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ABSTRACT

The paper is a survey written for the Sixth World Congress of the Econometric Society. It is devoted largely
to a discussion of the progress made in the last decade in understanding the structure of sclf-enforcing agree-
ments in discounted supergames of complete information. Perfect and imperfect monitoring models are
considered in turn, with attention given to the case of substantial impatience as well as to the various “folk
theorems.” The emphasis is on the features of constrained-optimal perfect equilibria, causes of ineffidency, and
some relationships among different strands of the literature. The remainder of the paper is a critical and com-

parative consideration of recent work on renegotiation in repeated games.
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1. INTRODUCTION

In economic, political and personal life, the terms on which individuals or institutions interact are rarely
determined fully by explicit, enforceable contracts. Within the bounds of the law, there is enormous scope for
variation in the way in which commercial rivalries, international relations and social affairs are conducted. Often,
the same parties interact repeatedly. As a consequence, there is a large role for implicit, self-enforcing contracts
to play; agents have an incentive to conform to an implicit agreement today because they believe that this will
influence the nature of subsequent interactions. Repeated games provide perhaps the simplest model in which
self-enforcing cooperative arrangements can be studied formally. It is this aspect of repeated game theory that
I attempt to survey here. The paper focuses on the structural and conceptual issues that have arisen in recent
years in the study of repeated discounted games of complete information.

This choice of subject matter embraces a large literature, but excludes some important topics in repeated
games. There is a substantial and challenging body of work on repeated games of incomplete information, much
of which is surveyed by Mertens (1987). Following Kreps and Wilson (1982) and Milgrom and Roberts (1982),
many papers have explored the effects of reputation formation in finitely repeated games with (initiaily) small
amounts of incomplete information. These are covered by Fudenberg (1992) in a companion paper to the
present one. The latter survey also touches on the growing literature that investigates bow play evolves as
success is rewarded by survival.

The first part of the paper chronicles the progress that was made in the past decade in understanding super-
game equilibria from a technical point of view.! Many problems that had been considered intractabie yielded
to systematic analysis. Whereas earlier work on discounted repeated games had to content itself with studying
artificially restricted behavior, a number of papers revealed that it was possible to drop those restrictions and
still obtain strong results. Theorists began to explore more complicated and satisfying models, suggested by
features of various economic situations. Players may observe different parts of the history of play, and some of
their information may be stochastic, for example. They could meet different partners or rivals over time, or have
different time horizons.

Section 2 considers models in which players receive information without any stochastic disturbance, while

Section 3 is devoted to games with imperfect monitoring. In each case I begin with the analysis for an arbitrary

INumerous references can be found in subscquent sections.



discount factor (or rate of interest) and later address the important case in which players are very patieat, rela-
tive to the delays between successive plays of the game. Finally, representative applications to applied ficlds are
discussed, as well as some recent attempts to compare the theory with data in various ways.

The second part of the paper is devoted to some conceptual issues associated with repeated game theory,
especially the problem of renegotiation. In a supergame equilibrium involving short-run sacrifices by some
player for the good of the group, for example, there is an implicit threat that if the player fails to cooperate, he
will be punished in some way. But ex post, will the threat actually be carried out, or will the continuation equi-
librium be *renegotiated? At issue here is the fundamental question of which threats are credible. Game
theorists maintained an uncomfortabie silence on this point for many years. Recently there has becn a smal! riot
of proposals regarding the appropriate formulation of & *renegotiation-proof” solution concept. We are left with
an embarrassment of riches, since many of the suggestions are at odds with one another and lead to entirely
different predictions. Section 4 reviews some of the solution concepts. 1 argue that the diversity of ideas on
renegotiation-proofness is natural, given the essentially psychological nature of the problem, and suggest that any

solution concept in this area be interpreted cautiously. Section 5 concludes briefly.

2. PERFECT MONITORING

This section and the following one are addressed not to the specialist in repeated games, but to scholars who
would like a reader’s guide to the literature on discounted repeated games of complete information. The empha-
sis is on the overall picture and the connections among papers in the field. Those looking for a "nuts and bolts”
treatment of the material should consult the expert and up-to-date coverage in Chbapter 5 of Fudenberg and
Tirole (1990). Also enthusiastically recommended are the concise, specialized piece on folk theorems by Krishna
(1987) and the wide-ranging survey of complete information supergames by Sabourian (1989).

In most of the models of this section, all players learn at the end of each period the actions taken in that
period by other players. Usually, we are studying situations in which some simnltaneous game G is played by
the same set N = {1, .., n} of players. The stage game (or component game) G = Ay vn A Oy, o, ) s
described by the nonempty action sets (or pure strategy sets) A;, i € N, and the payoff functions II; : 4 —+ R,
where 4 = A, x = x A,. If each 4, is finite, G is called a finite game. Extend the functions I in the usual
way to the product M = M, x = x M,, of the sets of mixed strategies. Let F = co II(4) be the convex bull
 of the set of payoff vectors from action profiles in 4. Elements in F are called feasible values.

Playing G repeatedly produces a stream of payofis for each player, which in most cases will be discounted

by the factor 8, assumed for simplicity to be the same for each player. Payoffs are received at the end of each



period and discounted (o the beginning of the first period, period 1. The finitely repeated game consisting of
T plays of G, with discount factor & € (C,1], is denoted GT(a). When G is repeated indefinitely, and & € (0,1),
we have the infinite horizon game G"(%). A pure strategy for player i in a repeated game specifies an action
for i in each period ¢ as 2 function of the actions chosen by all players in all preceding periods? A mixed
strategy (more properly, a behavior strategy) in the supergame allows the contingent choices to be stochastic.
In this case it must be specified whether other players observe only the outcome of the randomization (this is
the standard assumption, and usually the only plausible one) or also the random device used.

Often it is convenient to normalize supergame payoffs so that they are directly comparable to payoffs of a
stage game: the average (discounted) value of a stream of payoffs is that number which, if received in every
period, would have the same present discounted value as that of the original stream. For any strategy profile

o = (04, .., 8,) of the supergame lct ¥ (o) denote the associated vector of (total) present discounted payoffs,

-8

3 F{o) denote the vector of average values.

and let v(o) =

Self-enforcing agreements in repeated games are the subjects of inquiry bere, but it must be admitted that
there is a great deal of controversy about how "self-enforcing” should be defined (sec Section 4). For the
moment, let us simply require that the agreements (whether spoken or unspoken) be subgame perfect equilibria
(Selten, 1965, 1975) of the supergame. This means that following any (-1 period history of play, the agreed-upon
strategy profile gives players instructions that constitute a Nash equilibrium (Nash, 1950) of the subgame begin-
ning in period 1. In other words, after no history should a player have an incentive to deviate unilaterally from
his part of the strategy profile. When a particular player has no incentive to deviate following any history, we
say that his strategy is a perfect best response to the other players’ strategies. The set of average values of sub-
game perfect equilibria of G7(8) and G°(8) are written VI(8) and V°(8), respectively. When there is no

danger of ambiguity, I simply write V.

Unimprovability

Consider the following requirement that, at first glance, looks much weaker than the perfect best response
condition. A strategy for i is unimprovable against a vector of strategies of his opponents if there is no r-1
period history (for any f) such that i could profit by deviating from his strategy in period ¢ only {conforming
thereafter). To verify the unimprovability of a strategy, then, one checks only “one-shot” deviations from the

2]t is often remarked that it is unnecessary to allow i to condition on his own past actions. It is easy to show
by example that this is false.



strategy, rather than arbitrarily complex deviations (such as defecting in every period ¢ such that ¢ is prime). The
following result simplifies the analysis of subgame perfect equilibria immensely. 1t is the ~xact counterpart of
a well-known result from dynamic programming due to Howard (1960), and was first emphasized in the context

of self-enforcing cooperation by Abreu (1988).

PROPOSITION. Let the payoffs of G be bounded. In the repeated game GT(8) or G°(8) with 3 € (0,1), a strategy
o, is a perfect best response to d profile y of strategies if and only if ©; is unimprovable against that profile.

The proof is simple and generalizes casily to a wide variety of dynamic and stochastic games with discounting
and bounded payoffs. If g; is not a perfect best response, there must be a history after which it is profitable to
deviate to some other strategy o/. If the deviation involves defection at infinitely many nodes, then for suffi-
ciently large 7, the strategy 8; that agrees with o until time T and conforms to ¢; thereafter, is also a
profitable deviation (because of discounting and boundedness, anything that happens in the distant future has
almost no impact on payoffs today). Consider a profitable deviation &; involving defection at the smallest pos-
sible number of nodes, and let x be a node at which &; disagrees with o; for the last time. Not ¢conforming to
o; at x must be profitable, or else one would have had a profitable deviation with fewer defection nodes than
&, a contradiction. The profitability of deviating from o, at x (and never again) means that o, is not unimprov-
able. Thus, if o; is unimprovable, a; is a perfect best response. The converse is trivial, since the requirements
for unimprovability arc a subset of those for a perfect best response.

The above equivalence will be exploited frequently in both this and the succeeding section; it does not

depend on the structure of players’ information.

Cooperation Enforced by Nash Threats

During the 1950’s and 1960’s there developed a verbal tradition amongst game theorists to the effect that
if players in an infinitely repeated game considered the future sufficiently important compared to the current
period, an extremely wide variety of behavior could be supported in equilibrium. Friedman (1971) formalized
this in the context of Cournot oligopoly. How can firms be persuaded to overcome the free-rider problem that
drives them away from the joint monopoly output to the less lucrative Cournot-Nash solution? Consider a stra-
tegy profile specifying that (i) firms produce some vector of quantities each period that is more profitable for
each firm than the Cournot-Nash equilibrium, as long as there has becn no deviation from the vector in past
periods, and (ii) following any deviation, they revert to playing the static Cournot-Nash solution forever. If
players are very patient, a firm’s temptation to increase profits today by cheating are outweighed by the perm-

anent loss in profits in succeeding periods. Hence, it is not profitable to deviate once if no one bas done so



before. 1If a deviation has occurred earlier, again there is no profitable one-shot deviation, because players are
already plaving a myopic best response to one another’s actions. By the unimprovability criteriop described
above, we may conclude that the strategy profile is a subgame perfect equilibriem. Thus, although Friedman
was concerned only with Nash equilibrium, he actually exhibited "cooperative” strategies that satisfied additional
requirements of credibility.

