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SUMMARY

This paper determines a class of finite sample optimal tests for the existence of a
changepoint at an unknown time in a normal linear multiple regression model with known
variance. Optimal tests for multiple changepoints are also derived. Power comparisons of

several tests are provided based on simulations.
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1. INTRODUCTION

This paper derives a class of finite sample optimal tests for one or more change-
points at unknown times in a multiple linear regression model. The regression model has
fixed regressors and normal errors with known variance. Under the null hypothesis, the
regression parameter vector is constant across all time periods. Under the alternative, a
sub—vector of the regression parameter changes at m or fewer unknowr points in time for
some integer m > 1. The optimal tests are given by exponential averages of the Wald test
statistics that apply when the changepoints are known. The commonly used likelihood
ratio test is not in the class of optimal tests.

The testing situation considered in this paper is one in which a nuisance parameter
(the vector of changepoints) appears under the alternative hypothesis but not under the
null hypothesis. (For asymptotic analyses of such problems, see Davies (1977, 1987),
Andrews and Ploberger (1991), Hansen (1991), and King and Shively (1991).) It is well
known that standard optimality results for tests, both finite sample and asymptotic, do not
apply in testing situations of the \type described above. For example, Wald’s (1942) finite
sample average power optimality results for tests of linear restrictions in normal linear
regression or analysis of variance models do not apply. In this paper, we extend the Wald
(1942)—type optimality results to cover the case of tests with unknown changepoints. We
consider a weighted average power criterion function. We obtain a class of test statistics
that are indexed by a scalar measure ¢ of the magnitude of the parameter changes against
which the test’s power is directed. For the special case of a known changepoint vector, our
test statistics reduce to the standard optimal test statistic for this case.

The changepoint tests introduced here can be used to test the null hypothesis of par-
ameter constancy against the alternative of multiple parameter shifts at unknown times or,

more generally, against parameter changes of a less specific nature. Alternatives of the



latter sort are often of interest in econometrics. Test consistency results of Andrews (1989)
suggest that the tests will have asymptotic power against a very broad range of alterna-
tives. In the second part of this paper, we assess the power of the optimal tests against
alternatives of both types. In particular, we consider one-time parameter changes and
martingale parameter changes. Of prime interest are (1) the sensitivity of the power of the
optimal tests to the scalar measure ¢ mentioned above and (2) the relative power of the
optimal tests to other tests in the literature such as the likelihood ratio test, the midpoint
F test, the CUSUM test of Brown, Durbin, and Evans (1975), and a test introduced by
Nyblom (1989) for martingale parameter changes. In brief, we find that the power of the
optimal tests is not very sensitive to changes in c. We suggest the use of ¢ = o. We also
find that the optimal tests perform quite well in finite samples vis—a—vis the other tests
considered, both for the alternatives for which they are designed and for the other altern-
atives considered.

Previous work on changepoint problems of the sort considered here includes, among
others, Chernoff and Zacks (1964), Hinckley (1969), Gardner (1969), Farley and Hinich
(1970), James, James, and Siegmund (1987), Kim and Siegmund (1989), Andrews (1989),
and Jandhyala and MacNeill (1991).

The remainder of this paper is organized as follows. Section 2 defines the optimal
test statistics and establishes their optimality. Section 3 discusses the case where the error

variance cr2 is unknown. Section 4 presents the Monte Carlo power comparisons.



2. OPTIMAL TESTS FOR REGRESSION WITH NORMAL ERRORS

In this section, we establish finite sample optimality results for a class of tests of

structural change for the linear regression model with normal errors.
ASSUMPTION 1. The model is given by

Xiél +Z£62+Ut for t=1, ...Tqu
x£(61 +8)+ 26+ U, for t=Tr +1,. .oy Ty

e
I

_X’E(Jl + B) + Z{ 8y + Uy for t=Tr +1, .., T

for some m=(m, ... m,)’ €I, where U, ~iid N{o0, 02), 0% is known and hence
2
wlog 0“ =1, X, 61, ﬁl, ey ﬁm eRY, Zt’ 52 eRY, {(Xt’ Zt) :t=1,.., T} are non

random, IIC {(1r1, ey n‘m)’ 10 <My < e <7 < 1, T7r_j is an integer, and

Imi : T
ET'lr:]i+1th"c is full rank v ¥j=10,1, .., m, where 7, =0 and Tmil = 1}, and Ethzi is
full rank w.

The unknown parameters of the model are given by

’ ’ !’ ’ ! l‘ s
8=(By, .. By, 61, 85) € R", wheres = (m+1}v + w . (2.1)
The null and alternative hypotheses of interest are:

By:fy=Fy=---=f,=0and (2.2)
H1 : ﬂj # 0 for some j= 1, ..., m and = € II for some specified set II.
When the term Ziéz appears in the regression function, only the parameter vector for the
X, regressor is subject to change under the alternative H,. This case is referred to as a test
of partial structural chenge. When no term Ziﬁz appears in the regression function under
HO or H
H

1 the parameter vector for the entire regressor vector is subject to change under

;- This case is called a test of pure structural change. Note that the error variance
02 = 1is taken to be constant across the observations in either case.



To determine an optimal test of Hy versus H;, we use a weighted average power cri-
terion. We specify a weight function J(-) over the discrete set II of changepoint vectors.
For each changepoint vector = € Il, we specify a weight function Q 1r(') over the different
parameter vectors 4 that lie in the alternative hypothesis Hl‘ A test of level ais said to be
optimal for weight functions (J(-), Q ﬂ(-)) if its weighted average power exceeds that of
any other test of level a. This criterion is quite similar to that used by Wald (1942) to
obtain classical optimality results for tests of linear restrictions in the linear regression
model. In fact, for any fixed value of 7, the weight function we consider has the same con-
tours as that considered by Wald. Further, the optimal tests introduced here reduce to the
standard Wald test when the changepoint vector is specified, i.e., Il = {7*}.

Let 90 denote some parameter vector in the null hypothesis:

8y = (07, 814, 83

‘ 5 v w '
) €R”forsome 6, €R" and b5 € R" . (2.3)
Any parameter vector 6 € RS can be written as the sum of the null parameter vector 90 and

some perturbation vector h € R®. That s,
§=8,+h. (2.4)

Given 00 and change point 7, we specify a weight function qu(') over perturbation vectors
h. The weight function we use is a singular multivariate normal distribution whose support
lies in the orthogonal complement (with respect to a particixla.r inner product) of the linear
subspace defined by the null hypothesis.

