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O. ABSTRACT

This paper offers a general approach to time series modeling that attempts to reconcile classical
and Bayesian methods. The central idea put forward to achieve this reconciliation is that the Bayesian
approach relies implicitly on a frame of reference for the data generating mechanism that is quite differ~
ent from the one that is employed in the classical approach. Differences in inferences from the two
approaches are therefore to be expected unless the altered frame of reference is taken into account. We
show that the new frame of reference in Bayesian inference is a consequence of a change of measure that
arises naturally in the application of Bayes theorem. Qur paper explores this change of measure and its
consequences using martingale methods. Examples are given to illustrate its practical implications. No
assumptions concerning stationarity or rates of convergence are required and techniques of stochastic dif-
ferential geometry on manifolds are involved. Some implications for statistical testing are explored and
we suggest new tests, which we call Bayes model tests, for discriminating between models.

This paper (Part I) emphasizes the new conceptual framework for thinking about Bayesian
methods in time series and provides illustrations of its use in practice. A subsequent paper (Part II)

develops a general and more abstract theory.
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1. INTRODUCTION

The Bayesian approach to modeling and inference in time series econometrics has become
increasingly popular in recent years. Examples include the use of Bayesian priors to achieve economies in
VAR parameterizations (Litterman, 1984; Doan, Litterman and Sims, 1984), Bayesian modeling of
cyclical behavior in macroeconomic time series (Geweke, 1988) and Bayesian evaluations of the evidence
in support of the presence of stochastic trends {(DeJong and Whiteman, 1989a, b, ¢; Schotman and Van
Dijk, 1990; Phillips, 1991). Advances in simulation—based technology (Kloek and Van Dijk, 1978;
Geweke, 1989) and improvements in analytic devices like the Laplace approximation method (Phillips,
1983, 1991; Tierney and Kadane, 1986; Tierney, Kass and Kadane, 1989) have both contributed to the
successful implementation of Bayesian methods in time series applications.

Concurrent with the growing empirical use of Bayesian methods, there has been continued dis-
cussion of foundational issues, such as acceptance of the likelihood principle (Poirier, 1988) and the form
of prior densities to represent the notion of "knowing little" in advance of data analysis (Phillips, 1991;
Zellner, 1984, 1990). Such matters are obviously of great importance and have, of course, been discussed
in earlier literature (e.g. Barnard, Jenkins and Winsten, 1962; Basu, 1973; Hartigan, 1964). However,
time series applications do raise issues that deserve further attention like the treatment of initial
conditions, nonstationarity, high dimensional parameter spaces and even semiparametric model formula-
tions.

Some econometricians, notably Sims (1988) and Sims and Uhlig (1988/1991) have argued
recently that time series models provide important examples where Bayesian and classical methods differ
fundamentally. Phillips (1991} showed that some aspects of the differences described in those papers, like
the phenomena of disjoint classical confidence intervals in comparison to symmetric Bayesian confidence
sets, are merely the result of the use of uniform pric-ms, which Phillips argues are inappropriate in a time
series context (especially one that admits nonstationarity). However, not all of the apparent differences
between classical and Bayesian methods in time series models can be explained in this way. For

instance, in classical theory the Gaussian log—likelihood of an AR(1) model with a unit root cannct be



asymptotically approximated uniformly by a quadratic without a change in the units of measurement (or
equivalently, a random time change), since the sample variance of the data carries information about the
autoregressive parameter and, upon standardization, has a limit that depends on this parameter and may
even be random. By contrast, the likelihood principle that underpins Bayesian theory identifies the
information content of the data with the likelihood function itself and, conditional on the given data, the
Gaussian log—likelihood in this case is indeed quadratic for all sample sizes. The same result can be said
to hold approximately in large samples for many non—Gaussian cases, as argued in Sims (1990). These
additional differences between the approaches to inference arise because of the critical role of data con-
ditioning in Bayesian analysis. They are every bit as fundamental as the question of which prior to use
and they are especially significant in time series modeling where data conditioning has important implica-
tions.

The present paper seeks to explain and to reconcile these differences. Our analysis shows how
the conventional Bayesian approach implicitly involves a change in the underlying probability measure,
leading to a new Bayesian frame of reference for the data generating mechanism. The measure change is
accomplished by using Girsanov transformation theorems, which have been used in the mathematical
finance literature recently (e.g. Duffie, 1988) but are not well known in econometrics. We explore the
consequences of this change of measure by studying several examples in detail. These, together with an
analysis of some Bayes tests that we propose, are given in Sections 2 and 3 of the paper. Sections 4 and
5 outline a theory for the general case where no assumptions concerning stationarity or rates of conver-
gence are required. Section 6 concludes the paper and offers some thoughts for further work.