PROPOSITION (Friedman, 1971): Let G = (Ay, .y Ap; 1y, ..., I} have o Nash equilibrium e = (gy, ..., €,) € A,
and let § = (qy, .., G,) € A satisfy I(q) > I(e) for each i € N. Then for & sufficiently close to 1, there is a

subgame perfect equilibrium of G*(8) in which g is played in every period on the equilibrium path.

It is convenient (and frequently realistic) to convexify the set of equilibrium values by enriching the structure
of the supergame as follows: at the beginning of cach period, the realization of some continuous random vari-
able is commonly observed, so players can make their choices conditional on the outcome. Modifying the game
in this way is usually called "allowing for public randomization.” If we do so, Fricdman’s argument implies that
any element of F that strictly Pareto-dominates some Nash equilibrium of G is the average payoff of some sub-
game perfect equilibrium of G (3), for sufficiently high 8. Indeed, arguments of Sorin (1986) and Fudenberg
and Maskin (1986) can be used to show that this limit result holds even without public randomization: for values

of & near 1, convexification can be accomplished by varying play appropriately over time.

The Folk Theorem

A still stronger result was suggested by the verbal tradition alluded to earlier, one eventually proved by
Aumann and Shapley (1976) and Rubinstein (1977). Their celebrated *folk theorem” for infinitely repeated
games confirms the most optimistic cozjecture one could reasonably make regarding which values are average
payoffs of (subgame perfect) equilibria when players are ideally patient. Clearly, an average value must be
feasible in the physical sense, that is, it must lie in F. The fact that a player always has the option of playing a

myopic best response to other players’ strategies in cach period gives him a security level that must also be

respected. Formally, let ¥, = min max e, a_), where (g, a_,) means M(ay, .., @;_ 4, 4, &;,q, s &p).
a_eM_ aA;

Any vector giving each player i at least his security level v, is called individually rational. Let F * denote the set
of feasible and individually rational vectors. Remarkably, if there is "no discounting” in the sense that players



care only about their long-run average® payoffs, the set of feasible, individually rational payoffs coincides with

the set of long-run average payoffs of equilibria of the infinitely repeated game.

PROPOSITION. The Perfect Folk Theorem of Repeated Games (Aumann and Shapley (1976), Rubinstein (1977)):
Let G° be the supergame in which G is repeated indefinitely and payoffs are evaluated according to the limit of
means criterion. Then v is the average payoff of some subgame perfect equilibrium of G" if and only if it is feasible
and individually rational.

The essence of the proof can be conveyed by looking at the simplest case, namely a feasible and individually
rational value v for which there exists a purc action profile ¢ €4 with I{c) = v. Consider a supergame profile
that instructs players to begin by playing c in each period, and to respond to any deviation by forcing the deviant
player down to his security level ("minimaxing him") for £ periods, where ¢ is the date of his deviation, and then
returning to playing ¢ (unless there is some further deviant at time ¢', who will be minimaxed for (')* periods,
and so on).* If a player deviates an infinite number of times, his long run average will be at best v, so no such
defection would be profitable. If he deviates only a finite number of times, play eventually returns to ¢ forever,
and again he has not profited (the limit of means is insensitive to payoff changes in any finite set of periods).
To summarize, after no history can anyone gain by a unilateral deviation, so the profile is a subgame perfect
equilibrium of G°.

Notice that with no discounting, the criteria "perfect best response” and “unimprovable” are not equivalent.
The strategy profile according to which each firm in a symmetric Cournot duopoly produces half of the joint
monopoly output, regardless of the history of play, is certainly not subgame perfect, and yet the strategies are
unimprovable according to the limit of means criterion.

Rubinstein (1979a) also proved a perfect folk theorem akin to the one just discussed, for games with payoffs
evaluated according to the overtaking criterion While also capturing the idea of extreme patience, this eri-

terion seems closer than the limit of means to the case of very little discounting (3 near 1) because it makes

'
3Given a stream of payoffs {x,}, onc can define the scquence of average payoffs {y;} by y, = %Exk. The
k=1

sequence {y,} may oot have a limit, but the limit inferior is always defined, and this is what is meant here by the
“long run average® or "limit of means” associated with the original stream {x}.

4Simultaneous deviations are ignored, since they are irrelevant for checking subgame perfection.
T

SA payoff stream {w,} is strictly preferred to {x,} under the overtaking criterion if lim inf ¥ (w, - x,) > 0.
T+o =1



players sensitive (o what happens in any single period. With this increased realism comes additional complica-
tion: the set of subgame perfect equilibrium values is not closed, and the statement of the theorem must be
weakened slightly. When one uses the overtaking criterion, unimprovability is again not useful for checking
subgame perfection.

The perfect folk theorems provided an important impetus for further research on discounted repeated games,
because they suggested vividly that punishments more severe (and hence more effective as deterrents) than
permanent reversion to static Nash equilibrium could be credible. Ironically, the proofs of the same theorems
probably also threw researchers off track, because the line of attack that eventually proved successful in the
discounted case was rather different from methods in the absence of discounting.

Simple Strategy Profiles

Abreu’s work in the early 1980’s (ultimately published as Abreu (1986, 1988)) marked a breakthrough in the
study of the pure strategy perfect equilibria of discounted supergames. It reduced an ostensible tangle of inter-
temporal incentive constraints and punishment hierarchies to a comparatively orderly, manageable problem. The
first step was to formalize an alternative to viewing a supergame strategy profile as a vector of infinite sequences
of functions from histories into action sets. Notice that a strategy profile implicitly specifies what path® should
be followed, what new path should be followed if someone deviates from the original path, and 5o on. Indeed,
the profile can be thought of as a collection of paths and a rule governing how to switch amongst them in the
event of deviations. On the face of it, this perspective does not look promising: the coliection of paths could
be infinite and the rule arbitrarily complex. Abreu (1988) justified the reformulation, however, by showing that
for any pure strategy subgame perfect equilibrium of G*(8), there is another perfect equilibrium that has the
same value, and can be described by n+1 paths and an extremely clementary rule. For any n+1 paths
Qp Q1 v Qp define the associated simple strategy profile 6(Qq, Qy, -~ @,) by the rulc

(i) Qg is the initial path

(i) after & deviation by a single player 7 from any ongoing path, play switches to following the path @; from

the beginning (so if i deviates part way through path Q;, for example, the path Q; is restarted).

Working in the space of paths rather than supergame strategies affords a nice proof of the compactness of

the equilibrium value set (henceforth, except in the statements of proofs, 1 often omit the qualifier "subgame

perfect’). One implication is that severest credible punishments for each player exist. let 0, .., O, be the

SA path is a sequence of action profiles, one for each period.



respective paths of some severest equilibria for each player. A central result of Abreu (1988) is that if Oy is the
equilibrium path of eny (perfect) equilibrium y (simple or not), the simple profile o{Qq, £y, .., O,) is also a
perfect equilibrium (clearly with the same equilibrium path). Let us check that the profile satisfies the criterion
of unimprovability, that is, from no point of any of the n+1 paths would a player i wish to deviate, given that
path O, will subsequently be followed, Each path  in the set {Qg, Oy, .o Q,} is the path of some perfect
equilibrium, and hence each player i was deterred from cheating at any point oo O by the threat that play would
switch to the path of some perfect continuation equilibrium. But at the same point on Q in &{Qy O, ... 2,),
player i is faced with a threat at least as severe (because Q; is by construction the worst perfect path for /). Thus
player i cannot gain by deviating in any contingency.

A proposition summarizes our discussion.

PROPOSITION (Abreu, 1988): Let G = (Ay, oy Ap, 1y, oy II;) have at least one equilibrium in pure strategics, and
for each i, suppose A; is compact and I; is continuous. Then

(a) the pure strategy subgame perfect equilibrium vahie set V(%) is nonempty and compact, and

(b) for any equilibrium ¥y, there is a simple strategy profile that is @ perfect equilibrium with the same path (and

hence the same value).

Why are strategy profiles of the form o(Qg, Qy, ... O,) called simple? In general the n+1 paths might
themselves be highly nonstationary and complex. But the way in which deviations are responded to, that is, the
implicit punishment hierarchy, is simple in the extreme. A deviation by player i is always treated the same way,
regardless of the nature of the deviation, the period in which it occurred, the particular path in progress, or the
point oo the path at which the defection occurred. There is no need to "tailor the punishment to fit the crime.”

The preceding analysis does not apply to mixed strategy equilibria, because it is pot possible to tell from
observing the actions played, whether or not the correct mixed strategies were employed. In other respects, how-
ever, the theory is comprehensive in its scope, covering for example all finite games G and all discount factors.
A demonstration of its practical value in applied fields was given by Abreu (1986) in a study of optimal collusion
among Cournot oligopolists. He considered n ideatical firms with positive, constant marginal costs ¢, no fixed

costs, and strategy spaces [0,=). They face a smooth inverse market demand function P satisfying Lim P(q) = 0.
rl!

The conditions of the last proposition above are assumed to hold, except for boundedness of the strategy space;
the set of quantities g that a firm could conceivably play in equilibrium is bounded, and this is all that is needed.

To derive strong results about the shape of the paths of the worst punishments, it is necessary to restrict
attention to swrongly symmetric equilibria, that is, equilibria which after no history give any player different



instructions from any other player. 1t is easy to check that without loss of generality, the equilibrium paths of
constrained optimal strongly symmetric equilibria may be taken to be stationary. But this is emphatically not true
for severest punishment paths. The latter have a "stick and carrot” structure that is quite striking: the payoff
in the first period is dismal, but the path starting in period 2 is constrained Pareto efficient. In other words, the

misery is front-loaded to the maximum extent possible.

PROPOSITION (Abreu, 1986): In a symmetric Coumnot oligopoly satisfying the conditions described above, there
is @ most severe strongly symmetric equilibrium whose continuation value following the first period is constrained
FPareto efficient. There is a cnitical value of & above which the present value of profits in the severest symmetric
equilibrium is zero.

The idea here is that starting from any equilibrium profile not of the stick and carrot form, one can replace
the continuation equilibrium by the Pareto efficient equilibrium, and restore the entire path to its original value
by increasing first period production sufficiently. A firm’s supergame payoff from conformity is the same as
before, but the payoff to cheating in period 1 is generally lower (and never higher), because the firm’s residual
demand curve is lower. Hence, under the new arrangement incentives to conform are at least as strong as in
the original equilibrium.