More specifically, let V denote the linear subspace of R® defined by

V={0eR": 0= (0", &1, 65)' for some 6, € RY and 6o € R¥}. (2.5)

The null hypothesis can be expressed as HO :8€V. For given 7€ Il, define the inner

product



5 Il')r I27r
<h, &> = h’I(x){for h, L€ R°, where I(7) = ,
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Note that I(x) is the information matrix for the parameter § when the change vector is
fixed at 7. Denote the orthogonal complement of V under <-,-> r by V;‘ Since V is a
v+w dimensional subspace of RS, V;‘r is an mv dimensional subspace of RS. Let {al P

. 1 :
v, 1r} be some basis of V. and define

sxmv
A = [al,w .. a.mv’w] €ER . (2.7)

For example, one can take

I

mv )
A = : (2.8
T ~1.,
—I3 15,
Next, for any choice of A_as in (2.7), let
- ’ -1 ’
I =A(AZ(n)A )AL
(2.9)

1., -1 ~1., -1 -1
_ (111-12'”1; 1‘21r) _(Ilvr-I2WI31rI 21r) I21rI3

1., 1, v=1 »=lp, (7 o o=lr, y=lp o1
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Also, let N(0,X) denote a multivariate normal distribution with mean 0 and covariance
matrix ¥ (possibly singular).
The weight function Q'rr is given by

ASSUMPTICN 2. Q1=N(0, cEﬂ_) Yr eIl for some positive constant ¢ (that does not

depend on 7).

Under Assumption 2, the weight function Q1r on R® is a singular multivariate normal
distribution with covariance matrix of rank mv < s. The support of Q_is V;_.

The constant ¢, which scales the variance matrix of the weight function Q » deter-
mines whether one gives higher weight to alternatives that are close to the null or distant
from the null. Thus, a small value of ¢ corresponds to giving relatively high weight to
small parameter changes (ﬁl, veey ﬂm) and a large value of ¢ corresponds to giving relatively
high weight to large parameter changes (4, ..., f)- '

The weighted average power criterion can now be expressed as

b JP(tp rejects Hy| 6, + b, 7)dQ_(B)J(r) , (2.10)

where ¢ is some level o test and {J(x): r € 1} is a discrete distribution on II. For
example, one might choose a uniform weight function: J(r) = 1/card(ll) Yz € II. An opti-
mal test of level a maximizes the above weighted average power criterion over all tests of
level a. (We show below that the optimal test does not depend on the choice of By-)

We determine an optimal test as follows. Let fT(y, 8,7) denote the density of the T
vector of observations Y = (Y, ..., Y)’ evaluated at y=(y,, ..., yT)'. Note that
fT(y, by 7) does not depend on 7 for f, € V by Assumption 1 and, hence, is denoted
(5, §)- Let ¢ = ¢(Y) denote a test of Hy. That is, oY) is a [0,1}—valued function of Y
that rejects Hy with probability v when @(Y) = . The power of p against § = 00 +his
given by Jgo(y)fT(y, 90 + h, m)dy. The weighted average power of ¢ equals



) JP(w rejects Hy| 6y + b, m)dQ_(n)3()
mell

=3 e ” P(¥)ig(y, b + B, )dydQ, ()I(m) (2.11)

TE
= J“’(’”L?n (s 8+ B, m)aQ m)I(x) dy .

Equation (2.11) shows that the weighted average power of  equals the power of  against

the single alternative density specified by
B fp) = 3 [y, 8 + 1 maQ,@)3(x). (2.12)

Hence, a test that maximizes power against the simple alternative gT(-, 90) also maxi-
mizes weighted average power.

The Neyman—Pearson Lemma shows that the best test for testing the simple null
Y~ ip(-, 00) against the simple alternative Y ~ gT(-, 00) is based on the likelihood ratio
statistic LR defined by

LR = (Y, 6p)/t(Y, ) = 2 JT(Y,ﬁ + 1, 1)4Q (WI(n)/E(Y, b)) . (213)

(Note that this likelihood ratio statistic is not the likelihood ratio commonly considered in

the literature. The latter is the ratio max sup fp(Y, 4, 1r)/(sup fr(Y, 6)).) We show
T gegs
below that this statistic does not depend on 00 and its distribution is the same for all

parameter vectors in the null hypothesis. In consequence, (a) an exact similar test of
Hy: Y~ fp(-, 6y) for some 6 € V can be constructed based on LR, (b) this test has maxi-
mum power among tests of the same level against the alternative gT(- , 90) for any €V,
and (c) this test has maximum weighted average power as defined in (2.10) for any By eV
among tests of the same level. In addition, we show below that LR can be written in a
simplified form that does not involve an integral with respect to Q W(- ). A consequence of

this is that the test statistic is straightforward to compute.



In particular, the statistic LR is shown to equal the ezponential Wald statistic

Exp—Wc defined by

-mv/2

Exp-W = (1+¢) Enexp B— -1—_?_—CW( 7r)] J(), where

€
- _1. - - , - , ’
W(x) = B(x) (BI(1)E Y B(), Bx) = (By(2)’, s By(m)) (214)
_ : mvx§

H=[__:0€eR ’
and (Zil(vr)', - ﬁm(w)', '61(1r)', '62(1r)')' are the least squares (LS) estimators Qf
(ﬁi, s B 6 éé)' from the regression of Y, on (th(T-:r1 <tg T1r2), th(T1r2 <t
¢ Trg), o X UTr <t < T), X, Z,). Note that W(x) is just the standard Wald test
statistic for testing H0 : ﬁl = ﬁ2 = e o= ﬂm = () against H1 : ﬁj #0forsome j=1,...,m
and the changepoint vector is .

One rejects the null hypothesis for large values of Exp—W c The resulting test is
exactly similar and maximizes weighted average power among tests of equal significance
level. These results are summarized in the following theorem. Let £(Y) denote a test of

level a based on the exponential Wald statistic Exp—W c

THEOREM 1: Suppose Assumptions 1 and 2 hold. Then,
(a) LR = Exp-W, '
(b) the distribution of Exp—W , under the null hypothesis is nuisance parameter free, and
(c) for any level a test p(Y), X J' w(y)ip(y, 6y + b, m)dydQ, (k)I(7)
el T
< 3 [e0ig(s, 6+ b, 1)ayaQ ()3(x) VG € V.
COMMENTS: 1. By Theorem 1(b), the exponential Wald test is an exactly similar test.
Its distribution under the null depends on the regressors, however, so it is not possible to

provide tables of exact critical values. Exact critical values can be obtained straightfor-

wardly on a case by case basis by simulation. See Section 3 for further discussion of



simulation methods. Tables of asymptotic critical values are provided in Andrews and
Ploberger (1991) for the case of non—trending regressor variables and m = 1.

