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In his paper "To Criticize the Critics" [1991b], Peter Phillips discusses
Bayesian methodology for time series models. He criticizes earlier work by me
([1988], primarily) and by me and Harald Uhlig [1990] and argues for particular
choices of standard priocr distributions and particular methods for arriving at
approximate characterizations of posterior distributions. Though I disagree
with many of his suggestions, I am encouraged to see the expansion of discussion

along this line.

The main point that Uhlig and I set out to make, however, was that careful
consideration of the implications of the likelihood principle suggests that much
of the recent work under the "unit root" label in the econometrics literature is
being incorrectly interpreted in practice. We pointed out that time series
models with possible unit roots are one of the few domains within which the
implications of a likelihood-principle approach to inference are different, even
in large samples, from those of a classical hypothesis-testing approach.
Phillips addresses this part of our paper only indirectly. Without accepting
our view that a likelihoeod-principle approach is strictly preferable to an
hypothesis-testing approach, he endorses the usefulness of Bayesian methods, at
least when they are by his standards properly applied. He makes no claim,
directly or by the example of his work on Bayesian methods in this paper, that
classical asymptotic theory for unit root models is useful from a Bayesian

perspective.

Phillips’s paper contains several indirect counterarguments to our claims for
Bayesian or likelihood~based appreoaches. One is that Bayesian methods using
what he regards as a well-founded “"objective" prior distribution yield results
for posterior probabilities that are cleser te p-values developed from sampling
distributions. While this of course does not address the questions we raise
about the foundations of inference, it does suggest that these issues may be of

less practical importance than we were claiming. Another is that our claim that



classical methods in a sense ignore information is the opposite of the truth --
the Bayesian methods, by "conditioning on sample information" -- ignore

information.

The remainder of this comment first reasserts the broader claims of the earlier
papers about the clash between the likelihood principle and asymptotic sampling
theory In these models, explaining why I find Phillips's counterarguments
unconvincing. It then takes up the question of how to choose a good prior and
how to report results in these models. Here I think that Phillips has in some
ways improved on earlier suggestions of mine for standardized nonflat priors,
but that his suggestions themselves have drawbacks. I suggest lines for further

improvement.

I. Principles of Inference

Unlig and I pointed out that in the model we considered there is in every sample
a "prior" that would rationalize classical p-values as posterior probabilities.
However, no prior can be chosen before observing the data that will rationalize
p-values in all possible (or indeed in more than a measure-zero set of ) samples.
This means that treating p-values as probabilities is incoherent: 1if you are
willing to quote me odds on bets concerning the true value of p (the coefficient
in a univariate AR) based on p-values after you have seen the sample, and if you
are also willing to quote me odds, before you have seen the sample, on bets
concerning the true value of p and possible characteristics of the sample, then I

can congtruct schemes in which you pay me money with probability one.

Of course we are not making bets when we report statistical results to a
scientific audience, but I believe that this inccherence means that p-values are
for these dynamic models a bad reporting device. The natural intuitive inter-
pretation of them as probabilities is unsound. While it is true that the prier
pdf’s that rationalize p-values in individual samples are convex and upward-
sloping like the Jeffreys prior, Uhlig and I showed that they nonetheless differ

quite sharply in different samples. That is, there is no one prior that



rationalizes treating p-values as probabilities. As far as I can see, Phil-

lips’s paper makes no argument against this point.

Uhlig and I tried to provide some intuition for how it can be that, despite the
downward bias in the OLS estimate ﬁ cf p, the likelihood for p turns ocut to be
symmetric about p. We argued that the downward bias in p is balanced by an
upward bias generated by the smaller variance of p when p is large. This
balancing upward "bias" is not a classical bias in p for fixed p. Nonetheless
it is easy to understand why, when ﬁ has smaller variance for larger p, this
should make our beliefs about p given an observation on B lean toward higher
values of p. We claimed that emphasizing the classical bias in p alone amounted

to ignoring information about how the variance of p varies with p.