It is sometimes the case that in a stick and carrot regime, the deviant firm is cooperating in its own punish-
ment, that is, in period 1 it is ot playing a best response to other firms’ production. One might have thought
that this was impoésible. After all, if you punish someone as severely as possible, how can you expect him to
cooperate when there is nothing worse left to threaten him with? The answer is that you can threaten to restart
the punishment, a sobering prospect in the case of stick and carrot punishments. Onc might also have guessed
that it is impossible to have an equilibrium with value zero in a Cournot model, since a firm can always choose
to play a best response in period 1, pocket the profits and produce nothing thereafter. The strategy can be foiled
only by having first period production so high that the output of n-1 firms is enough to reduce price to marginal
cost (or below), so that no firm can make money in period 1 by any choice of output level. Firms are in effect
*mutually minimaxing” one another, a phenomenon that is impossible in some other models, as we shall see later
in an example due to Fudenberg and Maskin (1986).

An attractive paper by Lambson (1987) uses simple strategy profiles to characterize optimal collusion in
price-setting supergames with capacity constraints and alternative rationing rules. For some, but not all, of the

rules considered it turns out that stick and carrot punishments are optimally severe, and using mixed strategies
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would pot expand the set of equilibrium values. In all cases the restriction to strongly symmetric equilibrium
is without cost, in contrast to Cournot oligopoly.

There are numerous other applications of repeated games in particular areas, some using simple strategy
profiles and others employing trigger strategies. A few examples are Barro and Gordon (1983}, which stimulated
much interest in strategic monetary theory (see the excellent survey by Rogoff (1989)); Weinberger (1990) on
bargaining and delay to agreement, and Rotemberg and Saloner (1989) and Syropoulos (1989) on the relative
merits of tariffs and quotas in dynamic trade policy.

Discount Factors Close to 1

Understanding behavior in repeated games with discount factors significantly differcnt from 1 is important
for several reasons, including the fact that the discount factor may represent both impatience in the usual sense
and the chance that the strategic interaction may be interrupted by external factors (new laws, product innova-
tions, and so on). But there are many examples in which the period length is sufficicntly short that the players’
primary concern is for the future. Thus the perfect discounted folk theorems of Fudenberg and Maskin {1986)
occupy a special place in the literature. They demonstrate that, with two qualifications, the classical results of
Aumann and Shapley and Rubinstein survive the introduction of a small amount of impatience. An example of
Forges, Mertens and Neyman (1986) showed that values in which some players receive exactly their security
levels may not be the payoff of any perfect equilibrium with discounting, For 2-person games, this is the oaly

qualification that need be made to the earlier folk theorems.

PROPOSITION. Perfect Folk Theorem in Discounted 2-Person Games (Fudenberg and Maskin, 1986): Let g be
a finite 2-person game, and v be feasible and strictly individually rational (for each i, v; > ¥;). There exists 3 such

that for all 8 € [3,1), v is the average discounted value of some subgame perfect equilibrium of G*(8).

The proof depends critically on the possibility of players’ simultaneously minimaxing onc another. This
cannot always be done in n-person games. For some such games, the folk theorem fails, as a neat example of
Fudenberg and Maskin shows.

In the simultaneous 3-person game of Figure 1, player 1 chooses the row, 2 the columa, and 3 determines
which of the two matrices applies. Note that the three players’ payoffs are always identical, Each person’s
security level is 0, but one can verify that for any strategy profile (pure or mixed), there is some player whose
best response payoff is at least 1/4. Choose any 8 € (0,1), and any subgame perfect equilibrium, and let i be
a player whose myopic best response in the first period gives him at least 1/4. Since he will get no less than
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1,11 0,0,0 0,0,0 0,0,0

0,0,0 0,00 0,0,0 1,11

Figure 1

the minimum equilibrium value, call it &, from the second period oaward, regardless of what he does in the first
period, we see that

§ 2 (1-8)7 + By, thatis, G

In other words, equilibrium payoffs are bounded away from the security level, uniformly in 3.
A sufficient condition for obtaining a full folk theorem in n-person games is that the sct of feasible and indi-
vidually rationa! payoffs of G be full-dimensional.

PROPOSITION. Perfect Folk Theorem with Discounting (Fudenberg and Maskin, 1986} Let G = (A, ..., Ay
1, ..., IL,} be a finite game such that the set F * of feasible, individually rational payoffs is of dimension n. Then
for any feasible, strictly individually rational value v, there exists & such that for all & € [8,1), v is the average

discounted value of some subgame perfect equilibrium of G"(8).

To understand the idea of the proof, take the tidiest case, where the value v is in the interior of F* (this
set would be empty if the dimensionality condition were violated) and there is some ¢ €4 with II(c) = v.
Choose ¢ > 0 and n vectors

¥(j) = (v + &, o, Viag * &V Vi 8 v, + )

such that v{j) € F*,j = 1, .., n. For simplicity assume there are action profiles b and nrf,j = 1, .., 1, where
() = v(j) and m/ minimaxes j (and has j playing a best response). Let 4; = max L) - vjpj = L -a .
The simple strategy profile with paths as described below is a subgame perfect equilibrium of G (8) for
sufficiently high 8: on the equilibrium path, ¢ is played indefinitely; 's punishment path begins with k periods
of n/, and P thereafter, with k chosen large enough so that for each j, k(v; - y) > A Checking for



unimprovability, we note first that no player j wants to deviate from the original path, because be then gets
minimaxed for k periods. While being minimaxed, j cannot profitably cheat, because he is already playing a one-
shot best response. In the second phase of the punishment path, j has no incentive to cheat because again, the
result would be to be minimaxed for k periods instead of receiving v;. At no time would a player other than j
wish to deviate from the j* punishment path, because for high 3, any short-run gains would be overwhelmed
by the loss of an infinite stream of “bonuses” e. (Note that the second phase of the punishment path is designed
1o reward players i #j for minimaxing j, without also treating j favorably.)

Self-Generation

The sweeping characterization of equilibrium values when & is near 1 has no analogue for arbitrary discount
factors. There is, however, a useful sufficient condition for sets of values to be subsets of the supergame value
set. The result, called "self-generation,” was developed by Abreu, Pearce and Stacchetti (1986, 1990) for games
with imperfect monitoring, but the principle behind it is quite general, and applies in the simple case of perfect
monitoring (explicit treatments of self-generation in this setting can be found in Sabourian (1989) and in more
detail in Cronshaw and Luenberger (1990)). Self-generation is in the spirit of dynamic programming, in the
sense that it depends on the decomposition of a supergame profile into the induced behavior today and the value
of behavior in the future, as a function of all possible actions today. The following discussion tries to motivate
the result. The analysis can be done for mixed strategies (this is not the case in games with imperfect monitor-
ing) but for ease of exposition, I consider pure strategies oaly.

What makes playing the first period of G*(8) different from playing G in isolation? In the former case,
each player is interested in maximizing a weighted sum of his immediate payoff in G and his continuation payoff
in the remainder of the game. In equilibrium, the vector of continuation payoffs after a particular first-period
history is drawn from the (subgame perfect) equilibrium value set V of G (8). Thus,v €V if and only if for
some a € A (representing first-period actions) and u : A — ¥ (contingent continuation payoffs),

0 v = (1-8){a) + du;(a)

and
(1-8)T(a) + Bufa) = (1-8)IL(a/, a) + u(ay, )

for all ¢/ €A4;, i=1, .,n

@



Notice that when one is allowed to affect first-period behavior using continuation values from V, one "generates”
exactly the elements of ¥ as valucs of equilibria created in the augmented static games. More generally, think
of augmenting payoffs by values drawe from an arbitrary set W ¢ R”, and call the values generated B(W):

BW) = {(1-8)I(a) + 8u(a)|u : A — W, and (a,u) satisfies (2)}.

We see immediately that V is a fixed point of the map B : K % Let B'(W) denote the 1" iteration of B

on W. For example, BX(W) = B(B(W)).

A nonempty bounded set W & R is called self-generating if W c B(W). If W is self-generating, there is
enough variety in the payoffs in B to create incentives for different equilibria in the corresponding augmented
games, indeed enough to generate any value of W. This leads to the conjecture that the values in W are actually
equilibrium values, because they are able to generate themselves, just the way supergame equilibria generate
equilibrium values by using supergame equilibrium values as continuation payoffs.

PROPOSITION. Self-Generation (Abrey, Pearce and Stacchetti, 1990). Let G be g finite game and & € (0,1), and
let B : ZR" — ZRn be as defined above. Then if W ¢ R is self-generating B(W) c V (indeed, fort = 1,2, ...,

BW) c V).

Self-generation has many applications, both theoretical and practical, and will be encountered again in subse-

quent sections, Here I record one implication that will be helpful later in unifying results from different papers.
PROPOSITION. Algorithm: Let G be a finite game, 8 € (0,1), and B be the associated generation map. For any
bounded W s R with V c W,

fjs'(w) =V.
t=1

The Proposition gives an algorithm for computing the equilibrium value set: choose any set that is “large
enough” (F will do, for example), and apply the map B repeatedly. The limit of this process is V. Recently
Cronshaw and Luenberger (1990) have given conditions under which the strongly symmetric equilibrium value
set of symmetric repeated games may be computed with a non-iterative procedure. Their technique involves

finding the largest solution of a scalar equation and uses the dynamic programming approach.
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Relationships to Finitely Repeated Games

I turn now to finitely repeated games and their relationship to infinitely repeated games. It was long thought
that finite horizon repeated games were of little theoretical interest because backward induction arguments could
be used to show that subgame perfect equilibrium behavior in GT(3) could involve only a string of one-shot equi-
libria of G. While this is true if G has a unique equilibrium, Benoit and Krishna (1985) and Friedman (1985)
showed resoundingly that more generally, the presumption was false. Benoit and Krishna showed that if for each
player, not all of the equilibria of G have the same value, then folk theorems similar to those of Fudenberg and
Maskin (1986) bold for G7(1) as T becomes large. (Unlike Fudenberg and Maskin (1986), Benoit and Krishna

restrict attention to pure strategies.)