2. The exponential Wald statistic depends on the constant ¢ that indexes whether
power is directed at near or distant alternatives from the null hypothesis. In consequence,
one needs to choose a suitable value of ¢ for practical application of the test. Fortunately,
the choice of ¢ does not appear to be critical. The simulations reported in Section 4 below
show that there is little sensitivity in the power of the exponential Wald test to the choice
of ¢ even when c is allowed to range over the entire interval [0,0]. For reasons outlined in
Section 4, we suggest using the test statistic that corresponds to the limiting case asco o

for general purposes:

Exp-W_=lim log [(1+c)m"/ 2Exp-Wc] = log énexp[%W(w)]J(w) . (2.15)

Cr o
The lack of sensitivity of the power of Exp—Wc to the choice of ¢ is not too surprising,
because when the nuisance parameter r is known, i.e., Il = {7*}, the power of the test is
independent of c. Lastly, we mention that if one desires a finely—tuned choice of ¢, even
though the test is insensitive to ¢, a method is described in Section 7 of Andrews and
Ploberger (1991). A

3. The test statistic Exp—~W c is designed for the alternative hypothesis specified in
(2.2) that specifies a fixed number of changepoints m. If one wishes to consider alterna-
tives with multiple changepoints of unknown number, then a test statistic can be obtained
that is optimal with respect to weighted average power by placing a weight function

(prior), say {p(m) : m = 1, ..., M}, over the number of changepoints. The test statistic is

M
I p(m)Exp-W_ ., where Exp—W_ is the statistic Exp—W defined in (2.14) for the
m=1

case of m changepoints.
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3. UNKNOWN ERROR VARIANCE

The results of Section 2 apply when the variance 02 of the errors {Ut t=1,.,T}

is known. In practice, of course, .:r2 is rarely known. In consequence, one usually needs to
replace the exponential Wald statistic defined in Section 2 with an analogous statistic that
estimates ¢2. The natural way of doing so is to replace W(r) by the standard Wald statis-

2

tic for testing for change occurring at changepoint vector = when ¢“ is unknown. The

latter is just mv times the wsual F statistic F(7):

. .9 -1,
F(r) = fn) [A(mEIWE ] Hx)/(mv)

(% 6(%:;3]@—3) , where
T j+1
Q(r) = 0 o J+1[Y Xt(él(ar)+ﬁ(7r))] for 7, =0 and §, =0, (3.1)
= J

~2
&°(m) = Q(7)/(T-s) ,
—— T s 7 ’ T 2
Q* =3[, - X;3, —2/5,)°,
B(7) is as in (2.14), and (61, 2) is the LS estimator from the regression of Y, on (X{,Z )'.

The analogue of Exp—W c for the case of a unknown is then given by the ezponen-
tial F statistic defined by "

Exp—F, = (14¢)2"/2 énexp[gliz 1%1"(-;)] 7). (3.2)

As with Exp—Wc, the statistic Exp—Fc is nuisance parameter free under the null hypothe-
sis. In consequence, exact tests based on Exp—Fc can be obtained by simulating the
critical values. Since the exact critical values depend on the regressors, it is not feasible to
provide tables of them. On the other hand, asymptotic critical values for Exp—F c are the
same as those for Exp—W ¢ and tables are provided in Andrews and Ploberger (1991) for

the case of nontrending regressors and m = 1.
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We found that it was fastest to compute the simulated critical values by using the
formula F(r) = ((T—s)/(Tmv))LM(7)/(1 — LM(x)/T), where LM(#) is the Lagrange multi-
plier statistic defined in (4.1) below. The weight matrix of LM(7) for each 7 only needs to
be computed once and can be reused for each repetition in the simulation. In addition, the
use of LM(7) circumvents the need to reestimate the unrestricted model for each value of
x. For example, using a Gateway 486 3033 megahertz PC it takes eleven minutes to gener-
ate one thousand repetitions for a model with six regressors and one hundred and twenty
observations.

The finite sample optimality results of Section 2 do not apply to tests based on
Exp—-F c Nevertheless, for medium to large samples, the difference in power between the
tests based on Exp—W c and Exp—Fc is fairly small (see the Monte Carlo results of Section
4). In consequence, the results of Section 2 imply that the test based on Exp-F c is at least
quite close to being optimal in terms of finite sample weighted average power. Further-
more, the test based on Exp—FC is asymptotically optimal according to the results of
Andrews and Ploberger (1991).

Two limiting cases of the exponential F statistic as ¢+ 0 and ¢ + o are given by

Avg-F = lim 2(Exp-F, - 1)/ (cmv) = EHF('lr)J () and
e

c+0 (3.3)

Exp-F_=lim log [(1+c)mv/ 2Exp—Fc] = log Znexp [—I%EF(W)] J(r) .

C+ o
(The non—data—dependent renormalizations of Exp—F o which are made prior to taking the
limits in (3.3), guarantee non—degenerate limiting test statistics. The renormalization has
no effect on the actual critical region of each of the tests in the sequence as ¢+ 0 or c+ o,
however, and hence is appropriate.)

The test statistic Avg—F is designed to direct power against alternatives for which
the magnitudes of the changes (ﬁl, ey ﬁm) are small. The test statistic Exp-—Fm, on the

other hand, is designed to direct power against alternatives for which the magnitudes of the
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changes (ﬁl, . ﬂm) are large. The relative performance of these two tests is evaluated for

a variety of alternatives in Section 4 via Monte Carlo simulation.

4. MONTE CARLO RESULTS

This section presents Monte Carlo results regarding the finite sample properties of

the optimal tests introduced above. Attention is focused throughout on the statistics
| designed for one—time change alternatives for which m = 1. The section has several objec-
tives. First, we analyze the sensitivity of the power of the optimal exponential tests to the
choice of ¢ for a variety of alternative distributions. Second, we compare the power of the
optimal exponential tests with that of other tests in the literature such as the likelihood
ratio or "sup F" test, the CUSUM test of Brown, Durbin, and Evans (1975), the midpoint
F test, i.e.,, F(.5), and a test considered by Nyblom (1989) for the alternative where the
parameters form a martingale. We make such comparisons both for a variety of one—time
change alternatives and for a variety of martingale parameter alternatives.

