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1. INTRODUCTION

Studying a few examples of finite n-person games leads one to believe that most
games that have multiple pure strategy Nash equilibria also have nondegenerate mixed
strategy Nash equilibria. Our purpose is to provide a formal statement and proof of this
observation. In fact we will establish the following stronger result: given any finite
n-person game I', for a generic set of payoffs, if I"has o2 1 Nash equilibria in pure
strategies, then the total number of Nash equilibria of T” is at least 200~ 1. In other
words, at least o — 1 equilibria involve some randomization by some players.

Our approach relies on a technique that characterizes Nash equilibria as the fixed
points of a continuous function g. Itis known that the sum of the Leftchetz indices of the
fixed points of a Leftchetz function equals +1 (see Guillemin and Pollack (1974)). We
establish our main result by showing that generically g is a Leftchetz function and that
pure strategy Nash equilibria are fixed points of g with Leftchetz index +1.

The standard proof of the existence of Nash equilibrium (see Nash (1951)) uses the
Kakutani fixed point theorem on the product of the best response correspondences.
However, the line of argument described above necessitates that equilibria be viewed as the
fixed points of a (single-valued) function. Hence we are led to the variational inequality (or
generalized equation) approach.

The necessary and sufficient conditions for a Nash equilibrium in a 2-person game
are equivalent to a linear complementarity problem. Lemke and Howson (1964) have
developed a numerical algorithm, similar to the simplex method, to solve this problem.
More recently, Wilson (1990) has refined this algorithm to compute stable equilibria. The
linear complementarity problem is an example of a variational inequality. Robinson (1979,
1983) has introduced the notion of a generalized equation as an alternative representation
for a variational inequality to facilitate sensitivity analysis. A number of authors have

studied special cases of variational inequalities. Kehoe's analysis of production economies



(1980, 1982, 1983) and Reinoza's study of generalized equations (1979, 1983) utilize
index theory ideas, similar to the ones we use here, to investigate existence, uniqueness
and stability (continuity properties) of solutions. Stacchetti (1987) provides a unified
analysis of a wide class of variational inequalities.

Section 2 first expresses Nash equilibrium as the solution of a variational
inequality, and then uses a construction of Hartman and Stampacchia (1966) to obtain a
characterization in terms of the fixed points of a funczion. After summarizing a number of
relevant results from Leftchetz index theory and speciaﬁzing them to games, Section 3
presents our main result: for regular games, the number of equilibria in pure strategies can
exceed the number of mixed strategy equilibria by at most one. In section 4 we show that

the set of regular games is generic, in a strong sense. Section 5 concludes briefly.

2. CHARACTERIZATION OF EQUILIBRIA
The conditions characterizing a Nash Equilibrium (NE) of an n-person game are a
natural extension of the necessary and sufficient conditions introduced by Lemke and
Howson (1964) for 2-player games. Without loss of generality we restrict attention
throughout the paper to 3-player games. We consider the 3-player case to emphasize that
the methods used here do not depend on the linearity of payoffs in opponents' strategies.
Consider a (finite) 3-player game I' = (A,B,C) with payoff matrices A = [aijk],
B= [bijk] and C= Tk aijk”is player 1's payoff when he chooses the pure strategy
i€ §; = {1,.,m} while players 2 and 3 choose pure strategies j € S, = {1,..,n} and
ke S5 :={1,..,p}, respectively. Similarly, b is player 2's payoff and Cyjx is player
3's payoff. The set of strategies for player 1 is defined by

Sm:={Ae RMIA>0,eTA=1},



where €T :=(1,..,1). Below, e will always denote a column vector with all its entries
equal to 1; we will not specify its dimension since it will be clear from the context. The
sets of strategies S? and SP for players 2 and 3, respectively, are similarly defined. Let

K := Sm x S0 x SP. Note that K is a convex compact set.

Definition: A e S™ is a pure straregy for player 1 if A is an extreme point of
Sm_ (Thatis, A=e¢; for some i€ S;. Here e; denotes a vector with component i equal
to 1 and all other components equal to 0.) A € S™ is a mixed strategy if it is not a pure
strategy. An NE (A,1,Y) € K is a pure strategy NE if it is an extreme point of K;
otherwise, (A,1L,Y) is a mixed strategy NE. Our use of the term "strategy” will include both

pure and mixed strategies.

Definition: Let C < R! be aconvexsetand x € C. The normal coneto C at

x 1is the cone
Ne(x) := {qe Rl i<gex><0 forall ce C};
when x & C, No(x) := 0.

Lemma 1;: Let Y& R/, be R, d e Rs*, and d e R, and suppose

C CR! is the convex set defined by
C={ze RI¥Yz=b and Pz <d}.