PROPOSITION. Folk Theorem for Finitely Repeated Games (Benoit and Krishna, 1985): Suppose that

() for each player i, there are two equilibria of G with different payoffs for i, and

(@) n =2 ordim F* = n,
Then for any value v that is feasible and individually rational (relative to pure sirategies) and any £ > (, there exists
T, such that for each T > T, , there exists a subgame perfect equilibrium of GT(l) with average value within e
of v

This striking theorem is not only a result about finite horizon games, but also a testament to the intimate
connection between infinitely and Bnitely repeated games. Both the statement of the theorem and the line of
proof resemble closely those of the perfect folk theorem for discounted infinitely repeated games. In fact, using

arguments mimicking those of Benoit and Krishna, one can strengthen their statement as follows: if for each
player i there are two equilibria of G with different payoffs for i, then lim VT(I) = lim V°(8) . The equiv-
== §-1

alence holds regardless of the number of players or the dimension of F*.

In games G having oaly one equilibrium, G7(8) has a unique subgame perfect equilibrium, But Radner
(1980) pointed out that even in this case, cooperation is possible if the solution concept is (perfect)
e-equilibrium, that is, if after each history, any player’s strategy is within ¢ > 0, in average value terms, of the
best strategy available from then on. In a game G7(8) with T large, anything that happens in the last few
periods matters little in average terms, so that there are £-equilibria in which cooperation is induced by the
threat that endgame behavior will depend on play carlier in the game. Radner proves that for arbitrarily small
£ > 0, asymptotically efficent average payoffs can be obtained in e-equilibria with patient players as T grows



large. This is a valuable technical result, but I find the interpretations in Radner {1980), Section 8 in terms of
search costs and bounded rationality to be forced and unconvincing.

Fudenberg and Levine (1983) elaborated on Radner’s idea to produce a powerful equivalence result for finite
and infinite horizon games. For present purposes it is specialized to strictly repeated games and stated in terms
of equilibrium values.”

PROPOSTTION (Fudenberg and Levine, 1983): For any finite game G and & € (0,1),v £ V() if and only if
there is a sequence (£q, V)T Such thar

() &7 > 0and vy is the value of some erequilibrium of G*(8) for each T, and

(i) e~ Oand vy —v.
Thus, supergamne equilibrium values are exactly the limits of e-equilibria of GT(G) as ¢ — 0 and T grows large.

To see why relaxation of the incentive constraints by an arbitrarily small ¢ > 0 suffices to admit in GT(b)
bebavior associated with equilibria of G°(3), choose any subgame perfect equilibrium o of G°(8), and T large
enough so that the average value of any strategy differing from o only after 7 is within £ of v{0). Let o(T) be
the profile induced on GT(?:) by 0. Because ¢, is a perfect best response to o ; in G°(5), our choice of T
ensures that g, is an ¢-perfect best response to a(T)_; in GT(8), that is, o(T) is e-perfect.

This paragraph is quite difficult, and can be skipped without loss of continuity. A couple of years ago David
Kreps suggested to me that the Fudenberg-Levine limit result and the algorithm discussed earlier are related.
There are a number of ways of explaining the connection; here is one. Recall that B(W;8) is the set of equilib-
rium values generated by creating new games from G by modifying the payoffs with values from W. Now
B*(W,8) is the set of values obtained by augmenting G with the continuation value set B(W;8). Equivalently,
B2(W;8) is the set of values of perfect equilibria of the two-period games obtained by modifying the terminal
payofis of G*(8) by values from W. The same is true for BT(W:8) and the W-augmentation of G7(8). For any
positive integer 7, and e > 0, let Wr, = {w € R*|0 s w; < 8 Te, i = 1, .., n}, which is a "cube” of size
8 Te. Afier some reflection, one sees that the g-equilibria of GT(3) are exactly the equilibria of the
WT'l-augmcntatjon of GT(G). This prompts two observations. First, for a self-generating set W c B(W), sioce
the BT(W) converge to the Limits of e-equilibriz witk ¢ — 0 and T — =, the e-equilibrium Lmit result says
that B°(W) ¢ V, thereby providing another perspective on the self-generation theorem. Conversely, the
Fudenberg-Levine limit theorem can also be appreciated from the point of view of value iteration.

Further work on equilibria of convergent sequences of games include Harris (1985) and Fudenberg and
Levine (1986).
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1 wouid like to make some informal remarks aumed at creating an intuition that applies to several of the
papers discussed so far. In pericd ¢ of an infinite horizos game G™(8) the one-period incentive constraints of
G are loosened to an extent that depends on the size of the continuation value set. This loosening of incentive
constraints is mimicked in Fudenberg and Levine {1983) by the use of e-equilibria, and in Abreu, Pearce and
Stacchetti (1986, 199G) by the exira payoffs drawn from the set W. If the value of e, or the set W, is too small,
some incentive constraints may be violated; the algorithm does not necessarily work "from below” (contrast this
with value iteration (Howard, 1960) in dynamic programming, where any initial values are acceptable). How,
then, do Benoit and Krishna (1985) guaraatee that there is enough “punishment power” to support cooperative
behavior in G7(1) for large T, even if the multiple equilibria of G differ in value only minutely for some or all
players? With T = 10,000 and n = 5, for example, play in the last 500 periods could consist of 100 periods of
cach player's respective favorite gquilibrium, In the period preceding this 500-period endgame, cach player has
a lot 10 losc (remember that 8 = 1). Thus, values of Gm'mo(l) will be a lot like values of B¥**(W1) where
W is a large set. Chou and Geanakoplos (1987) show that in a generic class of games with continuous action
spaces, allowing arbitrary behavior in the last period only of G7(1) is enough to generate a folk theorem, even
though G may have a unique equilibrium. The subtlety here is that the leeway created by the arbitrary end-
period bebavior can, by the envelope theorem, be used to disturb bekavior slightly in many preceding periods;
when summed {without discounting), these changes have large value consequences and henee can create substan-

tial inceantives.

Cooperation amongst Mortals

Although the abstraction of a world that continues indefinitely is a useful device, modelling individuals as
infinitely Lived is less attractive. It scems important to inquire, then, into the possibilitics of self-enforcing agree-
ments amongst finitely lived agents in an infinite horizon world. One could avoid the question by arguing that
people, no matter how old, have a good chance of living in period ¢t +1 given that they are alive in #, espedally
if the period is a day or a week, for example, Another escape route is to note that reputation can be vested in
an institution such as a firm, whose mortal owners behave in accordance with implicit understandings (even just
before selling the firm) to protect the firm’s market value; this is highly plausible and is one of the ideas explored
by Kreps (1987) in his paper on corporate culture.

But what of situations where the participants’ limited horizons are known precisely and reputations reside
exclusively with the individual? If equilibrium in the component game is unique, as in many free-rider problems,

things look discouraging at first glance. Since it is impossible to induce a person to cooperate in the final period
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of his life, misbehavior having no future repercussions for him, presumably incentives unravel by the backward
induction argument familiar from finite horizon games. Crémer (1986) showed that this need not happen, and
his work has been generalized by Cooper and Daughety (1988), Salant (198%), Kandori (19892), and Smith
(1990). Ip an overlapping generations model, suppose that society acknowledges that in the final 3 periods of
his life, say, no individual will act cooperatively. Hence, selfish behavior by the aged is part of the implicit agree-
ment. But if any young person fails to cooperate, the accord is broken and everyone subsequently optimizes
myopically. Young persons will choose not to defect, because they would lose the benefits of social cooperation
for the rest of their lives. Folk theorems similar to those discussed earlier hold here, and Kandori (198%a) shows
that if successive individuals are born far enough apart in time, there is no need to invoke any full dimension
restriction. Recall that this assumption is usually made to ensure that punishers can be rewarded for minimaxing
a defector, without incidentally also rewarding the defector himself. In Kandori's construction, the punishers wait
until the defector dies, and then celebrate their earlier self-disciplire.

Cooperation in Matching Models

When large numbers of players are partitioned into pairs who interact strategically perhaps for only one
period before the pairings are rearranged, a particular player i/ may observe, at the end of period t, exactly what
his partner j did in that period, while others may be uninformed or only partly informed about Js action. This
makes it harder to sustain cooperation, because the group as a whole does not have the information needed to
tespond immediately and concertedly to a transgression by one individual. Nonetheless, self-enforcing agree-
ments are sometimes possible even under such poor informational conditions. Kandori (1989b) studies trigger
strategies in a repeated prisoners’ dilemma matching game (always cooperate until someone you meet plays
tough, and then play tough against everyone you subsequently meet). He shows that these strategies are & per-
fect equilibrium when 8 is near 1. (The delicate constraint to check here is that when a person is cheated for
the first time, he is willing to accelerate the decay of goodwill in the community by treating his next partner
ungenerously.)

Okuno-Fujiwara and Postlewaite (1989) focussed atiention on environments with somewhat better informa-
tion flows, which they call "local information processing.” Each person has a "label” observable by his partner.
The label in period t+1 depends only on the labels and actions of the individual and his ¢-partoers in period t.
(Examples of labels include membership in an organization and possession of a license or credit card.) Folk
theorems hold for communities with loca! information processing and infinite populations (Okuno-Fujiwara and
Postlewaite, 1989) or, under additional assumptions, finite populations (Kandori, 1989b).) Community enforce-
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ment of social norms for bilateral strategic bebavior has become the subject of much interest amongst ecopomic
historians. Recently a paumber of papers have traced the development of instinitions that promoted communiry
enforcement of fair trade practices in the absence of adequate legal sanctions (see espedally Greif (1989),

Milgrom, North and Weingast (1990) and Greif, Milgrom and Weingast (1990}.

3. IMPERFECT MONITORING

Even during the carly development of the theory of cooperation in games with perfect monitoring, research-
crs became dissatisfied with its scope. In many economic examples of practical interest, the assumption that
players observe one another’s past actions is inappropriate. Instead, player i observes the outcome of some
random variable (team output, number of product failures or consumer complaints, market price, and so on)
whose distribution is affected by the private actions of some or all of the players. Positive results for models of
this kind again appeared first for games witbout discounting. The pioneering papers by Rubinstein (1979b),
Radaer (1981) and Rubinstein and Yaari (1983) proved that in infinitely repeated principal-agent games of vari-
ous kinds, it is possible to overcome the inefficency associated with the moral hazard problem in the static
model. Rubinstein and Yaari also remarked that their arguments could be extended to yield a perfect folk

theorem for agency games with imperfect monitoring,

The Green-Porier Model

Green and Porter (1984) and Porter (1983a) were the first papers to study discounted repeated games in
which players receive information related only stochastically to others’ actions. Whereas the work without dis-
counting had concentrated on one-sided imperfect monitoring (the principal’s actions were not private), Green
aﬁd Porter were interested in seeing whether n players all of whose actions are taken privately, could sustain
cooperative (non-myopic) behavior by making their actions conditional on a relevant, commonly observed random
variable. They answered the question in the affirmative in a Cournot oligopoly with random shocks to market
price. By producing less following some observed prices than others, firms can create an implicit reward function
(mapping observed prices into supergame continuation payoffs). For economists, one of the most attractive
features of the model is that it escapes the prediction of dynamically uniform behavior on the most eollusive
equilibrium path, thereby offering a possible interpretation of observed phenomena such as price wars.

