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Dynamic Structural Models: Problems and Prospects.

by Ariel Pakest

This paper reviews dynamic structural econometric models with both continuous
and discrete controls, and those with market interactions. Its goal is to highlight techniques
which enable researchers to obtain estimates of the parameters of models with these
characteristics, and then use the estimates in subsequent descriptive and policy analysis. In
an attempt to increase the accessibility of structural modelling, emphasis has been laid on
estimation techniques which, though consistent with the underlying structural model, are
computationally simple. The extent to which this is possible depends on the characteristics
of the applied problem of interest, so the paper ends up coverring more than one topic. To
help the reader who has more focussed interests, we now provide an outline of what can be
found in the various subsections of the paper.

Section II introduces the examples used to illustrate the points made in the paper.
We begin with single agent problems involving continuous, as well as discrete, controls,
and later place the agent explicitly into a market setting. The availability of continuous

controls raises the possibility of using stochastic Euler equations to estimate some of the

'This is one part of a two part tour of dynamic structural modelling prepared for the Sixth
World Congress of the Econometric Society, Barcelona, 1990. The other part, by John
Rust(1991}, is on discrete decision processes. Both parts are self contained. I have benefited
from discussions with many individuals in the course of writing this paper, among them;
Don Andrews, Steve Berry, Gary Chamberlain, Sam Kortum, Jim Heckman, Ken Judd,
John Rust, Chris Sims and Stephen Zeldes. Special thanks go to John Rust who read over
several previous drafts and made very helpful comments. The paper also borrows liberally
from my previous work with Rick Ericson, and with Steve Olley, and therefore, also owes
them a special debt. All errors, of course, remain my own responsibility. The research
reported here was funded, in part, by the National Science Foundation, through grant
number SES-882172.



parameters of the model, and section I1I begins the substantive discussion of the paper by
considering this possibility.

We first show that the fact that there are discrete, as well as continuous, controls
does not destroy our ability to generate stochastic Euler equations off of perturbations to
the continuous controls, and that, provided the data is handled with care, these equations
can be used to generate computationally simple estimators of the form developed by
Hansen and Singleton (1982). Next we show that modified Euler equations can also be
developed to analyze situations in which there are boundaries on the choice of the
continuous control that are binding with positive probability (II1.1; we consider both the
case of boundaries whose values evolve endogenously, and the case of exogenously set
boundaries), and to analyze certain special cases of models with unobserved state variables
(I11.2). Finally we consider conditions for the use of Euler equations when the impact of the
controls on future values of the state variables are stochastic (section II1.3), and when the
realizations of the state variables determining behavior are not necessarily conditionally
independent across agents (conditional on past history; section II1.4).

For long enough panels probably the most troubling aspect of the assumptions
needed to generate desirable estimators out of Euler equations, is the fact that Euler
equation techniques can only accommodate very limited forms of serial correlation, or
dependence, in unobserved state variables. Moreover, the problem of obtaining consistent
estimators of the parameters of models with serially correlated unobserved state variables
persists when we consider estimators based on the complete solution to the control
problem, and not limit ourselves to the restrictions embodied in Euler equations. Asa
result we devote Section IV to the problem of incorporating serially correlated unobserved
state variables into the structural models we estimate.

That section begins by noting that the problem of serially correlated unobserved
state variables can be reduced to an "initial conditions" problem almost identical to the

problem discussed in Heckman’s(1981) analysis of estimation in discrete state, discrete



time, stochastic processes. Section IV.1 provides some comments on the applicability of the
results from previous analysis of the initial conditions problem to estimating structural
economic models with serially correlated unchserved state variables.

Section IV.2 provides an alternative method for dealing with serially correlated
unobserved state variables that arises naturally in certain economic models with continuous
(as well as discrete) controls, and provides proofs of its validity for the two examples used
extensively in this paper. Where applicable, the alternative can often be combined with
semiparametric estimation techniques to enable one to derive computationally simple
estimators for problems that are inherently very complex (such as those that allow for
market interactions). We illustrate with an empirical example taken from Olley and Pakes
(1990). It derives estimates of a Cobb~Douglas production function in the presence of a
serially correlated unobserved productivity shock which generates both a simultaneity and
a selection problem (the first because of the endogeneity of input choices, and the second
because of the fact that firms which draw better productivity sequences are more likely to
survive).

Section V of the paper begins b},"making the agent’s payoff in a given period depend
on the state variables of other agents in that period, thereby formally incorporating market
interactions into the problem. Once we do this we are faced with the issue of specifying the
nature of the equilibria established among the various (potential and actual) actors. We
limit ourselves to a discussion of the estimation and computational issues that arise in
models with Markov—-Perfect Nash equilibria (see Maskin and Tirole, 1987, 1988a, 1988b).

Our attitude toward the empirical analysis of dynamic models with market
interactions is to separate the problem of estimation from the problem of computing the
equilibrium implications of the parameters estimated. The estimation problem is broken
into smaller parts, each of which is both consistent with the overall dynamic equilibrium
framework, and provides an estimator (with desirable properties) for a subvector of the

model’s parameters. We assume estimation will have to proceed in this fashion because, for



most problems of current interest, neither our computational resources, nor our data, are
rich enough to allow us to estimate all the model’s parameters in a single unified iterative
estimation algorithm. This procedure also turns out to be helpful in providing a framework
which enables us to separate out and empirically analyze single primitives from richer, and
hopefully more realistic, economic environments.

Once we have estimated the primitives of the problem, we will want to compute and
analyze the distribution of equilibrium, or market, responses to policy and environmental
changes. Section V.1 turns to this computational problem. It begins with an algorithm for
computing Markov Perfect Nash equilibria. We use this algorithm to compute a
differentiated products version of the Ericson—Pakes model of industry dynamics (Ericson
and Pakes,1989), and then use the output of this computation to illustrate the many
aspects of reality that can be captured by the current generation of structural models.

The example also has the useful property that the Markov process that defines its
equilibrium lives on a finite set of points. So we can calculate the value functions and
policies it generates to any desired degree of precision and then compare the true values to
the values obtained from alternative approximation methods. We show that for exact
calculations the number of grid points that need to be evaluated at every iteration of the
recursive fixed point calculation grows polynomially in the (least upper bound to the)
rumber of agents (ever) active in the market. The time per grid point evaluation grows as
a polynomial of lower order. So we turn to an examination of the possibility of using
polynomial expansions to approximate the value function at each iteration of the
computational algorithm; an idea which, in somewhat different form, has been used
extensively in a variety of recent research ( see Judd,1990, the chapter by Marcet in this
volume, and the literature cited in those articles).

The major analytic result in this section shows that provided the value function of a
given agent is symmetric (more precisely exchangeable) in the state vectors of its

competitors, the number of polynomial coefficients one needs to determine for a given order



of approximation is independent of the number of agents active in the market. This implies
that the number of grid points which we need to use at each iteration of the fixed point
calculation will also become independent of the number of agents active in the market —a
result which may enable us to devise relatively straightforward algorithms for computing
equilibria for large markets. The computational part of the paper concludes by fitting the
actual value functions for our example to the exchangeable basis of polynomials, and then
examining the quality of the fit from the polynomial approximation.

There is a also short concluding section to the paper. It provides a more personal

view on the use of structural economic modelling, and its role in helping to interpret data.



Notation, and the Role and Choice of Examples.

The following notation will be augmented at various points in the paper.

s is the state variable, assumed to be an element of some metric space S. In this chapter
s=(y,; ), where y is understood to be the vector of state variables whose values are agent specific,
and s consists of the y vectors of all other agents operating in the market.

C, =Y, = I where Y(-) specifies a finite (but strictly positive) number of feasible
alternatives for the discrete control (y), and I'{- ) specifies a compact valued continuous
correspondence which provides the feasible values for the continuous control (x).

d = (x,x) : where d is the decision vector, y is the discrete control, and x is the continuous
control.

In all our examples the one period return function will be written as (s,d)}—c(s,d), where
7(+) is the single period "profit" function and c(-) provides the cost of the chosen policy [note

also that the feasible levels of d depend on s through T ].

There are, of course, many possible state variables whose values do not differ across
agents (examples include prices, technology, and regulatory rules). It will be understood here
(for notational convenience) that these individual invariant variables are also included in y.

Under standard regularity conditions the agent’s optimal policy solves the Bellman equation
V) = gupfacc,} {H(50) — clsd) + BVEIRE 150 (1)

with V(s) given by the unique solution to the implied contraction mapping. We let {ds,SES} be

the associated stationary optimal policy.!

1Uniqueness of the policy function for the continuous control is often more difficult to
obtain; see Benveniste Scheinkman,1979, Blume Easely and O’Hare,1982, the discussion in
Stockey, Lucas, and Prescott,1989,and for the case where the impact of the continuous
control on the family of measures {P(- |-,x)} is sufficiently smooth in x, Ericson and
Pakes, 1989. At the very least nonuniqueness generates nonuniqueness in behavioral
responses to policy and/or environmental changes, and this becomes a problem for policy
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At this level of generality the notation hides distinctions which become important in both
choosing specifications which are appropriate for different applied problems, and for determining
the availability and properties of alternative estimators. Rather than cat aloging special cases in
an abstract way, we carry particular examples along in the various subsections of the paper. The
examples have been chosen for their ability to allow us to illustrate the issues we thought were
important in as simple a setting as possible. Using examples in this way has the additional
advantage that it allows us to comment on some of the more detailed specification issues that
arise in choosing appropriate assumptions for certain classes of applied problems.

The first example we deal with is a production—investment model, similar to those which
have been used extensively in both the macro (see Stockey, Lucas, and Prescott,1989) and in the
industrial organization (see Tirole,1989) literatures. Section II, which allows for both continuous
and discrete controls but not market interactions, considers a monopolist who accumulates
physical capital according to a deterministic law of motion but faces a stochastic environment.
The monopolist makes two decisions in each period; whether or not to exit, and if not, how much
to invest in capital accumulation. The second example is also a production investment model:
but this time one that allows for stochastic accumulation. This model is also somewhat more
detailed, and we use it more intensively in the later sections of the paper where we revoke the
monopoly assumption and consider estimation and computation in models that allow for market

.interactions.

II.An Introductory Example

We begin with what is probably the simplest model with both continuous and discrete
controls that one would attempt to take to panel data. It has one continuous control

(investment), a choice between two discrete alternatives (remaining active or exiting), an

analysis. It may also generate an additional set of estimation problems (see Jovanovic,1989,
for a discussion of the related problem of estimation in models with multiple equilibria).
Note, however, that once the value function in (1) is computed for a given set of primitives
one can simply inspect the solution for uniqueness of the policy..



exogenous state variable which evolves stochastically, and no market interactions. For
simplicity we will take the exogenous stochastic state variable to be unobserved, but, in general
it could be a vector process with an unobserved component. The unobservable is needed to
rationalize the heterogeneity in both the outcome paths and the investment choices observed in
the data. Also, in a more general framework we would want to allow for separate disturbances
affecting the value of all but one of the discrete alternatives (this to rationalize the discrete
choices in the data). Provided the discrete state specific disturbances are included in an additive
fashion and are serially independent, as in the discussion of the chapter by Rust(1991), they have
no substantive effects on the points to be made using this simple example, and therefore, have
been omitted from the discussion 2

In terms of our previous notation, we make the following assumption.

Assumption 2
y=(kw)eKx0 cR2,

where it is understood that we only observe y for firms that are active at the beginning of the

period (y=1), while if d=(xt,xt) = (1,x),

k 1=k (1-6) + x,

with probability one, and the distribution of v, conditional on ¥y is determined by the family

+1

?To add them back in simply assume that ¢, the exit value in the discussion that follows, is
random. Provided the distribution of the discrete state specific disturbance is sufficiently
rich, the saturation condition discussed in Rust&lggl) will amount to the condition that the
observed combinations of the continuous control and observable component of the state
vector can be generated by the primitives of the model and the alternative possible values
of the unobservable state. A partial discussion of this issue can be found in the related
literature on continuous choice using extremal processes; see Cosslett,1988, Dagsvick, 1988,
Resnick and Roy,1989.



of distributions,
[Pw = {P(- |w),wel},

which are assumed to have densities w.r.t some dominating measure, to be stochastically

increasing in «, and to possess the property that if h(-) is continuous and bounded then

[ h(v") (de’ [ )

is a continuous function of v.
We also assume that #(y;f) is bounded, increasing in both its arguments, differentiable

(with bounded derivative) and concave in k, and has 1im -gg——(-):n while lim -g]li—(-)=0, for
=0 k-

each well; that c(x,5;0) = c(x;f) which is increasing, differentiable (with bounded derivative),

and convex in x and that both dc(}/dx, and dr()/dk, are differentiable in B (a.s.). *

The assumption that the cost of adjustment depends only on the amount of investment
(and not on the capital in place) is made solely for expositional convenience. Remark 1 following
Theorem 27 generalizes the results in this section to the case where the cost of adjustment
depends also on k.

There are, however, at least two aspects of these assumptions that are more problematic.
First (2) assumes that the accumulation relationship between the continuous control and the
state variable is deterministic. Though this has become a traditional assumption in the literature
on the accumulation of physical capital, it is a special case of a more general model in which the
impact of investment is stochastic. One might argue the relevance of the special deterministic
case for investment in physical capital, but it seems much less appropriate for the accumulation

of the "intangible" capital stocks that emanate from a firm’s investment in research and
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exploration, or ir advertising and goodwill. Here the randomness in the outcome from the
investment activities often seem to both have strikingly large variances, and to underlie many of
the "simultaneity" and "selection" issues that generated the interest in structural modeling of
the phenomena of interest in the first place. 8 Similar distinctions occur among the different
types of stocks accumulated by households {compare, for example, investments in health, to
investments in consumer durables).

There are several differences between models with deterministic and stochastic
accumulation which are important for the discussion which follows. First, when a state variable
evolves deterministically knowledge of past investments implies knowledge of the current stock
(at least up to an initial condition and the parameters describing the decay process). So
deterministically controlled state variables are generally assumed to be observed by the
econometrician. In contrast, urless there is a separate reading on the outcome of (in contrast to
the input into) the investment process, a stock that accumulates stochastically will be
unobserved, and will therefore generate a serially correlated unobserved state variable (of course,
there may well be serially correlated unobserved state variables in models with deterministic
accumulation also; section I'V discusses estimation in the presence of serially correlated
unobserved state variables). Also, though one can derive "Euler equations" for some models
with stochastic accumulation, both their form, and the assumptions needed to justify them,
differ from those needed for models with deterministic accumulation (see section IT1.3). On the
plus side, models which allow for stochastic accumulation, but presume smoothness in the
relationship between the continuous choice and the transition probabilities, generate first order
conditions with relative ease. This, in turn, both enables more detailed analytic treatment of
optimal policies, and simplifies computational issues (section V). Our second example is a model

with stochastic accumulation, and it will be used to illustrate these points.

3For an early model with stochastic accumulation see Roberts and Weizman, 1981. Tirole,
1989 chapter,10, and Ericson and Pakes, 1989, discuss some of the more recent
contributions to the literature.
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The assumption of a convex and differentiable cost of investment function can also be
problematic. Nonconvexities can often be handled by adding additional dimensions to the set of
discrete alternatives (see Das, forthcoming). In models of capital accumulation one often worries
about the differentiability of c(x) at the point x=0, as this is the point at which small
movements carry with them the difference between selling, and purchasing and installing, units
of the stock. A count of the number of observations at which x is exactly zero in the data ought
to provide some indication of whether this is likely to be an important problem in any given
application (and it often is).

With assumption 2 the Bellman equation for our problem (equation 1) reduces to
V(U,k) = max {Q,Sup[xer\(w,k)}[ﬁ(w,k)—C(X)+ﬁIV[k(l—'6)+ X,w’)(dw' |U)], (1/),

where ¢ is the return to closing down the firm (the return to y=0) and transferring its
salvageable assets to another activity4 and, here, and below, it is understood that all functions
are indexed by 30.

We pause here to fill in two details. First, to complete the specification of the model we
need to specify I'(y), the choice set for x. This is a primitive of the problem and we will want to
consider different assumptions on it and investigate their implications below. For starters
assume there are no restrictions on I'(y), or that I'(y) = R. Now note that boundedness of {.)
together with the fact that § < 1 implies boundedness of the expected discounted value of any
feasible program, and, therefore, that there exists a (finite) X such that supy:c(y) < X. Similarly
the fact that lim,_, 87()/0k = o, implies that it will never be optimal for an active firm to
derive its capital stock to zero, so for all k iniw x(w,k) > —k. Sow.f.0.q we take, I'(y) = [k,X]

, and note that

4One could make this return depend on y, but then, to preserve the form of the optimal
stopping policy below, we would need to insure that #(y) does not increase at as rapid a
rate in y as the return from staying in operation does.
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o]
x(v,k) € T(y), (3a),

for every (¢,k)eKxt [here ?(y) is notation for the interior of the set I'{-)]. That is, investment
will never be at a "corner” of its choice set (we come back to the problems generated by corners
below).

Second, note that policies for this problem are couples, (x,x), where y:Kxf1-[0,1], provides
the exit decision, and x:Kxf-R determines investment. Given out assumptions it is
straightforward to show that V(.) is nondecreasing in both its arguments, and that, as a
consequence, there is a function g(-), which is decreasing in k, such that V(»,k) < # if and only

if w < (k). So the exit policy is a stopping rule, g(-):K-f, with the property that

Xypp =0 Hf o< u(k), keK, (3b).

III.  Euler Equations From Mixed Continugus—Discrete Choice Models

Having added a continuous alternative to the discrete choice problem, it is natural to
begin with the question of whether we can go back to the computationally simple estimation
techniques based on stochastic Euler equations to estimate at least some of the parameters of
this mixed continuous—discrete choice model. To this end we compare the discounted cash flow
earned from the optimal policy to that from the starred alternatives to that policy given by

*

¥ (t47)=x(y,,,) for all 7,
* ¥
x {te)=x(y,)-¢, x (t+1,e)=x(y;_,)+(1-b)e,

*
x (t+7+1,¢)= x( for 721,

Yiars1)
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and alternative values of .

An important property of the alternative programs in (4) is that they all hold the discrete
choice the same as what the discrete choice would have been in the optimal program (no matter
the realized state of the world), and they only perturb the continuous control only in periods t

and t+1. As a result all programs are constructed so that y"‘t 47 for all 7 > 2 with

=Yi4r
probability one, and the difference between the cash flows generated by the e-alternative and
the optimal policy is only a function of the costs of adjustment and profits in periods t and t+1.
Now note that boundedness of the return function and the fact that § < 1 insure that the
difference in cash flows is well defined, while the feasibility of the e—alternative program for
sufficiently small | ¢| [see (3a)] together with the optimality of the original program, insure that
this difference must be nonpositive in a neighborhood of ¢=0. Thus, provided this difference is
differentiable, its derivative must be 0 at = BO. Differentiability follows from the assumptions
that c() and 7() have bounded derivatives, the fact that y{) is differentiable almost everywhere

(see 3b), and the Lebesgue Dominated Convergence Theorem. Taking that derivative, and

evaluating it at e=0, we get the Euler equation in Lemma 5.

5.Lemma.

A necessary condition for a policy couple {y(y),z(y)} to be optimal is that
—Bc(x)/c?x+ﬁf)([w’,k(1—6)+x]{51r[w’ k(1—8)+x]/ 0k+(1-8)dc[x(e” k(1—-8)+x)]/ x]P(dw’ | w)=0,
at e=e..

Lemma 5 makes it clear that the presence of discrete, as well as continuous, controls does
not destroy our ability to generate stochastic Euler equations. We simply substitute the observed

value of the discrete control into the return functions and then proceed in precisely the same way

we did in the continuous problem. The Euler equation formed in this way can then be used as a
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basis for forming moment conditions which can be fed into a method of moments estimation
algorithm of the form developed by Hansen and Singleton (1982; for further notes on the
estimation algorithm see the discussion at the end of section III).. Note, however, that if we
were to use an equation such as (5) as a basis for estimation we would have to select the
observations used to form the sample moments on variables which are measurable date t. If an
agent satisfies the selection criteria in year t and transfers discrete states in year t+1, the agent
must be kept in sample for the purpose of the period t Euler equation, even if the relevant date
t+1 variables are not "reported". In our example then, when a firm actually does exit in period
t+1, we use the period t observation by substituting the actual x, in for the first term for that

observation in (5), and setting the second term egual to zero, as would be the case if Xy 41=0-

There are, of course, several problems that actually can destroy our ability to use
stochastic Euler equations, at least those as simple as the one in lemma 5, as a basis for
estimating parameters of dynamic models from panel data, but they have little to do with the
addition of discrete alternatives to the choice set. We now move on to a brief review of some of
them. Section III.1 considers the possibility of binding constraints on the choice set, section II1.2
considers unobserved state variables, 111.3 considers stochastic (in contrast to deterministic)
accumulation, and II1.4 considers cases in which the realizations of the state variables are not
conditionally independent across agents in the panel. Since the extent to which any of these
problems are likely to be important will vary with the characteristics of the economic model and

of the data one is analyzing, we have tried to insure that each subsection is self—contained.5

SThroughout we derive our Euler equations by constructing a set of alternative feasible
policies and checking for differentiability of the implied perturbations to the value function
. This makes the problems that arise in constructing Euler equations in applications with
a single continuous control transparent. An alternative would be to nest a system of
random lagrange multipliers into the control problem, and derive the Euler equations from
their properties; see Kushner, 1965a, and 1965b. This latter technique is more detailed
notationally, but would have advantages in applications with a system of continuous
controls in which case we might want to use the relationships between the various
constraint sets to help structure estimation.
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We begin with the possibility that the optimal choice is not in the interior of the feasible
set, i.e. of constraints in the correspondence defining the feasible choices for the continuous
control that are binding for a set of values for the state variables that have positive probability.
In this case condition (3a) is not always satisfied and, as a result, it is not always possible to
construct the alternative program in (4) for all | ¢| less than some positive «.