The following nota:‘,ional conventions are employed in the paper. Mt is used to represent a con-
tinuous L2 (i.e. square integrable) martingale or semimartingale, and the square bracket [M,M]t
denotes its quadratic variation process. Sirm'la.r-notation is employed in the case of a discrete time
martingale Mn , and in this case we use <M’M>n to denotes the conditional quadratic variation pro-
cess. At (respectively, An ) is often a shorthand notation for quadratic variation process (respectively,

conditional quadratic variation). Wt (and occasionally St ) denote standard Brownian motion which is



signified by the symbolism "BM(1) ". The symbol " =" signifies equivalence or equivalence in distri-

bution and " << " denotes the absolute continuity operator.

2. FIRST ORDER AUTOREGRESSION IN CONTINUOUS TIME

2.1. The Likelihood

We start our analysis with a continuous time diffusion model because this case will illustrate in a
simple way all of the main features of the general case to be discussed in Sections 4 and 5. Moreover, in
our general discussion we will see how the discrete likelihood function admits an approximation in terms
of continuous martingales that leads to an analysis similar to that of the simpler model.

Specifically, our model in this section is the following stochastic differential equation for the
Ornstein—Uhlenbeck process Yt
(1) dy, = AY,dt + dW,
where Wt = BM(1) . The processes Yt and Wt are defined on a filtered sequence of measurable
spaces (02, Tt) with Y, and W, adapted to ?t . Let P’f be the probability measure of Y, given
by (1) with parameter B on this filtered space and let us define Pt = PS . The probability measure

Pf has density with respect to Pt given by the following Radon—Nikedym (hereafter, RN) derivative

@) L= de/dPt - exp{ﬂ [eY ay, ~ (1/2)52j;Y§} .

The form of (2) is actually well known in the literature (e.g. Ibragimov and Has'minski, 1981, p. 16). It

will be justified below by indirect methods. Define
3) M, = 8] Y Y, = BI Y aW_ + ﬂszYids =My + ﬁzngids .
Note that dMS = ﬂYtth satisfies E(dMSITt) =0, sothat M(g is a continuous martingale and Mt
a continuous semimartingale under Pt . Further,
(4) dM. = FY.dY, = BY.dW, + foY2dt
t t 0t t ot t

and

ape), = (am))? = Fv7ar = am®, MO]t ,



so that the RN derivative (2) may be written in the more suggestive and generalizable form
(5) L, = exp{M, — (1/2)[M,M];} .

The form (5) for the likelihood function is especially interesting because it is known to represent
the limit of the likelihood function for stochastic processes in very general situations (see Strasser, 1986,

, our original process of reference.

Theorem 1.15). When the true value of =10 we have Yt = Wt
Then M, = M, is a P ~martingale.
The process Lt given by (5) is called the Doléans exponential (cf. M;:ycr, 1989, p. 148). Using

Ito’s rule for differentiating continuous semimartingales we deduce that
L, = L, {aM, — (/MM } + (1/2)L,dDM],
(6) = Ltht .
Integrating over the interval [0,t] we obtain
t
) L=1+ jOLdes.

It follows that when Yt = Wt and Mt is a martingale, 8o too is Lt and, moreover, E(Lt) =1.1In
this case Lt is known as the density martingale (again, see Meyer, 1989, p. 149).

Finally, to end this preliminary discussion, we note that the Girsanov theorem (e.g. Meyer, 1989,
pp. 149—150, Protter, 1990, p. 109) gives us directly the mapping from Pt—martingalcs to

Pﬂ

t-—martingales as
(8) Yt -+ Yt - [Y’Z]t = Yt
where Zt = f:;(l/Ls)dLS is the stochastic logarithm of L, . Observe that the image process of the
mapping (8) is
5 t t t
Y, =Y, -~ / (/L )dY dL =Y, — / odY dM =Y, — BJ oY,ds -
Since this process is a Pf—martingalc by the Girsanov theorem and since its quadratic variation is

[{’,?}t = [Y,Y]t =1t it follows that ?t is standard Brownian motion (e.g. see Protter, 1990, Theorem



38, p. 79). We deduce that Yt is & process of the form (1) with Wt = ’;’t = BM(1) and with
likelihood ratio given by (2). This provides an alternate justification of the formula (2).

The log—likelihood corresponding to (2) is
¢ t
(©) Ag, = log(L,) = 1Y, Y, — (/208 [[Yods = BV, = (1/2FA, , say
from which we derive the MLE
- - ty2 -1y
A=AV, = ["0 sds] UostYs)'
Observe that Bt is the usual continuous time least squares estimator of A in (1) i.e. the estimator that

2

minimizes the formal "error sum of squares” functional f:)().'s - ﬁys) ds .

The score function process is obtained by differentiating (9) and we write
(10) Nt = aAﬁt/ﬁﬁzvt—ﬂAt .