Porter investigated symmetric equilibria that are optimally eollusive among a restricted set of “trigger
strategy” profiles. A trigger strategy is described by a quantity ¢, a trigger price p, and a positive integer 7.
Firms begin by each producing g, and do so in every period uatil the price falls below p. A price realizatior of
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less than p triggers a T-period phase of Cournot-Nash behavior, after which cooperation resumes (until the
Cournot phase gets triggered again). Should incentives to produce ¢ in the cooperative phase be provided by
punishing frequently, or infrequently but with greater severity (larger 7)? Porter found that the answer varies
with the family of distributions used for stochastic demand, but often it is optimal to set T = =, that is, revert

permanently to the stage-game Cournot-Nash equilibrium.

Constrained Optimal Solutions

Abren, Pearce and Stacchetti (1986) dropped the restriction to trigger-strategy profiles and characterized
optimal pure strategy symmetric equilibria of a class of games that generalize the Green-Porter model. They
found that a constrained efficient solution is described by two "acceptance regions® £, and Q, in the signal space
(price space, in the oligopoly example) and two actions ¢ and g, In the efficient cquilibrium, players choose
q; as long as the value of the signal falls in Q;. Otherwisc, they switch to ¢, and keep playing g, as long as the
signal falls in 8, (when it falls outside Q, they switch back to ¢4, and so on). Thus, behavior oo the optimal
equilibrium path is a simple first-order Markov process with two states, indexed by the current “target action”
g, or g;. Why should the efficient solution take this form?

The value of an equilibrium of the supergame is the weighted sum of the first-period expected payoff and
the expectation of the continuation values from period 2 onward. The latter values are drawn from the symmetric
subgame perfect equilibrium value set ¥ < R (elsewhere ¥ was used for equilibrium values in R"). Thus, in the
oligopoly example, with expected payoff function IT and price density function f, we want to choose a first-period
quantity ¢, and a continuation reward function u(p) with values in ¥, to maximize (1-3)H(g, ., §)
+ & [u(pYf(p, ng)dp, subject to the incentive constraint that (given the immediate and future rewards) there is
no alternative quantity that a firm would prefer to ;. If it weren't for the need to provide incentives, one would
choose u(p) = max V everywhere. A subset of price space is a good place to assign a lower reward value if its
occurrence is much more likely when myopically tempting deviations take place than when gy is produced. For

example, if there is only one incentive constraint (that is, only one tempting alternative ¢°), the best places to

fp, (n-1)q; + 4} i.s
Ko, "‘h)

with very high likelihood ratios, and keep adding regions of price space (in decreasing order of likelihood ratic)

punish are where the likelihood ratio high. In this case, assign the value min V to prices

to the punishment region uatil the incentive constraint is satisfied. This procedure concentrates the *punishment”

into a region Qf that is as informationally efficient as possible. Using a larger region and a less severe punish-



ment will generally result in a loss of efficiency because of the region’s poorer ability to discriminate between
good and bad behavior.?

Thus, after one period of the best equilibrium, players will be instructed either to begin the worst equilibrium
(if price fell in the punishment region) or to restart the best equilibrium (play 4,). Now the worst equilibrium
corresponds to the problem of choosing an action g, and a reward function w(p} from V, to minimize the sum
of the current and continuation payoffs, while providing for adequate incentives. Again, we would like to give
the minimum reward everywhere, but to create incentives efficiently we give rewards max ¥ in a regibn 05
chosen for its discriminatory power. At the end of period 1, players are told to restart the worst equilibrium if
price fell in Q,, and to start the best equilibrium otherwise. Notice that in every contingency, players are dupli-
cating the behavior of the first period of one of two equilibria (the best or the worst), so that only two quantities
are ever produced. Switches between regimes are governed by the regions Q; and Q,, as specified carlier.

The requircments this solution places on players’ memories is unexpectedly modest. They need only

remember which of two quantities they were supposed to produce last period and what price arose.

Self-Generation under Imperfect Monitoring

Seif-generation and related techniques were first developed in the context of unrestricted symmetric equi-
libria of the Green-Porter model, and then presented in greater generality in Abreu, Pearce and Stacchetti
(1990). Suppose that players take private actions a; € A; (finite), { € N, that determine the density f(p; @) of a
commonly observed random variable p with constant support Q. Player ’s realized payoff depends on his action
- a; and on the realization p. Let i"s expected payoff be II(a). In pure strategy equilibria of the repeated game,
one-shot incentives are supplemented by continuation values drawn from the equilibrium value set V'  R®. The
continuation equilibria in effect create a (measurable) reward function mapping @ into ¥. Hence, the natural

value generation function to look at in this case is B : 2"\"‘7 - ZR’= defined by:

BOW) = {w € R'|3(cu) € 4 x L°(QW) st w = 1-8)II(a) + 3 u(p)(pia)dp and
(1-8)(a) + 8[u@)pi)dp 2 (1-8)I(b, 6.) + 3Julp)f(pi b,y a_)dp Wb, € Ay, i € N} .

Again, if Wis nonempty and bounded and W c B(W), W is called self-generating. This value-generation approach

led to a number of results summarized below.

80ften the optimal region will consist of prices below some critical value p- When a tail test is not optimal,
but is imposed arbitrarily, raising the critical value may add some informationally more efficient points to the
region. This explains Porter’s finding that sometimes T < w= is optimal; a unique interior solution of this kind
can occur only when imposing a tail test is inappropriate.
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PROPOSITIONS (Abreu, Pearce and Stacchetti, 1990).
0

Self-Generation. If W self-generating then W e [JB'(W) e V.

t=1
Bang-bang Rewards. V is compact, and for all v € V there exists an equilibrium whose implicit reward

functions after each history take only values in the set of extreme points of V.
[ ]

Algorithm. If W is bounded and V £ W, then [\ B'(W) = V.

1=1

Monotonicity. Jf0 < 8; < 8, < 1, then V(3;) < V(3,).

Under certain conditions the "bang-bang sufficiency” result given above can be strengthened to a necessity
result: an equilibrium that maximizes a lincar combination of player payoffs (including negative combinations)
must have implicit reward functions that use only extreme points of ¥. The rough intuition is the same as the
one given easlier for the Green-Porter model: if you are creating incentives by moving rewards in a direction
that reduces the objective function of the problem, do so aggressively (move until you can’t go any further in V)
but in as small and informative a region of signal space as possible. This advice cannot be applied lLiterally in
a model with a discrete signal space, so the bang-bang necessity result does not hold. The sufficiency result can
be restored trivially in an essentially discrete mode! if the signal space is taken to include the outcome space of
a public randomization device.

The scope of the preceding analysis is limited in three ways to preserve the "recurstve structure” of the super-
game equilibria: players receive no private signals, they use oaly pure strategies, and the commonly observed
signal has constant support. When any of these restrictions is relaxed, some equilibria may, after certain his-
tories, have continuation profiles that are not Nash equilibria of the supergame. This anises because imperfect
correlation may develop in the actions of different players who are conditioning their behavior on private signals
from earlier periods (including realizations of their own mixed strategy randomizing device). Fudenberg, Levine
and Maskin (1989) impose nore of the three restrictions, but they avoid the messy consequences in one superbly
pragmatic stroke. They consider only the public equilibria of the supergame, that is, profiles of strategies that
are perfect best responses to one another and use information from earlier periods only if it is publicly observed.
The continuations of these equilibria are again public equilibria, and a straightforward dynamic programming
approach can be used. I return to Fudenberg, Levine and Maskin's work in some detail later in this section.



Discontinuity at 8 = 1

Following the appearance of the efficiency results for undiscounted repeated agency problems meationed
at the beginning of this section, Radner (1985a) demonstrated the existence of fully efficient perfect equilibria
in a class of partnership games with the limit of means criterion. Especially once Radner (1985b) had shown
that asymptotic efficiency could be attained in repeated discounted agency problems as & approaches 1, it seemed
likely that the same could be proved for discounted partnerships. Thus, theorists were particularly intrigued
when Radger, Myerson and Maskin (1986) produced an example of a two-person repeated partnership game
whose equilibria are bounded away from the efficient frontier, uniformly in 8. Each player has two strategics:
work or shirk (the latter is a dominant strategy in the component game}. The cominonly observed signal is the
shared output, which may be either high or low, the probability of low output is f,, or f; if both players work or
only one works, respectively, where 0 < f,, < f; < 1. Restrict attention to symmetric equilibria (for expositional
ease), and let v be the value of the maximal equilibrium. The best way to get players to work is to give a con-
tinuation value of ¥ when high output is observed, and a lower value v - x when low output is observed.
Choose x just large enough that the expected loss in continuation value equals the average value of the absolute

myopic gain (say g) from shirking:

(fs _fw)‘r =g_(.1;ﬁ,

Even when both players work, low output occurs with probability f,, so that if I is the expected payoff in G

when both work, we have (if 3 is not too low):

¥ = (1-0T « 3F - fx)

e . als v (-8)
= (1-8)I a[v f,—f.,g'—é']

where 1 is the Ekelihood ratio £,/f,. Since 8 does not appear in the expression for 7, we sec that the average
payoff does not approach the first best I as 8 approaches 1. The average efficiency loss g/(1-1) is proportional
to the one-shot gain from cheating, and inversely proportional to the (transformed) likelihood ratio of the punish-
ment region. Abreu, Milgrom and Pearce (in press) show that this formula applies quite generally to symmetric
equilibria of repeated partnership problems; 1 explain later how they use this to study the effects of changing
information and timing in such games.