There are at least two types of characterizations of the economic environment that have
lead to binding boundaries in empirical work. In the first the location of the relevant boundary is
both, known to the econometrician, and independent of the actions of the agent. This would have
occurred in our example if we had not assumed a market for used capital goods, as this would
change the choice set for x from {—k,x] to [0,x], and we could not rule out the possibility that the
optimal investment choice is 0 for a set of y=(k,v) values with positive probability. A similar
problem occurs when one of the primitive functions is nondifferentiable at zero (or at any other
prespecified point), and the modification of the Euler equation in (5) developed below will cover
this case also. Both these cases generate zero investment with positive probability, and when
x=0 the x choice need not satisfy a first order condition (like the Euler equation) with equality.

In the second type of problem with binding boundaries the location of the boundary is
endogenous, being determined, in part, by the actions of the agent in previous periods. This
latter case has been studied extensively in both the consumption and the investment literatures
under the heading of liquidity and/or financial constraints (see Hubbard and
Kashyap,1989,Gilchrist,1989, and Himmelburg,1989, and the literature cited there for the
investment problem, and Hayashi, 1987, Keane, 1983, Zeldes, 1989, and the literature cited in

these articles for the consumption problem).6 This problem would have occurred in our example

SThis heading does not adequately describe the richness of the issues at hand. These are not
so much a result of any notion of the illiquidity of assets, as they are a result of the
incompleteness of markets for future income streams. Moreover, different formulations for
market opportunities lead to different budget constraints, and the precise formulation of
the budget constraint will generally effect the properties of alternative estimators; see, for
example, the discussion in section 5 of Hayashi, 1987, and the literature referred to below.
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were we to have introduced another state variable for the firm, its financial assets in period t,or
A(t), and assumed that the firm cannot borrow more than A(t). This would restrict the choice
set for x to equal [k,A], and we could not insure that x<A for all possible y.

We begin with binding boundaries of the first kind using our example with the additional
restriction that I'(y)=[0,X]. Note first that the conditions we required for the proof of Lemma 5
can now be violated in one of two different ways. First it is possible that x(yt)=0. Second, even
if x(yt)>0’ it is possible that there is a set of Yea1 that has positive probability conditional on
y,, for which x(¥y +1)=0. In either one of these cases the alternative program in (4) will not be
feasible for all values of | €| < & (and some & > 0), and, as a result, the logical basis for
constructing the Euler equation in (5) breaks down. Note,however, that provided x(y) is
observable the first requirement, i.e. that x(yt)>0, does not, in itself, destroy our ability to
obtain parameter estimates from an Euler equation for a selected sample. That is, since, x is
measurable date t, we can select only those observations with x(yt)>0, consider the sample
analog to the restriction in (5) for this sub sample, and base estimation on the fact that the
expected value of the Euler equation for the sub sample will equal zero at the true 00 . So
provided x is observable, the difficulty in deriving Euler equations that rely on compensating
perturbations in adjacent periods, like those in (4) above, when there is a possibility of binding
corners, is that we do not directly observe x(yt +1) for all values of y, 41 that have positive
probability conditional on period t information.

One way around this problem is to relax the requirement that we base our Euler
equations on perturbations in adjacent periods.” As we now show this will allow us to push the
compensating e—perturbation forward to some (random) future period in which the agent is not

at a corner, thereby making it feasible for all values of | ¢|<x with probability one. With this in

7Another possibility is to impose restrictions which make it possible to develop a
semiparametric estimator which uses the information in the data to select out a subsample
for which both x(yt) > 0 and x(yt +1) > 0 with probability one, and then generate an

Euler equation from this sub sample that allows one to obtain consistent parameter
estimates.
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mind define

*

ro=min oy {x(yy, J=00r x(y, | )2s}, (6a}.
*
T 1S a positive, integer—valued, random variable determined either by the first time the agent’s
program calls for positive investment, or the period in which the agent exits, whichever comes

*
first [formally if Ft+i=”(yt"“’yt+i)‘ the s—algebra generated by (¥ ), then 7 isa

¥ 4
stopping time with respect to the sequence {Ft+i}]' Now select out a sub sample with x(yt)zx,

and for that sub sample consider the alternative programs

*
X (Yyyp€) =x(yy, ) forall 7and e,

and

(6b} x(yt+T) —¢, forr=0,

* *
X (yH_T,e) = x(yH_T), forr< 7,

T*'"—l *
X(¥y 4 p¢) + (1-8) e, forr=r1,

*
x(yH_T), forr>71 .

For fixed 7 the e—alternative policy in (6b) is feasible for all | e|<x. Moreover any such
policy generates the same values for the state variables at all 7 >7* as does the optimal policy
(with probability one). Conditional on a value for 'r* then, the difference between the expected
discounted values of net cash flows generated by the optimal and these e—alternative policies just
depends on cash flows between times t and t+1'*. -r* is a random variable, but one whose
realization is independent of «.

Now construct the difference in discounted net cash flows between the optimal and the
e¢—alternative policies given in (6b), and note that an argument analogous to that proceeding

lemma 5 leads to the conclusion in lemma 7.
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7. Lemma
When investment is restricted to be nonegative, but the rest of the assumptions
underlying Lemma 5 remain intact, then a necessary condition for a policy couple {x(y),z(y)} to

be optimal is that

—de(x,)/ox + B, ){ 2T 6 (0n(o,, X, )BT
87"y 070y o ) B0 4 Bl )/ 30-6) ) = 0,

*
where E( t)f() provides the expectation of {() conditional on Fy, and 7 is defined as in (6).

Provided that 7* is observable (in our example this requires observations on both
investment and on whether or not the firm liquidated in a given year), and that 7* is always less
than T—t, where T is the final year of the panel, (7) can be used to generate Euler equation
based estimators in the same way Lemma 5 does. Note however that the requirement that
7*¢T—t is a probability one requirement. If we simply select out those observations for which it
ends up being true, we will be selecting the sample on the basis of behavior detgrmined by
information not available at date t, and any selection procedure based on such information will
generate an inconsistency in the estimation procedure. The importance of this censoring problem
is likely to vary from sample to sample, but one ought to be able to get an indication of just
how important it is in any given sample by examining the empirical distribution of the
realizations of r*, and adjusting the estimation algorithm accordingly (that is using only those
years for which there is a sufficiently long subsequent period observed in the panel).

As an empirical example of the magnitude of the issues raised by the existence of discrete
controls and of binding corners, we consider Olley’s(1990) study of the telecommunications
equipment industry (most of SIC 3661, and part of SIC 3663). The study constructs a thirteen

year panel of enterprise level data (the basic data sources are the various censuses and surveys
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of manufacturing as combined in the LRD, see McGuckin,1989, for details on the LRD). The
telecommunications equipment industry is an industry with large plants, but one which went
through a major restructuring during the period covered by the data (this was caused by both a
gradual deregulation process, and by technological change). Of the 376 plants that are in the
data at some time during the sample period, 93, or approximately 25%, shut down by the end of
the sample. So liquidation does occur quite frequently and should be accounted for in the
analysis. Of the 2569 plant/year observations available (this includes the observations on plants
who liquidated in the following year) 168, or about 6.5%, report exactly zero investment. Thus
there is some evidence of there being a "boundary" at zero. These 168 zero observations,
however, include only 16 sequences with two consecutive years of zero investment, and there is
not one sequence with three consecutive zero investment years. Thus it seems that for this data
set Euler equation techniques would be appropriate provided we used data on all plant—year

observations at t (including those who liquidate in t+1) for all t<T—2,or possibly, t<{T-3.

We now move on to consider boundaries whose values are determined, at least in part, by
the actions of the agent in previous periods. There are really two differences from the last case.
The first is due to the fact that once we have partial control over the value of the boundary in
the coming period we can often, though not always, insure that we will be away from that
boundary with probability one by appropriate choice of the control, and this simplifies the
estimation problem considerably. The second difference is that models which have endogenous
boundaries generally involve an extra (often quite difficult) set of measurement problems that
arise from the need for a measure of that boundary. We come back to this measurement problem
below.

We should note at the outset that not all models with endogenous boundaries will be able
to generate Euler equations from simple compensating variations in adjacent periods. There is,
therefore, room for developing necessary and sufficient conditions for Euler equations when

boundaries are endogenous. Here we suffice with the simpler task of illustrating the logic of the
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argument that allows one to use Euler equations when they are available. To do so in as simple &
fashion as possible we have to modify our example to allow for consumption, as well as
production (this because the simple model with an added finance constraint does not admit Euler
equations based on compensating perturbations in adjacent periods).8

Now the agent is allocating consumption and investment expenditures to maximize the
expected discounted value of a time separable utility function. The boundary condition is
obtained by constraining the agent to satisfy the "credit constraint” that the sum of investment
and consumption expenditures cannot exceed the value of the agent’s financial assets. These are
denoted by A(t), so that if the two continuous controls (investment and consumption) are given

by Xy 4 and Xg ¢ the credit constraint is written as
? H
A2 xp 4t X ¢ (Ba).

A(t) (which is the boundary of the correspondence determining the feasible choices for the

continuous control) evolves according to

A _ At(1+r) + T(wt’kt ) — X)X p if x=1 (8)
t+1 .
A(l+r) + (x_g- 1)t - Xg p if x,=0,

where for simplicity we have assumed a deterministic rate of return on financial assets (r). Note
that the effect of a change in the discrete state here is to change the nature of the accumulation

relationship.? If the agent shuts down the firm, he (or she) obtains a one period payoff of ¢, and

8If we did not allow for consumption expenditures we would have two state variables, At
and kt whose laws of motions are different linear functions of the same, single, control, Xy

Thus, it would in general be impossible to construct compensating perturbations for the
control that would return both state variables to what their values would have been in the
optimal program after two periods.

9This is analogous to the situation that would arise if we were to apply the Euler equation
methodology to analyzing retirement decisions, or to choices among entering various
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then must live off asset income. We shall assume that the primitives of this model have been
chosen so that the optimal program is kept away from any lower bound on the x—choices.
With these assumptions consider the following family of alternative policies. Leave the
discrete shutdown decision the same as in the optimal program in every period, and the
continuous controls unchanged for all periods after t+1, but change the continuous controls in

periods t and t+1 to

* *
X)p =%~ €10 and Xy =Xg 4 — €

* *
X) 141X 441 g+ (=0)ey, and Xy t417%9 14104 )8V 4 108D

where

g(yt_i_l:é) = At[yt+1’61] - (1+I)f2 _(r+5)61)

and A7z[.] is the difference in profits resulting from the difference in period t+1 capital stocks
induced by €,, and ¢ = (¢,¢,). Without going into details we simply note that it is easy to
show both that; the alternative program in (9) have been constructed so that they will be
feasible with probability one for all sufficiently small | el| + | e2| provided only that the credit
constraint is not binding in period t, and that the alternative and optimal programs generate the
same value for the state variables after period t+2 (with probability one).

Given these facts, a simple extension to the logic of lemma 5 for the sub sample which is
not at the boundary in the current period leads us to two Euler equations. These are obtained
from the derivatives of the function defining the difference between the expected discounted
value of utility from the alternative and from the optimal program with respect to € and €

(evaluated at ¢=0). The first Euler equation is familiar from the finance literature (see

welfare programs, see the references in Rust(1991).
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Lucas, 1978). It states that the expected discounted value of the marginal utility weighted
returns from the two forms of savings (investing in physical, and in financial, capital) must be
equated at the margin. The second Euler equation is familiar from the literature on the life cycle
hypothesis (see Hall, 1979). It states that if consumption expenditures are interior, the marginal
utility of consumption should be a martingale (with respect to {F,}).

The fact that this latter Euler equation is not destroyed by credit constraints, provided
only that the credit constraint is not binding in the initial period, was exploited to do estimation
and testing of a stochastic consumption model with credit constraints by Zeldes (1989) (see also
the literature he cites; similar reasoning has been used to derive and analyze Euler equations for
the investment decisions of firms in situations in which firms face credit constraints, see
Gilchrist,1989, Himmelburg,1989, and Hubbard and Kashyap, 1989). Our discussion only
generalizes to the extent that it allows for discrete controls (a fact which might allow one to
integrate the closely related phenomena of shutdown and/or bankruptcy into the analysis).

In terms of our notation, those articles assume that all expenditures and assets are
perfectly observed, and then proceed as follows. Calculate the right hand side of (8a). I it is
greater than A(t) for a given agent, that agent could not have faced a binding finance constraint
in the given period. Now separate the sample and use only the unconstrained agents in the
estimation algorithm. Again, provided the selection is on variables which are measurable date t,
the selected sample should abide by the constraints generated from the Euler equation at 4.
Moreover a comparison of diagnostic tests done on the selected and the not selected parts of the
sample can be illuminating (see Zeldes,1989).

Note that these procedures for generating Euler equations when there are boundaries

which evolve endogenously assume that we can select out a sub sample that we know are not at a

boundary in the current period. Empirically the question of whether this is possible depends on
our ability to measure the variables determining the boundary condition. The reasor we bring
out measurement problems here, after ignoring them for the most part of this subsection, is that

the variables determining the boundary conditions for the applications which have used these
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techniques to date are among the poorest measured of econémjc variables. For example, to
determine whether the agent is at a boundary in the credit constraint example we need
information on both total expenditures and total assets, two variables which are notoriously
hard to measure. Most of the micro empirical literature to date has treated this measurement
problem in an informal manner, using more or less stringent selection criteria, and focusing on
the parameter estimates obtained from the more stringent criteria. Little has been done on more
formal treatments of this problem (though a preliminary discussion of it is contained in
Hajivassiliou and Ioannides,1989).

Once we allow for the case in which we do not know with certainty whether a given
observation was at a boundary, the conditional expectation of the Euler equation is no longer
necessarily zero at 80. Instead it becomes a sum of its expectation conditional on the constraint
not being binding {which equals zero at 6‘0) times the probability of the constraint not being
binding, plus the expectation of the Euler equation conditional on the constraint being binding,
times the probability of this latter event. A question that then arises is whether we can use the
structure implied by the measurement problem, together with the constraints implied by the
model at 90, to restrict the moments obtained from this "generalized" Euler equation at §= 60 in
a way that allows us to narrow the admissible range for (and, if possible, estimate) that
parameter. We do know that at 90 the expectation of the Euler equation conditional on being at
the boundary must be nonegative everywhere (this follows from the fact that a negative
perturbation to the current choice is always feasible), and, we will often be able to show that
both it, and the probability of being at a corner, is nonincreasing in the observed asset measure
(as a case in point,in the credit constraint example the expectation of the Euler equation
becomes the "lagrange multiplier" for the credit constraint). This gives us another set of
constraints to use in obtaining information on #. Just how far theory, together with some
combination of parametric and nonparametric estimation procedures, can get us in this context,
is an open question, but one that might well be worth pursuing, at least for problems to be

analyzed on large data sets (see Matzkin, 1990, for both an analysis of how qualitative
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characteristics derived from theory can be used to empirically analyze some static choice
problems, and for a discussion of related computational issues).

There are, of course, more complicated constraints on the choices of continuous controls
possible than those considered here. Our examples, however, do serve to illustrate the following
points. First, if we have the ability to observe whether an agent is currently at a boundary of
the feasible correspondence, the difficulty in establishing the conditions needed to generate
stochastic Euler equations is in constructing a perturbation to the optimal policy which will be
feasible in the following periods with probability one for all ¢ in an open neighborhood of zero.
When the boundary is endogenous, this problem can often be circumvented by appropriate
choice of controls in the alternative programs (this presumes sufficient markets to trade over
time or between continuous controls). However in the case of endogenous boundaries
measurement problems often make it difficult to determine whether an agent is at a boundary in
the current period, and little work has been done 10 date on incorporating measurement error
into the analysis. When the boundaries are set exogenously, modified Euler equation techniques
can still be constructed, but we will generally require data that allows us to follow each agent
over more than two periods of time to implement them (though the data itself ought to be able
to tell us approximately how many consecutive periods are required). Finally, note that the
presence {or absence) of discrete controls has little to do with our ability to generate Euler
equations from perturbations to the continuous control (ro matter whether there is the

possibility of binding boundaries).

I1.2 Unobserved State Variables

To date our ability to estimate the parameters of structural models with unobserved state
variables, whether using Euler equations based estimators, or some other form of estimation
technique, is severely limited. As a result we will pay special attention to it in this review.
Section IV discusses the problems associated with integrating serially correlated unobserved state

variables in estimation algorithms based on actually solving for the value function at different
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values of the parameter vector. This subsection explores the extent to which unobserved state
variables can be incorporated into Euler equation based estimation algorithms.

We begin by setting out the problem generated by unobserved state variables, and then
move on to discuss two special cases for which we can circumvent that problem. These cases are
neither nested to, nor more general than, either the conditional independence assumption
discussed extensively in Rust(1991), or the assumptions we develop in section IV for estimation
in the presence of serially correlated unobserved state variables. More generally, the assumptions
that are relevant for the problem at hand determine our ability to derive consistent estimators
from alternative estimation techniques, and no single technique nests the others.

Our ability to obtain Euler equation based estimators when there are unobserved state
variables depend on particular functional form assumptions. In order to be clear about precisely
what assumptions are needed, we will have to move out of the confines of our example, and into
a more general setting. Letting the state vector for a given individual, y=(z,»), with z observed,
and v not observed, and recalling that d(-) is the vector of decision, or control, variables we
write the Euler equation as

E( t)h[d( v

zt+l’vt+l)’zt+l’Vt'f‘l,d(zt’yt),zt’ t!aolzot (10)

where the expectation is conditional on all information available to the agent in period t (Ft)'
The estimation problem is that, since we do not observe v, we cannot calculate the sample
analogs to the moment conditions that can be generated from (10).

The first special case we consider mixes a partial conditional independence assumption
with an exclusion restriction. Formally what we require is that we can partition the vector of

unobservables, v, into two components, v, and v,, and then write the function h(-) in (10) as

hd(z, 4 19 14 124 1,04 1800 vy gl (112),
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with Vi and Vo subvectors of v, and
P(dv’,dvy’,d2’| vl,u2,z)=P(dV1’|z’)P(du2’,dz’|u2,z), (11b),

with P(dv,’{2’) a known family of distributions.

Equation {11a) assumes that one of the components of the partitioned vector of state
variables (i.e.,uz) only impacts on the value of the Euler equation through its effects on the
controls [i.e. through d (- )], while the other (v;) can have an independent effect on the Euler
equation but does not effect the control at all. (11b) states that Vi the unobserved component
which has an independent effect on the value of the Euler equation, must be from a known
family of conditionally independent distributions. However the conditional distribution of Vos the
unobserved component that only affects the Euler equation through its impacts on the control,
need not be either known, or restricted (u2 can, for example, be freely serially correlated).

To illustrate the content of the restrictions in (11) we go back to our example
(assumption 2 and lemma 5), and augment it with unobserved state variables. Assume then that
there is both an unobserved component in the v process determining productivity (our vl), and
randomness in the process determining the liquidation value of the firm (this value was
previously the constant #). Call the unobserved component of the liquidation value v,, and
assume v, and v, obey (11b). That is v, is generated by a known family of conditionally
independent distributions, but v, may be freely serially correlated. z, in this example contains
the capital stock and any observed components of the # process (for simplicity we ignore these in
what follows).

There are two controls in this problem; the investment (x), and the shutdown (y),
decisions. For (11a) to be satisfied neither can depend on v,. v, is conditionally independent,
investment cannot depend on it (investment only depends on the conditional distribution of
future »; values and that distribution is independent of v1)- x(+) will not depend on v, provided

either that the exit decision must be made before the realization of vy, OF that the exiting firm
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exits at the end of the period and obtains the profits from that period. Of the assumptions
needed for (11a), then, the one that seems to be more problematic for our example is that the
unobserved componen.t of the productivity process is conditionally independent. Whether it is a
reasonable assumption for the problem at hand depends on the nature of the factors which cause
shifts in productivity in the industry being studied, and on the variables measured in the data
being used.

The Euler equation for this example (the extension to Lemma 5) is

—de(x)/ox + B[ f ,x k(1-6)+x;6){ r[k(1-6)+x,v3]/ ox +

(1-6)de[x(v,k (1—5)+x)]/6x}P(dui | k(1=6)+x)P(dv)| k,vy)=0,

at f=40,. This is a special case of (11a) (one in which the initial value of vy does not effect the
Euler equation). We now note how combining this equation with a simulation technique
(McFadden,1989, and Pakes and Pollard,1989) allows us to obtain consistent estimates of by (as
will become clear, numerical integration would do equally well). Draw v; from P[du1 I k(1—6)+x],

then construct

—de(x,)/8x + B, , [0r(k, , ,0))/0k +(1=6)c(x, , 1)/ x],

and form the product of this function with alternative functions of observables known at date t.
Now note that, since the expectation of the product function is 0 at f= 80, sample moments
obtained in this fashion can be used as a basis for a GMM estimation algorithm a la Hansen and
Singleton(1982; for more detail see the discussion at the end of section III). Note, however, that
since (11a) was not an assumption directly on the primitives of the model, we needed to verify it
for our example before we could proceed with this estimation technique (there are alterative sets

of assumptions on primitives that would lead one to 11a, and it was not clear that a listing of
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them would be any more useful than just stating 11a directly).
The more general case is only slightly more complicated. Note that (10} and (11) imply

that

E(t)fh(dt+1*zt+1"’”dt’zt"’1,t)P(d"’|zt+1)=0

for almost every (d,,v,,z,). Consequently the integral of this expression with respect to

A R |
P(dv must equal zero. Let g(-) be any square integrable function of (dt’zt)' Then, from

1.t |2,)
Fubirni’s theorem,

B{[ [h(d,, ;2 "Gy )8(d 2 JB(dr" |2, JP(d0|2,)] 2,8, =0

Now simply substitute the observed values of the vector (d z,) into k(), and

t+1%+1%
simulate both v’ and v, for each individual. The sample average of these equations should
converge to zero at f= 90, and therefore can also be used as a basis for a method of moments
estimation algorithm.