Note that at =10 we have Vt = f;WdeB and Nt = Vt = fgWdes , 8o that at this point in the
parameter space Nt 18 a continuous L2 martingale. We now show how to change the frame of refer-
ence so that Nt becomes a continuous martingale at each point §# 0 in a new frame of reference. In
our approach the frame of reference is provided by the underlying probability measure. So we change
the reference frame by changing the measure and this is effected by means of the Girsanov transforma-
tion (8).

It will now be convenient to introduce a path integral representation of the log—likelihood that
involves the score function process (10). To do so, we consider a path f=f(u) from B0)=0 to
B = B(r), say, that is continuously differentiable. In this simple scalar case we can select 2 linear path

such as f(u) = (u/r)B(r) = (u/r)f. Now

(11) Ageys = AV, = (1/2)8()°4, = 1,(x) = JTF ()du .
Since

0, /96 = £, (u)3u/ 38

an alternative way of writing (11) is as the path integral



(12) Aﬁ(r),t = "0( Bu),t /aﬂ)dﬁ u) = 'IONt u)df(u)
using the score function process Nt(u) , Which we now index according to the position in the path.

LEMMA 2.1. Under the change of measure Pt - Q‘: = Pf(u) , the score process Nt(u) becomes a

Q‘:—martingale. 8]

As already noted, Nt[O) is a Pt-—martingale. The lemma shows that with a change of measure
to Ql: the process Nt(u) is also a martingale for u # 0. What this means is that at every point u
on the path A(u) the score function Nt(u) is a martingale provided we use a new frame of reference in
which the resident measure is Ql: . When we integrate along this path we produce the line integral (12)
by which the log—likelihood is expressed as an accumulated score. According to the conventional inter-
pretation the score vector is measured in a fixed coordinate system. But when Nt(u) is reinterpreted as
a Qt—martinga]e, (12) provides a coordinate free representation of the log—ikelihood in which the frame
of reference changes continuously as we move along the path. The local coordinates in the tangent space
to Aﬁt where the score vector lies are, in effect, now provided by the probability measure Ql:

Our next step is to show that the log—likelihood given by (12) can be decomposed into a collec-
tion of local quadratic terms. We start by decomposing the path A(u), u € [0,r] into I segments

[ui—l’ u.l] , i=1, .., 1 with ug = 0, u=r. Then we have:

LEMMA 2.2. The following two decompositions of the log—likelihood Aﬁt epply:

(13) = 2¥ { 1/2)[Nui: Nui] t}

where
ot
u,

. ; i1 .
is ¢ continuous Qt —~martingale;

(15) = Bi_ {gh; — (1/2h74)

Age),r

where



b, = Au) — Au,_,)

and

£.

1

N({0,A)

u,
under the random measure QT‘_I . Here 1 {s the stopping time given by

(16) r=inf{t > 0: j;des > A}
for A >0 constant, O

Expression (13) of Lemma 2.2 decomposes the log—likelihood into a sum of elements,

u. U, u,
Ntl - (1/2) [N 1, N ]L , each of which has the same local characteristics in the new frame of reference.

u. u, u, u.
. . . —1 . . . .
The linear term is the continuous Qt] —martingale Ntl and [N l, N ‘] is its quadratic variation

t
process. The likelihood is

amn L = cxp(Aﬁt) = exp [Ei{N:i - (1/2)[NUiv NUi] t”

which, in form at least, is closely related to the earlier expression (5). However, in (5) the process Mt is

u,
a semimartingale not a martingale in the original coordinates, whereas the component processes Nt.l

(i=1,.., N) in(13) arc all martingales in the new reference frame.

Expression (15) of Lemma 2.2 shows that when the "information content of the data,” viz.
[N,N]t = [V’V]t = ISYids , is preset and fixed at some constant level (here, given by A ), then the
log-likelihood takes the usual form of a local quadratic in which the linear term is Gaussian and the
quadratic term is fixed, representing the nonrandom information content A . Further, observe that with

the stopping rule (16) imposed, the estimator B‘r is itself Gaussian, i.e.
P T. T2 .
(18) B =],Y dY /[ Y =N 1/A),

just as it would be in the case of a fixed regressor model without the use of a stopping time. For

instance, if the model (1) were replaced by

(1) dy, = fS,dt + dW,



where St is a smooth nonrandom signal in continuous time then &t = fOSdes/jéSst
= N(5, l/f S ds , which is entirely analogous to (18).

