method in Lemma 4 for small 7 and
some simulators, but for large r the geometric rate achieved in Lemma 4 will dominate the 1/r rate
achieved in Lemma 5.

3 Test Problems and Computational Results

The Appendix describes a series of GAUSS and FORTRAN procedures for simulation of multi-
variate normal rectangle probabilities and the derivatives of these probabilities with respect to the
mean and covariances of the normal distribution.!® In this Section, we describe the test problems
we used to evaluate the operational characteristics of these algorithms and then discuss the findings

from our computational experiments.

3.1 Description of the Test Problems

A case that yields multivariate normal rectangle probabilities that are easily calculated analytically
or by quadrature is the one-factor model,

(67) V= p+Sn+ A

where S is an m X m diagonal matrix with diagonal elements s;, A is an m x 1 array of factor
loadings, p is an m X 1 vector of means, 0 is an m X 1 vector of independent standard normal
variates, and ¢ is an independent m X 1 standard normal vector. Given ¢, the constraints require

(68) S Ya—-p~Ae) << S7Hb—-p— Ae).
Define
(69) Qi = B((bi — pi — Mie)/si) — B((ai — pi — Xie)/si)

%Both versions of the programs are available from the authors upon request,
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and

(70) g = ¢((bi — pti — Mi€)/si) — B((ai - i — Ne)/54).
Then,
(m) P [ (fla:) a0

oo fm—1
(72) 8P[Opm = (-llsm)/_; (IJ Q.-) gmP(e)de,
and
(73) 8P/8m = (=1/3m) '[_ t:’ ("i:—[ Q.—) gmed(€)de.

These expressions can be evaluated by one-dimensional Gaussian quadrature, and in a few cases
evaluated analytically, which will provide benchmarks to gauge the accuracy of the 13 simulation
algorithms in the experiments below. One analytic case occurs when the factor is loaded only
on the last alternative, so that it is equivalent to a change in the scale of V,,, : transform s,, to
(82, + 22, )1/ 2 and A to zero, so that the terms Q; and g, are independent of ¢, and Q,, and gn

are evaluated at the transformed values,!? obtaining

(74) P= (ﬁ cz;) ,

=1

m—1 " . ~1/2

0P/Opm =~ { I] Qi) am- (2 +22) ",
i=1

m-1

8P[OAm = — (H Qi) dn{(bm = fim) = (Gm = ) Am - (55 + Afn)-m '
i=1

A second analytic case occurs when ¢ = —o0, b =0, u = 0, § is the identity matrix, and A is a
vector of ones. Then,

+00
(75) P= [ a(-ms(-ede=1/(m +1)

PO = j_ J:’ B(— )™ g(—e)?de,

OP[OA\m = /+m (=)™ 1p(~e)?ede.

1"The convolution Pr(Vin < vm) = f_'_": F((tm — pm — Ame)/om)p(e)de = & ( '.3:+13‘) is used ta obtain the

analytic form.
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Finally, we analyzed the case of a random effect combined with an autoregressive structure of
order one, for which no analytic solution exists. This model is given by

(76) Vii = €n+ iy i = M-t +¥niy  i=1,...,m,

where ¢ and » are mutually independent, the random effect ¢, is i.i.d. over n, and the AR(1)
innovation uy, is 4.i.d. over both n and i. Since the evaluation of the probability, linear derivative,
and logarithmic derivative expressions in this case requires numerical integration of the order of the
dimension m, it was not tractable computationally to use numerical quadrature as a benchmark.
Instead we chose in this case to obtain benchmark results by averaging a very large number of
simulations (20, 000) of the GH K method, which as it will become clear below, seems overall to be
the most reliable procedure throughout the cases studied.

3.2 Comparative Performance

For each computational experiment we used five hundred Monte Carlo repetitions of all thirteen
simulation algorithms. The number of simulations in calculating empirical expectations of the H
matrix function was chosen endogenously by our programs, so as to require approximately the
same time for each simulation method. The specific results reported in this Section were obtained
through the GAUSS implementation of the routines on 386/16 MHz Personal Computers.