There is at least one more special case in which unobserved state variables do not hamper
our ability to obtain consistent parameter estimates from Euler equations. This case also
partitions the unobserved state vector into two components. The first only affects the Euler
equation through its effect on the control (v,), while the second (Vl) can also have a direct effect
on the Euler equation. However the logarithm of the Euler equation must be additively separable

into a function of vy and a function which is independent of v;, and v; must be constant

overtime. More formally the requirements of this special case are that

Y141 = V14 (12a), and
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with hy(v1;6,)#0 (a.s.). (12a) assumes that the value of v, is constant over (at least one)
two—period interval; an assumption which has been used extensively in panel data estimation
problems (see Mundlak,1963, for an early discussion of its relevance, and the more recent
discussion in Chamberlain, 1984, and the literature cited therein). (12b) is a strong assumption
on the form of the Euler equation. It has been used in investigations of Euler equations for
optimal intertemporal consumption choices, as in these cases differences in instantaneous utility
functions across agents that appear multiplicatively in the marginal utility of consumption will,
when combined with (12a}), generate Euler equations of the form in (12b)} (Zeldes,1989, uses one
variant of this assumption).

Given (12) estimation and testing is straightforward. Together, (10) and (12) insure that
the expectation of h,() conditional on all observed variables must be zero. Since h,() does not
contain any unobservables, we can simply treat it as the Euler equation (ignoring Vl) and base
estimation on the restrictions implied by the fact that its conditional expectation is zero at BO‘

We do not want to conclude this subsection with the wrong impression. All of the
assumptions used to date t¢ account for unobservables in structural estimation problems are
quite restrictive. At this point all we can say is that (more or less simple) estimation algorithms
have been developed under alternative sets of assumptions, and one or more of them may be
appropriate to the problem at hand. The alternatives do have the saving grace that they usually
generate overidentifying restrictions which can be used to formulate test statistics. The tests,
however, are usually omnibus tests that do not distinguish very well between alternative possible
sources of error, and the models we are dealing with are quite complicated. Good model selection
criteria are likely to be more dependent on a detailed knowledge of the problem one is dealing
with, and of the data that is available. The researcher will simply have to be familiar enough
with his or her problem to have reasonably strong priors about what the major unobservable
sources of differences in behavior across agents is, on how they relate to the alternative
estimation procedures available, and, if there is a worry left over, on which diagnostic tests are

likely to pick up problems in the more questionable assumptions.



I11.3. Stochastic Accumulation.

We now sketch the basics of a model that allows for stochastic accumulation — a model
that we will elaborate on when we introduce market interactions later in the paper.1® Qur
purpose in this subsection is simply to illustrate the logic that allows one to generate Euler
equations from models with stochastic accumulation when it is possible to do so. The deeper
question of the conditions that allow one to generate Euler equations in models with stochastic
accumulation is left for future research.

For simplicity assume that there is only one state variable, v, or the efficiency of the firm,
and that profits are increasing in it. The firm invests in research and exploration to improve its
efficiency in future years but the outcomes of the research process are uncertain. That is the

distribution of vy conditional on information at time t depends upon vy and Xy 50 that {wt} is

+1
a controlled Markov process. Its primitives are given by the family of conditional distributions,

P={ P(-|x0), (x,6) R, x A (R},

The family P is assumed to be stochastically increasing in x for each value of v (increases in
investment lead to better, in the stochastic dominance sense, distributions for future efficiency),
stochastically increasing in v for each given x (conditional on x the higher the current ¢ the
better the distribution of tomorrow’s «), and continuous in the sense that when integrated
against a continuous bounded functior of ¢, it produces a continuous bounded function of both x
and .

The rest of the structure of this example is taken from the model with deterministic
accumulation. In each period an active firm makes two decisions. One discrete decision (whether
to remain active or to liquidate and receive the sell off value of & ), and, if the discrete decision is

positive (y=1), one continuous decision (the quantity to invest in research or x). The Bellman

10This mode] is taken from Ericson and Pakes, 1989, Part I.
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equation which defines the value function for this problem is then
V(w):max{i,supxem+[r(w)~c(x)+ﬂfV(w’)P(dw’Iw,x)]}, (13).

Let {x(v),x(v)} be the optimal policy. Then substituting that in (13) and rewriting in terms of
the expected value of profits in the following period and the value of continuing thereafter we

have,

V(v)=max{¢, r(v)—[x(v)] + 5f {x(e)r(o)—(x(e))]}Plde’ |, x(w)]
+ﬁ§f[1—x(w’)]?[dw’iw,x(w)] + [32fx(w’)V(w”)P[dw”|w’,x(u’)]P[dw’|w,x(w)].

We want to find a set of alternative programs that leave the last term in this expression
unchanged (then the difference between the value of the alternative and optimal programs just
depends on actions and outcomes in periods t and t+1). The continuity properties of the family P
insure that the following set of policies would suffice (were they feasible). Leave the shutdown
policy the same as the optimal shutdown policy, and the investment policy the same as the
optimal investment policy for all t+7 with 722. However subtract ¢ from x(v, ) and add

A( ) to x( where ¢ and A{-) are chosen such that A(¢,-)=0 at e=0, and the

6941 Ui y1)s

distribution of Vi o conditional on w, and each alternative policy, is the same as the distribution

+ t

of ¢, , , conditional on v, and the optimal policy. More formally choose ¢ and A(-) such that for

t+2
every well

(14) [ Ple>0] o' x{(o)]Plde’ | w,x(0)]
=f w,P[w”>5| o x{(¢)+4 (e, }|Plde’ | u,x(w)—e].
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The optimal policy produces a distribution of Yiio conditional on ¢, as a convolution of

{
P{- lwt,x(wt)] and P[- | Equation (14) states that we can obtain the same

g+ 1% )]
convoluted distribution by perturbing x, by —e and X1 by A(e,wt+1). When this is so the
difference in the expected discounted value of cash flows generated by the alternative and
optimal programs just depends on the cash flows in periods t and t+1.

More formally, if the alternative in (14) is feasible and we let V(¢,u) be the value

generated by the alternative program, then

V(0)=V(e,0)==c[x()]+8 [ {r(e")~<[x(")]}x(v*)P[dw] 0,x(0)]
(15)
+elx(w)—e]-B [ {x(o")<lx(e}+b(e,0)]}x{(e")Plde | 0, x(w)—¢].

By optimality (15) is nonegative for every feasible value of ¢ and equals zero at ¢=0. Thus
provided we can show that there is a feasible e—alternative policy that abides by (14) for all
|e]<x (for some x>0}, and that (15) is differentiable in € in the appropriate region, that
derivative must be zero at ¢=0 — giving us an "Euler equation" for the problem with stochastic
accumulation.

Whether or not these conditions are satisfied, and the form of the derivative if they are,
depend on the properties of the family P [as well as on the differentiability of ¢(-} and the
continuity of #(+)]. Though it is beyond the scope of this paper to do a detailed investigation of
the appropriate necessary and sufficient conditions, a simple example where the required
conditions are satisfied will help illustrate how to proceed.

Let the family P have densities (with respect to some dominating measure) and assume

those densities can be written as

p(wt+1|wt’xt’0)=p§[wt+l-u(wt’xt’9)] (16))
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2

for every (w €fl X[R+, as would be the case if differences in v and in x only cauvsed a

1+ DY)
change in the mean of the distribution of future efficiencies [condition (16) is also satisfied in the
computed version of the Ericson—Pakes model we discuss below; though for different reasons).
Assume also that; p f( -) is differentiable in its argument for every possible value of ¢, that u(-) is
everywhere differentiable in both its arguments, and that du(-)/dx is both positive everywhere
and goes to o as x approaches zero (for éll v). This last condition insures that x is kept away
from its lower bound of zero. The others insure (via the implicit function theorem) that there
exists a differentiable function A(e,") that satisfies (14).

Now wt+1=§t+1+;¢(ut,xt), so for the family of alternative programs to satisfy (14) we

need

plptulepx)x gl =l talvpx—axg #8066 L))

This, in turn implies that

0 (e=0,6 1)/ 06 = {[30(uy 4 1%, 118610y )BT {00y, 1% )

Now go back to (15), substitute in (16), and note that our assumptions together with the
Lebesgue Dominated Convergence Theorem imply that the result is a differentiable function of ¢.

Taking that derivative and setting it equal to zero we obtain,

—-Bc[xt]/ﬁx
B30y ¥ M ONIE 8y L0rC ) 861 [8c(x, )/ 300y 1y ) 061100y 3¢ )10
}=0

This is not much more complicated than the Euler equation in Lemma 5 {the equation for

the model with deterministic accumulation). However, we should emphasize that the procedure
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outlined here did rely heavily on the index restriction in (16).

111.4. Conditional Distributions Which Are Not Independent Across Agents.

Thus far we have assumed that the conditional distribution of the vector of the period
t+1 state variables of the different agents (conditional on information known at date t) factors
into the product of the distributions that those agents actually use in forming their own
expectations. In addition to rational expectations, this .requires independence of the conditional
distributions of the {y, +1,i}I§=1' It is this independence which insures that the average of the
Euler equation disturbances, averaged over the individual’s in thé sample, converges to zero at
the true 90, a property which lies at the heart of the proof of the convergence, as N grows large,
of the Euler equation based estimator to the true 90.

Recall that Yi4q must include all variables which have either an independent effect on
the value of the Euler equation, or are determinants of the value of control variables which, in
turn, are arguments in the Euler equation. Frequently this leaves a lot of room for state
variables whose realizations will either be common, or highly correlated, across agents (typical
examples include prices, levels of technology, and governmental policy variables}. At this point
we should note that the fact that there is dependence in the conditional distribution of the
Vi1, 2CT08S i does not necessarily rule out our consistency condition. That is, the same random
variable may affect different agents in different ways, so that the dependence it induces in the
realization of the Euler equation errors may not be strong enough to invalidate the convergence
of the sample average of the true Euler equation disturbances to zero. On the other hand, when
there are state variables that have important impacts on behavior that are likely to induce
dependence across agents, then the arguments we have been implicitly relying on for the
consistency of the Euler equation based estimators are at best incomplete (and may be seriously
misleading).

There are at least two ways to investigate the possibility that dependence in the

realizations of the state variables generates significant biases in Euler equation based estimators.
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The first is empirical, using a combination of {formal tests and less formal descriptive statistics to
analyze the possible impact of dependence for the problem at hand. There are several
computationally straightforward ways of proceeding here, and we come back to a more detailed
discussion of them below. The second possibility is to provide theoretical conditions under which
any dependence would impact on the Euler equation in a particular (and analyzable) way, and
then check for, and possibly estimate, subject to them.

The latter possibility has recently been used in the literature on consumption choices,
where the theory of complete markets has been used to structure the relationship between the
increment in the marginal utility of consumption across households (see Altug and Miller,1990;
and Altonji, Hayashi, and Kotlikoff, 1990). To date the empirical specifications used in this
literature have focused on the opposite extreme to the one that is implicitly employed in the
estimation procedures that do not aliow for dependence — with complete markets the only source
of uncertainty is one whose realizations are common to all agents. The truth, no doubt, lies
somewhere in the middle (and much more difficult) case with only partial markets for future
income streams. Note however,that if any such markets exist they will, in and of themselves,
induce conditional dependence in the realizations of the state variables of agents operating in the
same submarket (for some eye—opening empirical evidence on such dependence, see
Townsend,1990). In applications involving choices by firms, the implications of the dependence
induced by the aggregate factors we often worry about (demand, factor price, technological, and
policy changes) will depend on the nature of the dynamic equilibria established among the
various actors (see section IV.3).

We now move on to consider what can be done to salvage Euler equation based
estimation techniques that have desirable limit properties in dimension N when there is
dependence across agents. Unfortunately, there has been little progress here. Empirical papers
often attempt to account for the problem of dependence by adding time—specific dummy
variables, say o, to the Euler equation, assuming that E( t)[h(-;ﬂ)—e:uzt]=0, and then minimizing

(by choice of both the vectors @ and 6), a quadratic form in the sample analogs of the population
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restrictions implied by this equation. One way to see the implications of this procedure is to
partition the vector of state variables, Yo into a subvector whose conditional distribution is
independent across agents, say z;, and one that is not, say lt, and then consider conditions which
would imply the consistency (as N grows large) of the estimator of § we obtain when we use the
time—specific dummy variables. Using the more general notation introduced in section II1.2

where h(- )} is the Euler equation and d(-) is the vector of controls, one set of such conditions is

B(d L 1 ¥e 41 8p¥y) = By(dy gz pdpyy) + oLy g) (178)
and

Pdz,, 1,8, 1 12,0) = P(dz, 1 12,)P(dl_410,), (17¢).

(17a) states that the impact of I on the Euler equation is additively separable, while (17b)
requires that | not effect the control at all. There are few, if any, empirical examples where the
additive separability in {17a) arises naturally from the underlying primitives of the model, and,
as we now show, it can be relaxed at the cost of a small change in the specification of the

estimating equation. Replace assumpﬁon (17a) with

h(dy 4 1¥eq1dp¥y) = Ry (4124192 bl 1)
+hg(dy 2 dpyy) + Byl 1), (172).

(17a’), by itself, is a condition which, though clearly restrictive, arises quite frequently in applied
work. It would, for example, apply to our leading investment example (assumption 2) if we were
worried about common price (or demand) uncertainty, and those prices (or demand factors) had
a multiplicatively separable effect on the current profit function (it also arises in the
consumption example discussed by Hall, 1979, once one allows for interest rate uncertainty). Now

note that (17a’),(17b),(17c}, and (10) imply that
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h E(t)hl[d(z’),z’,d,l,z] + E(t)h [d(z"),2',d,z,]] + b =0, (18)

2.t+1 3 4t+1

where h2,t+1=jh2( Zt_l_l)P(a?l,H_1 | lt), and h4,t+1 is defined accordingly. It follows that the
sequence of couples {[h2,t 410 44 +1)]}t'__I_‘1 can be treated as parameters to be estimated along
with 6, in an Euler equation based estimation procedure that will, given our assumptions and
some standard regularity conditions, yield a consistent and asymptotically normal estimator as
N, the number of agents, grows large (with T held fixed).

Note, however, that these results rely not only on (172’), but also on (17b). The latter
assumption requires that the controls in t+1 not be a function of the factor which induces the

dependence in the state variables across agents (I ). For most problems of interest, including

t+1
our investment problem with common price uncertainty, this would be unlikely unless the
common price process were serially independent (in which case its current realization would not
impact on the perceived distribution of its future values, and therefore would not impact on
investment and exit decisions). Serial independence of the process leading to the dependence in
the realizations of the state variables of the various agents is often an unattractive assumption.
On the other hand the assumptions underlying estimators based on equations such as (18) are
testable, just as those based on an assumption of a lack of conditional dependence in the process
generating the state variables are, and (18) is clearly less restrictive . Before moving away from
the discussion of providing Euler equation based estimators with desirable asymptotic properties
as N grows large holding T fixed when there is conditional dependence, it should be noted that
neither we, nor other published work we are aware of, have attempted a very detailed

investigation of the possibilities here, so that this is an area in which further research may well

be warranted.i!

1'We have not attempted, for example, to use any additional restrictions that might result
from the sampling process, for example the possible exchangeability of the vector of
observations on different individuals; for a review of the implications of exchangeability see
Aldous(1983). Similarly we have not attempted to make use of the fact that the factors
generating the dependence across observations are often observed, which would allow us to
compare different years with similar realizations in that factor.
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We now move to a brief comparison of Euler equation based estimators that rely on limits
in dimension T, holding N fixed, to those that rely on limits in dimension N, holding T fixed. We
do this even though the vast majority of panel data problems have N much larger than T, for
two reasons.1? First, a comparison of the two limits will lead to simple sets of tests for
conditional dependence in the state variable. Second, whether or not T is large for a given
application is not only a function of the length of the panel, but also of the variance that the
common factor induces in the sample average of the true Euler equation disturbances in the
different years of the panel. If the average (over time) of these cross sectional average
disturbances has a "small enough" variance, then the asymptotic approximations that rely on T
growing large will be accurate (and recall that if the theory is correct the average cross—sectional
Euler equation disturbances in the different years of the panel should be mutually uncorrelated
so its variance should go down at rate T_l). Moreover, if the approximations that rely on T
growing large are accurate, and we choose an appropriate Euler equation based estimator (see
below), we can often obtain estimators with desirable properties even in the presence of
dependence.!3

Once we allow for the possibility of conditionally dependent state variables, we have to be
more careful about distinguishing differences in the properties of Euler equation based estimators

obtained from different restrictions. To this end we introduce some additional notation. Let,

h[d(yi,t+1)’yi,t-|-1’d(yi,t)’yi,t;9] = hi,t(g)’ Xi,tE Ft, and define

12The exceptions here are usually data sets that follow industries or countries over time.

13To illustrate I asked Stephen Zeldes to supply the values (and standard errors) of the
coefficients of the time dummy variables he estimated in his analysis of the consumption
Euler equation {1989, see the discussion in IT11.2). The estimates of the time dummies for
the nine year panel on his preferred equation ranged from —.05 (.12Lto + .03 (.06). Itis
reasonably clear from his estimates that one could accept the null that they are all zero,
but this seems to be as much a function of the fact that the averages are estimated
imprecisely as of any inherent smallness in the point estimates. On the other hand, the
grand average of the Euler equation errors in Zeldes’ study was —.01 with a standard error
which was also,.01, and these are numbers that one might be willing to accept as close
enough to zero with high enough probability.
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—1
NTB Gy (0% 4 = gf,t(ﬂ), (19a),

-1
T8 t)hi’t(ﬂ)xi’t = g)}.{,*(ﬂ), (19b),
and

TINTIE By (O = €5 #(6), (190)

We consider estimators of § obtained from minimizing a quadratic form in restrictions formed
by; i)averaging over i for fixed t (as in 19a), ii} by averaging over t for fixed i (as in 19b), and
iii) by averaging over i and t (as in 19c).

Given appropriate regularity conditions, the first will yield consistent and asymptotically
normal estimators as N grows large regardless of T provided that the evolution of the state
variables are conditionally independent across agents. Note, however, that the first order
conditions which define the estimator of € in this case have terms which converge to the

expectation of

g (6) Og= (0)/96,

and, if there is dependence in the conditional distributions of the state variables of the various
agents, then the covariance between the cross—sectional average of the Euler equation
disturbance, and its derivative with respect to #, will not generally be zero at the true 6‘0 .Asa
result, if there is dependence in the realizations of the state variables across agents, the estimator
based on minimizing a quadratic form in restrictions of the form in (19a) will not only be

inconsistent when N grows large holding T fixed, but will also

1There are, of course, special cases for which the required covariance is zero. This occurs
when the derivative of g(+) with respect to 8 depends only on variables that are measurable
Ft' A case in point is the literature which tests for the rationality of price forecasts, see

Keane and Runkle, 1990, and the literature cited there. The linear framework typcially
used in this literature generates estimators which are unbiased regardless of the presence of
dependence in the process generating the forecast error. As stressed by Keane and Runkle,
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On the other hand, given appropriate regularity conditions, estimators based on
minimizing a quadratic form in the time averaged Euler equation restrictions of the different
individuals (as in 19b) will result in consistent and asymptotically normal estimators of ¢ as T
grows large, for fixed N, even if the conditional distributions of the state variables of the various
agents are dependent.!5 However, an analogous argument to the one used to show that
conditional dependence destroys the consistency of Euler equation based estimators obtained
from averaging over i for fixed t, shows that if T is not large enough the estimator obtained from
restrictions such as those in (19b) will be inconsistent regardless of whether the observations are
conditionally independent. |

Finally the estimators obtained from averaging the restrictions over both i and t are
consistent and asymptotically normal if either, N is sufficiently large and the state variables are
conditional independent, or if there is conditional dependence but T is large enough.

One way of deciding between the various possibilities is to obtain estimators from
restrictions that are averaged over both i and t (as in 19¢), and then use a combination of formal
testing and descriptive statistics to decide on whether any of the more restrictive alternatives
seem relevant. An intuitive starting point would be to do a decomposition of the variance in the
value of the restrictions (evaluated at the estimator obtained by averaging over both i and t)
between time, individual, and idiosyncratic components. If the time component is small, we

might not worry about conditional independence, and be willing to use both the efficiency gains

however, the standard errors of the coefficients obtained from the O.L.S. regression still
need to be adjusted for the presence of dependence, and this adjustment can have very
large impacts on the relevant test statistics.

15The required regularity conditions here are generally both more delicate, and harder to
verify. We need the dependence in the y; 41to induce a dependence in the b, | +1() that

is weak enough to justify the use of a uniform law of large numbers in the consistency
proof, and a stochastic equicontinuity condition in the proof of asymptotic normality.
"Strong mixing" conditions will often suffice (see Billingsley, 1864), but these are not
always satisfied for the problems of interest. For recent contributions to the literature on
conditions that generate uniform laws of large numbers, and central limit theorems, in the
p}rlesence of dependence, see Andrews (1990, and forthcoming) and the literature cited in
those articles.
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available from restrictions of the form in (19b) and the asymptotics that rely on N growing large.
If the individual component is small we might be willing to use limits in dimension T and the
efficiency gains available from restrictions of the form in (19a).

More formally let 8 be the estimator of 6 obtained by minimizing a quadratic form in
restrictions that are averaged over both i and t (as in 19¢). Ther under the null that the process
generating the state variables of the alternative agents are conditionally independent, and some

mild regularity conditions on the form of the Euler equation, we have

N, ()= NV, (0) + 0,(1), (20a)

while

—1/2 : 2

NT2h, (6 g (Odinglel)),  (200)
where

"2 ~1 2 2

o, =N E(])hi,t = o0y +0_(1), (20c)

and, consequently

2 ;7 2y 2

where; op(l) is notation for terms which converge in probability to zero (as N grows large),
diag[x] denotes a diagona! matrix with x on the principle diagonal, 112‘ is a chi—square deviate
with k degrees of freedom, and 7 denotes convergence in distribution (again as N grows large).
(20d) provides our formal test statistic. Note that it only requires 20a, 20b, and 20c, so that the
null is really broader than conditional independence and allows for forms of dependence that do
not invalidate the consistency and asymptotic normality of the parameter estimates (see the
discussion above) [all (20d) tests for is the assumption that h*,t( 8y) = 0, the assumption that
underlies the consistency of estimators whose desirable asymptotic properties are based on limits
in dimension N]. Of course one can base similar tests on other moments that emanate from the
Euler equation, but an intuitive place to start seems to be with the Euler equation itself.