Next, we define a grid that leads to a very important and useful decomposition of the likelihood.
Set I =2 and define ﬂ(uo) =0, ﬂ(ul) = bt and ﬁ(u2) = fi, the last being an arbitrary value of

the parameter. Then

0 R R Uy .
N, =N b, =V, [N N ]t =BiAy

u u u -
N2 =N@ER =0, [N N7, =e-h),

Using this decomposition in (13) the likelihood (17) becomes

L, = cxp{N‘:l —(1/2) [Nul, Nul] }cxp{—(l/?-)[ uﬂt}

= exp{V,5, — (1/2)5-A Yexp{~(1/2)(6 — £,)°
(19) = exp{(1/2)ALA Jexp{—~(1/2)(8 — Zp%t} :

L) ALY

Note that only the second exponential factor of (19) depends explicitly on S and is, moreover, propor-
tional to a N(E?t, A;l) density. In conventional Bayesian inference it is this latter factor that plays a
key role in determining the shape of the posterior. The first factor, being independent of B, is tradi-
tionally ignored in the transition, via Bayes theorem, to the posterior. We shall have much more to say

about this matter in the ensuing discussion.

2.2. Bayesian Inference

%(f) be a prior density for the pararﬁeter B in the model (1). This density need not be
proper and could, for instance, be a uniform density. Combining the prior x(f) with the likelihood as
given in (19) we have the posterior process

= wﬂ)(dPﬂ/dP ) = *AL, = *(@Oexp{(1/DFA Jexp (/26 — B)°A}

xp{(1/2)ﬁtAt}] [ Pexpita/one - )8 )|
exp{(1/2)878, — (1/2ta ()} [w@A} erni=ti/6 ~ 5"

H

,—\
)
S

=
1]



The decomposition of the posterior process ]It into the two factors in square brackets in (20) is very
important in what follows. The first factor is a local martingale and, as we shall see, produces the
density process that changes the measure to a Bayesian frame of reference. Observe, however, that the
first factor does not explicitly involve the parameter [, so that the Bayesian posterior is, in effect,
proportional to the second factor in square brackets in (20). Thus, in conventional Bayes inference, the
transition from prior to posterior via Bayes theorem leads us to ignore the first factor as "irrelevant” for
inferential purposes. We will find, however, that the first factor is not irrelevant from a conceptual
standpoint.

In order to avoid integrability problems and the need to work with local martingales we let t

be a stopping time for which a "minimal amount" of information in the data has accumulated. Specific-

ally, we set
(21) to =inf{s > 0: AS 2 ¢}
where ¢ > 0 is a preassigned (possibly small) constant. Let

¢, = -1/2 ex : }
0 Atg p{(l/?)[ﬁfOAtO .

Then

(22) A;l/ 2 exp{(1/2)74,} = ¢ exp {(1/2) ]:Od[ézAs _ tn(As)]}

and tO becomes, in effect, the new initialization of the process (22). Define

t -
(23) R, = exp {(I/Q)L d[F°A — (A )1} .

by 8 ]
The following lemmas show that we can write the factor (23) in a much more revealing form
LEMMA 2.3

(24) dlBLA, — t(A)] = B AV, — (1/2)F%da, . O
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LEMMA 24
(29 R, = exp{G, — (/2[G.C])
t -~

where Gt = ftoﬂsts .

t
(26) R =1+ /; RdG,

0
is the Dolkans ezponential of Gt' If Vt and, hence, G are a martingales and if

t
E[exp{(l/?)[G,G]t}] < o then

(27) E(Rt) =1
and Rt is a density process. O

Our next step is to make a change of probability measure from Pt -+ Q? according to the

following RN derivative which defines Q}: , viz.
B t . p
(28) dQ,/dP, =R, = cxp{fto[ﬂsd\/s - (1/2)ﬁ§dAs]} .

We shall call QB

; the Bayes model measure. Using (20), (22), (24) and (28) we now obtain the

following expression for the posterior density process. Specifically,

(29) I, = s(B)(dPY/ap,) = cy(dQ>/ap )(x(BAY? exp{—~1/2)(6 = B)° AN

We next define the posterior density process with respect to QI: measure as

(30) 1® = x(g)(aPP/aQ®) = ¢ x(m)A, expi(1/2)(6 - B)°A} -

Note that it is this posterior density that is used in practice in traditional Bayesian inference. This is
because when we condition on the data the factor (dQI:/dPt) that appears in (29) is absorbed into the
constant of proportionality. Hence, the implicit change of measure in Bayesian inference is lost in the
passage from the likelihood to the posterior. Under data conditioning and from a Bayesian perspective it
is equivalent to work with either Ht or II? . However, only HI: as given by (30) makes explicit the

underlying probability measure that is implicit in Bayesian inference.
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THEOREM 2.5. (a) Under a uniform prior for B the posierior density process H? is ¢ Gaussian
process whose finite dimensional distribution at time t is N(;‘ét, A;l) , i.e. normal with mean ét and
variance A;l .

(b) Irrespective of the prior distribution that is used for , Bayes methods imply a replacement
of the underlying probability measure Pt with the Bayes model measure Q? , ti.e. the likelthood

function on which Bayes inference is based is given by de/dQ? not de/dPt as in (2).

(c) The Bayes model measure QB

¢ is the probability measure of the output process Yt of the

nonlinear stochastic differential equation

(1)B

dY, = ,Ydt + dW,
in which the paraemeter f that appears in the model (1) is replaced by the trajectory dependent value
B,= JoY a¥ /]iv2es .