The limit of means criterion and discounting with 8 near 1 are alternative ways of modelling very patient
players. Together, the papers by Radner (1985a) and Raduner, Myerson and Maskir (1986) show that they are
by no means cquivalent; this is sometimes called 2 *discontinuity at & = 1." In my opinion the repeated partner-
ship (and most repeated games) are better modelled with discounting than with the Limit of means criterion, and
the example under discussion illustrates this well. If players arc to have incentives to work in period 1, they must
be punished (sooner or later) if period r output is low. Since low output may occur even under good behavior,
this imposes a real cost, one which must be borne every time players are supposed to work. The per-period
nature of the problem is nicely refiected in the discounting case, where the loss gets capitalized in the value set.
Without discounting, it is not necessary to deter shirking period by period: if a player cheats for k periods, it
has no effect on bis long-run average payoff. Only infinite strings of deviations arc a problem, and these Radner
detects using a “review strategy” that, according to the law of the iterated log, will yield a first-best equilibrium
average payoff. I can think of few economic problems that are well modelled by the assumption that it is safe
to ignore incentives in any particular 50,000 periods. For this reason 1 consider discounted folk theorems (and
counterexamples) important advances, even in the presence of the comprehensive theory for & = 1.

The need to deter single deviations (with discounting) and its absence (with the limit of means) probably
explains the difference in methodologies in the literatures with and without discounting. Statistical methods are
ideally suited to guarding against long-run deviations, whereas dynamic programming methods are largely
inapplicable at 8 = 1 (recall, for example, the failure of the equivalence of unimprovability and perfect best
responses). With discounting, the problem of deterring current deviations leads naturally to the decomposition
of a supergame profile into behavior today and continuation values for the future. The dynamic programming
perspective has the benefit of unifying the treatment of patient and impatient players, infinite and finite horizon
games, and implicit and explicit contracts (of which, more later). This is not to say that the statistical approach
cannot be used 1o advantage when payoffs are discounted; see, for example, the work of Fudenberg and Levine

(in press) on folk theorems for approximate equilibria.

Information and Timing

In models with perfect monitoring, fixing the players' rate of time preference and shortening the length of
the period (of fixed actions) is equivalent to letting the discount factor approach 1: in either case, today’s payoff
becomes a small part of total payoffs, so that the folk theorems have two interpretations. With imperfect moni-
toring, shrinking the period length still implies less discounting from one period to the next, but it also leaves

less time for players to observe signals relevant to behavior. For example, if signals arrive according to a Poisson



process in continuous time, with the arrival rate determined by players’ current behavior, the quality of informa-
tion (in a semse relevant for incentives, as explained below) available over a period of time of length s
deteriorates as s decreases. Hence, there are two effects of reducing the period length: an effective increase
in patience, which we know from the monotonicity result stated earlier tends to increase the average value set,
and a worsening of information, which Kandori (1988) has elegantly shown to decrease the set of equilibrium
values. Either of these two effects can dominate in a particular case.

The upper bound for v developed above for a simple partnership problem holds as stated for symmetric
equilibria of repeated partnerships with arbitrary signal spaces, as shown by Abrew, Milgrom and Pearce (in
press), and with slight modification for more than two actions. Attaching differcnt punishments (continuation
values) to different sigpal values is equivalent to using the severest punishment with different probabilities, which
in turn simply amounts to choosing a region (say Q) of extended signal space (the product of the natural signal
space and the range of a public randomizing device) in which to punish uniformly. Once Qy has been chosen
optimally, which can be accomplished by solving a linear program, the efficiency loss from providing incentives
for cooperation is g/(4-1), as before (if cooperation is possible at all).

Now think of the Poisson example with arrivals interpreted as "good news,” such as research breakthronghs
or the winning of major contracts. 1f all members of the team are working, perhaps the arrival rate over a year’s
time is 10, whereas it drops dramatically to 1 if anyone shirks. If the period of fixed action is a year, under
plausible parameter values cooperation could be sustained very profitably. But suppose that instead actions can
be changed daily. The only way to encourage cooperation is to punish the event that there is no good news (zero
arrivals), which has probability near 1 whether anyone shirks or not. Thus, the likelihood ratio is little more than
1, so that the efficiency loss is enormous. More precisely, as the period length shortens, the value falls until
cooperation is no longer possible, and the formula ceases to apply. Ironically, in this case the players’ ability to
respond quickly to information destroys all possibility of cooperation. This suggests that delaying the rclease of
information might actually be valuable in partnerships; Abreu, Milgrom and Pearce show that for high 8, infor-
mation delays can virtually eliminate the inefficiency that Radner, Myerson and Maskin identified.

Folk Theorems with Imperfect Monitoring

The prospects for a general folk theorem for discounted repeated games with multi-sided moral hazard
seemed dim, in the face of the Radner, Myerson and Maskin counterexample. But gradually a pumber of papers
challenged the presumption that the troublesome example was representative. Furst, Williams and Radner (19€7)
showed that efficiency could be approached in generic static partnerships with enforceable contracts. Matsushima



(1989) subsequently used a first-order approach and some fairly palatable assumptions on information and the
value set to generate asymptotic effidency in equilibria of infinitely repeated partnerships. Next, Fudenberg,
Levine and Maskin (1989) independently demonstrated that under remarkably weak conditions on primitives,
a folk theorem holds for a wide class of games including those with moral hazard on all sides. Demougin and
Fishman (1988) also showed that under reasonable conditions, oligopolies with imperfect monitoring could enjoy
cfficient collusion.

I concentrate here on the paper by Fudenberg, Levine and Maskin (hereafter FLM) because it is by far the
most general, and represents the state of the art in discounted folk theorems for a broad range of information
structures. Anyone interested in repeated games should read it closely. To avoid the introduction of further
notation, 1 shall simplify their mode} in a way that makes it easy to describe here. Start with the n-person
repeated game with imperfect monitoring studied by Abreu, Pearce and Stacchetti, discussed earlier, and make
two changes:

(i) let the signal take on only k values, & finite, and

(i) drop the "constant support” assumption.

As FLM explain, this mode! embraces perfect monitoring games (where the signal is simply the vector of players’
actions), oligopolies, partnerships, and principal-agent problems (where the agent’s action in the component game
is a plan contingent on the compensation function offered by the principal). What I omit here are adversc selec-
tion problems, discussed in the final section of FLM.

Logically prior to the possibility of efficient cooperation is the question of whether cooperation can be sup-
ported at all. If one is allowed to employ arbitrary continuation values in R" as threats and promises, can players
necessarily be induced to take a particular desired vector of actions? With perfect monitoring, the answer is
obviously yes: players will do anything to avoid sufficiently severe punishments. With imperfect monitoring,
bowever, player 1 might have three actions ay, b, and ¢, such that given some profile of actions for other players,
the distribution of the public signal is the same when 1 chooses ¢; as when he randomizes between a; and by
with probabilities .6 and .4, for example. If the component game payoff to 1 is higher for both 4; and b, than
for ¢y, then it is impossible to induce him to play c;. No matter what rewards are attached to signal realizations,
switching from c; to the mixture raises player 1's immediate payoff and leaves the distribution of continuation
rewards unchanged. Hence, FLM’s first informational assumption is one ensuring that a player’s different pos-
sible actions can be distinguished, and hence encouraged or discouraged. Specifically, they impose the individual



full rank condition: at each profile @ € 4 and for each player i, the k x m; matrix’ whose columas are the
probability distributions induced by the respective action profiles (b;, a_;), b; € A;, has rank m,, that is, the
probability vectors corresponding to each pure action of { are linearly independent. It is easy to verify that this
guarantees that any behavior can be enforced if arbitrary continuation payoffs can be used.

Enforceability of this kind is clearly not enough to yield a folk theorem, because the Radner, Myerson and
Maskin counterexample satisfies individuai full rank. The problem there was that the oaly way to enforee good
behavior was to punish both players in the event that output is low, Efficient (or nearly efficient) cooperation
in a model where no player's actions are observed, generally requires that when one player's continuation payoff
is reduced, another’s must be increased:1® surplus should be passed back and forth amongst players, not
thrown away. For a transfer of surplus from i to j to be eflective in creating incentives, it needs to be associated
with information that discriminates statistically between deviations by { and deviations by j. The availability of
such information is ensured by the pairwise full rank condition: for each pair of players i and j there is some
profile @ € A4 such that the k x {m; + mj)-dimensional matrix whose first m; columns are the respective public
distributions induced by the vectors (b;, & _;), &; € A; and whose final m; columns are the distributions induced
by the vectors (cj, &.), ¢; €4, is of rank m; + m; - 1. (There is inevitably one linear dependency among the
columns, because both i and j can create the distribution associated with « by putting the appropriate weights
on pure actions.)

It would have been reasonable to guess that to prove that a desired profile y can be enforced (almost)
efficientiy, it would be necessary to impose pairwise full rank relative to deviations from y. By contrast, all that
is actually assumed is that for cach i and j, there is some "distinguishing" & that allows 7's and J's deviations to
be distinguished, and not necessarily the same o for each pair of players! FLM demonstrates that a profile as
close as desired to ¥ ¢an be found that puts a little weight on the strategies used in the "distinguishing profiles”
and discriminates as required between deviations of different players. They artribute the kernel of this idea to
Legros'? (1989).

SThere are k possible signal values, and m; pure strategics for cach player i.

10This is true in the context of the present model, in which the range of the public signal is finite (assuming
in addition that all realizations occur with positive probability in equilibrium). In games with richer signal spaces,
it is sometimes possible as & approaches 1 to construct a sequence of symmetric punishments that are asymptot-
ically efficient, based on punishment regions whose likelibood ratios are exploding. Recall the famous example
of Mirrlees (1976) in which the static agency problem is overcome in the same way.

13} egros was concerned with a static incentive problem. Recently Legros and Matsushima (1990) have given
a nice sufficient condition for the existence of efficient solutions of static partnership problems.
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With the additiona) restrictions oo the information structure guaranteed by the full rank conditions, FLM
prove a folk theorem of virtually the same degree of generality as for perfect monitoring. There is no restriction

to pure strategies.

PROPOSTTION. Perfect Folk Theorem with Imperfect Monitoring (Fudenberg, Levine and Maskin, 1989), For
a finite game G satisfying individual full rank and pairwise full rank (see above} and dim F* = n, for any closed
set W in the relative interior of F* there exists § such that forall 8 > 8, W< V(8).