Figures 2-6 describe the first series of experiments, in which truncated normal vectors V of
dimension m = 2 were generated, having the factor structure (67). Figure 2 gives the 6 types
of correlation/covariance structure!® we studied, with wy =1, wa ={1 or 8}, and p12 ={0, .6,
or .9}, where var V; = w; and cov(V1,V3) = p1g - wy - wy. Figure 3 describes the 14 different
rectangles/restrictions!® we investigated. These rectangles were chosen so as to analyze the effect
of symmetry around either or both axes, as well as the location of them either close to the center of
the distribution or far out in the tails. Hence, the results summarized in Figures 46 refer to the 84
cases, {Al, A2,..., N5, N6}, that are obtained by combining these 6 correlation structures with the
14 sets of restrictions. Table 2a summarizes the characteristics of these 84 experiments in terms of
the exact probability and the condition number and determinant of the variance-covariance matrix
) in each case. In Table 2b we give the explicit loadings in terms of the factor structure (67) for the

s O A
six variance-covariance structures used in the experiments, i.e., § = ( ! ) and A = (Al) .
82 2

For each one of the 84 cases studied, we rated the methods in terms of root-mean-squared-error
relative to the best method for that case, e.g., a RMSE Rating of 0.5 means that the method

in question exhibited double the RMSE of the method with the lowest RMSE for that case.

1%ndexed by a number from 1 to 6
t¥indexed by a letter from A to N
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‘Table 2a: Characteristics of 84 Experiments
Restrictions {A-N} x Variance-Covariances {1-6}
Exact Probability of Each Case*

. V.-Cov.1 | V.-Cov.2 | V.-Cov.3 [ V.-Cov.4 | V.-Cov.5 | V.-Cov.6

Restr. A (3x2) || 0.01133 | 0.02113 | 0.02143 | 0.04625 | 0.05656 | 0.07206
Restr. B (3x2) || 0.34042 | 0.34112 | 0.34135 | 0.04960 | 0.04973 | 0.04974
Restr. C (3x 2) [ 0.01133 | 0.00095 | 8.601e-08 | 0.04625 | 0.03617 | 0.02069
Restr. D (3 x 2) | 4.101e-05 | 0.00081 | 0.00174 | 0.00017 | 3.674e-05 | 9.799%-11
[ Restr. E (3x2) | 0.00092 | 0.00023 | 2.662¢-08 | 0.00013 [ 1.366e-05 | 1.118e-11
Restr. F (3 x 2) | 4.101e-05 | 1.036e-09 | 1.123e-13 | 0.00017 | 4.088e-06 | 1.633e-12
Restr. G (5% 5) || 0.12077 | 0.15259 | 0.15422 | 0.03720 | 0.03134 | 0.00792
Restr. H (5x 5) || 0.12977 | 0.08309 | 0.04057 | 0.03720 | 0.01960 | 0.00129
Restr. I (10 x 2) 0.02272 0.02272 0.02272 0.09276 0.09276 0.09276
Restr. J (10 x 2) || 0.68269 | 0.68269 | 0.68269 | 0.09948 | 0.09948 | 0.09948
Restr. K (10 x 2) || 0.02272 | 0.02272 | 0.02272 | 0.09276 | 0.09276 | 0.09276
Restr. L (6x4) [ 0.00135 | 0.00121 | 0.00074 | 0.16260 | 0.16295 | 0.16304
Restr. M (6 x 4) || 0.95192 | 0.95311 | 0.95444 | 0.19688 | 0.19738 | 0.18741
Restr. N (6 x 4) | 0.00135 | 0.00121 | 0.00074 | 0.16260 | 0.16295 | 0.16304
Cond.Num.(0) 1.000 3.999 18.999 [ 63.999 [ 101.139 | 345.446

Det.(Q) ~1.000 0.640 0.190 | 64.000 [ 40.960 | 12.160

* After the name of each resiriction type, the dimensions of the rectangle appear in parentheses.

Analytically,?®
1 &
Average RMSE Rating of Method j = ) Z RM S E(best method for case k)/RM S E{method 7 in case k)
k=1

In each figure the results are presented in four subfigures, (a) to (d). The first two report perfor-
mance ratings for each of the 14 restriction types, averaging across all 6 correlation structures, with
subfigures (a) and (b) giving cases A-G and H-N respectively. Subfigure (c) reports performance
for each of the 6 types of correlation, averaging across the 14 restriction types. Finally, in subfigure
(d) we report overall performance, averaging across all 84 correlation/restriction cases. The results
of simulating probabilities appear in Figure 4, those for simulating linear derivatives in Figure 5,
and those for logarithmic derivatives in Figure 6. Overall the 84 cases studied, the average ratings
of the various methods are also summarized in Table 3.