Third, we compare the power of the exponential tests for the case where 02 is esti-
mated to the case where a2 is known. If the difference is small, the optimality of the latter
statistics implies near optimality of the former feasible statistics. Fourth, we compare the
power of the optimal tests for one~time change alternatives with unknown changepoint to
the power of the optimal tests for known changepoint, viz., the F test based on the correct
changepoint. Such results show the cost of not knowing the correct changepoint. Fifth, we
calculate and compare the nominal size of the tests mentioned above when asymptotic crit-
ical values are employed. These results are not of direct interest for linear regression
models, because exact critical values can be obtained for these models. For nonlinear
models, however, asymptotic critical values are needed for the asymptotically optimal
exponential tests introduced in Andrews and Ploberger (1991) and these simulation results

should be helpful in assessing the tfue size of such asymptotic tests.
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We now define the test statistics that are considered in the Monte Carlo experi-
ment.  Avg-F and Exp—F_ are defined as in (3.3) with J(7) uniform on
{2/120, ..., 118/120}, where the sample size T is 120 and the number of regressors under
the null is two. Exp-Fc for ¢ =1/3, 1, and 3 are the exponential F statistics defined in

(3.2) with J(7) as above. Sup2-F and Supl5-F equal sup F(7) and
7€{2/120,.. . ,118/120}

sup F(m), respectively, which are the likelihood ratio statistics for
7€{18/120,. . .,102/120}

Il c (.02, .98] and II ¢ [.15, .85]. The latter set II is smaller than in the definitions of the
exponential F tests for reasons of power described in Andrews (1989). Avg-LM,
Exp—LMm, Exp—LM o Sup2—-LM, and Supl5-LM are Lagrange multiplier (LM) versions of
the tests described above that are defined with F(r) replaced by LM(x)/(mv), where
mv = 2 in the present case and LM(7) is the LM test statistic for testing for one—time

change occurring at changepoint = (when the error variance o? is unknown). By definition,

-1 -1
_oI7 0w | o7 , T , Tr 3 s
LM(r) = SL (Y, =X D)X [zl tht] + [zTW +1tht] ST7(Y,-X; B)X, /57, where

(4.1)

5= [E}"xtxi]_lz'fxt\ft and &° = 31 (Y, — X;5)°.

Nyb—LM denotes a test statistic introduced by Nyblom (1989) for alternatives in
which the regression parameteré form a martingale (or, more specifically, a random walk in
the present case) with constant innovation variance. Nyb~LM equals the Avg—F statistic
defined in (3.3) with F(r) replaced by LM(r) and with J(x) proportional to x(1-7) for
7€ {2/120, ..., 118/120} and 0 elsewhere. Note that Nyb~LM is very close to, and in fact
is asymptotically equivalent to, an optimal exponential test statistic for a one—time change
alternative with a particular non—uniform choice of J(7) and ¢ » 0.

Cusum denotes the Cusum statistic of Brown et al (1975) defined, for example, as

in Krimer and Sonnberger (1986, pp. 49-53, 59—61). The Cusum test is the best known

parameter instability test in the literature for linear regression models. Another test that
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also has been suggested for use as a general test of parameter instability is the midpoint
Chow F test, denoted here by F(.5).

The exponential F tests discussed above use an estimator of the error variance o°
rather than taking it as known. For comparative purposes, we consider Wald versions of
each of these tests where the Wald tests take 02 as known. The lattér tests satisfy the
finite sample optimality results of Section 2. Avg—W is defined in the same way as Avg—F
except with W(x) in place of F(r), where W() is defined in (2.14). Exp—W_ for ¢ = 1/3,
1, and 3 and Exp—-W _ are defined as in (2.14) and (2.15), respectively, with J(r) uniforrh
over {2/120, ..., 118/120}.

For one—time change a.llternatives with changepoints Ty = 075, .15, ..., .925, we
consider the test statistics that yield the envelope power function, viz. F(1r0) for Ty as
above. Power results for F('tro) show the power attainable if the true changepoint is known.

Next we describe the two basic models and the variety of alternatives that are con-

sidered in the Monte Carlo experiment. The models are:

Model S: Y, = X;4, + U, X, = (1, (-1)"), U, wiid N(0, 0%), t = 1, ..., 120,
Model TT: Y, = X{6, + Uy, X,-= (1, t—(T+1)/2)  for T = 120, (4.2)
U, ~iid N0, o%), t =1, ..., 120.
‘Model S is a "stationary" model. Model TT is a time trend model. Under the null

hypothesis, 6t = 60 for some 60 € R2 Yt =1,..,120. The following alternative

distributions are considered:
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)

6, + Bfor t = 120m+1, ..., 120

fort=1, ..., 120m,

Alt-—l(?ro): 61: = for some :50, fe R2,

. 2
Alt—-MG1: 6t = 60 + ﬂt, ﬁt = ﬁt—l +e €~ iid N(Q, 7 12), ﬁo =0, for
some & € R2, (4.3)
2
. — - T T
Alt—-MG2: 6t = 50 + ﬁt, ﬁt - ﬂt_l + Et, Et iid N[g, (7'1'2'6)'('171:7T2'0')I2]’
By =9 for some 60 € R2,
Alt—MG(wO): b = 60 + ﬂt’ B, =9 Vi< 120m, B, = ﬂt—l +€
Vi = 1207 +1,...,120, ¢, ~ iid N(Q, 7°L,), By = 0, for some 6 € R?,

Alt—1(,) is a one—time change at t = 1207, alternative. For the case of unknown 7, this
is the alternative for which the exponential tests are designed. Alt—MG1 and Alt-MG2
are commonly considered martingale (MG) parameter alternatives. The statistic Nyb—LM
is designed for Alt—-MG1. The statistic Avg—LM has some asymptotic optimality proper-
ties for Alt~MG2, see Nyblom (1989). Alt—MG(x,) is a martingale structural change
alternative. With this alternative, the linear regression model is properly specified up to
time t = 1207, but thereafter it‘breaks down and its parameters drift according to a
martingale specification.

The rejection probabilities of the tests described above do not depend on 60 under
the null and under the above alternatives. Thus, we set §, = (0, 0)’ without loss of gen-
erality. The error variance o2 is set equal to one. For Alt—l('rro), we consider 7, = .075,
.15, .3, .5, .7, .85, .925. For Alt—MG(wO), we consider the same values of 7, except .075.
For Model S and Alt——l(aro), the power of each of the tests except Cusum depends on § only
through [|ﬂ]|.2 In consequence, we take 4 proportional to (1, 0)‘ in this case without loss of
generality. We take ||f]] = 4.8, 7.2, 9.6, 12.0. For Model TT and Alt—1(x,), the power of
the tests depends on f through the length and the direction of B. In this case too we con-
sider § proportional to (1, 0)‘, which corresponds to a shift in intercept. We take
18] = 9.6, 12.0, 14.4, 16.8. For Alt-MG1, Alt-MG2, and Alt—MG(er), we consider
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several values of the martingale innovation standard deviation 7, viz., r = .03, .05, .07, .1,
3, 7=.02, .03, .04, .05, .1, and 7 = .05, .1, .5, 1.0, respectively.