. Then

i
Assume ze C andlet J:= {oclB};.l %B Zﬁ=da}
Ne(z) ={qe ‘Jillq=‘PTv+<I>}"w for some ve R and we 9‘{11'} ,

where @j is the submatrix of ® comprised of the rows o € J.



Definition: For A€ XM, pe R and ye Ri, we denote by A(W,y) e Rm,
B(i,y) € R0 and C(y,u) € RP the payoff vectors for players 1, 2 and 3, respectively,

whose components are

Ay = Ek 8k MYk ie §;,
iB
1

A;(1L,Y), for example, is the payoff for player 1 if he chooses strategy i when players 2

and 3 choose the profile of strategies (1,Y) € S? x SP.
Lemma 2: (A,1,y) is an NE with value \;T = (V],Vp,V3) iff
@ AQY) +x=ve,x20,Ae SM and ATx =0,
() BAy+y=vye,y20,pe S" and uTy =0, and
(i) C@Au)+z=vze,2z20,7Y€ SP and YTz=0.

Condition (i) of Lemma 2, for example, requires that player 1 give strictly positive
weight to a pure strategy only if it is a best response to the profile (i,y). The proof of the

Lemma is immediate, and is omitted.
Corollary 1: (A,u,y) is an NE iff

&) A(u,Y) € Ngm(A),

(@  B.y) e Nga(W),

@)  COA) e Ngp(y).



A
Since Nsm(K) X Nsn(p.) X Nsp('Y) = Ng| 1 |, the conditions in Corollary 1 can

Y
also be written
AQY) A
B(A.Y) |e Ng |
C(A,1) Y

For any closed convex set C SR/ and ze R/, P(z) will denote the projection
of z onto C. A well known characterization result states that P(z) is the unique point

that satisfies
<z-Pe(z), ¢ -P(z)><0 forall ce C.

Let f: R/ — R/ and define g: C— C by g(z) :=P(z +1(z)), ze C. Itiseasy to
check that z* is a fixed point of g iff f(z*) € N(z*).

Definition: Let f: Rm+n+p 5 ®Rm4n+p pe the function

A AQY)
flp={BAY |,
Y Cp)

and g: RM+0+P 5 K be the function

Corollary 2: (A,1,y) € K is an NE iff it is a fixed point of g.

The idea behind Corollary 2 can be expressed as follows. Consider any convex set

K; the point z € K is alocal maximizer of F in K iff the projection onto K of the point
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obtained by moving away from z along the gradient of F at z is again z. Thatis,

Py(z + F(2)) = z. The construction preceding Corollary 2 utilizes this observation to
simultaneously solve the interdependent maximization problems of the players in order to

obtain a Nash equilibrium.

3. NUMBER OF PURE STRATEGY EQUILIBRIA

The tangent space to K isthe m+ n+p—3 dimensional subspace in Rm+0+p

defined by
A
T:= ((AWY) € Rmntp Al 1=0],
Y
where
el 0 0
A= 0 eT 0 je R3x(m+n+p)
0 0 T

Suppose h: Rn+m+p — K is a continuous functioh. Afixed point z of h isa
Lefichetz fixed point if h is continuously differentiable in a neighborhood of z and
I-h'(z): T—T is an isomorphism. Further, h is a Leftchetz map if each of its fixed
points is a Leftchetz point. If h is a Leftchetz map, it admits only a finite number of fixed

points and its Leftchetz number can be computed by

Lth)= X i(h;z), where

z=h(z)

_hK' T
i(h;z):sgndet[I b A :l

-A 0

is the index of h at z. Because the Leftchetz number is a homotopy invariant, L(h) = L(ﬁ)

for any f homotopic to h, and since K is convex, all maps h : K — K are in the same



homotopy class. In particular, if Ze K and h:K — K is the constant map H(z) =z,
ze K, then h is a Leftchetz map, Z is its only fixed point, and
L) =ih2) =s det{ I AT] sgn det 1 AT sgn det AAT =1
= "Z = n = 3 - 3
1 g A0 g 0 AAT gn
m 0 0
because AAT=| 0 n O | and det AAT =mnp.
0 0p
Definition: An NE z = (A,u,y) of T is strongly nondegenerate if

@ for each player, every best response is used with positive probability.

(ii) det d-g'(2))#0.

The game I is regular if each of its NE is strongly nondegenerate; otherwise, I” is said to
be singular.

Condition (i) guarantees that g'(z) exists for each NE z of I'. Suppose g is
differentiable at ze K. Since g'(z) { e T forall £ € Rn+m+p, condition (ii) is

equivalent to requiring that 1-g'(z): T = T be an isomorphism. This is also equivalent

to
I-g'(z) AT
t .
(i) de {: A 0 #0
Theorem 1: Suppose T is regular and z= (A,j1,7) € K is a pure NE. Then
i(gz) = 1.