Our results support the following conclusions: GHK can be recommended as unambiguously
the most reliable method for simulating normal rectangle probabilities, achieving an overall rating
of 93%, compared to only 52% for the next best method, NIST.?! For simulating derivative
expressions, the PCF method exhibited the highest overall rating, 79% for linear and 79% for
logarithmic, while NISE was second and GH K third for both types of derivatives. It is interesting

*Interested readers may request from the authors considerably more detailed tables that report bias, variance,
mean-squared-error, quantiles, robust statistics, and timing results for all cases studied.
*Indeed, GHK achieved s firat-place rating in over 70 of the 84 cases studied.

26



Table 2b: Characteristics of 84 Experiments
Factor Structures of Variance-Covariances {1-6}

L [e) o) a@) [e@mTeG) [ a6) |
3 0.0 0.0 0.0 0.0 0.0 0.0
32 1.0 0.8 | 0.43585 | 8.0 6.4 | 3.48712
A1 1.0 1.0 1.0 1.0 1.0 1.0
Mg 0.0 0.6 0.9 0.0 4.8 7.2
wf 1.0 | 1.0 1.0 1.0 | 1.0 1.0
wi=s3+A3f 1.0 | 10 1.0 | 640 64.0 | 64.0
pra=Ajws || 0.0 | 0.6 0.9 0.0 | 0.6 0.9

Table 3: Average RMSE Ratings® across 84 Cases

Probabilities | Linear Derivatives | Logarithmic Derivatives
GHK 0.928 | PCF 0.786 | PCF 0.792
NIST 0.523 | NISE 0.597 | NISE 0.577
NISE 0.450 | GHK 0.582 | GHK 0.557
PCF 0.291 | NIST 0.559 | NIST 0.536
DCS 0.163 | SDS 0.290 | SDS 0.340
CFS 0.145 | CFS 0.282 | CFS 0.268
SDS 0.143 | DCS 0.211 | KF§ 0.221
KFS 0.025 | KFS 0.079 | DCS 0.190
ATUS ** | AUS ** | GSS 0.136
ARSE ** | ARSE ** | ARSR 0.123
ARSR ** 1 ARSR ** | SUS 0.101
GSS ** | GSS ** | AUS 0.100
SUS ** | SUS ** | ARSE 0.022

* Average RMSE Rating of method j= !11 2:;1 RM SE(best method in case k}/RM SE(method j for case k)
** AUS, ARSE, ARSR, GSS, and SUS not applicable

to note that the normal importance sampling methods, NISE and NIST, seem to perform fairly
well, bettered only by GH K in the case of probabilities, and by one (PCF) or two (PCF and
GHK) methods in the case of derivatives. What Figures 4-6 illustrate more clearly than the
overall ratings table above is that GHK appears more robust than all other methods, in that it
performs at or near the top in each one of the 84 cases studied. In particular, it performs even more
impressively relative to the other algorithms in the most difficult cases of either high correlation
among the elements of V and/or very low probability mass in the restriction region.

In the next set of computational experiments we investigated the consequences for the perfor-
mance of the simulation methods of increasing the number of simulations used. We selected 6 cases
out of the 84 possible ones discussed above?? in such a way as to provide a wide range for the
performance of the preferred method, GH K. The results are summarized in Figure 7, where the
actual RMSE of each of the 5 best methods, averaged over these 6 cases, is plotted against the

355, G8, K1, K2, L3, and L4
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time required to perform x1, x2, x3, x4, and x5 the original number of simulations used. The
results again highlight the superior performance of GH K, especially for simulating probabilities.
For linear derivatives, PCF has a slight edge over GH K, while for logarithmic derivatives, there
is virtually a tie between GHK and PCF.

In the final set of experiments, we analyzed the impact on RMSE of increasing the dimension
m of the problem. Figures 8-9 report results for the 5 best methods for m ={2,4, 8, or 18}. In
Figure 8, the m x 1 multivariate normal vector V' has the one-factor structure (RE1)

(757) Vai = €n + vni,
with o, = 1 and o, = 1. In Figure 9, the one-factor plus AR(1) structure (RE1AR1) was used
(76’) Vm=€n+ﬂm, ﬂm'=,077n,i—1 +Vﬂj, i=1,...,m,

with o, = 0.6, o, = 1, and p = 0.8. The parameters were chosen so as to generate cases for which
GHK is not the dominating method. In particular, the restriction region in these experiments
was the all-negative orthant, which with the addition of a very high degree of serial correlation
implies that the probability of being in the restricted region is not very small.?® Figure 8 shows
that GH K remains the only reliable method when the dimension is increased: the performance of
GHK is uniformally superior, whether one simulates probabilities, linear derivatives, or logarithmic
derivatives. The other methods perform especially poorly as m rises. Finally, Figure 9 shows
the effects of increasing the serial correlation through the addition of the AR(1) structure. The
methods least affected by increasing m are GHK and CFS, with GH K once again exhibiting the
most satisfactory performance.?*

It should be noted that the results presented here discriminate against methods, like GS§, that
are not vectorizable, since GAUSS is particularly efficient for vector operations. In preliminary
timings using our FORTRAN code, we confirmed that methods that are difficult to vectorize then
gain in relative speed. The impact of vectorization techniques on the performance of the simulation
algorithms we studied is potentially a very important issue that needs to be investigated further.
We plan future work on this topic.