Power results for selected subsets of the test statistics described above are provided
in Tables 1—4. Table 1 covers Model S and Alt—l(')ro). Table 2 covers Model TT and
Alt—1(x). Table 3 covers Model § and Alt-MG1, At-MG2, and Ali—MG(n,). Table 4
covers Model TT and Alt—-MG1, Alt—-MG2, and Alt-—MG(-JrO). In all cases, the reported
power is for level .05 exact versions of the tests described above with critical values gen-
erated by Monte Carlo with 50,000 rep_etitions.3 The reported power is based on 1,000
repetitions in each case. True sizes of asymptotic versions of a selected subset of the tests
are provided in Table 5 for Model S. The true sizes reported are based on 50,000 repeti-
tions. The asymptotic critical values for these results are taken from Andrews and
Ploberger (1991) for Avg—F, Avg-LM, Exp—F , and Exp—LM , from Andrews (1989) for -
Supl5—F and Supl5-LM, and from Krimer and Sonnberger (1986) for Cusum. For
Exp—Fl, Exp—LMl, Sup2~F, Sup2-LM, Nyb-F, and Nyb—LM, they were generated by
Monte Carlo with 50,000 repetitions using the method described in Andrews (1989). Note
that these asymptotic critical va!ues are not appropriate for Model TT and, hence, size
results for that model are not given.

We now make several general comments on the tables. First, none of the tables
i'eports power results for LM versions of the exponential and sup tesis, i.e., Avg—LM,
Exp—LMc, Exp—LMm, Sup2-LM, and Supl5-LM, because these results are very similar to
the results for the F versions of the tests. In many cases the power is the same, in some
cases it differs by .01, and in only a very few cases does it differ by more than .01.

Second, none of the tables report results for Exp—F c for ¢ = 1/3 or 3, because these
results lic between those of Avg—F, Exp—Fl, and Exp—Fm, respectively, and the latter
three exhibit relatively small differences in power except in a few cases.

Third, in Table 1 power for all tests except Cusum is the same for L and 1- L

and, hence, results are only reported for Ty = .075, .15, .3, .5. For Cusum, power differs



17

for T and 1 — Ty SO additional columns are provided in the Table for the 1 — Ty cases. In
addition, unlike the other tests, Cusum does not have power that is invariant with respect
to the direction of § in Table 1. In consequence, Cusum results are given for two cases: i)
proportional to (1, 0) and 8 proportional to (0, 1). The results for two intermediate cases
viz., f at angles 36" and 54° with the horizontal axis, are quite similar to those for § pro-
portional to (0, 1) and, for brevity, are not reported.

Fourth, with Model S and Alt—1(x,) (see Table 1), the power of all tests except
Cusum is at 2 maximum when the changepoint 7y = .5 and drops off in a concave fashion
as 7, approaches 0 or 1. In contrast, with Model TT and Alt—l(vro) (see Table 2), the
power of all tests except Cusum and F(.5) is at, or is close to, 2 minimum at #; = .5 and is
maximized at 7y =.15 and .85 or 1y =3 and .7. This (possibly) counter—intuitive
pattern arises because a regression mode! with an intercept and time trend is better able to
approximate a true regression model that has a constant mean with a single change at
Ty =5 than a similar model with 2 single change at 7, = .15, .3, .7, or .85.

Next, we summarize the results presented in the tables. First, we consider the sensi-
tivity of the power of the equnentia.l F tests to ¢. For Alt—-MG1, Alt-MG2, and
Alt—MG(rp), there is little sensitivity to ¢ for Model S or Model TT. For Alt—1(,), there
are some power differences for different values of ¢, but they are not huge. More specific-
-a.lly, for Model S and Alt—l(-:ro), Exp—F_is best due to its higher power for 7, = .075 and
.15. For Model TT and Alt—l(ro), Exp-Fun is the best exponential F statistic for g = -5
but Avg-—F and Exp—F, are somewhat better for x = .15 and .85. Overall, we conclude
that the exponential F statistics are not very sensitive to the choice of c. For the altern-
atives considered here, we prefer Exp—-]:"“J or Exp—F1 by a narrow margin over the other
exponential F tests.

Second, we compare the power of the exponential F tests with that of other tests in
the literature including Sup2—F, Supi5—F, Nyb~LM, Cusum, and F(.5). Across the board

Exp—Fm is as good as or better than Sup2—F and Supl5—F with the exception of the case
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of Model S with Alt—1(r)) and =, = .075 for Sup2—F and of the case of Model TT with
Alt—l(-.vro) and 7 = .5. The differences between the two are small in most cases, but sub-
stantial in some. We conclude that Exp-—Flllu 1s preferable to the likelihood ratio statistics
Sup2-F and Supl5-F for the cases considered here.

A comparison of the exponential F tests with Nyb—LM for Alt-MG1 is of interest,
because Nyb—LM has some asymptotic optimality properties for these alternatives, see
Nyblom (1989). We find that the exponential tests do quite well. Exp-F _ slightly out-
performs Nyb—LM for some 7 values and the reverse occurs for some other 7 values. For
the other MG alternatives, Exp—Fm seems somewhat preferable to Nyb—LM in an overall
_sense, because the two tests have quite similar power for all cases except those for
Alt—MG(vro) with 7 = .85 or .925 for which Exp—F _is clearly superior.

Comparison of the exponential F tests with Cusum is dramatic. For Model S with
Alt—l(vro), the Cusum test has higher power than the exponential F tests when Tq = .075
or .15 and A« (1, 0). In almost all other cases, models, and alternatives, however, the
Cusum test performs very poorly both in an absolute sense and relative to the exponential
F tests. Thus, we conclude that the exponential F tests have much better overall power
properties than the Cusum test.

As expected, the midpoint F test, F(.5), outperforms the exponential F tests for
Alt—l(wo) with Ty = -5. In every other case, including all of the MG alternatives, however,
the exponential F tests outperform F(.5). The difference is often substantial, especially for
cases with 7o near 0 or 1. Hence, we conclude that the éxponential F tests exhibit better
all-round power properties than F(.5).