This theorem tells us that in a pure Bayesian analysis there is no concept of a true dynamic
model (1) with a true value of f. Instead, in a Bayesian analysis the underlying reference measure Pt
(i.e. the probability measure of the standard Brownian motion that drives (1) and for which Yt = Wt
when = 0) is replaced by what we have called the Bayes model measure Q? . Thus, to a Bayesian
the reference model evolves according to the recorded history of the process on which all inference is
conditioned. That model is the nonlinear stochastic differential equation (1)B and is an evolving par-
ameter model. We conclude that Bayesian inference based on the posterior density process H? relates

in effect to a trajectory based version of the original model, i.e. (1)B , rather than the true original

model.
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3. AUTOREGRESSIONS IN DISCRETE TIME, BAYES MODEL TESTS

AND SOME MODEL EXTENSIONS

3.1. The AR(1) Model and its Gaussian Likelihood

Our model is the Gaussian AR(1)

(31) Ha : Yt = aYt—l +tu, u = iid N(0,1)

initialized at t = 0 with ‘ YO any fo-—mea.surablc variable. We use P:: to represent the probability
measure of {Yt}rll . So when a=0 we have the measure Pg and when a =1 we have the random
walk H1 with measure lel = Pn , which will serve as our reference measure.

The log—likelihood of Ha , glven H1 as the reference model, is
a a,,.0 0
Ahn = ln(dPn/dPn) = tn[(dPn/dPn)(dPn/dPn)]

2 2

=—{1 /2))33‘(&’t —aY, )
20,2
(32) = hErllYt__lAYt (1/2)h EnY

+ (1/2T3(Y, - Y, )

where h = o—1. Since H1 is our reference mode! it will be convenient in what follows to work with
the deviation h as our parameter rather than o, just as in {32) above.

The likelihood function is given by
a .
Ln = dPn/dPn = cxp(Ahn) .

Our next lemma shows that the discrete likelihood has a form analogous to that of (5) in the continuous

case.

'LEMMA 3.1

(33) L =exp{M_— (1/2)<MM> }

where M_ = hE]Y, | AY, isaP —martingale and <M,M>_ is its conditional quadratic variation;
(34) L =1 +E’J.‘=1Lj_1{Lj/L. —=1 +211 1L
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where E(rjlfj_l} =0, and

(35) E(L)=1. 0O

n

Observe that the Doltans exponential formula (33) for the likelihood Ln involves the condi-
tional (or predictable) quadratic variation represented by the sharp bracket formula <M’-M>n . In the
continuous time case we used the square bracket process and in that case, since the martingales were
continuous, the distinction is unimportant because the square bracket process and sharp bracket process
are the same. Here, we must use <M,M>n not [M,M]n for the validity of (33).

The score function process is

2
Nn = aAhn/ah = EIllYt-wlAYt - hz]llyt—l - Vn - hAn » 53y

giving the MLE

-1
S S B i
h =AV = [u Y ] ()Y, ,AY,).
At h=0, Nn is a Pn—martingalc. When h # 0 we may change the measure to ensure that Nn

becomes a martingale under the new measure. Let h = h(u) be a continuously differentiable path from

h(0) = 0 to h(r) = h. Then, asin (12), we have a path integral representation of Ahn , Viz.

r T
(36) Ahn = ]0(6Ahn/6h)dh(u) = jONn(u)dh(u)
where
37) Nn(u) = Vn - h(u)An .
u 1+h(u) . . . . .
Let Qn = Pn . The following lemmas mirror earlier results for the continuous time case.

LEMMA 3.2. Under the change of measure Pn* Qg, the score process Nn(u) is o discrete

Qi—martingale. The conditional guadraiic veriation of Nn(u) under Q‘rl1 is

<N(u), N(u)>n = An . 0
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LEMMA 3.3

(38) A, = Egzl{N:i —(1/2)<N LN i>n}

where

u

N = N G )60) — b))

u.
1s a discrete Qn =1 —martingale and

{[ui—l’ ui] di=1, ., Lo =0, u =y h(0) =0, h(u) = h}
1s a partition that decomposes the path h{u) into 1 segments. O

As in the continuous case, now take a grid with I =2 such that h(0) =0, h(ul) =h_ and

n
h(ug) =h . Then
u u, - u
1 - - 1 1 ~2
N =N ()b =V,h , <N LN> =hiA
u u, u
2 - 2 2 c 2
N =N (u)h-h)=0, <N°N% =(m-h)A
From (38) we find the likelihood is
o 1M Yy o
Ln = exp{Nn —(1/2)<N °|N >n}cxp{—(1/2)<N , N >n}

(39) = exp{(1/2)h A Jexp{—{1/2)(a — b )74},

entirely analogous to the continuous case (19).