Phillips counters that it is Bayesian procedures that ignore information about
variance, because they "condition" on the estimated variance of 5. I can see no
argument for this proposition in what Phillips has written. A casual reader
might accept the proposition based on a semantic confusion. Statistical
procedures, whether classical or Bayesian, sometimes are said to "condition on"
some subset of observed variables. Most commonly this involves using the
conditional distribution of endogenous variables given excgenous variables, even
where the distribution of the exogenous variables involves some of the parame-
ters that are being estimated. Conditioning on variables in this sense does
ignore possibly useful information. Bayesian or other likelihcod-principle
based inference "conditions on" the entire sample. That is, it aims at condi-
tional probability statements given observations, so that probabilities of
events that have not occurred are treated as irrelevant to assessing uncertainty
about parameters given what has occurred. The fact that the likelihood princi-
ple implies that inference should be conditional on the entire sample certainly
does not mean that it implies ignoring all the information in the sample. Two

different meanings of "“to condition on" are at play here.

Uhlig and T considered an artificial experiment in which values of an autore-

gressive coefficient p were drawn at random from a uniform distribution over a



wide interval. Our point was to concentrate on a situation where everyone,
frequentist or Bayesian, would agree on the appropriate formulas for calculating
conditional probability distributions. 1[I assume Phillips accepts Bayes' rule as
a formula for calculating conditional distributions from a given joint distribu-
tion —-- this formula is not what is at issue between Bayesians and frequentists.
Our claim that everyone should agree on the symmetric shape of the distribution
of p conditional on 5 in this experiment is just a matter of agreement by
everyone on Bayes' rule. When there is a well-specified physical random
mechanism generating p, use of it in the mathematical role of a "prior" is not a
matter of subjective choice. It is only when the mechanism generating p is not
observed repeatedly or otherwise is ill-defined that Bayesians can disagree
about what prior to use and classical statisticians can object to treating p as
a random variable. Thus there can be no good argument for using a Jeffreys
prior or any other distribution in place of the actual random mechanism genera-
ting p in our example. Phillips’s claim to the contrary must represent a
misunderstanding of the artificial experiment we described, though on rereading

our description it seems unambiguous to me.

I1. Other Methodoclogical Issues

Phillips also makes other general methodological points that are unrelated to
our possible disagreements over the foundations of inference. This section
takes these up briefly, more to indicate the nature of my reaction than to give
detailed responses, since these issues are somewhat peripheral to the main

dispute.

Phillips’s paper quotes Stock, Watson and me [1990], labeling the quotation S3,
to the effect that any hypothesis that can be tested after a dynamic model has
been "transformed" using unit root tests and the like can be tested with the
same asymptotic distribution theory in the untransformed model. Phillips adds
to the quote an interpolation of his own defining the word "transformed". The
quoted statement is correct if the "transformed model" is interpreted as being
one in which all restrictions corresponding to order T_1 components of the

parameter space, including cointegration restrictions, are imposed. Phillips is



pointing out that with his interpretation of "transformed", the statement isg
untrue, since certain of the order T_1 restrictions can be estimated and tested
with convenient distribution theory if others of the order T_1 compenents are
imposed first. He is correct, and by being imprecise about what "transformed”

meant we may have given a mistaken impression in our statement.

The paper gives a brief litany of arguments against use of VAR’s estimated in
levels. I find none of these arguments convincing. Of course if we often knew
that unit root hypotheses were exactly true, the argument for imposing them a
priori would be strong. In fact, unit root and cointegraticn restrictions are
estimated from the data. That is, we approach the data not knowing whether to
impose them, and unit root tests and cointegration tests are part of a process
by which the data determine the model we finally use. Asymptotic theory tells
us that in large samples the unit root and cointegration hypotheses will be so
sharply determined by the data that randomness in the estimation process
generated from testing these hypotheses and imposing them as restrictions is
negligible. However, as is evident from the shapes of the likelihood functions
in applied work and from the conflicting and puzzling results often produced by
the application of unit root tests, actual economic data seldom produce samples
that are "large" in the required sense. Uncertainty about unit roots and
cointegration is not trivially small relative to other sources of estimation

error.

This is a difficulty one can confront explicitly by working with a model in
levels, where it emerges in possibly inconvenient distribution theory for a
classical approach and as the need for careful thought about priors and boun-
daries of parameter spaces in a Bayesian approach. Or one can proceed with the
approach of estimation-by-hypothesis-testing, in which one arrives at a model
with a simplified distribution thecry by ignoring the randomness in the final
model arising from the preliminary unit root testing and cointegrating vector
estimation. Phillips’s arguments for the latter course are convincing only if
one believes that it often happens that the randomness being ignored is unimpor-

tant, as asymptotic theory promises it eventually will be. My view is that in



practice it is seldom unimportant. What Phillips suggests amounts to a recom-

mendation in favor of rose-colored glasses.