It is almost as easy to build tests for the assumption that the time average of the Euler
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equation disturbances are small enough to be accounted for by the limiting approximations in
dimension T, that is for the assumptions that underlie estimators that rely on restrictions such

as those in (19b). For this we require regularity conditions which insure that

T/ n, 4(0) = ) Zh, (09) + og(l), (21a),
while
T/ 2111,,.,(490) Taowy, (21b)
where V = [vi,j]’ and
Qi)j = T-lz(t)hi,thj,t = v+ og(l), (21c)

for each (i,j) so that
T"lh*’t\n’"lhﬁt 1i, (21d)

where %; denotes convergence in distribution, and og () denotes convergence in probability, both
as T grows large. (21d) is fairly easy to calculate and provides a direct test of the assumption
underlying the consistency of estimators that are based on restrictions of the form given in (19b).

One advantage of the set of tests in (20d) and (21d) is that it is possible for them to
indicate that neither of the limiting approximations are relevant for the data at hand. In this
case one would also be suspicious of the properties of the estimators obtained by averaging over
both i and t. Note also that a similar set of test statistics could be built from comparisons of
estimators of parameter vectors obtained by employing restrictions based on averaging over both
i and t, to those based on averaging just over i, and then again to those based on averaging just
over t (see Hansen,1982, or Chamberlain,1984, for details on the construction of the appropriate
test statistics). Neither of these testing sequences are computationally burdensome, and some

form of test for dependence should probably be applied as a matter of course in most applications

of Euler equations based estimators that use panel data.

That concludes our discussion of the use of Euler equations in structural estimation. It is
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incomplete in several ways. In addition to leaving several open questions on the topics we did
discuss, we left several important topics totally untouched. Perhaps foremost among the latter is
the issue of the choice of estimator given only the restrictions that are embodied in the Euler
equations (and, perhaps, some regularity conditions).

There is a large related econometric literature on the efficiency of estimators based on
moment conditions that can guide us here. In their initial article Hansen and Singleton (1982)
use the Euler equations to generate a finite number of moment restrictions, and then consider
estimators based on minimizing a quadratic form in those restrictions. A result in Hansen(1982)
shows that, given appropriate regularity conditions, the optimal weighting matrix is the inverse
of the variance covariance matrix of the moment restrictions themselves (evaluated at the true
value of the parameter vector). Chamberlain (1987) shows that, again subject to regularity
conditions, the same result applies if we do not limit ourselves to estimators based on quadratic
forms in the (finite number of) moment restrictions. Chamberlain then goes on to provide an
efficiency bound (for regular estimators) when the restrictions we have to work with are specified
directly as conditional moment restrictions (this generates an infinite number of moment
restrictions, one for each possible value of the conditioning set; see also Hansen,1985, and
Hansen, Heaton, and Ogaki, 1988, for related work in the time series literature). Recall that the
Euler equation restrictions are in fact conditional moments restrictions (conditional on the
s—algebra generated by variables known in period t}); so, provided we are only using the Euler
equations, we would ultimately like to obtain estimators which acheive the efficiency bound from
the conditional moment restrictions they generate. 18

If there are K parameters to be estimated, there will (again subject to regularity

16There remains the question of whether the conditional expectation of the Euler equation
depends on the entire past history of all variables in the data set, or on just a subset of
them. If one were willing to specify the entire structure of the underlying control problem,
then the model itself would answeer this question. Alternatively, one could try to
determine the relevance of different variables empirically by using an innitial consistent
estimate of the paramter vector to construct estimates of the realized value of the Euler
equation for the alternative sample points, and then examining its conditional expectation.
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conditions) be a set of K "instruments" (measurable functions of the conditioning set) which
generate moments (orthogonality conditions) whose sum of squares will be minimized at a value
of the parameter vector whose limit distribution will achieve the efficiency bound. However,
these "efficient” instruments involve the derivative of the conditional moments with respect to
the parameter vector (they equal the derivative of the vector of conditional moments times the
inverse of the conditional variance of those moment conditions; all evaluated at the true value of
the parameter vector). In the Euler equation (and most other nonlinear) examples, computation
of the derivative of the conditional moments requires knowledge of the conditional distribution of
the endogenous variables (conditional on the state variables of the model), and then use of either
numerical integration or simulation to calculate the appropriate integral.

Use of an instrument which requires a complete solution for all the endogenous variables
destroys the raison d'etre for using Euler equation based estimation techniques in the first place.
Chamberlain(1987) touches on the possibility of obtaining an estimator which achieves the
efficiency bound by adding instruments sequentially from a sequence of functions which, in the
limit, form a basis for a function space which is rich enough to include the efficient instruments.
Newey (1990) considers the special case of homoskedastic conditional moments, and then
provides conditions for achieving the efficiency bound using nonparametric (series and nearest
neighbor) estimators of the efficient instruments (see also the related work on feasible GLS for
heterosckedasticity by Carroll,1982, and Robinson,1987). Newey (1990) also provides a monte
carlo example whose results show that use of the series estimator for the optimal instruments
does amazingly well (though the nearest neighbor estimator did not). The interested reader
should also consult the rapidly developing related literature on semiparametric efficiency bounds
(see Chamberlain 1989, Newey 1990b, and the literature cited in those articles).

One final point. It is often worthwhile to examine the form of the "efficient" instruments
even if one is unlikely (for whatever reason) to attempt to generate an estimator that attains the
efficiency bound that result from them. This because an examination of the form of the efficient

instruments frequently suggests sets of instruments which, though not strictly speaking efficient,



should get one close to the efficiency bound, and be fairly easy to construct.
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IV. Alternative Estimation Strategies, Serially Correlated Unobservables, and Invertibility

Conditions.

It is natural to next ask what can be done in cases where Euler equation based estimation
techniques cannot provide estimators with desirable properties for at least some of the
parameters of interest. Generally, the alternative estimation strategies that are available depend
on the model and data being investigated, but, at least in the context of models as simple as
those used in our examples, it is probably most natural to look next at the possibility of
specifying all the primitives of the model up to a vector of parameters, solving for the optimal
choices implied by the different possible values for this vector, and then using either a maximum
likelihood, or a minimum distance, estimator to fit the model to data.

Though estimation techniques which require computation of the value function are
generally more computationally burdensome then Euler equation based techniques, their
computational burden in models with a mixture of discrete and continuous choices is comparable
to their burden in discrete choice models, and this is discussed extensively in the chapter by
Rust(1991). Indeed, the computational issues only become significantly more difficult when we
introduce interactions among agents, and are, therefore, required to solve for market equilibria.
As a result we postpone further discussion of computation until we bring back in the market.

For now we simply assume that we can compute the value function and the optimal policy, and
look to see if this enables us to estimate the parameters of the model in situations where, because
of the reasons noted above, Euler equation based estimation techniques are likely to fail.

To compute the value function we will generally also be required to make more detailed
assurnptions on the exogenous "forcing" processes then the assumptions we required for the Euler
equation based estimators discussed in the last section. What we gain for these assumptions,
and for the additional computational burden, is a set of predictions for the controls conditional
on any given value of the parameter vector, all state variables, and the correspondence defining
the feasible choices. Note that our ability to obtain these controls is independent of whether or

not they are continuous or discrete {or, if continuous, are at a boundary of the choice set}, of the
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form of the accumulation relationship (stochastic or deterministic), or of whether the
distributions of the state variables are conditionally independent across agents.

However, the model’s predictions for the controls are calculated as a function of all the
state variables and the parameters of the problem. To match these predictions to data we need
to express them in terms of only the observed state variables and these parameters. This requires
an assumption on the distribution of the unobserved state variables. Consider first the case
where these are serially independent so that their distribution at time t does not depend on their
realizations at time t—1. Then, given any value for the parameter vector, we can integrate oul
over the current values of the unobservables that the model indicates would generate the
observed controls, obtain the likelihood as a function of only observable magnitudes, and
compute maximum likelihood estimators in the usual way (alternatively, we could compute, or
simulate, the expected value of the controls for different values of the parameter vector, and
obtain a method of moments estimator for §). Though this may be a computationally difficult
estimation procedure, it is always available, and requires no additional assumptions.!6

On the other hand, when there are serially correlated unobservables the likelihood we
calculate for the controls conditional on alternative values for #is a function of the period t~1
value of the unobserved state variable. Thus, direct application of maximum likelihood is not
possible. We could, of course, iterate backward, using the distribution of the period t—1 value of
the unobserved state variable conditional on its value in period t—2 to form the distribution of
the control in period t conditional on information in period t—2, and so on (see below), but we
will still be left with the problem of an unknown value for the unobserved state variable in the
initial period of the data. Alternatively, we could attempt to obtain the joint distribution of the
values of the unobserved and observed state variables in some (preferably the initial) period, and

use this to integrate out over the unobservable in forming the likelihood (again see below).

15 Apart, perhaps, for those required to verify the regularity conditions needed to insure
consistency and asymptotic normality of the maximum likelihood estimator. We should
note that all we actually need for this procedure is the somewhat weaker assumption of
conditional serial independence described in Rust,1988.
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However, given serial correlation in the unobservable and even partial control of any of the
observable state variables, the model itself will predict particular forms of dependence in the
joint distribution of the observed and unobserved state variables. Thus before we can integrate
out over the unobserved component we need to solve explicitly for the form of the conditional
distribution of the unobserved state variable (conditional, that is, on the observed state
variables), and this will require both additional assumptions, and an additional level of
computational complexity. Analogous problems occur in developing method of moments
estimators when there are serially correlated unobserved state variables.

As noted earlier the same issue arises in all stochastic dynamic programing models
(discrete, continuous, or mixed). Indeed, the problem has a longer history than this; it has an
almost identical structure to the problem labelled the "initial conditions" problem in Jim
Heckman’s discussion of discrete—time, discrete data, stochastic processes (see Heckman, 1981).
Several solutions have been suggested in the literature. We begin by providing a brief review of
some of them, focusing on their applicability to estimating structural models. Then we suggest
an alternative which arises naturally for certain theoretical models with continuous (as well as
discrete) controls, and provide proofs of its validity for the two leading examples used in this
paper. Where applicable, the alternative is easy to adapt to the more complicated settings in
which we allow for market interactions. We illustrate this below by looking at the problem of
estimating the parameters of a Cobb—Douglas production function in the presence of a
simultaneity (endogenous investment and labor choices) and a selection (attrition due to exit

behavior) problem induced by a (serially correlated) unobserved productivity variable.

IV.1. The Problem.

We illustrate with the simple example introduced above; that of a firm choosing
investment and exit strategies to maximize the expected discounted value of future net cash
flow. Recall that x(-) provided the investment, and y(-) the exit, policies, of the firm. We shall

assume here that k (capital) and « (the state of productivity or demand) are, respectively, an
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observed and an unobserved state variable. Then
2
mt=(kt,xt,xt) € M CR” = {0,1], (22a),
is the vector of observables for each firm in each period while
A(mt;ﬂ)z{w : x(u .k ;6)=x, and x(w,kt;0)=xt} ch, (22v),

is the set of possible values for the unobservable, v, that are consistent with the observable m,
vector, for different values of 4.

Capital accumulates deterministically, so conditional on yt—1=(”t—1’kt-—1)’ the only
source of randomness in A(m,;f) is the alternative possible realizations of v,. {w,} is a Markov
process with transition probabilities given by the family P in (2). Assuming (for simplicity) that
these have densities with respect to Lebesgue measure {these densities will be denoted by
p{-|w,8),we Q, fe e8], the likelihood for the sequence of observables for a given firm conditional

on the initial value of its unobserved state variable, is given by

Pr(mT,...,m1 | “'1’9)=Ht—1,...,TPr[mt|mt—~1""’m1’w1’0]’ (23),

where

Prlmtlmt-l""’ml’wl’ﬂzjwt_lPI[A(m )| w,_;,6)p (wy_plmy_qmmypwy,0)du_g =

th 1"'Jw2PI[A(mt;€)Iwtwl’glp(wt—lImt—l’wt—-2’9)"'p(w2lm2’w1’0)dwt—l"'dw2
and
m. ,3__[p(w| i1 )/Pr[A(m 0)|w. 1,0)] for w GA(m i8),
Ple ] P ) elsewhere ;
while

PAG )1 30 = e 20140 09
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The conditional likelihood for the sample, conditional on the initial values of all state
variables, is formed as the product (across agents) of the likelihoods in (23). If either the initial
value of the ¢’s of the different agents are known, of if there was no dependence in the process
generating the {”t} so that Pr[A(mt;ﬂ)th_1,9]=Pr[A(mt;0) | ], we could maximize the
likelihood obtained in this fashion with respect to #, and obtair a consistent and asymptotically
normal estimator of that parameter (this presumes standard regularity conditions) .

When there is a serially correlated unobservable, several possibilities present themselves.
The simplest is the conditional maximum likelihood estimator that treats the vy of each
individual in the sample as a parameter to be estimated [i.e. we maximize the likelihood in 23
with respect to both 4 and the vector of v, values]. As is well known, if limits of this estimator
are taken as N grows large holding T fixed the estimator can, in general, be shown to be
inconsistent (the number of parameters being estimated grows with the size of the sample and
this generates a classic incidental parameter problem; see Neyman and Scott, 1948). On the
other hand if limits are taken in dimension T, and the family IPw is sufficiently regular, then
consistency and asymptotic normality are assured.

Panels are getting longer and it is reasonable to ask just how long they need to be before
the conditional maximum likelihood estimator is reasonably well behaved. Surprisingly little
research has been done on this point. Heckman (1981) reports simulation results for a problem
with a single discrete alternative (no continuous control} and a disturbance process which is the
sum of a (normally distributed) permanent effect and an i.i.d. (again normal) deviate, on an
eight year panel. He concludes that when there are only exogenous determinants of the discrete
choice, the conditional maximum likelihood estimator does well enough. However, when lagged
values of the discrete choice also determine the current choice, the performance of the
conditional maximum likelihood estimator is markedly worse. One’s guess is that structural
models that treat unobserved initial conditions as parameters to be estimated will perform more
like the simulated models that allowed for lagged endogenous variables (the current choices in

the structural models build up the values of the state variables that determine the choices in



51

future periods}. On the other hand there is enough of a difference between the models whose
bias has been evaluated to date, and the current generation of structural models, that further
Monte Carlo analyéis seems to be warranted.

We next consider a class of solutions to the problem of serially correlated unobserved
state variables that dates back, in a slightly different form, at least to the work of Kiefer and
Wolfowitz (1956). In terms of the models considered here the Kiefer—Wolfowitz suggestion is to
formulate the likelihood conditional on the initial value of the unobserved state variable [as in
23], obtain information on the joint distribution of the observed and unobserved initial values of
the state variable, and then use the conditional distribution of the initial value of the unobserved
state variable, say p“‘(w1 |k1,62), to integrate w; out of (23), forming, thereby, a marginal
likelihood [note that p*(- | +,0,) will, in general, depend on a different set of parameters than
those involved in the original choice problem]. The Keifer—Wolfowitz suggestion is to maximize
this marginal likelihood with respect to the vector (4,6,).

To do so we need the conditional density of the unobserved initial state, p*(- | -,02); a
density which is typically unknown. There are at least two possible ways of proceeding. One is
to look for a nonparametric estimator of p*(-|-,f,) that allows us to find a semiparametric
estimator for 6. Note that this requires a nonparametric estimator for a family of distributions
for the unobserved initial state, one for each possible initial value of the observed state vector.
We know of no research which has systematically explored this nonparametric alternative, so at
this stage we simply relegate it to a topic for future research.

The second possibility is to use economic theory to derive the p*(-) associated with the
alternative possible values of 6. The way of proceeding here depends on the relevant model. We
consider first models in which the joint distribution of the state variables of the agents active in
a given market converges t0 some unique invariant measure (invariant to both the passage of
time and to initial conditions). Models of markets with many agents, and exogenous forcing
processes which are both independent across agents and ergodic, often have this characteristic

(see Jovanovic and MacDonald,1990, and Hopenhayn and Rogerson,1990, for examples).
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Assuming that the data is a random sample from this invariant measure, what we will need is
the form of this invariant measure over (couples) of state variables. This generally requires
knowledge of the parameters defining all the primitives of the model, and, in addition, an ability
to compute the invariant measure associated with them. Since some of the parameters defining
these primitive are the parameters we are trying to estima‘ge, we would have to nest the problem
of estimating the distribution of the initial conditions inside the estimation algorithm. That is,
an evaluation of the marginal likelihood for a given value of the parameter vector would begin by
calculating the invariant distribution associated with that value, and then use it as the p*(+)
needed to form the marginal likelihood.

Though in principle feasible, this is a very computationally intensive procedure.
Moreover, in models with finite numbers of agents, and/or forcing processes which are not
independent across them, both the analytic and computational problems get even more difficult.
In these models the limiting characteristics of the market is often an ergodic distribution over
the distribution of state vectors of the agents (as in the Ericson—Pakes model described below),
and in order to integrate the unobservable initial condition out of the likelihood we would have
to integrate also over the ergodic distribution of the distribution of state vectors. Though, as we
show below, it might not be as difficult as once thought to calculate this ergodic distribution for
one particular value of the parameter vector, calculating it repetitively for each different
function evaluation required to find the maximum likelihood estimator is probably beyond our
current computational capabilities.

Though in any given period there is an endogenous joint distribution of the observable
and unobservable state variables, there may well be an initiation date for the process for each
agent at which the required distribution of state variables is either a primitive to be estimated
(at least up to a parameter vector), or easy to derive in terms of such primitives. Typical
examples are models of firm behavior in which there is an entry date, or models of labor market
behavior in which there is a date of first entry into the labor force. Given an initiation date for

the process, a complete model will generate a joint distribution for the observed and unobserved
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state variables in the first period of the data conditional on the "age" of the agent at that time,
any other presample information available, and the vector of parameters defining all the
primitives of the model. This distribution is the p*() needed to obtain the marginal likelihood.

Note that the vector of parameters which define this marginal likelihood now contain also
the parameters describing the entry process, and, perhaps, parameters describing changes in the
environment that have occurred between the initiation of the process for the agent and the start
of the panel. Thus this "solution" to the problem of serially correlated unobserved state variables
does add an additional layer of computational complexity to the problem (deriving the
conditional distribution of the unobserved state variables at the initiation date of the sample as a
function of the parameters determining the distribution of the state variables at the initiation
date of the process). However, it is an additional layer which has proven not to be too difficult in
some applications, and, as a result, it is the only coherent treatment of the problem of serially
correlated unobserved state variables that has been used in the estimation of structural discrete
dynamic programming problems to date (see, for e.g., Miller, 1984, and Pakes, 1986).

The procedures discussed in the previous paragraphs are closely related. They both
derive a form for the needed p*(-) distribution from economic theory. Indeed they only differ in
that the latter makes use of presample information, and assumes that any relevant market
outcomes that occur between the initiation date of the process and the beginning of the sample
can be captured by a simple exogenous process. It will, therefore, be both easier to implement,
and more realistic in its assumptions, when there is an exogenous "entry" date for the process we
are trying to model which is close to the first sample year for each observation, and when the

important sources of randomness are well described by a simple Markov process. 17

17The Markov assumption is not innocuous, especially when we are trying to model a group
of agents active in the same market. For example, though it may be reasonable to assume
that agents take prices parametrically, it is much less reasonable to assume that agent’s
think the distribution of price tomorrow just depends on todays price (and no other
characteristic of todays market) especially since current price is not a sufficient statistic for
future price in most dynamic models; see the more detailed discussion in the next section.
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IV.2. Invertibility Conditions.

Once we have a fully specified choice model, and the possibility of continuous controls, an
additional procedure for dealing with the problem of serially correlated unobserved state
variables presents itself. Where feasible, this solution is no more computationally burdensome
then the inconsistent (in dimension N) conditional maximum likelihood estimator which treats
the initial values of the unobserved state variables as parameters to be estimated. Additionally,
it can often be combined with semiparametric estimation procedures to produce computationally
simple estimators for models in which the value functions themselves are too difficult to compute
(such as in models which allow for interactions among agents).

The technique does, however, require an invertibility condition. This condition states that
there is a set of values for the observable vector each of which could only have been generated by
a single value of w — though the associated ¢ value can depend on f. Below we formalize this
condition and show that it is satisfied for the two leading examples used in this paper; the
deterministic accumulation investment example used in this section, and the stochastic
accumulation example used in the next. The proofs are, however, particular to these two classes
of models. So both the feasibility of using the invertibility condition, and the form of the
invertibility condition where feasible, must be investigated separately for each problem. This is
the additional burden of the procedure we suggest. It is not computational, but it does require a
detailed knowledge of the model one is using and the data at hand (and, as will become clear,
whether or not one can obtain an invertibility condition depends on the observables available).
On the other hand, provided the intuition underlying the invertibility condition is clear, one can
sometimes circumvent the need for a formal proof of the condition by building a check for it into
the estimation algorithm.

We first provide a formal statement of the invertibility condition (condition 24), and then
show how it can be used to circumvent the initial condition problem generated by serially
correlated unobservables. Recall that m € M is the vector of observables (controls and state

variables), and A(m;#) provides the set of v values that could generate m given 4.
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Condition 24. (the invertibility condition).

There is a subset of M, say M*, such that
#A(m;f)=1, for all fe® and meM*,

In (24), # provides the cardinality of a set, so the condition is that A(m;®) is a singleton
for m in M*. Also, it is important to note that we do not require the condition to hold for all
meM, but rather just for m in the subset M¥*, as M* will tend to be a proper subset of M in
problems with discreteness in the choice set or the possibility of binding boundaries (see below).

Now assume (24). Then if m_is in M* we know the value of v for any value of §; i.e.

v, =v*(m_;f) for m eM*. So substitute w*{m_;6) for the unobserved v_in (23), and use this as
the initial condition needed to compute a maximum likelihood (or a method of moments)
estimator from the predictions of the model for periods 741 to T. The product of this likelihood
across agents will depend only on the period 7 vector of gbservables for each agent, and the finite
dimensional parameter vector to be estimated.

More formally, define the stopping time

T if Um AM = 0
T = (25a)

min {t:m €M*} otherwise.

And form the truncated conditional likelihood

il Prjm, |m

mT,w*(mT;ﬁ)], (25b),

t=7+1,...,T =1

where

Pr[mt|mt_1,---,m.r,¢~""(m,.;5)]=
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Sy Pr[A(m;6)|w, g, 0p(w,_4 |m, 4.0, 5.0)...