Fudenberg and Levine (1989) show how the folk theorem must be weakened if some of the participants in a
supergame are "short run" players; they provide an upper bound for the payoffs attainable by the long run

players, as a function of the information structure.

Agency and Repeated Contracting

The classic moral hazard problem with one principal and one agent is ao important example of a game with
imperfect monitoring on one side. Many principal-agent relationships are of an ongoing nature, and much effort
has been devoted to understanding the implications of repetition for the shape and performance of optimal con-
tracts. Some of this research was underway at the time of the Fifth World Congress of the Econometric Sodiety,
and was included in the authoritative survey by Hart and Holmstrdm (1987). For a taste of what has been done
since, se¢ the relevant section of FLM, Malcomson and MacLeod (1988, 1989), Pearce and Stacchetti (1987),
Phelan and Townsend (1989) and Rey and Salanie (1990). While not strictly repeated, some games of inter-
national debt repayment are closely related; see especially Atkeson (1988).

One of the benefits of the recent overlap of contract theory and repeated games has been a growing under-
standing of the relationship between what can be accomplished by implicit and explicit (legal) enforcement
mechanisms, respectively. Naturally, implicit contracts are advantageous when the concerned parties share
information that cannot (for legal reasons, or because verification costs are prohibitive, etc.) be used in an
explicit contract. But when the contracts can be specified in terms of the same information, do self-enforcing
agreements achieve what explicit contracts can? The answer depends on whether onc can create the same varia-
tion in continuation payoffs in self-enforcing agreements as in explicit contracts (and hence provide incentives
with the same degree of efficiency). This is not always possible: the equilibrium value set (in the implicit con-
tract environment) might be of less than full dimension, or might be too small to allow efficient exploitation of
the game’s signal space (recall the earlier discussion of likelibood ratios). Suppose, however, that the conditions
of the FLM folk theorem of this section are met. Then as & approaches 1, self-enforcing agreements achieve
almost any feasible, individually rational payoff, so that asymptotically, implicit contracts perform as well as their



explicit counterparts. Note that the preceding discussion has abstracted from transactions costs, which may differ

for implicit and explicit contracts.

Confronting the Theoretical Predictions with Reality

This will be a brief subsection, because reality and I have been out of touch for a long time. A number of
investigators have developed econometric tests of the Green-Porter model and applied them to data on the Joint
Executive Committee railroad cartel (weekly aggregate time series for the period 1880 to 1886). Porter (1983b),
Lee and Porter (1984) and Hajivassiliou (1989), respectively, use switching regression models of increasing
sophistication to allow for collusion punctuated by price wars. Berry and Briggs (1988) use the same data to test
the hypothesis that the alternation between regimes follows a Markov process, and Hajivassiliou (1989) compares
the performance of the Abreu, Pearce and Stacchetti (1986) and Rotemberg and Saloner (1986) analyses of
oligopolistic collusion. Slade (1986, 1987) tests a learning model (Slade (1989a)) using a daily time series on
gasoline prices in Vancouver that she collected.

I value this body of work principally for its implementation of econometric methods appropriate to the study
of collusive markets and for its organization of some facts about intertemporal strategic behavior in a few oligop-
olies. It secrs entirely premature, however, to draw conclusions about the relevance of the particular models
tested (and accordingly I do not summarize the results of the various tests here).}? First, it is highly probable
that none of the models comes close 1o capturing the strategic considerations at work in the oligopolies in ques-
tion. The environments were far more complicated, in important ways, than any of the models tested, and I
think Slade has the right attitude when she describes the process of relating supergame models to data as follows:
"The object of the exercise is not to pick a winner. Instead, the role of industry characteristics in deterrmining
pricing dynamics is assessed, and the reasons why simple models may fail to explain complex pricing patterns
are examined” (Slade, 1989b). A second reservation is that the collusive theories tested are quite naive from a
conceptual point of view, ignoring renegotiation, coalition formation, and other considerations of equilibrium
refinement. In my opinion, the pure theory of implicit collusion is at such a primitive stage that it is in no shape
to be tested.

Still, T feel that there is a lot to be learned from studying collusion in specific industrics while keeping in
mind an assortment of questions provoked by modern theory. An exciting example of what can result is Leven-

stein’s (1989) work on the bromine industry in the U.S.A. and Germany from 1830 until 1914 By analyzing the

12()geful summaries and discussion may be found in the surveys by Jacquemin and Slade (1989) and
Bresnahan (1989).



internal documents of the Dow Chemical Company and its correspondence with other American and German
producers, Levenstein gives us an extraordinary picture of the evolution of competition and collusion among the
oligopolists as they gained experience, learned about their rivals, and faced changing market conditions. Other
fascinating examples of self-enforcing contracts in the economic history literature include Greif (1989) on reputa-
tion among medieval Mediterranean traders, and Milgrom, North and Weingast (1990) on the role of the Law
Merchant and the Champagre fairs in Europe in the Middle Ages.

4. RENEGOTIATION AND SELF-ENFORCING AGREEMENTS

If an agreement among players in a repeated game is truly self-enforcing, it must be able to withstand the
possibility that the players could renegotiate the terms of the agreement after any history. This section princip-
ally concerns renegotiation involving all parties to the agreement, although the potential for defections by smaller
coalitions is an important and difficult problem as well. An explosion of research m the last six or seven years
kas produced a baffling variety of criteria for *renegotiation-proofness.” Rather than exhaust the space available
here by reproducing the details of the many definitions, I will try to provide a conceptual overview of the liter-
ature, emphasizing the concerns that prompted the authors to formulate the new solution concepts. There will
be no attempt to describe the technical characterizations of the solution sets; under moderate assumptions exis-
tence is not a problem, except where mentioned. Nonspecialists will find the discussion more meaningful if they
first (or concurrently) refer to some of the original papers in the hiterature.

Although all the work on renegotiation is skeptical about the credibility of the kinds of equilibria described
in Sections 2 and 3, there is an even more radical critique that deserves mention. In the spirit of Harsanyi and
Selten (1988) onc could say that the behavior of *ideally rational” players in a subgame depends only on the
internal structure of the subgame and not on how it was reached. Since all subgames of an infinite horizon,
strictly repeated game are identical, it follows that there is no scope for negotiation of any kind: the same
(noncooperative) outcome will occur in each period. Giith, Leininger and Stephan (1988) provide a formal argu-
ment based on a generalization of subgame consistency (Selten, 1973). It is not clear why full rationality
necessarily precludes the formation of agreements to vary behavior across isomorphic subgames if the result is
beneficial to all concerned. But I have some sympathy with the radical critique insofar as I think (and argue
later) that most otber authors err in the opposite direction by overestimating the influence of verbal agreements

on the course of play.



The first work on renegotiation in infinitely repeated games'> was done independently by Bernheim and
Ray (1989) and Farrell and Maskin (1989). Their position is that the stationary structure of G"(%) implies that
the set of credible (renegotiation-proof) equilibria is the same in every subgame. Moreover, they assume that
after any history of play, an ongoing agreement would be renegotiated (abandoned) if and only if a Pareto
superior credible equilibrium were available, That is, players will stick with the status quo unless everyone can
credibly be made better off. In the terminology of Farrell and Maskin, a subgame perfect equilibrium is called
weakly renegotiation-proof (WRP) if no two of its continuation values' (after any history) are Pareto ranked.
This can be translated into a criterion for sets of supergame (average discounted) values, to facilitate comparison
with other solution concepts. A set W of values is WRP if it is self-generating (this imposes the discipline of sub-
game perfection) and if no two values in W arc Pareto ranked. One might say that such a solution set is “Pareto-

Unfortunately, a WRP set W may contain a point w that is Pareto-dominated by a point ¥ in some other
WRP set X. Why is the value w credible if players can propose the universally preferred coatinuation value x,
which is itself credible according to the WRP criterion? A WRP set none of whose values is Pareto-dominated
by an element of any other WRP set is called strongly renegotiation-proof (SRP). Such a set does not always
exist: there may be no “greatest” WRF set, but rather two or more intersecting *maximal® WRP sets, such as
W and W in Figure 2. This possibility led to several interesting definitions intermediate betweea WRP and
SRP, none of them completely satisfying. These include relative strongly renegotiation-proofness (Farrell and
Maskin (1989)) and minimal consistency and simple consistency (Bernheim and Ray (1989)). For technical char-
acterizations of WRP, SRP and their variants see the two papers just mentioned, and also van Damme (1989)

and Evans and Maskin (1989).

13This work was being done around the same time Bernbeim, Peleg and Whinston (1987) were developing
their notion of coalition-proof equilibrium, whose extensive form expression can be specialized to a theory of
renegotiation-proofoess in finitely repeated games. An early note on renegotiation in infinitely repeated games
was circulated by Farrell (1984). Cave (1987) deserves mention for studying the minimal punishments necessary
to support a given degree of collusion in a dynamic fisheries model

¥por any profile o, the set of continuation values of ¢ is C(o) = {v(a|,) | is some (possibly degenerate)
history of play}, where o], is the profile induced by o on the subgame following k. Note that v(a) is included
in C(a).
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Bernheim and Ray have reservations about all of the forcgbing definitions because in the following sense
they require too little. If #'is the solution set, it should not be possible to construct an equilibrium o with value
Pareto superior to some value in B that uses only continuation values from W after every nontrivial history.
After all, how could one argue against renegotiating to @ (from an equilibrium with the Pareto dominated value),
if in all future contingencies it specifies conlinuation values that are credible within the theory? Thus, one peeds
to require that the solution set W satisfy W = eff B(W), where eff X means "the (Pareto) efficiency frontier of
X" Such a set is called intemally renegotiation-proof and is studied by Ray (1989). Existence is apparently
problematic.