3.2. The Bayes Posterior Process, Bayes Model and Bayes Model Measure
Suppose we have given a prior density x(h) on h = e—1. The posterior density process is
then

25 3

I = x(b)(P2/dP ) = n(t)exp{(1/2)h A Jexp{—(1/2)(h — b )’A_

(40) = [A;V Qexp{u/z)ﬁfﬁxn}} [r(h)Ai/ Zexp{—(1/2)(b — ﬂn)zAn}] .
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LEMMA 3.4
(41) (/22 AL~ &A= (/2HEIA — (A ))
- -2 2
+ {hnYn AYn~l~1 - (I/Q)hnYi} + Op(Yn/An)
(42) (1/21{2, A_, ~&(A )= (1/2){£§0An0 - &, )}
“ ~2 2
+ Ei‘:no{hSYBAYE e (1/2)hBYf} + op(EzO +1YS/ADO) .o

We now set o, to be a stopping time for which a minimal amount of information about the

process has accumulated. Specifically, for some preassigned ¢ > 0 set

ny = min{k : Ak 2 c}

and let

_ L -1/2 -2

= An exp{(l/?)hn A }

<
0 0 00

be the initialization of the process in the first square bracket of (40). The approximation suggested by

(42) will be adequate if there is sufficient initial information An . The posterior density process is
0
approximately
1- -2 1/2 - 9
(43) -, e:cp{z"‘no [b,Y,AY, —(1/2)h8Y3]}[r(h)An exp{~(1/2)(b — b ) An}} .

LEMMA 3.5. Under Hl
(44) R =exp{Z" B Y AY . —(1/2)h%Y)
n n0 s s s+l 8 8
= cxp{Gn — (1/2)<G,G>n}

where G_ = En_lﬂ Y AY is a discrete martingale under H
n n. 8 8 B8+l

0 L
(45) E(Rn+1|fn) =R
(46) ER)=1. 0O

n
It follows from Lemma 3.5 that Rn is the discrete Doléans exponential of Gn and is a martin-

gale under H. with E(Rn) =1. Rn therefore represents a discrete density process. We use it to

1
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define the new probability measure Qi by setting

n

(47) dQE/dPn =R_= cxp{zn;‘l[ﬁBYsAYa o (1/2)}15@} .

Following (28) we call Q? the discrete Bayes model measure. Using (47) in (43) we have

I_ = x()(dPS/dP ) - co(in‘/dpn) [r(h)Axll/ Zexp{—(1/2)(b — };n)zAn}] .

. . . . B .
The discrete posterior density process with respect to Qn measure is given by

B a,.~B
(48) 7 = #(8)(dP%/dQ])

- co'x(h)Ailzcx_p{—(lﬂ)(h - I;n)zAn} .

Similar comments apply to the discrete process Hl: as those made in connection with the continuous
process HI: following (30). In particular, we have:
THEOREM 3.6.

(a) Under a uniform prior ={h), Hln3 13 approzimately Gaussian with disiribution N(ﬂn, A;l)
at time n .

(b) Bayes methods imply the use of the discrete Bayes model measure QE as the reference
measure in consiructing the likelihood.

(¢) The model to which QS applies is the time varying parameter model

~

49 - : =

(49) Ha Yn an—lyn-—l + "1
n-—1

where the evolving parameter a is given by

n—1

-

L -1 —1,,2
a =l+h _ =37YY, /ETY,

n—1 tt—1 —1

and 1s irajectory dependent. D

Thus, as in the continuous case, traditional Bayes inference converts the concept of a true model

(here Hl , with reference measure Pn) to a Bayes model (here H& , with reference measure

n—1

B, . . . .
Qn ) in which the parameters evolve according to the observed trajectory of the process.
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3.3. A Bayes Model Test
Bayes methods change the frame of reference to a Bayes measure (QIZ) and Bayes model

(H& ). It should therefore be possible to test one Bayes model against another using a likelihood
n—1

ratio test. We now apply this idea, starting with model H&
n—1

From (44) and (42) we deduce that twice the log—likelihood ratio is approximately

(50) 2 ;(dQL/dP ) - oA —ta(A ) —tac -

Under Hl we standardize An by n_-2 to ensure a well defined limit process. This leads us to define

the Bayes model likelihood ratio test statistic as

(51) BLR = h’A_ —fa(n 24).
nn n
When the error variance 02 in }EI1 and H& is unknown and must be estimated we employ
n—1
-2  —lewn - 2
6 =n El(yt - QnYt—l)

and then the BLR statistic is

29 .2
(52) BLR_=h"A /¢

- a(n“zAn/:?) .