7+1

w*(m,;6),0)dw,_,...dw

Plwyqlm g T+1’

and the terms in the integral are defined as in (23).

Assume the set M* has positive probability. Then maximization of the product (across
agents) of the truncated conditional likelihood in (25b) with respect to #, will, subject to
"standard" regularity conditions (see Andersen, 1973 section 2.8, or Huber,1967) produce
consistent and asymptotically normal estimators of that parameter.

We now go back to our example of a firm making investment and exit decisions to
maximize the expected discounted value of future net cash flow. To prove that it satisfies the
invertibility condition, at least for the subset of M for which x>0, we will have to restrict its
primitives somewhat. The additional restriction that has empirical bite is that the derivative of
the profit function with respect to capital must be increasing in the unobserved state variable,
{more generally, 7{wv,k) must be supermodular in the sense of Topkis,1978, see also Milgrom and
Roberts,1990]. Though this condition is satisfied for most specifications used in empirical work
(where v generally represents either Hicks neutral efficiency differences in production, or quality
differences among a group of differentiated products firms; see the examples below), it is easy to
generate counter examples where it is not. In addition we will (partly to keep matters simple)
impose additional regularity conditions on the family of probability distributions, P o We begin
with a lemma which insures that under our conditions the investment policy is nondecreasing in

.

26.Lemma (monotonicity of the investment policy ir the investment example).

Assume 2, that dr(w,k)/0k is increasing in v (everywhere), and that if h(-) is continuous
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(everywhere) and uniformly integrable with respect to a subset of iPU, say P*, then provided
P(-|w,) and P(- |@,) are contained in P*, | [ b(&)[P(dw | 0y)-P(du’ |0 ]| € $(bP*)] vy
Then

x(w,k) is nondecreasing in o for each k.
Proof. See appendix 1.
Theorem 27 provides the invertibility condition for the investment example.

Theorem 27.
Conditional on the assumptions underlying Lemma 26, condition 24 is satisfied for the

subset of M on which x>0.

Proof.

From lemma 5 the investment choice must satisfy the Euler equation

F(x,k,w)=—dc(x)/0x +
ﬁfx[w’,k(1—5)+x]{51[w’,k(1—5)+x]/6k+(1—5)6c[x(w’,k(1—5)+x)]/5x}P(dw’|w) = 0.

Assumption 2, together with the form of the optimal policy (see 3) insures that F(+)is a
continuous function of v for every (x,k). So it will suffice to show that for each (x,k), F(-) is
strictly increasing in v. (3) insures that x(-) is nondecreasing in ¢, and the convexity of the
adjustment cost function together with lemma (26) insure that dc(-)/dx is also, while dx(-)/dk
is strictly increasing in «’ by assumption. Thus the integral is nondecreasing in &’ everywhere
and strictly increasing for all &’ in the region where y=1. To complete the proof, then, one need

only note that if x>0, x[¢’ k(1-6)+x] must be 1 on a set of &’ with positive P(- | w) probability
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(else x=0 would generate a more profitable program).

Remark 1. The statement of lemma 26 given in the appendix allows the cost of adjustment
function to depend also on k. The condition on ¢(x,k) that suffices for the lemma in this more
general case is that it be nonincreasing in k for each fixed x. When the adjustment cost function

depends on k the Euler equation for the investment choice becomes,

F(x,k,v)= —dc(x,k)/0x
+ﬁfx[w’,k(1—5)+x]{61r[w’,k(1—6)+x]/Bk+(1—6)t9c[x(w’,k(1—6)+x),k(1~5)+x]/5x
—de[x(v’ k(1—6)+x),k(1—6)+x]/dk}P(dv’ | &) = 0.

Now to obtain the strong monotonicity result in (27) we need also that —dc(-)/dk is
nondecreasing in x. If ¢(- ) is appropriately differentiable, then what we require is that
62c(x,k) /0x0k < 0, a condition which is satisfied for most cost of investment functions used in

empirical work. o

Remark 2. Theorem 27 does not depend on the feasibility of negative investment. That is, if we
constrained investment to be nonegative we could use the modified Euler equation in (7b) to
prove the same condition (the proof would only be true for the subset of M for which the
modified Euler equation is indeed satisfied, but that would include all observed vectors for which

x>0}. o

Theorem 27 implies the existence of a function v*(x,k;#) with the property that if meM*,
then w=uv*(x,k;#). Following the discussion above, a truncated conditional maximum likelihood
estimator for this problem can then be constructed by defining the 7(i} in {25a) to be the first
observation on firm i for which we observe positive investment, substituting ”*(xr(i)’k‘r(i);ﬂ) for

the needed initial condition into (25b), and then maximizing the sum (over firms) of the
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resulting log likelihoods with respect to 6.

Once we know the inverse function exists, alternative estimation strategies present
themselves. Of particular interest are estimation techniques that use a nonparametric estimator
of the inverse function, thereby circumventing the need to compute that function for different
possible values of the parameter vector. Nonparametric alternatives are often feasible in
situations where we want to control for » in order to attenuate biases resulting from the presence
of this serially correlated unobserved state variable.

Olley and Pakes (1990) study of productivity in the telecommunications equipment
industry provides one example of the use of such a semiparametric estimation procedure. To
construct their measure of productivity they required estimates of the industry’s production

function. This is specified in Cobb Douglas form as

(28) g =ogtaa +ok Fak ety
where q,k, and | are the logarithms of output (value added), capital (constructed from a
geometric decay assumption and data on the book value of the plant in the initial year the plant
enters any of the census’ files), and labor (manhours), while "a" is the plant’s age (this allows for
vintage effects, or for an initial sunk factor of production whose impacts decay from birth). The
data are taken from the Longitudinal Research Data File at the U.S. Bureau of the Census (see
McGuckin and Pascoe,1989). This is a thirteen year (1973—86) panel which follows information
at the enterprise (plant) level of aggregation.

The model has two disturbances affecting observed productivity, « and 5. The distinction
between them is that the firm is allowed to adjust its decisions to realizations of v, but not to
those of 5 (so that # is either measurement error, or a serially uncorrelated productivity shock
that is realized after input decisions are made). Since v effects the firm’s decisions, it is the

source of concern about the consistency of the O.L.S. estimates of the parameters in (29). There
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are two reasons for these concerns. The first, which dates back to Marschak and Andrews’(1944)
classic article, is that if  is serially correlated, and input decisions are at least partially subject
to control, then inputs in place will be correlated with current #, and this will generate a
simultaneous equation bias in the O.L.S. coefficients. The second, which though discussed in the
empirical literature for some time (see, for eg., Wedervang, 1965) had not been previously
incorporatell into the econometric analysis of production functions, is that we only observe firms
that do not close down and, if more productive firms tend to be more profitable and survive
longer, the selection on survival is, in part, a selection on o, producing a selectivity bias in the
0.L.S. coefficients (for a review of the literature on selectivity biases in the labor econometrics
literature, see Heckman and Robb, 1986, and the literature cited therein).

To devise an estimation procedure which takes account of the simultaneity and selectivity
biases we need a model for input and exit decisions. For this Olley and Pakes (1990) use the
model in our example, augmented to allow for a labor choice and for an additional state
variable (age). Labor is assumed to be variable so that it is contracted for at the beginning of the
period and can be adjusted, perhaps at increasing cost, to realizations from the conditional
distribution of »,. As in the model outlined above exit occurs whenever v $u,(kya,), with w,(-)
decreasing in k, while x =x, (v, k2, ) with xt(') strictly increasing in v for each (k,a) whenever
x>0.- The investment and exit function are indexed by t to allow for changes in market
conditions over the period covered by the data (see Olley and Pakes,1990).18

Since we are only interested in the use of the invertibility condition we only reproduce the
initial stage of their estimation algorithm, the stage that obtains the labor coefficient, a;. The

simultaneity problem here is a result of the correlation of 1 and k (through past choices) with v,

18The framework used in Olley—Pakes allows for interactions among agents. They assume
that the profits a firm earns in a given period depends not only on its own state variables,
but also on the list of state variables of competing firms, and that the data are generated
by a Markov—Perfect Nash Equilibrium in investment, exit, and entry strategies (see the
next section). The model then becomes a modified version of the Hoppenhayn-Rogerson
(1990} model of industry dynamics, and the firm’s decisions depend on both the firm’s own
%tate variables, and the measure providing the list of state variables of the competing

Ims.
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while the selection problem is a result of the fact that the survival process truncates the
distribution of the w observed in the data (and the truncation point is a function of the right
hand side variables in the equation we want to estimate). We could account for both of these
problems if we could condition also on ». The invertibility condition tells us that for those
observations with x>0 we can do just that by substituting v, *(-) for v, in 28 producing the

equation

(29) g g=ag+ o)l ¢ + 4,05 ok 125 0) + 0y 4
where,
— . %
(X ok 18y ) = 0 M0 kg ag ) egd ek
The first stage of the estimation algorithm uses a polynomial approximation to the ¢t( -)

function to obtain a semiparametric estimator of g)(-). Since v*(-) is a function of all the state

t
variables of the problem (all the determinants of the investment choice), the semiparametric
procedure does not allow us to separate out the effects of k and a on investment, from their
direct effects on output. Olley and Pakes (1990) proceed to show how, by considerring also the
restrictions from the expectation of yt_allt conditional on kt’at and wy_y» ODE can also obtain
consistent estimates of o, and o, (here by is the first stage root n consistent estimate of a).

Alternative estimates of a) and a (standard errors in parenthesis) and the relevant
sample sizes, are presented in table 1. The estimates in the first two columns are computed from
a "balanced panel". The balanced panel is obtained by using only the information on the plants
that were active for the entire 13 year period. Balanced panels are the traditional way of drawing
samples for use in production analysis. Columns (3) and (4) use the "full" sample; this contains
information on all plants ever active in all years that they are active (except those plant year
observations that have zero investment, as these observations do not satisfy the invertibility
condition).

The first point to note is that by using the balanced panel we discard about two—thirds of



Table 1

ALTERNATIVE ESTIMATES OF COBB-DOQUGLAS
PRODUCTION FUNCTION PARAMETERS'

Sample Balanced Panel Unbalanced or Full
Panel
Estimation 0.L.S. Within 0.L.S. Olley/
Technique Pakes
Coefficient of (1) (2} (3) (4)
Labor .87 .77 .70 .62
(.04) {.05) (.02) (.02)
Capital .16 .05 .31 /
(.03) (.05) (.02)
Number of 886 886 2,397 2,397
Observations

'Source, Olley and Pakes, 1991, Table 6. Estimated standard
errors are in parenthesis. Other variables in all eguations
are plant age and a time trend. The balanced panel uses only
the data on plants which were active in every year of the 13
years of the panel. The unbalanced panel uses data on all
plants that were ever active in every year they were active.
————— e
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the observations, so the potential for selection problems is large. Column 1 provides the O.L.S.,
while column 2 provides the within, estimators from the balanced panel (the within estimator
uses deviations from firm—specific means for all variables; see Chamberlain, 1984, for a detailed
discussion). The within estimator would be appropriate if the effects of selection and
simultaneity differed by firm but were constant for a given firm over time (note how much at
odds this is with the model; according to the model the firms who exit were firms who changed
their perceptions of their future profitability over the period, and one would expect perceptions
to be correlated with realizations).

The total and within coefficient estimators from the balanced panels are not ur_msual for
production function estimates from balanced panels. The labor coefficient is higher than what
seems plausible for the elasticity of output with respect to labor, and the capital coefficient is
noticeably lower than what we think plausible for the capital elasticity. Theory suggests at least
two explanations. First labor, being easier to adjust, is more highly correlated with the current
value of v (simultaneity). Second, the exit rule is decreasing in k, so low capital firms who
survive need o be firms who drew exceptionally good productivity sequences, while firms with
more capital will survive on much poorer productivity draws. This induces a negative correlation
between capital and productivity among survivors. Note also that since labor and capital are
positively correlated positive biases in one coefficient will tend to be associated with negative
biases in the other.

Column 3 provides the O.L.S. estimates on the full sample. We expect moving to the full
sample to alleviate much of the selection problem, though not necessarily the simultaneity
problem. The results are quite striking. The capital coefficient more than doubles, and the labor
coefficient moves down by over 20%. There should still be a bias in these coefficients that can be
eliminated by substituting the polynomial approximation to the ¢*(-} function for the
unobserved value of w, Just as theory says it should, use of the polynomial approximation to the
inverse function forces the labor coefficient down still further, by another 10%, so that the final

estimate of the labor coefficient was close to labor’s share in value added (the final estimate of



63

the capital coefficient, which is not reported in the table, was .345 with a standard error of .05).

Where applicable, this combination of the use of theory (to prove the existence of an
inverse function), and of semiparametric estimation techniques (that allow us to use that inverse
function without ever computing its form), should be quite useful, as it ought to allow us to
account for the probléms induced by serially correlated unobservables with estimation algorithms
which are computationally quite simple. There may, of course, be many cases in which
difficulties arise in checking for the regularity conditions which insure the consistency and
asymptotic normality of the semiparametric estimator, or in computing its variance covariance
matrix and insuring there is a consistent estimator of it, or, perhaps, in finding an efficient
semiparametric estimator for the structure at hand. However, the econometric literature on
semiparmetric estimation has been advancing at an extremely rapid rate (see Ahn and
Powell, 1990; Andrews 1989a,1989b; Chamberlain,1989; Newey, 1989b and 1991; Powell,Stock
and Stoker,1989; Robinson,1988; Sherman,1990; and the literature cited in those articles); and it
may not be too long until many of the relevant issues are clarified. Then the major problem
facing the applied researcher will be to formulate the invertibility condition for the problem at
hand, and show how it can be used to identify the finite dimensional parameter vector of interest
— a task that generally requires a deep understanding of both the appropriate model, and of the

data at hand.

Having provided detail on one example where the invertibility condition takes on a
relatively simple form, it is worth reemphasizing that the results on that form are model specific.
Indeed, our ability to use investment (conditional on capital) as a proxy for the unobserved state
variable in this model depends crucially on the fact that, in models with deterministic
accumulation that satisfy the assumptions in 26, the expected increment to the value of the firm
arising from a given increment in capital is increasing in the unobserved state variable. In models

in which there is stochastic accumulation (such as the one outlined in section II1.3) this
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monotonicity condition, and hence the associated invertibility condition, is unlikely to be
satisfied.

In these models the role of investment is to improve the distribution of Yy conditional
on vy, and the increment to the value of the firm generated by given increments in v are not
characteristically monotonic in v. In particular, boundedness of the value function implies that
the increment in value per increment in ¢ must eventually be concave in o, and there is often
reason to expect the value function to be convex in v at lower levels of development (see, for
example, Ericson and Pakes,1989,part I). As a result we have to look for alternative ways of
controlling for efficiency differences in situations in which stochastic accumulation mode! seems
appropriate.

The version of the stochastic accumulation model presented in the next section is one in
which firms are differentiated by the quality of the product they produce. Consumers have a
distribution of tastes over the alternative products, and an increase in the quality of any one
product (in its unobserved v) will increase demand for that product conditional on any vector of
prices and any vector of the s of a firm’s competitors. Firm’s are price setters, and the
equilibrium in the spot market for current output is Nash in prices conditional on the &'s of all
active firms. The «’s of the firms evolve over time according to the stochastic outcomes of the
firm’s investment decisions (and investment, entry and exit decisions are made to maximize the
expected discounted value of future net cash flows).

Berry (1990, appendix 1) shows that under these conditions, and some mild restrictions
on the distribution of preferences over consumers, there is a one to one map between the vector
of market shares of the various'competitors and the vector of unobserved efficiency differences.
This map can therefore be inverted to obtain the unobserved efficiency differences as a function
of the observed market shares and the parameters of the model. So there is an inverse function
for this model, but it has a different form, and requires different data, then the inverse function
for the model with deterministic accumulation.

The point to emphasize here is that the existence of the invertibility condition, and its
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form where available, depends on the details of the model that is appropriate for the problem one
wants to analyze, and the data avilable. There is simply no substitute for a deeper understanding
of the major sources of unobserved variation in the data, and on how these unobservables are

likely to interact with the observed deviates.

Given the possible complexity of the invertibility condition, there may be cases where the
intuition underlying it is clear enough, though the formal justification for its use is difficult to
obtain. Our suggestion here is to begin by simply computing the value function (or the
equilibrium condition) underlying the invertibility condition for different values of the parameter
vector, and then inspecting the solution for the required properties. If one finds that the
condition is satisfied, but the proof is still not available, one may be able to extend this
numerical procedure one step further, and actually program a check of the invertibility condition
into the computations at each iterative stage of the estimation algorithm.

This suggestion presumes that the estimation algorithm requires computation of the
necessary relationships. As shown above, for more complicated models where computation of the
needed functions can be very difficult, it is often easy to simplify the computational burden of
the estimation procedure by combining an invertibility condition with a semiparametric
estimator for the inverse function. When formal proofs of the invertibility condition for these
more complicated cases are not available, but the intuition underlying it is still strong, the
suggestion is to use it, together with the semiparametric estimator for the inverse function, to
provide a simple "diagnostic" test for the presence of a serially correlated unobservables, and

some indication of just how much of an effect it may have on the parameter estimates.

The idea behind using an invertibility condition is essentially the same as the idea of
using a "proxy" to substitute for an unobserved variable; aibeit a proxy whose values typically
depend on the parameters being estimated as well as on the vector of observables, and a proxy

which can typically only be justified for a subset of the possible realizations of the vector of
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observables. The connection to the use of proxy variables makes it clear that there is a long
history of related research on accounting for unobservables in econometric models; most recently
in the semiparametric selection models (see Ahn and Powell, 1990, Choi, 1990, Newey,1988, and
the literature cited in these articles)?s.

Much of the prior literature on "proxy" variables focussed on linear models. Latent
variable models (see the review by Aigner, Hsiao, Kapetyn, and Wansbeek, 1984), and dynamic
factor analysis models (see Geweke,1977, and Sargent and Sims,1977) are two of the more
successful examples. Also related is the analysis of the initial condition problem for dynamic
linear models on panel data (see Anderson and Hsiao 1982, Pakes and Griliches,1984, and the
literature cited in those articles). For the most part neither of these literatures worried about
deriving the linear system analyzed from the primitives of a behavioral model, so the issue of the
realtionship of the inverse function to those primitives did not arise (for notable exceptions in
the context of dynamic representative agent models see Hansen and Sargent,1990; and in static
equilibrium contexts with heterogeneity, see Heckman and Scheinkman,1987). Also, once one
incorporates either discreteness in the choice set, or interactions among agents, nonlinearities
typically appear in the relationship between the observable vector and the unobserved deviates
we want to control for.

On the other hand most of the linear models did allow for disturbances in all the
relationships of interest. In contrast our discussion has assumed that the nonlinear relationship
between the observables and the unobserved state variable holds exactly. A logical next step
would seem to be to allow for measurement error in some of the observables used in the model.
The truncated conditional likelihoods, or the truncated conditional moment restrictions, would
then be in terms of the "true" unobserved variables, and, since we would only observe the error

prone deviates, estimation would require a solution to a nonlinear errors in variable problem.

19] would like to note that the idea of using invertibility conditions to account for serially
correlated unobserved state variables in a model of asset pricing is clearly set out, though
without the required proofs, in an unpublished manuscript Bent Christensen (1990), gave
to me.
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Research on nonlinear errors in variables models (see Fuller, 1987, chapter 3; Hausman,
Ichimura, Newey, and Powell, 1991; Newey and Powell 1988, and Newey,1990) has been
proceeding rather rapidly, so it may well be possible to incorporate errors of measurement into

the analysis of invertibility conditions.

It is appropriate to conclude this section on a more general point. What is clear is that
once we allow for serially correlated unobserved state variables, the properties of our estimators
are going to have to depend on a set of very detailed assumptions on the way those variables
effect the primitives of the model. A successful researcher, then, is likely to have to develop a
fairly detailed understanding of what are the major sources of unobserved variation that effect
behavior, and of how they interact with the other primitives of the problem. The alternative,
however, is to assume that all unobserved deviates are serially uncorrelated. This is, of course,
even more of a restriction than those needed for the models that allow for serially correlated
state variables. Moreover, at least for many problems of current interest, it is an additional

restriction which is simply untenable.



V. Market Interactions and the Computation of Equilibrium Responses.

We now consider one way of incorporating market interactions into our examples, make
some brief comments on related estimation problems, and ther focus in on computing
equilibrium responses assuming that the parameters defining the primitives of the equilibrium
problem have already been estimated.

To incorporate market interactions we allow the returns an agent earns in a given period
to depend not only on the value of the agent’s own state vector (y), but also on the vector of
state variables of the other agents active in the market, 5. Recall that s=(:s,y), is the list of
state variables of all active agents. It will be assumed that there is a finite upper bound to the
number of agents active in a given period (a condition, which should, in general, be shown to be
a consequence of the primitives of the model). So a particular value of s is a finite list of the
state vectors of the firms currently active in the industry, and will be called an industry
structure. In the deterministic accumulation example, then, the state vector for a given firm is a
couple (v,k), so s is a finite counting measure on fixK. Note also that the vectors (s,y), and (;,y),
carry precisely the same information so, for notational convenience, we will use (s,y) where
possible.

The assumption that the current returns the agent earns depends on s, as well as the
agent’s y, implies that the likely profitability of a firm’s investments depend on the investments
of its (potential and actual) competitors. As before we shall assume that all decisions are made
t0 maximize the expected discounted value of future net cash flow conditional on the current
information set. That information set includes a distribution for the counting measure of
possible industry structures in future years conditional on the current structure. The
equilibrium notion we use to close the model insists that this distribution is in fact consistent
with optimal behavior by all incumbents and potential entrants.

It is important to note that though we do allow the firm’s profits to depend on the state
variables of competing firms, we will, throughout, restrict those state variables to the set of

variables which determine either current production costs or current demand conditions (to use
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the terminology of Tirole,1989, to "payoff relevant" state variables). Strategies, in turn, will be
restricted to depend only on the vector (s,y) (in particular they cannot depend on previous
actions). Our assumptions, then, require the equilibrium to be Markov—Perfect Nash in
investment strategies(in the sense of Maskin and Tirole,1987,1988a,and 1988b).