The paper accuses VAR's estimated in levels of being subject to "simultaneous
equations bias". What is being called simultaneous equations bias here is not
an inconsistency {(as “simultaneous equations bias" is in standard usage). I
regard this as a minor point, in large part addressed by the considerations in
the preceding paragraph. Here I just warn the reader that there is a special
usage of terminology here and suggest careful reading of Phillips’s [1991a}

paper for an understanding of what 1s at issue.

VAR's in levels are accused of generating "arbitrary" impulse response func-
tions, with a citation of Cooley and Leroy [1985]. VAR’s in standard form are
reduced forms, and require formal or informal identifylng assumptions to yield
substantive conclusions. In my 1980 paper I summarized results with triangu-
larly orthogonalized impulse response graphs. ©Such response graphs can be
useful for any linear multivariate dynamic model, regardless of whether it is a
VAR estimated in levels or a model in error-correction form estimated with unit
root hypothesis tests. They are useful partly because they often provide,
nearly or exactly, responses to underlying behavioral disturbances. [ pointed
out in the 1980 paper that some of the orthogonalized responses I displayed
corresponded precisely to estimated responses to monetary policy disturbances
under natural rate theories then popular. I also displayed hypothesis tests for
Granger causality that connected directly to an identification of the model as a
wage~price system of a then popular Keynesian type. There was nothing arbitrary
about these tests and interpretations, and Cooley and Leroy did not present any
arguments against them. They argue against a mechanical version of VAR modeling
that may never have been implemented. Furthermore, there is by now a literature
(Bernanke [1986], Blanchard [1989], Blanchard and Quah {[1989], Blanchard and
Watson [1986], and Sims [1986]) showing how formally to obtain structural
interpretations of VAR impulse responses when simple triangular orthogonaliza-

tion does not suffice.



VAR impulse responses are said to be "imprecise", with a citation of

Runkle [1987]. I wrote a response to Runkle’s article that appears in the same
place, which the reader can consult. The gist of it is that impulse responses
estimated from VAR's in levels are subject to considerable uncertainty, but that
they nonetheless are estimated sharply enough to give us useful information. By
imposing unit root and cointegration restrictions as if they were known a priori
to be correct, one can greatly reduce the apparent imprecision of estimated
impulse responses, but to take this as an argument in favor of estimation-by-
hypothesis-testing again amounts to an argument for using such procedures as

rose-colored glasses.

Unit root hypotheses are admitted by Phillips to be more precise than strictly
Jjustified by eccnomic theory, but he claims that this situation is not different
from what we see generally in econometrics, with sharp hypotheses being used,
for convenience, as proxies for theories whose predictions are actually fuzzier.
The issue here, as in all these cases, is how sharp the theory’s prediction is
relative to the most important alternatives. Considerable effert in the unit
root literature has gone toward distinguishing a trend-stationary from a unit
root model of real GNP, for example. The trend-stationary model is naturally
interpreted as allocating business-cycle fluctuations, usually taken as lasting
2-5 years, to the stationary component. In quarterly data, roots with absolute
values as high as .9 generate effects that have decayed to a tenth their
original size within 5 years. In monthly data the corresponding root size is
.96. In actual macroeconomic sample sizes, the power of unit root tests against
alternatives that are this persistent is often very low. In effect, the sharp
unit root hypothesis, if it is taken as correct when it is acceptable as a null
hypothesis, is being allowed to proxy for a set of predictions so fuzzy that it

heavily overlaps the most interesting alternatives.