Pearce (1987) suggests a different approach to renegotiation, one that ties the influence of a negotiated
agreement to the usefulness of such agreements in the future. For simplicity, think of a very spedial case,
namely, an infinitely repeated game all of whose subgame perfect equilibrium average values are symmetric (if
one player gets x in equilibrium, so does everyone clse). Players at time ¢ will not follow an equilibrium with
continuation value 2, say, if the only reason for doing so is that the threat of triggering the valuc 2 was needed
eariier to induce a certain patiern of cooperation. But the continuation equilibrium will stand if the value 2 is
truly indispensable for the provision of incentives in the fuzure, that is, if every subgame perfect equilibrivm must

use contisuation values of 2 or less after some histories. In the special case under consideration, Pearce (1987)



32

calls an equilibrum o renegotiation-proof ifS inf C(0) 2 inf C(¥) for every subgame perfect equilibrium y.
Implicitly some notion of precedent is being invoked: players should not believe that they can abandon a punisk-
ment of 2 now, but commit never to do 50 again in the future. Twill omit the extension of the solution concept
to general repeated games, because (like almost all of the literature) it uses the Pareto criterion in determining
when a credibic alternative wil be adopted by the group of players. There is a need for more plausible eriteria,
a point discussed briefly below.

Greenberg (1990) presents the results of research over a number of years on the "theory of social situations,”
which expands on the *stable set” methodology of von Neumann and Morgenstern (1947) and applies it to a vari-
ety of strategic settings. This work has had an influence on the debate about renegotiation, particularly through
the rescarch of Asheim (1988, 1990), whose analysis of rencgotiation relies explicitly on stable sets of equilibria.
A solution in his sense is a set of equilibria for each subgame; the set associated with a given subgame is
interpreted as those equilibria considered credible in that subgame. Asheim calls a solution "Pareto perfect”
(foliowing the terminology of Bernheim and Ray (1989)) if it is both internally and extcrnally stable. Internal
stability means that for any subgame g and clement @ of the associated solution set, and any subsequent subgame
h, no element of the solution set of h Pareto dominates the equilibrium induced on h by e. (Thus, no aedible
equilibrium should be interrupted after some history by a Pareto superior equilibrium considered credible follow-
ing that history.) External stability requires that for any equilibrium ¢ excluded from the solution set for
subgame g, there must be some subsequent subgame & such that some element of the solution set of & Pareto
dominates the continuation equilibrium induced by @ on k. An attractive feature of the theory, then, is that it
explains why no further equilibria were included in the solution sets. Existence has not been established in
general, and it scems unlikely that strong results are possible. Asheim (1990) shows that even in very simple
examples, existence is incompatible with stationarity of the solution sets.

Instead of giving up stationarity, perhaps we can exploit it to arrive at an appropriate relaxation of external
stability. If an equilibrium o is not dominated after any history by ar *included" equilibrium, o might still be
excluded on the grounds that it is internally inconsistent. Suppose that for some history h, the continuation
equilibrium a |, is dominated by a itself. If players found o credible, then after the history A they would unani-
mously agree to renegotiate away from ¢ |, to o, which contradicts the hypothesis that such a @ could be found
credible. One can find argumeants for and against weakening external stability by allowing for exclusion on the
basis of internal inconsistency. For those who would object that this is a departure from the original spirit of

LHere C(o) is treated as a set of scalars, since everyone’s payoff is the same.
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the von Neumann and Morgenstern definition, I should remark that they presumably were thinking principally
of strict dominance relations that were irreflexive, so that the issue of self-dominating elements did not arise.
It is only in the context of objects with a dynamic structure that the question becomes important.

Abreu and Pearce (in press) adopt the stable solution formulation with a number of changes. First, we
weaken external stability ip the way just deseribed. Secondly, we argue that it is reasonable to look for stationary
stable sets of deviations, rather than sets of credible plans. The interpretation is that since & deviation from an
ongoing social agreement does not depend upon the old agreement for its legitimacy, it must stand on its own.
Thus, if it is credible in one contingency, it is credible in any contingency. (This is ot 1o say that it will be
adopted independently of the context; the group may not wan! (o adopt it if the status quo is sufficiently attrac-
tive.) Hence, it scems natural to impose stationarity on the set of deviations that are considered credible.
Finally, we suggest that the Pareto criterion be replaced as dominance criterion by some ordering, preferably
complete, reflecting considerations of bargaining power in the game.

The use of the Pareto criterion for determining when a credible alternative will be adopted imputes to each
player veto power over changes from the old negotiated agreement to a suggested alternative. Why should a
verbal agreement embody such commitment power? In my (minority) opinion, it is more plausible to posit that
decisions to adopt credible alternatives are governed by some rule that takes into account the bargaining posi-
tions of the players, as determined by the structural features of the game. Abreu and Pearce (in press) have
nothing constructive to say about precisely what the rule ought to be. The probiem is a little easier in symmetric
games, where Abreu, Pearce and Stacchett (1989) modify the definition of renegotiation-proofness given in
Pearce (1987) by replacing the Pareto criterion with a simple (many would say too simple) bargaining rule.
DeMarzo (1990) raises another problem concerning veto power and the status quo. Suppose that the initial
equilibrium o is adhered to in the first period, and in the second players are pondering the credibility of an
alterpative o’. If they adopt o', then in the third period can each player insist on the continuation of o’
(against a new proposal ¢°, say) or on the continuation of o7 In other words, what should serve as the status
quo? Departing from the earlier literature, DeMarzo says that in many circumstances o is more appropriate,
because the original equilibrium has the weight of tradition behind it (it is a "social norm"}.

Bergin and Macleod (1989) present an axiomatic system within which they can generate a number of the
alternative solution concepts in the renegotiation literature. Although in some cases (such as their axiomatization
of my own definition) I find the particular decomposition of the definitions into principles and preferences
unnatural or forced, in others it is very helpful, especially in understanding the relationships of formulations of

rencgotiation-proofness in finite and infinite horizon supergames. Scveral papers, most notably Benoit and



Krishna (1988) have explored the implications of *Pareto perfection” (Bernheim and Ray (1989)) in finitely
repeated games.'s The definition is recursive. In the final period, the credible Nash equilibria are those that
are Pareto efficient among all Nash equilibria of G. In the last two periods, the equilibria that are efficient
among those whose continuations are credible, are deemed credible, and so on. In technical terms, if W' is the
set of credible average values in the final t-period subgame, then Witl = eff B(W"). So as Bergin and MacLeod
point out, the WRP concept is really not analogous to the commonly accepted finite horizon definition. Actually,
Bernheim and Ray’s internally renegotiation-proof solution is a closer analogue to the latter. Bergin and
MacLeod also propose a mew solution called recursive efficiency; see their paper for a discussion of its rela-
tionship to DeMarzo’s point of view.

1 cannot end this catalogue without mentioning an intriguing paper by Matsushima (1990). His idea is that
just as an equilibrium specifies what will happen if its "instructions” are not obeyed, societies have metacodes
indicating what happens when 2 social convention (equilibrium) is breached, that is, when the group as a whole
sets aside an equilibrium. The ensuing analysis is highly ingenious; to my astonishment, Matsushima emerges
from a jungle of infinite sequences of social conventions and breaching rules, with an existence result. 1will not
15y to explain the motivation for the solution concept; on that score, despite some enjoyable discussions with the
author, 1 remain mystified.

How are we to choose among the multitude of theories of renegotiation? I don’t think this can be done
purely on logical grounds: each theory is consistext on its own terms and respects all the relevant intertemporal
incentive constraints. Many strategic situations (as traditionally described) are fundamentally underdetermined,
even if one imposes the questionable restriction of equilibrium. What people will believe after observing a
particular history of play, and what weight they give to verbal agreements, are partly questions of psychology.
Why not leave the problem to the psychologists, then? I find this abdication of responsibility unattractive: the
psychological aspects of the puzzie are inextricably interwoven with complicated considerations of sequential
rationality and bargaining power. Thus, while guidance certainly should be sought from other disciplines, the
skills of game theorists and economists are highly relevant in the construction of educated guesses about coopera-

tion in supergames.

16Abreu and Pearce (in press) suggest that the logic of renegotiation is rather different in finitely, as opposed
to infinitely, repeated games. If verbal agreements are influential because of their prospective usefulness, what
weight can they carry in the final period of GT(3), where there is no future for the players to consider?
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To guess is unavoidable!” if we are to make any contribution to many of the most important areas of the
social sciences (beyond asserting that aothing can be said with much certainty, sometimes a useful remark in
itself). The danger is that the guesses may be taken too seriously. "Equilibrium in dominant strategies” and
"weakly renegotiation-proof equilibrium” are worids apart in the immediacy of their links to basic principles of
rationality, and correspondingly in the degree of confidence they ought to command. Yet one term, "solution
concept,” is used to describe them both (along with scores of other notions). We need to develop a means of
communicating the intended interpretations of our varicus solution concepts and of distinguishing what is rela-
tively solid in our analyses from what is of & more speculative nature. Such & language is needed not only for
studying repeated games, but for game theory in general Its absence is a stumbling block for the useful fusion

of noncooperative and cooperative theories of strategic behavior.

5. CONCLUSION

Study of the equilibria of repeated games has been intense over the past decade. The results have been
rewarding. While progress occurred largely in models chosen for their tractability, a picture has emerged that
seems likely to be broadly representative of more general environments. Among other things, we have some
sense of what optimal self-enforcing agreements fook like, when they are likely to approach the first best, which
theoretical simplifications are fairly innocuous, how implicit and explicit contracts compare, and which techniques
extend to dynamic and stochastic games. But beneath our understanding of the mechanics of supergame equi-
libria lie foundational issues of the most immediate relevance.

The multiplicity of equilibria that causes problems in many areas of game theory arises in a dramatic way
in repeated games: without multiplicity, self-enforcing cooperative agreements would be impossible. The accorm-
panying conceptual puzzies were long ignored, but recent years have seen an explosion of research on supergame
solution concepts, with particular attention devoted to the renegotiation of implicit agreements. After all the
activity, there remain more questions than conclusions. Under what conditions are players likely to expect others
to behave non-myopically? What do they think when someone departs from an agreed-upon plan? Which nego-
tiation statements are credible? What is an effective precedent? Issues like these float tantalizingly in a

muttidisciplinary limbo, beyond the reach of purely mathematical analysis. They are too central to ignore, yet

1In his scintillating essay on the foundations of game theory, Binmore (1992) urges that predictions about
strategic behavior be informed by careful study of "Librations* (equilibrating processes in real time) and of the
actual thought process of (boundedly rational) humans. This may well prove productive, but is unlikely to
remove the need for guesswork in the foreseeable future. There will remain ample room for debate about what
rules of thumb, models of the mind, updating processes, and so om, are reasonable or plausible.



too nebulous to have definitive answers. This is at once the most frustrating and the most alluring aspect of the

subject.
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