The extent to which the focus on the Markov Perfect Nash assumption limits the nature
of the equilibria we study depends on the dimensionality of y. Since the burden of the
computational algorithm also goes up {and quite rapidly) in the dimensionality of y (see below),
there will often be a trade off between the richness of the equilibria that the applied researcher
allows for, and the computational burden of the subsequent analysis (and, as in other tradeoffs
discussed above, our feeling is that it should be decided on a case by case basis according to the
characteristics of the applied problem one wants to analyze). Note also that our discussion does
not allow for nonpecuniary spillovers among firms (z‘x la Roemer,1986), or for asymmetric
information (for recent empirical work on structural models with asymmetric information in
static contexts see Hendricks,Porter,and Wilson,1990, and Wolak,1990). These are reasonably
glaring omissions which impose serious limits on the applicability of the results developed here.
On the other hand, one has to start somewhere, and it is not analytically difficult to bring more
detail into the current structure provided the basic behavioral assumptions used here are

appropriate.

Our attitude towards structural estimation in applied problems where the interactions
among heterogeneous agenis are important, is that the strategy of estimating the model’s
parameters by solving for the cbmp!ete set of dynamic equilibrium responses for different
candidate values of the parameter vector, and then fitting these into an iterative maximum
likelihood {or minimum distance) search procedure, has both computational and data
requirements that are unlikely to be satisfied in the near future (at least for many problems of
current interest). It therefore becomes essential to develop techniques that allow one to break the

estimation problem down into smaller parts. Each part should allow the researcher to obtain an
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estimator for a subvector of the total vector of the model’s parameters. This estimator should be
obtainable without having to solve for the complete set of equilibrium responses, but should be
consistent and asymptotically normal under the complete set of equilibrium assumptions. A
typical breakdown will involve splitting off the static return function from the complete dynamic
system and obtaining consistent estimates of its parameters in one part of the estimation
algorithm, and then splitting off the problem of estimating the parameters defining the impact of
investments on subsequent values of the state variables into another estimation subroutine. Part
of the reason for our focus on Markov Perfect Nash equilibria is that they make it relatively easy
to separate out the estimation of the parameters defining the one period return function from
those defining the dynamic impacts of decisions.

On the other hand, once we have our estimated parameters, we will still want to use them
to compute the equilibrium they imply, and then investigate how that equilibrium varies with
policy and environmental changes. Thus we are still in need of an algorithm capable of
computing equilibrium responses, but not one that needs to be fast enough to enable us to nest it
into an iterative estimation algorithm. Section V.2 provides an algorithm for computing the

equilibrium implications for the class of Markov Perfect Nah equilibria we focus on.

When we modify the deterministic accumulation example (assumption 2) to allow profits
to depend also on the list of state variables of competing firms and then close it with an entry
process, the example becomes a version of the Hoppenhayn—Rogerson (1990) model of industry
dynamics (a model which is, perhaps, the most straightforward heterogeneous agent extension of
the traditional production—investment model). This is the equilibrium model that underlies
estimation of the Cobb~Douglas production function in the example in section IV.2. When we
modify the stochastic accumulation example (section III.3) for the same factors the example
becomes a version of the Ericson—Pakes(1990) model of industry dynamics. This will be the
example used to illustrate the computational algorithm introduced below.

The last section mentioned estimation algorithms for subvectors of both these models



71

parameter vectors that do not require iterative computation of equilibrium responses. We
emphasized their that the availability and form of these estimation techniques depended on
detailed characteristics of the mode! relevant for the data at hand. Though there are interesting
and important general estimation issues here, we have chosen not to discuss them in this paper.
Instead we focus on the problems involved in computing equilibrium responses conditional on
having an estimate of the value of the model’s parameter vector in hand. It would be
inappropriate, however, to proceed directly to the computational issues without at least noting
some of the problems that arise in generalizing the estimation techniques discussed in the last
sections to models where there are market interactions.

Since much of our discussion of invertibility conditions already incorporated market
interactions, we do not have much to add to our discussion of the use of invertibility conditions.
So we go directly to the potential for integrating market interactions into Euler equation based
estimation techniques. Here the prognosis is not as bright. At least in "small" markets, that is
markets in which marginal changes in one firm’s state variables in the current period generate
nontrivial reactions by the firm’s competitors in the following period, Euler equation based
estimators will not generally be feasible. That this is 5o despite the fact that in some of these
cases one can in fact use perturbations to the continuous control to derive Euler equations (eg.
the alternating move games discussed in Maskin and Tirole; see in particular their 1987 article),
is a result of the fact that the restrictions that result from these Euler equations will involve a
term giving the reactions of the firm’s competitors to the perturbation in the given firm’s
control. The needed "reaction function" is not a primitive of the model, but rather an
endogenous construct, and to determine its form we generally have to know the form of the
solution for the equilibrium responses. Without either more work, or more assumptions, then, we
will be unable to use the restrictions embodied in the Euler equations to derive estimators for the
model’s parameters without solving first for the equilibrium responses generated by the different
trial values of the parameter vector — a strategy which, as noted

earlier, we want to avoid.
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In some cases, of course, there will be ways around this problem. For example, in special
cases where we can show that the reaction functions must have 2 simple form {eg. linear, as in
the linear quadratic game literature; see, for example, Kydland,1975), we should be able to
estimate the parameters of the reaction function along with the other parameters in the Euler
equation from the restrictions that the Euler equation generates. A second possibility is to
obtain a nonparametric estimate of the reaction function, substitute it into the Euler equation,
and then derive a semiparametric estimator for the rest of the parameters that determine the
restrictions emanating from the Euler equation (see the literature on semiparametric estimation
referred to in the last section). Finally, we should note that even in cases where "dynamic first
order" conditions cannot be used as a basis for estimation, one still may be able to use them to
derive analytic characteristics of the optimal policy that insure that other form’s of estimators
are feasible. Of particular importance here is the use of first order conditions to show that
invertibility conditions are indeed satisfied for some subset of the possible set of values of the
observable vector.

We now leave the topic of estimation to consider computation of equilibrium responses.



V.1 Equilibrium Responses

An underlying purpose of structural modeling 15 to obtain a deeper understanding of
the responses to policy and environmental changes. This will require, in addition to
estimates of the appropriate parameters, an ability to compute the equilibrium
implications of those estimates. This subsection assumes that we have estimated the
model’s parameters, and focuses on the problem of computing their implications. 2¢

Once our models acknowledge the fact that agents do differ, and grant that their
actions may impact on one another, then the computation of the responses we are typically
after can become quite demanding. That this is 50 even if we are only after the aggregate
impact of a given change, is a result of the simple fact that agents responses in realistic

models are typically different nonlinear functions of the changing variable (the nonlinearity

becomes most obvious once one allows for discrete alternatives), and the aggregate response
we are after is usuvally a weighted average of the individual responses. Note that an
analysis of aggregate impacts in such a world requires not only the distribution of responses
of the agents currently active in the given market, but also, if agents can enter or exit that
market, the equilibrium response of that distribution to the policy or environmental
change.

Moreover, we are often specifically interested in the relationship of policy, or
environmental, variables to the more detailed structure of the distribution of agents
characteristics, and in how the equilibrium distribution of those characteristics is likely to
react to the policy or environmental change. Obvious examples where more detailed
knowledge of the determinants of the equilibrium distribution is of overriding importance
are easy to come by in almost all aspects of economics. The analysis of the link between
default probabilities and the market for finance capital, and of the effects of the various

deregulatory changes on market structure, are examples that occur repeatedly in the

20This section draws heavily on Pakes and McGuire (1991).
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finance and industrial organization literatures. More recently, the finding that almost all of
the variance in gross job creation and gross job destruction is within time—period,
within—industry, variance (see Davis and Haltwinger,1989), makes any analysis of the
caﬁses or the effects of job turnover in labor markets highly dependent on the detailed
characteristics of the equilibrinm from dynamic heterogeneous agent models (see
Hoppenhayn and Rogerson,1990, for a start at such an analysis).3t, This section focuses on
problems involved in computing the equilibria from dynamic stochastic heterogeneous
agent models (assuming that all the parameters defining the primitives of that model are
known).

As noted earlier we focus on Markov—Perfect Nash equilibria, and again we find it
convenient to illustrate our points with a particular example. The theoretical structure of
the example is taken from Ericson and Pakes (1990), and it generalizes the single agent
stochastic accumulation example used in section II1.3 to allow for market interactions. The
differentiated product special case for the spot market for current output used in the
computations is adapted from Berry(1980), and the structure of the computational
algorithm is taken from Pakes and McGuire (1990).

The example provides us with a special case to use to test the computational
algorithm. It has the additional, and at least for testing purposes desirable, characteristic
that the Markov Process which defines the equilibrium in this example lives on a finite
collection of points. We can, therefore, calculate the value functions and policies the

equilibrium generates exactly (or at least to any desired degree of precision), and then

21The Hoppenhayn and Rogerson paper is also one of the few that worries about computation
in hetero%eneous agent models. They assume that all agents are zero measure and all
sources of uncertainty are idiosyncratic, show that under their conditions the industry
structure converges to a fixed s* (and stays there) and then provide a simple way of
computing s*. Judd (1990) has computed Markov perfect equilibria for two agent models
with no entry and exit, and Hansen and Sargent (1890) provide a computational algorithm
for a class of heterogeneous agent models that allow for linear decision rules and equilibria
(they assume quadratic preferences, linear technologies and information sets, no discrete
choices, and that continuous choices are always interior).
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compare the exact results to results based on various approximations.

We begin by calculating the exact solution. Then we illustrate the richness of the
solutions one gets from structural heterogeneous agent models by simulating the ergodic
distribution of market structures, and characterizing firm behavior, for a particular
numerical example.

We also show, however, that the number of points at which we have to evaluate the
value function to obtain the exact solution goes up as a polynomial in the number of agents
ever active in the market. The number of computations per point evaluated also grows as a
polynomial in this number. Exact computation will, therefore, become computationally
impossible for a market with a large enough number of agents. For our example we cannot
really go beyond a seven agent equilibrium on our sparc 1.

We therefore move on to show how one can use procedures based on polynomial
approximations (and/or interpolation) to cut down the number of points at which we must
calculate the value function in the computational algorithm. Our major result in this
context is analytic. We prove that provided the value function of a given agent is
symmetric (more precisely exchangeable) in the state vectors of its competitors, the
number of polynomial coefficients one needs for a given order of polynomial approximation
.1s independent of the number of agents active in the market.

To get some idea of how good the polynomial approximations could be, we fit
polynomials directly to the exactly calculated value functions for our example. It is
reasonably clear that the fit of a polynomial with a given number of coefficients does not
depend on the number of agents active in the market (at least when we measure fits by a -
simple R? criteria). Two other points come out of these exercises. First, one can often do
a lot better than using simple polynomial expansions , particularly if one knows something
about the problem being analyzed. Second, and most encouraging, it seems that one can fit
the polynomials, or the other approximating functions, to a small but reasonably diffuse

subset of the total number of points, use the approximating functions obtained in this



fashion to fit all the points, and do just about as well as one would have done by fitting the

whole set of points directly.

V.1 The Example.

Recall that in the model with stochastic accumulation firms invest to explore, and if
warranted, develop, profit opportunities (improved goods or techniques of production).
The outcomes of the investment process are uncertain. Positive outcomes lead the firm to
states where the good or service can be marketed more profitably. If the outcomes
generate lesser increments than those of its competitors (both inside and outside the
industry) the firm’s profits deteriorate, and may lead to a situation in which it is optimal
to abandon the whole undertaking {thus generating exit). A firm’s supply to the spot
market for current output, and its current profits, depend on its own level of development,
a counting measure which provides the levels of development of its competitors in the
industry, and on the level of development of an alternative outside of the industry. The
level of development of the outside alternative evolves exogenously. Entry and investment
decisions (which determine the levels of development of the actors in the industry) are
made to maximize the expected discounted value of future net cash flow conditional on the
current information set. The equilibrium notion is Markov Perfect Nash in investment
strategies.

We begin by providing a brief description of each of the primitives of the model,
starting with the profit function, then turning to the other primitives determining
incumbent behavior, and finally to those determining the behavior of entrants. We then
give a verbal characterization of the aspects of the model’s equilibrium that we want to
investigate (for more detail, see Ericson and Pakes, 1989).

The state variables determining the firm’s perception of its opportunities are

(05)e N XS¢ Z X z+g:
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where v is an index of its own efficiency, s is a counting measure providing the number of
firms at each possible efficiency level, and Z is notation for the integers. "st" defines the
structure of the industry at each t.

Thus
(-, ):QXS-R,

provides the "reduced" form of the current profit function. In the general case we need
only that r(uw,s) is

i) increasing in v for all s

ii) that there exists a complete preorder on S, say ¥, s.t. if 5y % By, then r[w,sl]z
7[w,s,) for all v, and that,

*
iti)  sup rfw,;s] ¢ 7 and for each v, 7[u,5] < (1-B8)® for sufficiently large s.

In iii) B is the discount rate, and & is the scrap or exit value (the value of the firm and its
entrepreneur in its best alternative use) so (1—8)# is the per period return on the firm’s

transferable assets.

The special case we actually compute is a differentiated product model. Good "0" is
the outside good, and goods 1,...,N are the goods produced by the firms competing in the
industry. Each consumer purchases at most one good from the industry. The utility

consumer "i" derives from purchasing and consuming good "j" is given by

U(lr.]) = vj _p*j + E(i,j),

where v; is the quality or efficiency index, and p}‘ is the price, of the good, and i=1,...,.M.

Consumer "i" chooses good "j" if and only if it is preferred over all the alternatives, that is
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if
for ¢=0,1,...,N,

(i) - e(ia) 2lvg—vj + [P*577]

=[Vq—vg] - [Vj - VQ] + [P*j - p*g] - [P*q - P*O]

= glug) - glugl + 7= Py
where g(-) is increasing, vy = g_l[vq ~ vy}, and Pq= p*q — p*;- Let the set c[wj;p,s],
where s is the counting measure providing the number of firms at each v, be the set of €’s
that satisfy the above set of inequalities, and hence induce the choice of good j.

Note that choices are determined entirely by the firm’s efficiency relative to the
efficiency of the outside good. So an increase in the firm’s efficiency means that its
efficiency has gone up relative to the outside alternative, and it’s efficiency will decrease
only if the improvements to the firm’s own product are not as great as the improvements in
the outside alternative. Also, movements in v, will cause synchronized movements in the
relative efficiencies, in the w’s, of all firms in the industry, which in turn will generate a
positive correlation in their profits (of course movements in the \f will generate a negative
correlation in the profits of firm "j" and its competitors). Finally, it is the "real" price of
the good that matters.

Let G(-) provide the distribution of ¢. Then the probability that a random

consumer will choose good "j" is
ologpal= [ ccfup, A0(e)=explelyy) -/ {1+ Sexpls(uq)-pyl)

where the last equality assumes that G(-) is multivariate extreme value. If there are N

firms in the market, no fixed costs of production and constant marginal costs equal to mc,
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then it can be shown that if firms choose prices to maximize profits a unique Nash
equilibrium exists (Caplin and Nalebuff,1991) and satisfies the vector of first order

conditions

—[pj—mc] aj[l—aj] + o= 0

for j=1,..,N. Profits are given by
T[wja5]={P[Uj,S]—mC}Ma[wj;s],

where it is understood that the price and share vectors are calculated from the spot market
equilibrium conditions.

The distribution of Vi1 conditional on vy depends on the amount the firm is
willing to invest in developing its product. We let the family of distributions for the

-y =7

increment in w, i.e. for ¢ "

conditional on different values of X, be

t+1 {

P = {P(-[x), xeb,},

which we assume to have finite support. This family is built as a convolution of two
random variables. The first, say vy is the increment in efficiency the firm gets from its own
research process, and is stochastically increasing in x. The second, say v, is an exogenous
random variable which represehts the force of the competition from outside of the industry
(the efficiency of the outside alternative in the example above). Note that the possibility
of advances by outside competitors imply both that; P(-) puts positive probability on
negative values of 7, and that the realizations of 7 are not independent across the firms
that are active in a given period.

The example used in the computations puts 7= v = where,
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y = {1 with probablity ax/(1+ax)

0 otherwise,

and,
{1 with probability ¢
v =

0 otherwise.

By making the time period per decision small relative to the time period in the data we
generate distributions of increments that make large changes in 7 possible.

To choose optimal investment and exit policies incumbents need also a perceived
distribution for

Sy41 = Spqq —eléy 41

where e[“’t+1] is a vector which puts one in the v spot and zero elsewhere, conditional

t+1
on s,, and ¢. This will be denoted by

a8y 18} = Bads qIspy g dely )

Note that this distribution embodies the incumbent’s beliefs about entry and exit.
We assume that the functions qw[s |s] can be derived as the transition probability

fors, | —elo +1] from some regular Markov transition kernel, say Q[- | -):5X5-[0,1] and

+
that S is compact. Ericson and Pakes show that the Markov—Perfect Nash equilibrium will
generate transition kernels with these properties (i.e. that these conditions are indeed
satisfied in equilibrium).

Given that q (- |s) provides the incumbents perceived distribution of future market

structures, the Bellman equation for the firm’s maximization problem is
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V(v,8) = max {®,

SUP(x>0) [r(vs) —cx+ 2 V(w+r,;+e[w+'r]) qw[; |5,7] p(7]x,v) p(v)]}.

Ericson and Pakes (1989) provide a reasonably detailed exposition of the nature of optimal
policies in this framework. What we require here is the fact that boundedness of the value
function implies that if v is high enough, the value of additional increments in @ can be
made as small as we like. Since the return to investment in this model is determined by
the increment in the value function generated by higher values of , the boundedness
assumption insures that investment will be zero for all » greater t.han some w Since firms
cannot improve their quality index without some investment, states above w are "coasting
states" from which the firm’s v can only deteriorate (and will stochastically). So there is
an upper bound to the achievable v states. Similarly, the possibility of exit generates a
lower bound for the observed v states. So we can, without loss of generality, take the set
= {1, K}.

To complete the description of the model we need also to specify the primitives
which determine entry behavior. We have chosen a very simple model of entry where:

i) entry is sequential from an unlimited pool;

ii) entrants pay a (sunk) setup fee of x e(m), which is nondecreasing in the
number of entrants (m), then obtain a draw from a distribution P[wo], and begin operation
in the next period at the s—location generated by the draw;

iii)  each potential entrant enters if the EDV of net cash flow from entry exceeds
x,(m).

Formally, if

VE[s,m]=f SV{u,s+e Jo__; [s]sdpluy] dp(v)

then
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0 if V&[s1] <xf , else

m =

5
: _ e e e
min {mel : x, < Vas,m’ Vs,m-l—l <xm+1},

with {qm_l[; |s,v]} consistent with some Markov transition kernel on a compact set.
Note that the distribution of entering «'s is fixed over time. Thus the "ability" of
entrants progresses at the same pace as the "ability" of the outside world (in terms of our
example it advances with the ability of the outside alternative). If this were not the case
entry would eventually go to zero and stay there. Also in the computational example we

set x(f = xe

, and xg = @, 50 the maximum number of entrants in any given period is one
(the maximum number of entrants in any time interval depends on the number of

decision—making periods in that time interval), and

*
lforwgzw, ifv=0

plug 1] ={

*
lforwozw-l ifv=1.
Ericson and Pakes show that under these conditions;

*
i) Vs, m<m"~

* *
ii) 3N st Esij = m, =0

* *
Hence #S < KN +m , i.e. there is only a finite number of industry structures possible.

They also provide a formal proof of the existence of a rational expectations, Markov
Perfect, Nash equilibrium under these assumptions.
The industry structures generated by this equilibrium will all be counting measures

on {! with a finite number of firms, i.e.
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* ok
S= {s=[sl,...,sK]: Esj ¢ N +m }.

So the heart of the equilibrium is a stochastic process for {s,}, defined on (S®,S,P). This

process is a stationary Markov process, i.e. if st=(sl,...,st), then
PR 1 ‘ )
Prfs, =5’ Is'} = Prls’Is] = Qf[s),

with transition kernel Q[- | ], and initial condition 5 (assumed in S).

The Ericson—Pakes paper also proves that the Markov kernel, Q|- | -], implied by
the model’s assumptions generates an ergodic distribution of industry structures. In
particular it is shown that;

i) the state space, S, contains a unique, positive recurrent communicating class,
say RcS;

ii) 3 a unique probability measure, say ,u*, whose support is R, and which
satisfies, ,u*Qz,u*.

*

i) if ,uT[sO,s], gives the fraction of time periods for which s, ='s, then pT[so,s]--o Ky

a.s. uniformly over seS.

Note that though (I/T)Est — ,u*, s, itself never settles down. Rather the
structure of the industry is in perpetual flux. Depending on the nature of p* we can expect
the industry to go through periods when output is concentrated in the hands of a small
number of large firms, and theh, perhaps as a reaction to a sequence of new inventions, to
fracture into an industry composed of a large number of approximately equally sized firms.
Of course even over periods when the industry structure remains relatively stable there will
be heterogeneity in the outcomes of the active firms, with rank reversals, and simultaneous
entry and exit as the normal course of affairs.

It is worth emphasizing, however, that the actunal nature of the limit distribution,
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ie. of p* (whether in fact it does include both relatively fractured and relatively
concentrated structures), and the nature of the pattern of likely transitions between
elements in that limit distribution (do we cycle over the divergent types of structures, or
are there Poisson type events that take us more directly from one type of structure to
another), depends on the precise values of the parameters that determine the primitives of
our model. What the ergodic theorem tells us is that if we are willing to suffice with limit
properties, we can analyze them, and how they react to different values of the parameter

vector, without specifying initial conditions.

V.2 Computation of Equilibria.

We now come back to the task of tracing out the characteristics of Q|- |-} implied
by different values of the parameters defining the primitives of the model, and of describing
how sample paths are likely to change in response to policy and environmental changes.
This brings us back to the need for a computational algorithm that allows us to solve for
(or simulate) the stochastic process generating {s,} for different values of the parameters of
the model.