I1I. Problems with the Jeffreys Prior
It is a small minority of Bayesian statisticians that accepts the notion that
Jeffreys priors represent "ignorance" in any reasonable sense. Bayesians come

in varieties. One variety is purely subjectivist, believing that prior distri-



butions should always be selected to represent the individual investigator’s
knowledge and uncertainty. Another variety sees scientific data analysis as
distinct from decision-making, so that it should use priors that are easily
described, standardized across applications, and reflective of knowledge about
parameters that is common across likely readers of the research report. Either
of these varieties of Bayesian might find it convenient to compute a Jeffreys
prior, but in each case the claim that a Jeffreys prior represents ignorance is
only heuristic or suggestive. A subjectivist might be interested in a Jeffreys
prior as a starting point when he thinks he knows little about the parameters in
question. A likelihood-reporting Bayesian might be interested in a Jeffreys
prior as possibly convenient, standardized, and representative of a common

pattern of beliefs.

But from both of these Bayesian perspectives the Jeffreys priors that Phillips
constructs for possibly non-stationary time series models are unattractive.
They depend very strongly on sample size, putting increasingly high weight on
explosive models as sample size increases. If the true model is not explosive,
evidence against explosiveness actually accumulates very quickly as sample size
increases, so that with any fixed set of prior beliefs posterior probability on
the unstable region quickly becomes very small. Because the Jeffreys “priors"
change as they do with sample size, however, the rate of decline of posterior
probability on instability when the true model is stable is quite low, and
indeed the posterior pdf always declines only as Ip!-z, so that its mean and

variance are always undefined.

What is the argument for using "priors"” that change with sample size? Phillips
does not give one, and I cannot see how one could bec constructed. A subjectiv-
ist Bayesian believes priors should reflect actual a priori beliefs of the
investigator. Conceivably a Jeffreys prior in some sample size could approxi-
mate someone’s actual beliefs, but the subjectivist would see no reason to alter
these beliefs for other possible sample sizes. From a likelihood-reporting
perspective, the sample-size dependence of these priors is perverse. A reader

interested in using reported results to reach conclusions using his own prior



must first unravel the effects of the Jeffreys prior on the likelihood. The
unraveling takes a different form with every sample size and initial condition.
Furthermore, since no reader will have a prior that varies with sample size, it

must be rare that the Jeffreys prior 1s close to a reader’s beliefs.

The heavy weight placed by the pricr on extremely explosive models is also
unreasonable. As I will discuss below, there is a case for a prior that rises
as p approaches one. There are even some kinds of data (e.g. price level data)
where explosive models are plausible. Even in these cases, though, there are
degrees of explosiveness so high that, if data suggested them as maximum
likelihood estimates but with the likelihood fairly flat, nearly all researchers

would act as if the truth were a less explosive model.

IV. The Flat Prior

For a subjectivist, the argument for a flat prior is only an approximate
computational argument. Whatever the subjective prior, so long as it is
characterized by a continuous pdf, under usual regularity conditions the
posterior will come to resemble the likelihood function (the flat prior poste-
rior pdf). This argument applies to Jeffreys priors in usual applications as
well, since in the usual context Jeffreys priors do not depend on sample size.
The Jeffreys priors for this time series application, however, depend so
strongly on sample size that this justification for them fails —- posteriors
from these Jeffreys priors have infinite variance in every sample size, whereas
posteriors from any proper subjective prior with continuous and bounded pdf

eventually have finite variance that shrinks to zero with sample size.

A scientific~reporting perspective suggests that the aim of statistical research
reports is to summarize the likelihood. Since a flat-prior posterior is just
the likelihood normalized to sum to one, it has a direct appeal from this
perspective. Every reader can combine the likelihood with his own prior without

having first to unravel the effects of some other prior.



The flat prior also has the advantage that it allows easy combination of results
from several independent studies of the same parameter -- the posteriors, being
likelihood functions, are just multiplied. Use of any other prior requires that
the effects of the prior on the results be removed before results are combined.

Otherwise there is double-counting of “"prior” informatiocn.

Nonetheless there can be an argument for use of other priors in standard
statistical reporting procedures. In time series models often there is no a
priori reason to be sure that lag lengths are short, yet models that imply
complicated effects at long lags are less plausible than models with shorter
lags. The likelihood for a model parameterized to allow the possible long lags
will often have a peak at an implausible value of the parameter vector, implying
long and complicated lag structures, while still implying substantial probabi-
lity on a region of more plausible models with shorter lags. While of course a
complete description of the likelihood would bring out both aspects of the
likelihood, usually it is more convenient simply to use a prior (as suggested
some time ago by Leamer [1972] and Shiller [19731) that damps the likelihood
down in the region of large effects at long lags. Similarly, in contexts where
a range of models has been contemplated, including some with complex structure
included mainly as checks on simpler, more plausible models, it will often be
useful to use a prior that damps down the likelihood for more complicated
models. It is also possible for a "flat" prior, adopted thoughtlessly for a
particular parameterization, to carry unwanted strong implications. Of course
once recognized, such implications can in principle be discounted in interpret-

ing results, but they may be quite inconvenient.