4 Conclusions

The problem of evaluating multivariate normal probabilities and their derivatives is an important
one in econometrics and biometrics because such expressions appear in leading econometric models,
such as the multinomial probit (MNP) and other limited dependent variable models based on

normality. Estimation of these models requires, for each trial parameter vector and each observation

3The true probability was 0.3333 for m = 2, 0.2001 for m = 4, 0.1095 for m = 8, and 0.0565 for m = 16 in the
RE1 case, and 0.3974, 0.2855, 0.1753, and 0.0939 respectively for the RE1AR] case.

1p view of the relatively high probabilities in this last set of experiments, it is not surprising that CFS performs
well in them.
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in a sample, evaluation of such probability expressions and their derivatives. The problem is
computationally difficult unless the dimension of the integral is less than four or the covariance
matrix I has a special structure, such as a factorial structure with a low number of factors.

This paper surveyed Monte Carlo techniques that have been developed for approximating nor-
mal orthant probabilities and their derivatives that limit computation while possessing properties
that facilitate their use in iterative calculations for statistical inference. We considered the fol-
lowing methods: the Crude Frequency Simulator (CFS), two variants of Normal Importance Sam-
pling (NISE and NIST), a Kernel-Smoothed Frequency Simulator (KFS), Stern’s Decomposition
Simulator (SDS), the Geweke-Hajivassiliou-Keane Simulator (GHK), a Parabolic Cylinder Func-
tion Simulator (PCF), Dek’s Chi-squared Simulator (DCS), two variants of Acceptance/Rejection
Simulation (ARSE and ARST), the Gibbs Sampler Simulator (GSS), a Sequentially Unbiased Sim-
ulator (SUS), and an Approximately Unbiased Simulator (AUS). In an Appendix we described
GAUSS and FORTRAN algorithms implementing these methods. We presented test problems we
used to investigate the operational properties of the methods, focussing on RM S E rankings, and
summarized our computational experience with them. We also examined the impact of increasing
the number of simulations R and the dimension of the probability integral m. We concluded that
the GHK simulator appears overall the most reliable method, especially for simulating orthant
probabilities.
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Appendix
Description of GAUSS and FORTRAN Procedures

The simulation methods presented in this paper have been coded in GAUSS and in FOR-
TRAN. Both versions of the programs are available via anonymous FTP from the Internet site.
econ.yale.edu, subdirectory pub/vassilis/simulation. Each simulator procedure requires the
following standard inputs; the interpretation of some inputs may vary from routine to routine, and
not all are used in all routines:

M Dimension of the multivariate normal
VMU Mean of multivariate normal, an M x 1 vector

W Covariance matrix of multivariate normal, an M x M array

wI Inverse of W

C Lower triangular Choleski factor of W, an M x M array

A Lower bound of rectangle, an M x 1 vector. {When the lower bound is —oo,
set A = (-1.0E10)xONES(M,1).}

B Upper bound of rectangle, an M x 1 vector. {When the upper bound is oo,
set B = (1.0E10}xONES(M,1).}

NR Number of repetitions

U Random variates, an M X R array

PARM Parameters and constants for the simulation

The simulators all return {P, HU, HC}, where P is the scalar rectangle probability, HU is the
(M +1)x (M +1) array of unconditional partial moments (6), and HC is the (M + 1) x (M + 1)
array of conditional moments (7). Parts of the output not provided by a simulator are set to -999.

In the FORTRAN implementation, two additional inputs are required, MM AX and NRMAX,
specifying the maximum values of M and R allocated at compilation time.

The programs include code for all statistical functions, spherical transformations, and antithetics
routines that are required by the simulation algorithms, and hence are self-contained.?5

**In the Monte Carlo experiments reported in this paper, the number 1753227 was used as the starting seed for
generating the random variates.
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Figure 2
Correlation/Covariance Structures Studied
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Rectangles/Resirictions Studied
Restriction Types A-F
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Figure 4
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Figure 4 (continued)
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Figure 5
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Figure 5 (continued)
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Figure 6
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Figure 6 (continued)
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