Q{-|-]is calculated from the optimal policy and the primitives, as together, these
generate the transition probabilities for all encumbents and potential entrants from any
initial state. Though the actual computation may well be complicated (see Ericson and
Pakes,1989), given the optimal policies, i.e. {)((w,s),x(u,s),Ve(s,m)}, and an initial s, it is
easy to simulate different sample paths and then derive an empirical distribution which
will converge (uniformly) to the true Q[-}-]- So the whole computational problem is in
finding the optimal policies. We turn now to a description of a computational algorithm
[taken from Pakes and McGuire(1990)), designed to find these polices, and a discussion of
its properties. The algorithm, together with the functional forms given in the example

provided above, is then used to generate and characterize the evolution of that industry.
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A Computational Algorithm

We work off value functions for problems with a limited number of active firms, and
then push that limit up. Start with the value function for 1 active firm. Thisis a
straightforward contraction which sets the support of (the upper and lower limits for) v,
1.e. it sets f}.
2 .
For N=2 we need to calculate V{u,,vq] for {v;,0,} € °. Start with Vol 1 =

r[wl,wz]. Then get Vn[wl,w2] as the solution to:

(30a) Vn[wl,w2]=x[w1,w2]—cx+

n—1
I6)) V7 ey 47+ v,ug+ o+ ulp[7g [x4,0]p[7o | xg)”]?("),

TpTHv

where the couple [x;,x,] satisfy the Kuhn—Tucker conditions

(30b) x,{— + az,,i,,,,j,vv“‘l[-,-Jpj(epj/axi)pcv)}=o,

x. 2 0,

fori¢ji,j= 1,2,...p; = p['rilxi,v], and so on. One procedure for calculating the fixed
point defining the equilibrium would be to repeat this stép iteratively until ||VH—VD_1 f
was below an acceptable tolerance for an appropriate norm |- ||

Note that this procedure differs from a straightforward "doubly nested" fixed point
calculation. The latter would begin with a candidate function for the process generating the
competitors states [for p('r2 |s,v) in our two firm example], use it to solve the implied
contraction for V(- |p(12| -)] and the associated investment policy, then use that
investment policy to update the process generating the competitors states [to update
P(7418,v)], and then iterate on this double nest until convergence. By solving for all the x’s

simultaneously at each iteration we have done away with one of the "nests" in this fixed
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point algorithm. However, the procedure in (30) requires the solution to an implicit
nonlinear system of equations at each iteration of the fixed point, and the fact that the
system of equations does not have a explicit solution increases computational time
dramatically.

An alternative is to use x?-l in the Kuhn—Tucker condition that solves for x; (for
j#i). If we ignore the constraint that x > 0, this gives an explicit solution for each x;. If X;
< 0, set it equal to zero. This does away with the requirement of a nonlinear search at
each iteration, and decreases computational time accordingly. Of course we could iterate on
this "policy step" until convergence and (provided convergence is achieved) obtain an exact
solution without ever having to simultaneously solve the nonlinear system. Though it did
not prove helpful to iterate on this step in the examples presented here, it is more likely to
prove helpful once we substitute polynomial approximations into the computational
algorithm (see below).

For expositional simplicity we ignored entry in the discussion above. To account for
entry, consider states where V[u,,u] = . In such cases we use 7{w,] instead of t[vy,05),
and calculate Ve[wl]. If this term is greater than x°, we calculate V(e vy} for Vwg,w,),
where the transition probabilities for v, are given by P[wo].

We still continue iterating until |]Vn—Vn—1||

is within a given tolerance, but now we
also check i]xn—xnhln. A fixed point to this problem can be shown to satisfy all the
requirements for our equilibrium if the maximum number of firms, set either endogenously
by the model’s parameters, or by an artificial barrier to entry, call it N, is 2. Now push N

up to 3 and do the fixed point calculation again starting at
n=0,3 =m,2
v [v):0,04] = yo=e {v;,max{u,,u5]}.

This procedure should be repeated until we reach an n where, for all industry

structures at which Zs(i)=n, V®(s,1)<x®. The n which satisfies this condition is an upper



87

bound to the number of firms ever in the industry (i.e. it is N; of course this is only true if
the initial s has no more than N firms).

Some caveats are in order before proceeding. We have not proved a contraction
property for our algorithm yet, so we have no way of knowing for sure whether it
converges. On the other hand it has converged for every set of parameter vectors we have
tried. We have not proven uniqueness either. We did calculate all results we describe here
thrice, starting each at different initial conditions [once at A(-), once at zero, and once at

V(-) from the smaller N, see above]. In each case we got to precisely same answer.

Computational Burden
Roughly, the computational burden of this algorithm is the product of: 1) time per

grid point evaluation, 2) number of grid points evaluated at each iteration, 3) number of
iterations until convergence.

An explicit calculation can be provided for the number of grid points. First note
that one does not have to evaluate all of them since symmetry implies that V[u,1,k] =
V([v,k,1], for all (v,k,1). Indeed the number of points one needs to evaluate are the number
of distinct N—element vectors with u; 2 vg,..., 2 ¥y, (and, 1gui5K, fori=1,...,N).
Lemma 31 provides an exact calculation for the number of distinct N element vectors that
satisfy this condition. Note that it grows as a polynomial in N (it is bounded from below by
KN/N, and from above by (K+N—1)N/N).

31 Lemma
The number of distinct sequences [wl,...,wn] with ¢20; 4 and wie[l,...,K] (i=1,...,N),

say E(K,N], is given by
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Proof

First note that for N>2

EK ] = E[j,N-1}

- R
H ey
s

since when we put the number "j" in the N*D slot we have B[j,N-1] sequences of

[wl,....,uN_l] with ¢2e; 4 fori=1,.....N—1 and wie[l,...,K]. Given this fact we can
proceed with an inductive proof for the theorem (in N).. The initial condition of the
inductive argument [N=2] is true by enumeration, so what we need to show is that if

E[K,N] satisfies the equation in the statement of the lemma so does E[K,N+1]. From above

K K

o W[N] [K4N
EKN+1] = 3 EN) = ) PN =[Nid

j=1 i=1

as required, where the last equality can be shown by induction on K. o

The approximation methods we discuss below are designed to overcome {he problem
that the number of grid points evaluated grows as a polynomial in the least upper bound to
the number of active firms. There will still be the issue, however, that the time per grid
point evaluation grows as a similar (though not quite so large) polynomial in N (it would
be exactly the same if all industry structures were connected in the sense that it was
possible to pass from any one to any other in a single period; though this is definitely not
the case in our example). That is at each grid point we do evaluate, we need to evaluate
the value function at every achievable industry structure in the following period.

On the other hand, we expect the number of iterations needed for convergence to go
down as N goes up. As we increase N, the effect of an additional active firm on the value

of being at a particular point ought to diminish, so the final iteration for the value function
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calculated at the N—1 firm equilibrium should be closer to the N—firm value function we
are looking for. However, we have no formula for the rate at which this will occur.

We calculated 2 to 6 firm equilibria (i.e. N¥=2,...,6) for different values of the
parameter vector for our example, and found that the computational time for the 6 firm
equilibria was about 5.5 hours on our sparc station. The no—entry barrier equilibria value
of N* for most of these runs was 6 firms. However the time required to calculate the
equilibria went up by a factor of about 5 every time we went from an N to an N+1 firm
equilibria. This in spite of the fact that the number of iterations required before our
convergence criteria was met typically got multiplied by fractions between .5 and .7 when
we moved up N in units of one (though this varied between runs).

Thus, though the computational techniques presented here may suffice for
computing equilibria for markets with a small number of agents, we will need to improve
on them in order to analyze many of the markets of interest. We come back to this point

below. First we glance at some of the summary statistics from one run of our example.

Descriptive Output From One Set of Computations

To illustrate the type of dynamic stochastic equilibrium that results from this class
of dynamic heterogeneous agent models, we briefly go over some summary statistics from
one set of parameter values. Those values are: § (the probability that the outside
alternative moves up) = .7; § = .925, x° (sunk entry cost) = .2, ® (scrap value} = .1, m
(size of market) = 5, spread = 3 and a = 3 (parameters determining the efficacy of own
investment in increasing the probability of quality improvements), mc (marginal cost) = 5.

Table 2 provides some statistics which help describe the ergodic distribution for this
industry. Part A of the table indicates that the ergodic process characteristically has
either three or four firms active in a given period. There is, however, lots of entry and exit,
so the firms active in equilibrium are not always the same three or four firms. Note also

that entry and exit are positively correlated; in most years when there is entry there is also



Table 2
Characteristics of Ergodic Distribution
§=.7T7a=23f=.925xe=.2phi=.1
spread =3 m=5¢ =3

No. of Time Periods 10,000

% with 6 firms active
% with 5 firms active
% with 4 firms active 2

% with 3 firms active 69.
% with 2 firms active

© =
O WWOwW

% with entry and exit 10.10
% with entry omly 4.44
% with exit only 2.18
% with entry or exit 16.75
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exit (Part B of the table: this is in a stark contrast to models of industry dynamics that do
not allow for idiosyncratic sources of change).

One thousand four hundred and fifty one firms participated in the industry during
the 10,000 periods simulated, however, most were active only a short period of time (Table
3; part A). Almost half of them dropped out after their first year of operation. Both
mortality and hazard rates decline markedly over the first seven or eight years, giving the
indication that this initial period looks very much like a "learning" period. About 11% of
new entrants survive eight years, and after that the hazard has no particular shape {one
should be aware that these are estimated mortality rates; their sténdard errors are on the
order of .005).

Part B of Table 3 provides characteristics of the realized values of the firms which
participated. The first point to note is that over 90% of the firms which participated in
this industry had a net loss from their endeavor (generated negative realized values). Most
lose about .1 (the difference between the entry and exit fees), but there are those who
invest for awhile, never move up the "quality ladder", and eventually drop out, losing also
their investments in the interim. Among the 10% whose realized values were positive, the
mean realized value was very high (9.3 giving a benefit/cost ratio of 46.5), and the
distribution was very skewed. The industry is most often reasonably fractured (the one
firm concentration ratic averaged .37 in an industry in which there are almost always
either three or four active firms), but periodically a firm will surge ahead of its competitors
and stay there for reasonable lengths of time (the standard deviation of the one firm
concentration ratio was .11).

These parameter values generate an industry in which it is relatively cheap to start
up and explore some new idea. Most start ups are not successful. The few that are grow to
become major actors in the industry, and earn phenomenal rates of profit. Of course,
eventually, even the most profitable firms are passed over by the developments

of its competitors and find it optimal to exit.



Table 3A
Lifetime Distribution
(Based on 1,451 "lives" in 10,000 time periods)

6= .Ta=3f=.925 xe = .2phi =.1
spread =3 m=5¢c=35

Mean = 22.7, Median = 2, Standard Deviation = 101.8

' Cumulative

Lifetime Frequency Percent Implied Hazard Percent

1 617 42.5 42.5 44 .5

2 401 27.6 48 70.2

3 126 8.7 29.2 78.8

4 55 3.8 17.9 82.6

5 36 2.5 14.3 85.1

6 20 1.4 9.4 86.5

7 16 1.1 8.2 87.6

8 14 1.0 88.6

9 T .5 89.0

10 5 .3 89.4

> 10 146 10.06
> 50 96 6.6
> 100 77 5.32



Table 3B

Realized Value Distribution

§=.Ta=3f=.925
spread = 3 m

Kean = .58, Median = -.1, Standard Deviation = 3.60

128 positive entries, mean is 9.3
1223 negative entries, mean is .28

0bs /Num RY Lifetime Sum/Rv

1 72.8 79 72.8

2 24.0 70 96.9

3 22.2 182 119.1

4 21.9 501 141.0

5 20.2 530 161.2

10 17.8 54 253.4

50 10.44 78 779.4

100 4.39 334 1135.9

128 .21 g 1192.2

129 —.06 4 1191.9
1000 -.1

1451 —4.03 846.7
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At this point it would be useful to perturb the model in ways that correspond to
possible policy or environmental changes, do additional computations, and compare the
results. One of the great advantages of structural modelling is that it generates an ability
to do such comparisons, and Pakes and McGuire (1890) illustrate by considering the effects
of alternative possible regulatory changes on market structure and welfare (see also Judd’s,
1990, numerical analysis of alternative duopolies). However, these comparisons are topics

for whole different papers, so we now return to computational issues.

V.3 Computational Approximation

We now consider computational techniques that attempt to reduce the
computational burden of obtaining the equilibrium by fitting the value function at only a
small fraction of the points in S, and then using the information obtained from those values
to predict the value function at other points as needed. More generally, all we require is an
approximation to a function which determines policies at any point in S, and there are
many different ways of doing this. The symposium in the JEBS (1990) reviews and
compares several different approximating techniques in the context of computing equilibria
for a representative agent stochastic growth model. Judd (1990), sketches a general
framework and computes equilibria from models with two agents (no entry or exit), and
the article by Marcet (1990) in this volume reviews progress in this field to date.

Many of these techniques fit polynomials in a set of functions that span, or form a
basis for, a "rich enough" collection of approximating functions (the Chebyshev or
Legendre polynomials for example) to a small set of points, and then use the fitted
polynomial to predict the other points as needed. An alternative is to fit the function
directly at a small number of points, and then interpolate, either linearly, or using a spline,
to other points. We begin by showing how to embed such approximations into the
computational algorithm described above. Note that the heterogeneous agent problems we

are interested in are by nature multidimensional, the dimensionality of the state vector for
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any given agent going up with the number of other agents active in the market.22

Recall that a function £k is a polynomial of order A if for all wEQN

A p—).’.hi p
_ ‘-'\ ‘-‘ b | h h
Hwpeg) = 9 3 Z afby,....hy ol L. ofiN
‘
= JNa(h)U(h)
heH

with a{h)¢R for all h={h,, .hy JeH", where HN={he 2" _: Sh.¢A}. The collection of all
such polynomials (obtained by varying @), together with the usual operations of addition
and scalar multiplication, is a vector space (over the real numbers), say 7 A basis for
this vector space is the set of tensor products of the w}il(i) with h varied over HY (see
Hoffman and Kunze,1972,section 5.6). These are just the functions implicit in the «(h) in
the equation above. Though we do not pursue it here, the following discussion could be
generalized by looking for an approximation in a vector space spanned by the tensor
products of g(v;) for suitably chosen g(-).

The iterative procedure used to calculate the fixed point defining the value function
for our problem can be modified to find an approximating polynomial, a {/e 7j as follows.
Define a set of basis points, say w(j)eQN, for j=1,2,.... If there are J basis functions, the
basis points must generate at least J linearly independent values for those functions.
Starting at some initial guess for the vector a, let the estimate of the coefficients at the
n~1*B_ jteration of the recursive calculation be a®!. Now calculate the value function at

the basis points by substituting

22Throughout we will consider the case where N, the least upper bound to the number of
agents ever active in a given period, is less than or equal 10 K = #(1. In this case the
dimensionality of the state vector is smaller when we calculate value functions as a
function of the vector of v values of all active agents. When N 2 K, use of a counting
measure on {1 as the state vector minimizes the dimensionality of the state space.
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Vi) = (i) e,

into the n*® iteration of the recursive calculation in (30). (30b) then produces an x", which
when substituted back into the (30a) that used vyl produces a new value function, say
V*3(), at each of the basis points. We choose o to minimize the Euclidean distance
between v’ a® and V*"() at the basis points. That is, if W is the matrix formed from the

rows ¢(j),
o = [WOW]ITW VA,

This procedure can be generalized slightly by approximating a monotone function of V(-)
by a polynomial in the basis functions, instead of approximating V(- ) itself.

Without further restrictions the number of functions needed to form a basis for 7,
and hence the minimum number of points at which we need to fit the value function for
this approximation, still grows as a polynomial in N. However, we have not yet used the
fact that the value function is symmetric, more precisely exchangeable, in the vector
(”2"“’”N)‘ If we restrict our search to the subspace of 7i that satisfy the restriction that,

N

for all w EHN,

V(wl,...,wN) = V(w1,1r2,...,7rN), (32),
for any N—1 dimensional vector r = (. ,...,wN) which is a permutation of ("'2""’”N)’ we
reduce the number of required basis functions dramatically. Indeed, provided N>}, the

number of required basis functions becomes independent of N. That is the content of the

following theorem.

33. Theorem
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The space cf polynomials of order A satisfying equation 32, together with the usual
operations of addition and scalar multiplication, is a vector space, say PzA C 75\, with

dimension

. N .
dim %< B3 o —Al)=p(2), (33.1)

where a(3) is the number of partitions of the number i (see below}. Further, 33.1 holds with

equality if N3X. Note that () is independent of N.

Proof

The fact that addition and scalar multiplication preserves partial exchangeability
proves that the subspace of functions satisfying (32) is a vector space. The proof of 33.1 is

a result of the following lemma.

33.2 Lemma (proved in Appendix 2).

An fe % is also a member of %  if and only if for all heB™,
af(hl’h2"""hN) = a{(h1,1r2,...,1rN),
for any (7r2,....,7fN) which is a permutation of (h2""’hN)'
Define m j(h) 10 be the jth largest element in the vector (h2,...,hN) for j=1,...,.N—-1
(using any tiebreaking rule that preserves the natural order of pairs that are ordered).

Then lemma 4 implies that we can form a basis for 75 gby simply adding together the

basis functions from 71 that have

afhy,hy) = adby,mg,..my),
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for each distinct value of the vector (hl’mZ""’mN)‘ What remains is to determine the
number of distinct o coefficients this generates. Let p(h) be the order of the basis function
corresponding to ah), that is p(h) = Ih(i). Then the number of distinct « coefficients
generated by h vectors with p{h) = p, and a particular value of hy,is the number of ways
the number p—-h1 can be allocated among N—1 locations (without regard to order). If
N>A>p-h, this is simply the number of partitions of p——hl, or A(p—hl) (see below).
Consequently, the number of distinct a coefficients required to generate all distinct

coefficients for the pth order basis functions is ¥(p), where

@A} is derived by summing this equation over p=0,1,...,A.
The theorem implies that there are only two distinct first order coefficients
o(1,0,...,0), and o(0,1,0,...,0)
with associated basis functions
Wy and Ei=2 v
Similarly, there are four distinct second order coefficients
a(2,0,...), «(1,1,0,...), a(0,1,1,...), and &(0,2,0,...)

with basis functions
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2 2
v Ficg 4 B —of <ot 4 804 Bipef.

More generally, there are a(p—j)

order coefficients with h

i
(jip_jiol"')) a(J,p—J—l,l,O,) a(j)p_j_2:2;0;01"');
a(j,p—j—?,l,l,O,...),..., o(j,1,1,...,1,0,...),
with associated basis functions
N N N
J W ) I WY OW b, JE 2 h-J—2 2
“ JZ-’ “i 9 124 JZ.{ 1 l S|
i=2 i 172 1= i

N R AT
I S

The general formula for a(q) requires fairly detailed notation (see, for eg.,

Abramowitz and Stegum, 1972, p. 825; it is a sum of Stirling numbers of the second kind)
For convenience, we provide a listing of a(q) and ¢(q) for q=

1,...,12, in Table 4.

: Table 4
0 1 2 3 4 5 6 7 8 9

10 11 12

3 4 5 7

11 15 21 30 41 55 75

14 26 45 75 120 186 276 407 593 834
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Recall that if a A—order polynomial is a good approximation to the value function,
then we need only calculate the value function at ¢{A) points. For comparison, the
pointwise technique used to calculate the results reported earlier required calculating the
value function at 639,000 points; and this for a vector of parameters that generated an
ergodic distribution of industry structures with an upper bound of six active firms. Thus,
at least for industries with a moderate number of firms, polynomial approximations
restricted to the subspace of exchangeable polynomials should allbw us to cut the number
of points at which we evaluate the value function by several orders of magnitude.

The other point to remember is that the CPU time required to compute the value
function is a product of: the number of points evaluated at each iteration, the time per
point evaluated, and the number of iterations required before convergence. Though the
number of points evaluated will fall dramatically as a result of imposing the restriction that
\} € ?5\ g, the complexity of the calculations at each point evaluated will increase. The
reason is that at each point we require the integral of the value function over the states
achievable from that point in the next period, and the values of the value function required
for the integrand in this computation must now be computed as a product of basis
functions and polynomial coefficients (instead of just calling them up from memory, which
is what is done when we calculate the value function pointwise). On this count alone, then,
we would not expect substitution of the approximation technique to cut computational
time by the same factor as it cuts the number of points at which we need to evaluate the
value function. In addition, substitution of the approximating technique is likely to change
the number of iterations needed before convergence is achieved (though it is not clear in
which direction this change will go). Thus, the crucial question of just how much of a
saving in CPU time we will generate by approximating the value function by a AVE 4 8is

still unresolved, and all we can say at this stage is that this form of approximation may
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enable us to calculate the equilibria in problems for which the number of active agents is
quite large.

To begin our examination of the use of a v € 73 gto approximate the value
function, we fit the approximating basis to the actual value function for our example
(recall, that we obtained the value function from an "exact" pointwise calculation). We
started here for two related reasons. First, we thought that if the polynomial coefficients
obtained by fitting the approximating basis to the true numbers did not provide an
adequate approximation to the value function, then we could not expect that the
polynomial coefficients obtained by fitting the approximating techrique into our
computational algorithm to provide an adequate approximation. Second, there are several
ways of modifying the procedure used to obtain the polynomial approximation to the value
function, and one simple way of comparing the alternatives is to compare how well they do
in approximating the true numbers.

In this latter context we mention four points. First, since the sum of (partially)
exchangeable functions is an exchangeable function, one can add any exchangeable function
to an exchangeable basis and still maintain the exchangeability of the approximating
function. This is one way of embodying exogenous information intc the approximation
algorithm, and we illustrate below by adding the profit function to the basis used for
approximating the value function with quite dramatic results. Second, we have proceeded
throughout as though the basis were being fit directly to the value function. Instead, we
could fit the basis to any monotone transformation of the value function, and modify the
computational algorithm accordingly. The Ericson—Pakes paper proves that for some
simple cases of their model the value function is "S—shaped” in the firm’s own », and it is
presumed that this general shape characteristic persists for a larger class of primitives,
including the primitives used in our calculations. So we present resuits from fitting the
logit transform of the value function, as well as the value function per se. Third, it is

possible to use different degrees of polynomial approximation for the »; dimension, then for
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the (wg,...,wN) dimension, and, finally, we need not restrict ourselves to fitting ¢(A) points
[any number greater than ¢{A) will do}.