V. Time Aggregation

In applications of the simple univariate time series model under consideration
here, it is often realistic to suppose that the same economic behavior can be
studied using data of different frequencies. Thus stock price behavior can be
examined with data by transaction, by minute, by hour, by day, by week, etc. If

a univariate AR specification is exactly correct at a small time unit with a

10



coefficient p, it remains correct at a unit S times as long, with coefficient
ps. If the prior pdf f applies to the coefficient ¢=ps in the regression
estimable from sampled data, then the implied prior for the coefficient p with

the small-time-unit data is
S-1 S
0 f[p] . (1)

Thus if we have a flat prior on the coefficient in an AR for annual data, our
corresponding prior on the coefficient estimated from monthly data should be
pll, a convex upward-sloping functicn of g. A prier of e-¢ at the annual level,
implying a prior mean of one on ¢ and substantial probability on explosive

models, implies that the prior for monthly data is proportional to
S-1 )
P exp{-p ] , (2)

which is plotted in Figure 1 along with the corresponding annual-data prior.
Note that while this prior rises as p approaches one, it also drops rapidly for
p above one. There is one prior that remains invariant to choice of time unit

-- a flat prior on log(p) over p>0 (i.e., a prior pdf of 1/p).

I believe that data collection and modeling strategy usually lead economists to
use data they think corresponds to a "fine" time unit relative to the dynamics
of the phenomena they are studying. Subjective priors therefore will naturally
put more probability near p=1 than near p=0 or p=w. As part of reporting
likelihood, therefore, it may be useful to report results from a prior

shaped something like Figure 1, since something like that is more likely to be
close to some readers’ subjective priors than is a flat prior. However, despite
their apparently very non-flat shape, such priors will not have much effect on
the posterior pdf in most samples. Note that even the posteriors with Jeffreys
priors that Phillips reports have little effect on posteriors except in the
highly unstable region of the parameter space, and they involve factors of order
pT'Z in that region where Figure 1’s time-aggregation prior involves only a
factor of p11 -- much smaller unless T is on the order of 13. Since they are

likely to have little effect except in small samples, it may often be justifi-
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able to use flat priors as a matter of convenience even where these time-

aggregation priors would in principle better represent prior beliefs.

VI. Deterministic Trend Components

While Phillips does point out that the priors required to justify treating
p-values as probabilities have the same general shape as Jeffreys priors, he
does not note that when trend terms are introduced into the model, the Jeffreys
priors retain their same general shape, while classical asymptotic distribution
theory shifts drastically. When the p and 8 in Phillips's model with trend are
non-zero, classical asymptotic theory yields Gaussian distributions for the
estimated p even in the presence of a unit root. In this case the usual
situation of asymptotic equivalence of Bayesian posterior probabilities and

classical one-tailed p-values prevails.

Paradoxically, we know that the bias in OLS estimates of p is much worse in this
case than it is in the model without constant or trend (see Andrews [1991] for
documentation of this peoint). Phillips points out that the Jeffreys prior,
though still putting heavy weight on explosive models, does so to a lesser
extent in this model than in the model without constant or trend. While
Bayesian methods do not in general lead to unbiased estimators in the classical
sense, where the bias is large and pervasive, as it is here, a Bayeslan analyst
should investigate it to be sure that it is reasonable, not an inadvertent
implication of a conventional prior. That economic data contain strictly
deterministic trends is even more implausible than that they evolve with exactly

unit roots. When we construct a model like the one Phillips discusses, with
y(t) = g + Bt + py(t-1) + e(t) (3)

and consider testing for "stationarity about trend" versus "stochastic trend",
we are actually letting both the unit root hypothesis and the deterministic
trend hypothesis proxy for classes of nearby models. Since the twe classes of
models are difficult to distinguish in usual economic sample sizes, I would

rather see work that used richer models, being more explicit about the classes
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of models being compared. Nonetheless the model (3) is used enough to deserve

discussion.