Using standard functional limit theory we obtain:

THEOREM 3.7. Under H1

1 2 1,2 1.2
(53) BLR, BLR 2 [jOSdS] /fos —-tn(jOS ) = g(S)
where S(-) = BM(1) is standard Brownian motion. D

We may use the statistic BLR  to test H, against B {a < 1) . Critical values of the limit

1
functional are readily obtained by simulation. Letting 85,95 denote the right tail 5% critical value of

g(S), a one sided 5% level test of Hl against Ha (@ < 1) is provided by the criterion
BLR > 8 g5 -

Likewise, a one—sided 5% level test of Hl against Ha (a> 1) is provided by
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BLR  <&gg o5

where 89 05 is the left tail 5% critical value of g(S) .

Observe that the BLRJ statistic is a nonlinear mixture of the Dickey—Fuller (squared) t—ratio
statistic, ﬂ:An/az , and the Anderson—Darling/Sargan—Bhargava statistic n—-zAu/c}2 . (The latter
would apply precisely if 02 were estimated under the null by 32 = n—lzli(AYt)z ). Rates of diver-

gence of the statistic BLRU under both alternatives (viz. a<1, a> 1) are easily seen to be

Op(n) .

3.4. Some Model Extensions
The ideas of the last subsection can be used to develop tests that apply in models with drift and

deterministic trends. We start by considering the models

H#’a : Yt =p+ aYt_
H Y, =p+Y  ty

+u

1 t

where u, = iid N(0,1) and the time series are initialized at t =0 with Y To—measurablc. We shall

0

proceed with the same general notation as before.

The density process of H with reference to Hl (whose measure is represented by Pn ) is

1
dP;"l/dPn = exp{—(l/Z)EIll(AYt -4 (1/2)2‘1‘(AY3)} = exp{(EI;AYt);L - /2)#%} .
Let =x(p) be the prior density of p and ;‘n = n—IEIIIAYt be the usual maximum likelihood estimate

under Hl-‘ 1 Then the posterior process is
't

I_ = x(s)(dP" /4P ) = x(p)exp{ism — (1/2)’n}
(54) = [ exp(i a2y [t Pexpi—ta/ae = 5,3 |

The Bayes model measure is

(55) aQl/ap_ = exp{zigil[ﬁsAYs+1 - (1/2),1?]}
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and associated Bayes model B is

(56) AYn+l = Ky + u

in place of H# -
1

Following (50) and (51) the Bayes model likelihood ratio test of H

against the null reference

1

model H,u:O,l is just

. ) )1
BLR(i ) = nj. - 2 h[sz /dPn]

with asymptotic distribution given by

(57) BLR(A ) % N(0,1),

under Pn (i.e. H,u.:O 1 ). Again, when the error variance is to be estimated we may use
-2 ~lgn -2
¢ =n El(AYt - /.zn)

and the test statistic is
- ~2,.2
BLR (i ) = ni/3’
with the same limit distribution as (57).

BLR and BLRO_ are Bayes model likelihood ratio tests for the presence of a drift in the model

H with a unit root. Our next object is to find the BLR test of model H# o against model H

#1 w1’

The density process of H#’a with reference to Hl is

4PP P = exp~(1/9BN(Y, s — a¥,_) + (1/25}(aY)")
= exp{~(1/2)80(aY, —p—nY, ) + (/2)85(aY)°
= ex{~(1/2)Z(aY

= exp{f E’;xtAYt —(1/2)9 E‘ixtxto}

2
ox,)" + (17255 (aY )%

where 9’ = (ph) and X/ =(1,Y The maximum likelihood estimator of 8 s

t

-1
. ’ 0
6 = [)fllxtx J (T)X,AY,) .

t—l) ’

n
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If x(6) is the prior density of 6§ then the posterior process is

8

0 =x(e)ap’/ap , p? = pAlth,
n n n n n

Using the same approach as before we now decompose this density into two factors as

—-1/2 1/2 . .

exp{—{(1/2)(0— 8 )’ A_(9~ 0 )}

(58) m_=(|a_| 7/ exp{(1/2)074 8 Nix(5)|4_| .

where An = EI;XtXQ . Ignoring the step of initializing on minimal information, we deduce that the

nonintegrable version of the Bayes model measure is
] _ —1/2 PR
(59) dQ /dP = |An| exp{(1/2)87A 0 }.

This is a very useful general form of the Bayes model measure that will be utilized extensively in what
follows and in Part II. We shall call this version of the measure the unconditional Bayes model measure
since it is not conditional on an initialization in which there is minimal information.

After a little calculation in the present case with bxll = (;‘n’ hn) , we find

4Q)/dP_ = exp{(1/2B282(Y, , ~¥_)} ~ (/2)m(aB}(Y,  —Y_ %) + (1/2m(i_+ b ¥_ )%}

—h ;{ so that the above expression simplifies to

Now p.n:A -1

(60) ng/dPn = exp{(l/z)ﬁnz‘l’(yt__l -Y 1)2 - (1/2)zn(n2‘;(Yt_1 - ?_1) ) + (1/2)aB¥2} .