Table 5 present some results from the fitting exercise. The entries in the table are
the R2’s obtained from QLS fits of the value function to alternative approximations. For
most of the approximations we present the fits from the value function when the number of
active firms is restricted to be no more than 4, and 5 as well as for the unrestricted case
(where the least upper bound on the number of active firms in the ergodic distribution is
6). We also present most results as the order of the polynomial being used in the basis
functions varies from 2 to 6 (this gives us the alternative rows of the table).

The columns labeled V provide the R2’s from fitting the value function to the
partially exchangeable basis of polynomials. The columns labelled LOV fit the logit
transform of the value function, but then transform back to the actual numbers to calculate
the fit. The columns labelled A fit the actual value functions, but add the profit function
to the set of basis functions. The columns labeled A2 add both the profit function and an
interaction of the profit function with the first order polynomials to the basis functions.
The numbers above all these columns refers to the number of points at which we obtain
values for the value function, or the cardinality of S (this is the number of observations for
the OLS regressions).

The entries for the columns labeled mod3 and mod3A are found in a slightly
different way. Here we took only the value function at those » points that were mod3 in
the vector sense (i.e. each element of the ¢ vector was divisible by 3) and projected these
on to the basis functions to obtain the polynomial coefficients. We then use the polynomial
coefficients obtained in this way, to predict the value function at all points, and calculate
the R? obtained from fitting the true values to these predicted values. The "number of
points" headings above these columns refer to the number of points used in the first stage
of this procedure (the number of mod3 points). The column labeled mod3A adds the profit

function to the basis used in the first stage. Finally, in subpanel 6 we also present results



Table 5 - R? 's for Alternative Approximations*

B

]

4 5
Firms
# of 25270 mod3 = 588 138958 mod3 = 1470
points
v LoV A A2 mod3 mod3la v A A2 mod3 mod3a
Order
2 .B04 .905 -.977 .986 .802 -976 .807 .971 .982 .804 .970
.877 .911 . 987 .992 .873 .985 . 880 .985 .991 .877 .982
" 4 .927 -947 .993 .995 .919 .992 .928 .991 .994 .922 .990
" 5 .951 974 . 995 .996 .939 . 994 .953 «994 .996 .941 .993
" 6 . 968 «977 .996 . 997 .942 . 995 .968 .996 «997 .941 . 994
6 Interpolation-6 firms
Firms
# of .
points 639331  mod3 = 3,235  ergodic = 2,485 3234 8778 1064
Order v erg ergAh | ergA2 | erg- erg- erg- mod3 mod3 modé
mod3 mod3A | mod3A2 (2-6) (2-6)
|| 2 .815 | .834 | .971 | .o88 - - - .989 1.993 | .902
|| 3 .887 | .908 | .986 | .994 - - - |
4 «932 . 957 .993 .996 . 865 .979 .990
5 . 954 .978 -996 .998 .917 . 987 .993
6 ..969 .988 . 998 -.999 <942 -993 .993

explanation in the text.

For the approximating technique relevant for the alternative columns, see the
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from fitting only the 2485 points in the ergodic distribution of industry structures.

Several points stand out from the table. First, as expected, the same order of
polynomials (and hence approximately the same number of basis functions) produce about
the same fit regardless of N, or the number of firms ever active in equilibrium {at least if fit
is measured by R2). Second, in comparing the alternative ways of approximating the value
function, it seems that using the logit transform only improves the fit marginally (at least
when the fit is already quite good), but adding the profit function to the set of basis
functions improves the fit rather dramatically. When one has exogenous information on
either the form of the value function, or on an alternative function which is expected to
"mimic" the properties of the value function, one should probably use it directly.

Third, and probably most importantly, when we fit the exchangeable basis to a
small number of (reasonably diffuse) points (the mod3 points), and then use the coefficients
obtained from that fit to predict the value function at all possible points, we seem to do
just about as well as we do when we fit the basis to the entire set of points directly — at
least if the polynomial basis is rich enough to give a good direct fit.

We now move on to examine how well we fit the 2485 points in the ergodic
distribution. Since they are less than 1% of the total points being fit in the six firm
equilibria, we were worried that the fit of the points in the ergodic distribution (weighted
by there probability in the invariant measure) might not be similar to the overall fit of the
points in the six firm equilibria (and it is the ergodic points that we want accurate
estimates of for most subsequent analysis). The columns labelled erg,ergA, and ergA2 fit
the ergodic points directly. The columns labelled ergmod3, ergmod3A, and ergmod3A2,
take the polynomial coefficients obtained from fitting the set of mod3 points from the
entire six firm equilibria, and use those to predict the points in the ergodic distribution. If
anything we seem to fit the points with positive probability in the ergodic distribution
better than we fit the entire space of points (even in cases where we use the coefficients

predicted from the entire set of points). This gives some reason to believe that the points at
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which our approximation is not fitting well are points which would not be used intensively
in policy and descriptive simulations.

The last subpanel of the table presents some results from fitting interpolated values
of the value function. The points from which we interpolate are, respectively in the three
columns: all mod3 points, mod1 for the v of the firm in question and mod3 for the other
firms’ &’s, and mod1 for the v of the firm in question and mod$ for the other firm’s #'s . It
seems that in order to obtain the same fit as obtained from the polynomial approximations,
the interpolation procedure requires a larger number of interpolation points than either the
number of basis functions required to achieve this fit in the polynomial approximations, or

the number of points we used to obtain the polynomial coefficients.

Since the value function per se is not what we are interested in, we also did some
limited experiments on whether the investment strategies implied by these approximations
were sufficiently close to the investment strategies calculated from the pointwise solution.
To do this we simply substituted the approximations into (30b) and calculated the implied
investment strategies. We used three measures of fit. The first was the R? obtained from
comparing the two investment strategies. The second separately substituted the alternative

investment strategies into the simulation program used to compute 1 and

t+

then computed the R2 from comparing the two ¢ 1 series, and the third did the same but

t+

1Y% The three R2’s were, respectively, .98,

.99, and .91. These were obtained using polynomial approximations made directly to the

computed the R2 from the two series for v

ergodic points, and if we use instead the polynomial coefficients obtained by fitting
polynomials to the mod3 points from the entire 6 firm equilibrium, and then fit to the
ergodic distribution, the results are somewhat worse; .91, .98, and .78, respectively. Still,
an R of .8 for first differences, and of .98 for levels seems reasonable, and we could do
better by increasing the order of the polynomial we fit.

For a "first cut" we view these results as encouraging. Still they do leave two
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unanswered questions. First, will we get as good an approximation if we obtain the
approximating functions directly from the recursive a.lgdrithm described above? Second,
are fits as good as those shown in the table "good enough" for either estimation, or for
descriptive and policy simulations. At this stage all we can say is that there is work in
progress which should help to clarify these points, at least for models similar to those

discussed in this paper.



VI1. Conclusion

This paper has attempted to clarify some of the modelling, econometric, and
computational issues that arise in bringing dynamic structural models into empirical use.
The discussion focussed on selected technical issues that have been of concern in applied
work; the uses and limitations of Euler equations, incorporating serially correlated
unobservables into our models, and computing equilibrium responses to dynamic
heterogeneous agent models. Throughout we used examples to illustrate the main points.
The exposition of the examples also carried with it an implicit view of structural modelling
— so much so that it did not seem necessary to add a section with a more general
discussion of when, why, and how, one might engage in it.

It might, however, be useful to conclude with some practical points that often get
lost in the more abstract debates on the methods and merits of structural modelling. Qur
discussion of these points will be premissed on the following "fact". We, as applied
researchers, attach a "structural” interpretation to the numbers we eke out of our data
every time we use those numbers to analyze the interactions between economic agents, or
between an agent and his or her environment. This is just as true when the numbers we use
in the analysis are simple "reduced form" correlations, as it is when the numbers used in
the analysis are parameter estimates from a complex structural model. So there is really no
room for debate on the issue of whether structural models are "useful". The debate must,
therefore, be about whether the cost of formalizing the structural models being implicitly
used in the analysis, and then possibly parameterizing them with the data, is worth the
benefits from this (sometimes quite costly and time consuming) endeavor.

The answer to this question is undoubtedly that sometimes it is worthwhile, and
sometimes it is not; and when it is, it is to varying degrees. The cost benefit calculation
depends on a myriad of factors including; the complexity of the problem being analyzed

and the possibilities for drawing misleading conclusions from simpler forms of analysis, the
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quality of the data, computational difficulties, prior knowledge on the likely
appropriateness of the assumptions that need to be fed into the structural model, and the
comparative advantages of the researcher. General rules are hard to come by when so many
of the important dimensions of the decision are problem specific. There are, however, a few -
considerations that one might keep in mind in formulating one’s own strategy.

First, it is often useful to begin an empirical project with a reasonably detailed
"reduced form" analysis of the data. This for several reasons. First it is likely to suggest
just why a more detailed structural model might be useful. Second, the reduced form
analysis should indicate the aspects of reality that will need to be built into a structural
model for that model to be able to account for the data, and, finaly, thoughtful reduced
form analysis often allows one to get some feel for the likely benefits from a structural
modelling effort. 23

Second, given a set of reduced form results, it is often helpful to write down a simple
structural model that captures the essence of what one thinks might lie behind them
regardless of whether one intends to take that model to data (note that by this we mean
writing down a model all of whose assumptions, including the assumptions on its
disturbances, are formulated entirely in terms of the primitives affecting economic
behavior). The understanding that comes from this modelling exercise is typically useful in
several ways. First, it clarifies the problems associated with placing any given
interpretation on the reduced form estimates. Second, it crystalizes the trade off between
assumptions, computational problems, and data requirements that will be faced in
attempting to build a structural estimation algorithm. Finally the modelling exercise will

frequently lead to simple diagnostic tests and/or correction procedures for problems that

#%Unless one has large amounts of data and is extremely careful about how it is used, the
preliminary reduced from analysis will often also call into question the interpretation of
subsequent standard errors and test statistics. However, without a more detailed theory of
learning that allows for the mix of inductive and deductive reasoning actually used in
empirical work, this seems like a cost we will just have to bear.
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seem likely to be important in interpreting a particular relationship; corrections that might
not require either all the assumptions, or the computational burden, that would be needed
in order to estimate a complete structural model. The developments in semiparametric
estimation (see the references in the text) are particularly exciting in this context.
Semiparametric techniques often allow one to circumvent many of the computational issues
and some of the more detailed assumptions that would need to be adressed had we to solve
the complete model for alternative possible values of its parameter vector before we engage
In any estimation.

Third, given the complexity of the issues we typically want to analyze, and the
limited data and computational resources available, any successful effort at structural
modelling is going to have to abstract from certain aspects of reality. The choices of what
to abstract from, and the issue of how that abstraction impacts on what we can learn from
our estimates, are both legitimate topics for discussion. In engaging in such discussion,
however, a few general points should be kept in mind.

First, given the limitations of our data sets and computational procedures, it seems
reasonably clear that one should lean heavily on any prior knowledge available about the
applied problem at hand (and there is frequently quite a bit of it available). This, in turn,
is going to make the modelling problem more complex; there will be no single framework
that is likely to abstract from just the "right" features of reality for a multitude of
problems, so that modelling flexibility is going to be required.

Second, even given diligent prior work we are unlikely to come down to exactly the
"right" model. The reason we engage in structural modelling in spite of this fact is the
belief that there is continuity in the map between the assumptions and the implications of
interest, 50 that the more we know about our problem and the better we are able to
incorporate that knowledge into our model, the closer our model will be to mimicking
reality.

The fact that structural models cannot be rich enough to encompass all aspects of
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reality does, however, make it easy to pick them apart. All of the assumptions used are laid
out in front of the reader, so it is easy to find transgressions from reality, and these
transgressions are frequently large enough to be picked up in formal test statistics. Again,
what has to be kept in mind when evaluating a structural modelling exercise is that some
model is going to be implicitly used in the subsequent descriptive and policy analysis
whether we like it or not. As a result the relevant question is often not whether the model
is exactly correct, or whether it satisfies some formal statistical test. Rather it is whether
we believe the implications of the internally consistent structural mode! whose parameters
have been obtained from the data more than we believe the implications of the alternative
lines of reasoning available. Of course we also have to be careful not to fall into the habit
of accepting the implications of the structural estimates as gospel (forgetting that corners
had to be cut to obtain them). There is always room (indeed a need) for doubt (especially
if it is constructive), and it will always be possible to make further improvements (though
sometimes it might not be worthwhile).

It is easy to close this paper on an optimistic note. The one fact that seems clear
from the developments over the last decade of modelling is that advances in theory,
computation, statistical methods, and data sources have generated dramatic increases in
our ability to take economic models to data and come back with useful interpretations of
reality. Moreover, if anything, the rate of increase in our abilities to engage in such
endeavors has been accelerating, making it an exciting time to be engaged in empirical

research.
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Appendix I

N

Proof of Lemma

(monotonicity of the investment policy with deterministic accumulation)
26. Lemma,

Assume 2, that dr{w,k)/6k is increasing in #, that 3c(x,k1)/ dx<dc(x,kq)/ Ox is
nonincreasing in k for all x, and that if h(-) is continuous (a.e) 2nd integrable with respect
to a subset of P , say P*, then provided P(- |¢,),and P(- Jug)e P¥,
| [ h(v)[P(dw | 0))-P(do | wg)]| < $(BP*)}0;—up].

Proof.

The proof assumes that the optimal policy is unique. Given this we show that the
solution to the finite horizon problem, say xT(u,k), is, for all T, weakly increasing in w for
each k. It is straightforward to show that this implies that the limit function, x(v,k) must
also be weakly increasing.

For every T define
T T-1; , )
Vi (0,x,k) = —e(xk)+1(0k)+8 [ V[0, k(1-6)+x]P(dv’ | 0)

where VT"l(w,k) provides the value of a T—1 horizon problem. Two properties of this
function will be used below. First we use the fact that maximization implies that VT(w,x,k)
< VT(w,k) for all xeT'(k),and all (v,k)efixK. Second we need the fact that if VT(u,x,k) has

isotone differences in (¢,x), i.e.if
T T T T
[V (wg,x 1K)V~ (0,39, k) HV ™~ (0g,% k)-V (0gr%q,k)]20

whenever v, ¢, and x,;2x,, then xT(w,k) is nondecreasing in v [Briefly, since both #f and K



are totally ordered, the fact that VT( +) has isotone differences implies that it is
supermodular; see Topkis,1978, Theorem 3.2. This, together with the fact that I(:)is
independent of v, implies the result; see theorem 6.1 of Topkis, 1978)].

This latter result implies that to prove the theorem we need only show that for any
T, VT( +), has isotone differences. We now use induction to prove this fact. For the initial

condition of the inductive argument we need only note that

[V (0% )=V (0 %, K)] = [V (i )=V iy, 0, )
= ﬁf{r[u’,k(1—5)+x1]—r[w’,k(1—6)+x2]}[P(dw’le)—P(dw’Iwg)] >0,

where the inequality follows from the supermodularity of 7() and the fact that the family
P, is stochastically increasing in v (see assumption 2).

For the inductive step assume that {Vt(w,x,k)}r‘f:% is supermodular in (v,x) for
each k. Lemma * below shows that this implies that VT_I(u,k) is supermodular in (k).

Consequently

[V 0y 0=V T (0 20,0 = (VT g, )V T 1y, g )] =
Bf {vT“l[w’,k(1-5)+x1]—vT‘1[uf,k(1-5)+x2]}[r>(dw|wl)-P(dw’|uz)] >0,

where the inequality follows from Lemma *, and the fact that P v is stochastically

increasing in &. ©
Lemma *.
VT(w,k) is supermodular in (v,k) on xK, if {\.ft(z.:,x,k)}%‘=1 are supermodular in (#,x) on

fixI'(k), for each k € K.

Proof.



Again by induction on T. The initial condition of the inductive argument is
analogous to the initial condition of the inductive argument in Lemma 26 and need not be
repeated. For the inductive step assume that {Vt(w,k)}'f:i are supermodular on =K.
Then, using the shorthand that for any f:fxK-R, f(i,j):f(ui,kj),

(1) [V(1,1)-V(1,2)] - [V(2,1)-V(2,2)] 2
VT, x(0gde )by -V T (0 o)} - (VT g ke )V [0y x(0) ) )}
=a+4 (VI 0k (1) (g R IV T 0 kg(1-8)+x(ury kg ) H[P(do | 0y )P (de | )],
where,

A = [#(1,1)-(1,2)] — [#(2,1)-2(2,2)] > 0.
Consequentty if
ky(1-6)+x{wg,k ) 2 ko(1-6)+x(v,kg)
the proof is complete. So assume to the contrary that
x(1,2)—x(2,1)—(k1—k2)(1——6)55>0.
The assumption that dc(x,k)/dx is nonincreasing in k, together with the Euler equation in
Lemma 2, and the convexity of the investment cost function implies that
x( 1,1)+k1(1——6)>x(1,2)+k2(1-6) whenever k, >k,. Hence by continuity of the optimal
policy, and the hypothesis of the inductive argument (which insures that xT(w,k) is weakly

increasing in ) there exists an *€[v,,0,} such that

k, (1-8)+x(w* k) = k2(1—6)+x(u1,k2) = k.



Substituting v* for v, in (1) we have

V(0 )=V T (0 k)] = [V g )V (0, k)] 2
[7(w* Ky )—r{w* ky)] — {( Uk )=1(0g.ko)] 2 0,

where the last inequality follows from the supermodularity of {).
Next we will show that v;—u* > J(kl'kz)' That will complete the proof because it
will imply that we can break the move from wy t0 vy into a finite number of steps (each of

which preserves isotone differences). To this end note that Lemma 2 implies that

Be[x(v k) ko) — de[x(v* k) K]/ =
B f x(v X){ax(w K)/ 3k + dex(wE) K/ 6x}[P(do’ | 0))—P(d’ | o*)]

fh )[P(de’|wy)-P(de’| o*)].

The convexity of ¢(+) and the assumptions on IPU then imply that

B {Bc(x=0,k, )/ Oxlk K, ) (1-8)<H(B,P¥) (0, —0*),
or

o~ 267 [Be(x=0k; )/ ox)k ~k,}(1-6)/ $(0,B*)=d (k  k,),

where P* includes the interval ["’1’”2]’ as required.o
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Appendix 2; Proof of Lemm

Lemma 33.2.

An fe Vyisalsoa member of ¥ fif and only if for all hEHN,
af(hl’h?”'hN) == af(hl,fz,...‘IN),
for any (12,...,1N) which is a permutation of (h2,...,hN).

Proof.

We prove that partial exchangeability of the value functions implies partial
exchangeability of the coefficients. The other direction of causation is immediate since the

sum of partially exchangeable functions is partially exchangeable.

The proof is by inductionon d = d(h2,...,hN), the number of non—zero elements in
(hz""’hN)‘ To prove the initial condition of the inductive argument (that the lemma is

true for d = 1) consider w~vectors of the form.

U= ¢y, o =@ for some j # 1, and vy= 0for j'# j,1. (A.1),

For v—vectors satisfying Al, equation (2) implies

AP
- Wwe | h /
V()= 3 Y albphi=p-hy) oil PN = @ g = clp), (A2)
p=0 h1=0
where ap(hl,hj = phy) = ofb),0,.h; 4 =0,h;=p-h;0,..0).



Note that the dimensions of the a—vector is

W' (p+1) = (A+1)(3+2)/2,

d
0

| "] >

4
p
and that both g and c(p,,¢) are independent of j. Construct (A+1)(1+2)/2 independent g

vectors by setting py = i and by = 1,...,K, whereK =#1, fori=1,2,.. K. This will be

possible provided (A+1)(3+2)/2 < K2, that is provided:

A+l < K,

a condition we assume in what follows. Stack the analog of equation (A.2) for the

alternative values of y and solve the resulting system for

I, (A.3)

where C = [C(1,1), C(1,2)...] and the rows of @ are the values of the vector p used to form

the basis above.
Note that the a defined by (A3) is independent of "j". Consequently,
a(hl,O,...,O,hj=m,0,...,0) = a(hl,m,o,...,O)
for all h with d(k) =1, hj=m, and hj’=0 for j°# j,1, as required.

Now assume the lemma for d(h) < d~1. To prove this implies the lemma for d(h) =



d consider w—vectors of the form:

¢ =¥ "’jz =¥

y e o = @i, (A.4a)

with jq #jq" # 1 for q,ql = 2,..,d+1, while

Idj =0 for j¢ F= {jl'_‘ 1:j2:---jd+1}

(A.4D)

To analyze this case it will be useful to let 1 be the N— dimensional vector which putsa 1l

at every location in # and a zero elsewhere, and e, to be the N—vector that puts a one at

the i*! Jocation and a zero elsewhere. Then equation (2), together with the initial

condition of the inductive argument [note that this sets a(h) for all h such that p(h) = Ih,

< d] implies that for any v—vector satisfying (A.4).

d+1

-1 W
(0ptp) [Pyl = D)+ ) all+ ey

d+1  d+
+ W N
22
ig2; i)
d+1
b
dm .
Fa~(d+1)?a~d+2)

@ ¢ = c(ebyir)

i=1

a(}-i-eji +eji

Jo, ¢ ot
1 172

2

The number of coefficients in the h+1°! term in {(A.5) is the number of sequences [il,...,ih]



with iJ. > ij—l and ijE[l,E,...,d+1], for j=1,...,h. By lemma 32 this is
4d+1h] = [d;h]

Now use the fact that

[d+h] _ [d+x+1]

|
Il Bt e

=
ok

(see for e.g. Abronowitz and Stegum, 1972, p. 822) to show that the total number of

coefficients in A.5 is

[,\ —A(d+1)}.

Note, that y and c(zpl,...,gpd +1) are independent of £ and construct, [A—(3+1)],
linearly independent p vectors by letting ¢, range over 1,... K, for i=1,...,d+1. That this is
possible follows from the fact that (A+1) < K. Use these vectors to determine the o
coefficients in (A.5) as in the argument leading to (A.3) Since this a vector is independent

of # we have for all h such that d(h) =d

ofhy,..hy) = afhy 7y, Ty)

for any (N—1) dimensional vector (7. -7y} which is a permutation of (hy,--hy). O