Andrews [1991] has recently shown how to derive median-unbiased estimators for
the parameters in (3). Part of his approach to the problem is to work with the

alternative parameterization

1

y(t) = p + Bt + (1-pL) "e(t) . (4)

For |pl<1l, (3) and (4) are alternative parameterizations of the same model.
However a flat prior on g, B, p implies a prior with pdf proportional to (1—p)_2
for u, B, p. When we restrict the model to the B=0 case, the prior pdf on u, p
corresponding to a flat prior on u, p is proportional to (l-p)_l. The reason
for the strong non-flatness of these induced priors on (3) is that a flat prior
on the parameters of (3) implicitly asserts that as p approaches one from below,
the deterministic trend component of y becomes larger at such a rate that it
continues to dominate the observable variation in y, while a flat prior on the
parameters of (4) makes no such assertion. For the recent applications of this
model in economics, where deterministic trend and p near one are being regarded
as competing explanations of the same phenomenon, a flat prior on (4) seems to

accord better with actual prior beliefs of most investigators.

For {3), regardless of whether u or B is zero, the Jeffreys prior converges, as

sample size goes to infinity, to proportionality to
1

VI-pZ

on the interval with [pl<1. This is a proper prier on that interval and

(5)

converges to infinity at p=1 more slowly than either the prior on (3} that
emerges from taking a flat prior on (4)'s parameters or the one that emerges

from a flat prior on (4) with B=0.

Note that equation (4) does not make sense, at least without further discussion,

when |p|z1. By conditioning on y(0), however, we can construct a more robust
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version of it:
t-1

y(t) = p + Bt + [y(O)-E]pt + ¥ e(t—s)pS . (6)
s=0

Equation (6) makes sense for all values of p, it continues to imply a version of
(3), and now a flat prior on the parameters of (6) implies a prior pdf propor-
tional to |1—ﬁl-2 on the parameters of (3). The corresponding result for the

B=0 case is |1-p|_1.

While these extensions of the prior derived from a flat prior on (4) to the
non-stationary case are like the Jeffreys prior in that they increase toward
infinity as p»1 from below, they differ drastically in the nonstationary region.
There they decrease rapidly as p moves above one, while the Jeffreys priors in
finite samples increase sharply as p moves above one and have no limiting form
in this region as sample size approaches infinity. It is also worth noting,
though not important in most economic applications, that these priors differ

from the limiting Jeffreys prior in not having a second singularity at p=-1.

Finally, Il—pI_J has a non-integrable singularity at p=1, both for j=1 and j=2.
Since the likelihood conditional on y(0) is non-zero at p=1, this non-

integrability persists into the posterior.

There are other ways of coming up with candidates for standardized priors. If
one is willing to assume stationarity of the stochastic component of y, it is
attractive to use the unconditional likelihood, thereby adding a factor of
V(l—pz) to the likelihood. Since the flat prior on the parameters of (6) leads
to a nonintegrable posterior for the parameters of (3), it is natural to
consider using loose but proper priors on the parameters of (6} -- say indepen-

dent normal, with the mean of g centered at y(0).

VII. Practical Conclusions
In the homogenecus model, with no constant or trend term, a flat prior seems
sensible. The Jeffreys prior generated from finite-sample distributions depends

on sample size in a paradoxical way and puts unreascnable high weight on
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explosive models. The limiting Jeffreys prior for T+w only exists in the stable
region. Time aggregation considerations suggest that within the stable region a
prior smoothly favoring coefficients closer to one is reasonable, but quantita-
tively shapes for such priors based on time aggregation appear to deliver

results close to those for a flat prior in most samples.

In models with constant or constant and trend, (where the classical distribution
theory is asymptotically normal and thus suggests no strong bias in Bayesian
results with flat priors) the flat prior is less attractive. It implies
credibility for stationary models in which the deviation of y{(0) from the
deterministic component of the model is very large relative to the model's
steady state. Apparent "upward trends" can then be explained as transient
convergence to a deterministic path that lies on one side of the data for much
of the sample. Least squares estimates of (3) typically imply this kind of
fitted model. Figure 2 shows results from this type of model for guarterly U.S.
postwar GNP data. The estimated model has an autoregressive coefficient of .96,
nearly two standard errors from one using the conventional estimate of standard
error. Bul the model implies a large transient that kept the data below the
trend line from 1948 through the early 60’s.