Proof:
Without loss of generality assume that A >0,B >0, C> 0, and z = (A,[L,9) =

(€,e1,€7)- One can show (see for example, Stacchetti (1987)) that

g' (@) = 1-XYXT){ + @),

-



where XY e R(m+n+p)x(m+n+p) are defined as follows:

e 00 I, 0 O
X=[ 0 e 0 0 L 0|,

00 e 0 0 I
Y = (XTX)1,

and I} € RMX(M-1) jsan mxm identity matrix with the first column deleted. Since X
is invertible, XYXT =1 and g'z) =0. This result can be explained more intuitively as
follows. Since Z is a pure NE, Z is an extreme point of K and int Ng(@)# . Condition
(i) of strong nondegeneracy then implies that f(z) € int Ng(z). Hence forall z ina
neighborhood of z, z + f(z) € Z + Nk(2), and therefore g(z) =z. Thatis, g is constant
on a neighborhood of z and g'(z) must be 0. Thus,

i(g;z) = sgn det{ _1 %T ] =1

Q.E.D.

Corollary 3: Assume I isregular and has o> 1 pure NE. Then I" must

have atleast 20~1 NE in total.

Proof:

1=L(g)= X i(gn=0+ z i(g;2)
z=g(z) L z=g(2)
Z 18 not pure

and since i(g;z) is either +1 or -1 for each NE, there must be at least (1) mixed strategy

NE z with i(g;z) =-1. Q.ED.

Observe that Corollary 3 does not state that if a game has o pure NE then it must

have exactly 20— 1 equilibria. While it is the case that each pure strategy equilibrium



must have Leftchetz index +1, mixed strategy equilibria can have Leftchetz indices +1 or

—1. To see this consider any game with a unique NE and no pure strategy NE (such as the

"matching pennies” game I'; below). It follows from the discussion above that the unique
equilibrium must have index +1. On the other hand the "battle of the sexes" game I,
below has 3 equilibria, 2 of which are pure. Thus, in this case it follows that the mixed
strategy equilibrium must have Leftchetz index ~1. In general it is quite possible to have a
game with 1 pure strategy NE (Leftchetz index +1 by the above theorem), two mixed
strategy NE each with Leftchetz indices +1 and two other mixed strategy NE with Leftchetz
indices ~1. However, the bound is tight, in the sense that for each positive integer o, it is

possible to construct a generic game having exactly o pure strategy NE and o — 1 mixed

strategy NE.
X M X y
I a {1,0] 0,1 r, a |2,1]00
b 10,11 1,0 b 00| 1,2
Figure 1

4. GENERIC GAMES
In this section we show that the set of regular games is generic. More precisely, we
show that the set of regular games is open and its complement has measure 0.
Let IT:= (Rmx2xp)3 and with abuse of notation, let f: (RM x R x RP) x [T —
Rm x R0 x RP denote the function
AY)

f(Au,1AB,C) :=| B(A,Y) |,
C\,p)

and fn(l,u,y,x) denote the Jacobian of f with respect to n. We have



afa_{o i oaei Ay Ay
afm+a={ 0 if (1#,? ,afm+a_afm+a=0 Vijk .
abijk 7Li7k if o= ] aauk Bcijk

m+n+Q = 0 Vi,j,k .

of [ insa _ { 0 if a#k o pinsa - of
?bIH.J if o=k Bauk abijk

aCijk
For each (A,1,Y) € K, there exist pairs (j.k), (i.k) and (i,j) such that py #0, An 20
and kiuj #0. Itis easy then to see that the rows of the Jacobian f (A,u,y;m) are linearly

independent, and f (A1, ) is of rank n+m+p for each (A,u,y) € K.

A Sard Theorem (see Theorem 3 in Stacchetti (1987) and Theorem 4.1 in Reinoza

(1983)1) establishes the following result.

Theorem 2: The set IT, ©II of regular games I' = (A,B,C) is open and its

complement has Lebesgue measure 0 in I1.

5. CONCLUSION

This paper provides a strong restriction on the set of Nash equilibria of a large class
of games. In particular we establish that concentrating on pure strategy equilibria in games
with multiple equilibria typically entails a loss. Furthermore, our result gives a lower
bound on the total number of equilibria as a function of the number of pure strategy
equilibria (which are easy to compute). This should be useful when trying to identify the
entire set of Nash equilibria. Finally, our results illustrate the usefulness of the generalized

equations approach for analyzing finite games.

! Reinoza (1983) does not prove that Iy is open. This is a consequence of the Implicit Function
Theorem (Theorem 2) in Stacchetti (1987).
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