Third, we compare the power of Exp—Fm with that of Exp—Wm. These statistics
differ in that the latter takes the error variance o® as known. We find that Exp-Wm' is
more powerful than the feasible statistic Exp-F_ against Alt—-l(wo) by between 0.0 and .04
depending on the case considered. (The differences between the exponential F and W tests

for other values of c, not reported in the tables, are comparable.) These differences imply
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that Exp—F _ has power that is at least within 0.0—.04 of being optimal for the case of
unknown variance cr2, since Exp—Wm possesses the optimality results of Section 2 for the
case of known variance. Given that these power differences are fairly small and that any
feasible test must sacrifice some power when 02 is unknown, we conclude that the expon-
ential F tests must be quite close to being optimal, if they are not strictly optimal, for the
case of o? unknown.

Fourth, a comparison of the power of the exponential F tests against Alt—1(1r0) with
that of the envelope power (given by F(#,)) shows that knowledge of the changepoint
increases power substantially. Although this is not surprising, its quantification in the
tables seems useful. These results indicate that for one-time change alternatives correct
prior knowledge that restricts the set II of changepoints, whether to a single point or Just
to a smaller set, yields significant power gains.

Fifth, we discuss the size results of Table 5. The use of asymptotic critical values
leads to a slight underrejection by the LM versions of the exponential test statistics and a
slight overrejection by the F versions of these statistics. The Cusum, Sup2-LM, and
Supl5—-LM tests exhibit the greatest underreject'ion of all of the statistics considered, which
exacerbates the power problems for the Cusum test. The Avg—F and Nyb-F statistics
exhibit the best size properties of all of the statistics considered. In an absolute sense as
well, their size properties are excellent. As noted above, these size results are relevant only
as an indicator of size results for corresponding tests in nonlinear models, since exact

critical values can be obtained for the linear models considered here.



APPENDIX

The proof of Theorem 1(a) uses the following Lemmas. Let
TR = 3 exp[§8(r)2(r)n) exp [~ 5(Rr)-4)" T(x)(Bx)-2)] 4Q, (0)3(x), where

&x) = 8(r) — G, and 8(r) = (B(7)", ..., By ()", §,(m)", by(m))’ (A1)
for (By(7)", ... By(7)", &;(x)’, By(x)) as defined in (2.14).
LEMMA A~1. Under Assumption 1, LR = LR.

LEMMA A-2. For each 7€ I1, the projection matriz P* onto the orthogonal complement
V;‘, of V with respect to <- yo > 18 given by

Imv 0

Ly pdy _ _ §x5
P (—PW)—AWH— _1_11’ 0 eER"",
3 “2r

where A_ and H are defined in (2.8) and (2.14) respectively.

Proof of Theorem 1. First we establish part (2). By Lemma A1, it suffices to show that
IR = Exp-W, To do 5o, Let A~N(0, c(AJA)™") and h = A), where A= A_ and
I =1(r). Then,h~Q, = N(0, cA(A’IA)_lA') as desired. The density of A is

(27 ™Y/ 24et1/2(A - 1A jc)exp [- Q%A'A'IA,\] (A.2)

with respect to Lebesgue measure on R™".

For notational simplicity, let # = %) and 7 = I(x). Then,
IR = TEHC('J)J(W) , where (A.3)
((r) = [exp (3079 - J0-D1(6-)] 4Q, (1)
= (20 Y/ 24et1/2(A 1A fc) (A.4)
. J exp [%['B'IF — (AX-B) T(AX-T) - (AA)'IAA/c]] dx .

Let P and P* denote the projection matrices with respect to <-,->_onto V and V;



respectively. (Note that P and P* depend on 7 since <:,->_and V:r do.) The term in
square brackets in the exponent on the rhs of (A.4), with A) replaced by b for simplicity,

now simplifies as follows:
18— (k—3)* I(h—F) — b’ Th/c
— T 1+c ¢l _ 1
=917~ (0= o) S0 - O] - P
= P L 7 |y _pt 1+c
= [S{PD) 1PT + (S (P47) 1P [h pai_] [h p* ] (A.5)
¢ ’
— (P0) 1P
_ € ypippe L 14+¢C
= (S0 17— [n - o] T n - -Pos
where the second equality uses the fact that (P%) Th =0Vh € V; .
Combining (A.4) and (A.5) gives

¢n) = (14¢) ™ Zexp [,}, ﬁp*‘ﬂ)’zp*v]
J(21r) 1Y/ 2441/ 2[A IA”C] exp{ 5[ A—P 31—] 1+°[AA P zti—]
= (1+¢) mv/zexp {? IC—C(P""H)’IP*'H] ,
where the second equality holds because the integral of a normal density equals one.

Using Lemma A-2, (P‘L?)'IPJ"H = (HB)’A'TAHT. Hence, for part (a), it remains to
show that A‘JA = [HI JH‘]"\. By simple algebra, the left~hand side equals

dx (A.6)

I 1r™ I 211511 b The right—hand side equals the inverse of the upper mv » mv submatrix
of I (r)_l, which equals I, —1I, nglléw by the formula for a partitioned inverse. The
proof of part (a) is now complete.

To establish part (b), note that under the null hypothesis, we have
Kr) = Bi(r) = H(X:X ) 'X:(U + X)) = BX;X,) XU, (A.7)

since Hfy =0 for §;= (07, 61 6&0)', where X, is a T xs matrix with t—th row
(X; 1T, <t < Trp), o, XgUTm <t < T), Xy, Z5)" and U= (Uy, ..., Uy).  Since
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Exp—W,, depends on {Yt : 1 < T} only through A(r) and BA(7) does not depend on 00 under
the null, part (b) follows.
To establish part (c), we note that the Neyman—Pearson Lemma (e.g., see Lehmann

(1959, Thm. 3.1, p. 65)) implies that a test based on LR is a most powerful test of

Hy(f): ¥ ~ £, 6g) versus Hy(dp): Y~ 3 j £(-, §,+h, dQ (h)J(r). By part (a),
Exp—W equals LR and by (2.11), the power of a test against H,(f,) equals its weighted
average power defined in (2.10). Hence, for each fixed §; € V, the test {(Y) based on
Exp—W c maximizes weighted average power among tests of the same significance level, séy
a. By part (b), £(Y) has the same significance level a for each hypothesis HO( 90) for