It makes sense to deviate from a flat prior on the parameters of (3) to reflect
skepticism about models displaying such large transients. However, there is no
single natural or limiting prior that takes care of this problem. Figure 3
displays posteriors for p under four priors, labeled flat, Jeffreys, loose, and
tight. The flat prior is flat on the parameters of (3) and is, naturally,
centered on the OLS estimate of .96. Results for the monthly data prior of
Figure 1 are not displayed because, over the range of p’s used in Figure 3, the
monthly data Figure 1 prior is effectively flat —- the posterior pdf is almost
indistinguishable from the plot of the likelihood. The Jeffreys prior is the
limiting form of the Jeffreys prior as T»w, which exlsts only on the stable
interval for p. Though it is not shown on the graph, we know that its posterior
pdf would rise to infinity if we extended it toward 1. Note that in the

relevant range it is a modest alteration of the original flat prior posterior.
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The loose and tight posteriors are generated from priors that are flat in p and
independent normal in g and B from (6). Both center g at y(0), with the tight
prior giving p a prior standard deviation of .2 and B a prlor standard error of
.004. The loose prior is approximately what is obtained as these prior standard
errors approach infinity. Clearly results for these priors differ from flat-
prior results much more sharply than do those for the Jeffreys prior, and they
differ among themselves according to their tightness. Though they are not
displayed here, further interesting variations in the posterior can be obtained

by changing the relative prior standard deviations on u and B.

My own conclusicn from these results is that apparent strong significance for
constant and trend terms in autoregressive models should be regarded skepti-
cally. Often their acceptance implies a model with a large transient component.
When such large transients are inherently implausible, results from models
excluding the deterministic components (while perhaps adding more parameters to
the stochastic dynamics) are likely to give more reasonable results., Where
large transients have some plausibility, there is no way to avoid thinkling about
what kind of transients, and how large, are plausible, and evaluating the
results from flat priors in this light. Doing this systematically will bring us
back to a proper prior on p and g in (6). In the Figure 2 case, we need to ask
whether a "postwar effect" pushing the economy 20% below its deterministic
growth path and persisting over 15 years is reasonable for the U.S. To me, it
seems somewhat implausible. But similar results for the Japanese or German
economies would be more believable. (Of course this all depends on what the
estimated deterministic growth path might represent, discussion of which would

take us too far afield.)

VIII. Overall Conclusions

Phillips's paper seems to me a truly seminal contribution. Despite {or because
of?) my many disagreements with it, it has made me think further about inference
in these models, and I am sure it has done and will do the same for other
readers. Though I had earlier [1988] suggested candidate standard non-flat

priors {(of a "spike and slab" type) favoring a unit root and pointed out their
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dependence on the time unit, smooth priors favoring unit roots are more reason-
able (if somewhat less tractable). The argument that flat priors are unreason-
able when the model contains constant and trend is stronger than I had realized
(though it is not an argument that Phillips makes directly). Figuring out how
the insights being developed in the current debate about Bayesian methods in
these simple models can be extended to practice in multivariate, multilag models
is a major challenge. There are more, and more interesting, open research

topics in this area than was apparent befere Phillips stimulated this

discussion.
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Note to Figure 3

The posteriors were calculated by a naive numerical integration, except that the
parameters were first transformed tc correspond to an orthogonalization of the
data matrix, The orthogonalizing transform was chosen to be an upper triangular
matrix and the lagged dependent variable was put at the bottom of the parameter
vector, so that it was unaffected by the transformation. The three-dimensional
posterior pdf was then calculated at a grid of approximately 20 points in each
dimension (about 8000 points in all) centered at the OLS estimates and covering
about 3 standard errors on either side of the estimate. A similar grid for the
untransformed parameter vector gave extremely inaccurate results for the
marginal posterior for p, because likelihood is concentrated near a lower-
dimensional submanifold of the original parameter space, meaning only a few of
the grid points in that space have high likelihood. This problem is avoided by
the preliminary orthogonalizing transformation.
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Prior on Monthly-Data AR Coefficient
When Annual Prior Is exp(-rho)
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