8, € V. In consequence, £(Y) has maximum weighted average power among all tests of

level o for the null hypothesis Hy : Y » fr(-, 00) for some §, € V. o

Proof of Lemme A-1. Let {f,7)=logip(6,7), DLb,r) = -gyl(ﬁ,vr), and D2£(0,w)
= 'aygz'g'rl( 6,7). Simple algebra yields
T, 5
pr 1Y — Xibio — Z{ S50,
_ 5T ' , : 2 _
DY by, ) = ET'arm+1(Yt - Xi610 — Zi §90)X; |, -DUby, 1) = I(m), (A.8)

T ’ ’
2i(Yy - X{dyg - Zidog)X

T , /
_21 (Yy - Xidyg — Z46p)Zy
and %(r) = I(r) D46, 7).
Since {1,(8, 7) and 4§, 7) do not depend on 7, we can write
LR = EH exp({6, + h, 7) — {6;, 7))dQ _(h)I(). (A.9)
.13
Let b = (h{, ., b7 o) € R, where h; € R'Vj<m+landh . ,€R"Y. Theintegrand of
(A.9) simplifies as follows:
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48, +h, m) — K8y, 7)

m Tr, 9

-3 JEOET it 1Y, =X (80 + heyy + ) =Zi(6yp + by o)
T v _mae 12

- El[Yt - Xt‘slo Zt‘szol } (A.10)
1 m T1r

=-3 _2120):1, [Y = X810 = 2y baglX (b g + B+ Zgh o)

=y T’r_ﬁ—l 2

T E r’T'tr +1[xt (hm+1+hj) + Zt’.hm+2]

= D&, )'h — " I(m)h.
Letting D¢, 7, and ¥ abbreviate D{(§, ), I(7), and &), respectively, and using

? = 7"'D¢ from (A.8), we obtain

’ 1 ’ — ’ —_ 1 ’ — 1 ’ 1 ’ - ’ ’
D{h —gh'Th = §Th — 5h'Th = 50/ 70 — (8 76 — 20" Th + h*Th)
1 1 (A.11)
= 0' 79 — 5(8-h) I(F-h).
Combining (A.9), (A.10), and (A.11) gives the desired result LR = LR. ©
Proof of Lemma A—2. Tt suffices to show that (1) A Hv=0V¥veVand (2) A Hm=m

Ym ¢ V;. To show (1), note‘ that ve V iff v= (0, vé)' for some v, € RVHY, Thus,

0
: = . — i ’ _ .
A Hv= Ar[Imv - 0] [Vz] = 0. To show (2), note that m € V_iff v/ I(#)m =0 Vv e Viff

01, JH(nm=0if [1;_: 1, [z;] = 0, where m = (mj, mg)", iff my = —75'7; m

v+w 2701
Ip 0 m,
for m, e R"®Y and m, ¢ R"*¥. Thus, for m e V:, A Hm =
1 2 L 121: o||-r1i m
3 27 3 “2771
my
= 1 = m, as desired. O
1.1



FOOTNOTES
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through grant number SES—8821021. Ploberger gratefully acknowledges research support
from Fonds zur Forderung der wissenschaftlichen Forschung under Schrédingerstipendium
Project J-0469-PHY.

2'I‘his is true only for T = 15, .3, ..., .85, since in these cases the time of change 120-:r0 is
an even number. For r = .075, .925, 12011'0 is odd and the power of the tests depends
slightly on the direction of 5.

3For the Cusum test, there is no single critical value since the test rejects if |Cusum,|

exceeds a line with a given intercept and slope for some t. Exact null rejection rates of .05
were obtained for the Cusum test by taking the slope equal to the value given by the
asymptotic version of the test (see Krimer and Sonnberger (1986, pp. 49—53 and 59-61))
and adjusting the intercept of the rejection line appropriately.
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TABLE 1, Test Power for Model S and Alt-1(x,)

Alternative . L.
Distribation Test Statistic
Ry Cusum =, Cosum 1-7n,4 Exp-W,,
(and 181 | AvgF | Exp-F, | Exp-F, | Sup2-F | Supl5-F | Nyb-LM F(.5) (o’ F(n,)
1-ny) p=(1,0) § P=(0,1) B=(1,0) B=(0,1) known)
4.8 07 07 .08 .08 " .06 .05 .15 04 04 .04 .05 .08 .19
075 7.2 10 13 .15 .16 .09 .08 31 .04 04 .03 .06 15 .38
’ 96 18 26 J1 33 13 13 51 .04 04 .03 .06 34 .62
12.0 29 45 .50 g4 21 .19 72 04 04 .03 .08 53 .81
4.8 14 15 15 15 14 12 22 04 .05 .04 .07 .16 30
15 7.2 a0 .36 36 .36 37 24 47 .03 .06 04 A1 40 .61
) 9.6 54 .65 .66 .64 65 44 73 .03 07 03 18 70 87
12.0 .76 B5 87 .87 .88 .65 91 .03 .09 .03 .26 .89 .98
48 32 32 30 26 31 32 .24 .04 .07 04 19 33 49
3 7.2 67 68 .66 62 .68 .66 .55 .03 14 .03 43 .69 84
i 9.6 .39 91 91 .89 92 .89 .82 .03 29 03 .69 93 97
120 99 99 99 98 1.00 99 96 .02 48 02 .87 1.00 1.00
4.8 43 41 37 31 38 46 15 04 55 41 55
5 7.2 19 .79 1 12 .79 81 40 03 90 81 90
) 9.6 96 97 97 95 .97 97 .69 03 99 97 99
12.0 1.00 1.00 1.00 1.00 1.00 1.00 89 02 1.00 1.00 1.00

-1



TABLE 2. Test Power for Model TT and Alt-1(n,)

Alternative . .
Distribution Test Statistic
o Ifl | AvgF | Exp-F, | Exp-Fe | Sup2-F | Sup15-F | NybLM | Cusum | F(5) (5"]1(’1;;"“;;) F(1o)
9.6 31 33 31 25 26 27 28 15 33 53
as | 120 | @ 51 49 43 40 39 43 21 53 72
: 144 | 64 70 68 62 56 56 58 29 7 87
168 | 80 84 .84 79 72 70 74 39 86 95
9.6 52 52 46 39 41 51 22 35 49 67
s | 120 3 b7 69 60 64 ki 35 53 72 86
: 144 | 87 88 87 80 84 87 51 69 89 96
168 | .96 96 96 94 94 95 67 82 96 99
9.6 44 44 41 35 a1 A7 09 39 44 66
0 | 120 | 64 66 65 58 65 68 13 57 67 86
: 144 | 81 84 82 78 83 84 16 75 85 97
168 | .92 94 94 92 94 93 21 87 96 99
9.6 17 23 26 26 29 19 11 56 28 57
o | 120 | 26 37 42 42 48 30 15 75 46 76
: 144 | 39 58 63 64 69 44 20 90 65 91
168 | 54 75 .80 81 85 .60 25 97 82 97
9.6 47 47 45 38 45 52 11 41 47 69
0 | 120 | 66 68 68 61 68 70 14 58 70 88
: 144 | 82 85 85 81 85 85 20 a7 87 97
168 | .93 95 95 93 96 95 28 88 96 99
9.6 54 51 47 40 43 53 07 37 .50 65
s | 120 | 74 74 69 60 64 74 08 55 7 85
- 144 | 89 89 87 81 84 89 10 72 89 96
168 | .95 96 95 92 94 95 12 85 97 99
9.6 33 35 32 27 25 29 05 17 34 51
op5 | 120 | 48 51 49 44 37 41 05 23 51 3
: 144 | 66 69 67 61 54 57 05 31 70 88
168 | .8t 84 83 79 70 72 06 42 87 95

-1



TABLE 3. Test Power for Model S and Alt-MG1, Alt-MG2, and Alt-MG(x,)

Test Statistic
Alternative T

Distribution Avg-F | Exp-F, | Exp-Fo | Sup2-F | Supl5-F | Nyb-LM | Cusum F(.5)
07 .26 .26 25 22 24 26 .08 22
1 52 53 49 46 49 53 .19 45
Alt-MG1 3 70 J1 70 .66 .69 .69 31 .62
4 86 87 86 .83 .86 84 44 .75
5 1.0 1.0 1.0 1.0 10 .99 74 92
.07 48 A7 .46 43 A3 46 19 37
Alt-MG2 d 70 72 .70 .66 .66 .68 34 57
3 .83 85 .84 81 81 80 44 .68
4 91 .93 92 91 89 .87 52 .75
5 99 1.0 1.0 1.0 98 98 g2 .87
1 S1 S1 49 A5 49 g1 17 44
nmas | 3] 84| 85 | 84 82 84 84 | 42 | 75
5 1.0 1.0 1.0 1.0 1.0 1.0 a5 95
1.0 1.0 1.0 1.0 1.0 1.0 1.0 77 97
1 47 47 .44 41 A5 .48 14 41
xg=3 3 80 81 .80 .78 R34 .80 32 J1
S5 1.0 1.0 1.0 1.0 1.0 1.0 .68 96
1.0 1.0 1.0 1.0 1.0 1.0 1.0 .70 97
Jd 33 32 31 28 31 33 .07 .29
mes | 3] 0| B 1 o6 | T 71 | 19 | 63
S 99 .1 99 1.0 1.0 99 .98 .61 96
1.0 1.0 1.0 1.0 1.0 1.0 99 .66 97
Alt-MG(n,) 1 15 | a6 .16 14 14 14 04 .09
a7 | 3] 40| 42 | @2 41 42 36 | 06 | .22
S 95 97 .98 98 96 94 37 83
1.0 99 1.0 1.0 1.0 99 97 47 S0
1 07 .07 07 .06 05 .06 .04 .05
g 85 3 13 15 15 16 A2 .10 04 07
5 .80 86 87 88 79 g2 09 41
1.0 93 96 97 98 92 88 16 .67
| 05 05 .05 05 .04 .05 04 05
nmgzs | 3| 06 [ 06 | 06 | .07 05 05 | 04 | 05
5 39 S5 59 62 27 25 03 11
1.0 76 86 89 90 .63 56 03 .20




TABLE 4. Test Power for Model TT and Alt-MG1, Alt-MG2, and Alt-MG(=%,)

Test Statistic
Alternative T

Distribution Avg-F | Exp-F, | Exp-F,, | Sup2-F [ Supl3-F | Nyb-LM | Cusum F(.5)
.03 32 32 29 .24 25 33 A2 29
.05 47 49 .47 41 45 48 .20 44
Alt-MG1 07 92 .95 95 94 95 92 .67 81
d .97 98 98 98 98 96 .76 87
3 .99 .99 99 99 98 98 80 90
02 38 39 37 32 32 37 17 30
Alt-MG2 03 .64 .66 .64 61 61 61 37 51
04 .80 B3 83 .80 78 77 51 .64
.05 92 94 94 93 91 .89 .66 75
1 1.0 1.0 1.0 1.0 1.0 .99 88 89
.05 43 43 41 37 40 A4 13 39
Rg=.15 1 90 92 .93 91 93 90 54 82
et 97 99 99 99 99 97 13 90
1.0 1.0 1.0 1.0 1.0 1.0 1.0 85 54
.05 37 39 37 32 35 38 A1 35
ny=3 N 87 90 91 90 91 .86 47 .80
3 97 .98 98 97 98 97 .66 89
1.0 99 1.0 1.0 1.0 1.0 1.0 79 94
05 .29 30 29 26 28 30 .09 26
— A 82 86 87 85 87 81 37 73
S .94 96 96 96 96 94 56 .86
1.0 .99 1.0 1.0 1.0 99 99 5 94
Alt-MG(n} .05 23 22 21 18 19 22 .06 18
ne=.7 A 67 12 72 .69 69 .65 .20 54
ot 85 88 80 89 88 83 36 67
1.0 | .95 98 .99 98 98 93 38 .80
05 11 12 A1 .10 09 10 .05 .09
%o=.85 .1 42 45 45 42 38 40 .06 30
3 65 .70 g1 1 62 60 a1 S50
1.0 85 91 92 93 84 .80 25 .69
.05 06 06 07 .07 05 06 .05 06
7,=.925 1 20 21 22 .20 16 16 05 10
5 A8 42 42 40 31 32 05 19
1.0 63 .69 72 g2 56 57 04 43




TABLE 5. True Size of Asymptotic Tests for Model S

Nominal Test Statistic
Significance
Level Avg-F Exp-F, Exp-F,, Sup2-F Supl5-F Nyb-F Cusum
10% 10.1 10.8 117 8.2 9.2 9.9 8.1
5% 5.1 5.6 6.1 4.4 4.6 3.1 3.9
1% 92 123 1.50 99 1.04 1.02 .64
Avg-LM Exp-LM, | Exp-LM,, Sup2-LM SupiS-LM | Nyb-LM

10% 9.2 9.2 9.2 5.4 7.0 9.1

5% 4.4 4.4 42 24 31 4.5
1% 70 74 73 36 44 74