Next observe that the unconditional version of the Bayes model measure for B# 1 is, from (54),

bl

(61) aQ/dp_ = exp{(1/2nAY? — (1/2)ta(n)} -

Combining (60) and (61) we obtain

6, okl _ b pl
(62 dQy/dQh’ = (4Q)/dP )(eP_aQh)
2 S 82 S 82
= exp{(1/2b 2 (Y, , —Y_ )" = (/2&E](Y, , ~-Y_)}.
Factoring in a constant to ensure a limit distribution for n—zzl;(Yt__l - ‘;'_1)2 , we have
_ 6 /.L, "2 2 -2 o2
BLR = 24a(n(dQ_/dQ"")) = & 2“ Y, - “1) - E(Y,_ —Y))
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Finally, estimating the error variance by 32 = n—lzlll(Yt - 9;xt) , we have the Bayes model likelihood

ratio test

BLR_=h23(Y, - ¥_ )% - a8y, -

THEOREM 3.8. Under H . = H
— 1 £=0,1

) 1 2 1.2 1.2
BLR, BLR 2 [f0§d5] 118" —&(f8)

where S(+) =S(+) — ftl)S is demeaned Brownian motion and S(+) = BM(1). O

Models with higher order deterministic trends can easily be accommodated in this approach. Let

k , ey 2
H;a,a' Yt._thp+ aYt__1+ut, ut_nd N(0, )
. . , 2 k ,
be a model with auxiliary regressors Xt =(1,t,t%, ..., t) and parameters ¢’ = (po, 1o ¢k) .
Proceeding as before, we find the Bayes model
B .y =X/ p +aY +
g, “n+l T p+1%0 T % 'n T Y1

-1
o - o) ’ - ’ Hre
where 6 = (gan, an) = [ElthJ (ErlthYt) , 2y = (Xt’ Yt-—l) . The unconditional Bayes model

k.. . ,
measure for Bgo,a is given by (59) with An = E?tht .
In a similar way, when we restrict the autoregressive coefficient to o =1 we obtain the Bayes
model

Bp,l : AYn+1 = Xn+1¢’n oy

-1
with o, = [EI;XtX;] (ErllXtAYt) . The unconditional Bayes model measure for B:l is again given

by (59) but with A_= Erllxtx; . We now have

dQ:'a/sz’l = (dQ:’Q/dPn)(dQ:’l /P )
= ep{(1/2)8: (2,208~ (1/2)p1 (53X, X )p_ — (1/2)a(| 272,21 | /1 53% X1 )}

= exp{(1/2B2Y7 QY| ~ (1/2)a(¥/,QeY_)}

-

where a = 1+ hn , Y—l = (YO, Yl’ ry Yn—l) and QX is the orthogonal projection matrix onto

the range of X =[X, ..., X ]’ .

""" n
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The Bayes model likelihood ratio test of H: o against H: 1 is therefore based on the statistic

BLR = 2&1{n(sz’°/dQ:’l)}

2 ’ -2 ’
= BY/ QY — & Y QY ).

Again, when 02 is estimated we have

’ "2, -2 =2y ~2
(63) BLRJ =h Y_IQXY_I/J — fn{n (Y_IQXY_I)/U }
-2 =1 -, - 2
where 0" =n Elll(Yt — gonXt - anYt—l) .
k-1 k .
THEOREM 3.9. Under H . =H with ¢, =0 we have
sERmar As el = Yl k
1 | 2 1.2 1.2
(64) BLR, BLR 3 [ joskds} /138 — &alf 8y)

where Sk(-) 13 the detrended Brownian motion

Sk(r)=S(r)—:$ —&r—cre— 41

with

) -
s = [fipton ] foptaist)
and p(r) = (1,1, ...\ rk)’ . O

The statistic BLRU in (63) may be used to test H;j against H;—i . Both {63) and its limit
distribution given in (64) are invariant to the trend coefficients ¢ under the maintained hypothesis that
o = 0 ie. that Yt follows a process which can be decomposed into the sum of a kth order deter-
ministic trend and a stochastic trend. The statistic (63) may therefore be used to test for the presence of
a unit root in a time series model where there ils a maintalined deterministic trend. In this sense, the

Bayes likelihood ratio test BLR(7 may be regarded as a Bayes version of the classical tests of Dickey-

Fuller (1981), Phillips—Perron (1988) and Quliaris—Park—Phillips (1989).
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3.5. Posterior Odds, Best Bayes Tests and Bayes Model Tests

How do Bayes model likelihood ratio tests relate to conventional Bayes testing procedures like
posterior odds ratios and best Bayes tests? To address this question we look at these alternatives in the
context of the models Ha and Hl considered earlier (see (31)).

Let x. and T represent the prior probabilities of Hl and Ha . The posterior odds ratio of

1
H to H, is
a 1
dr% «
n a
dPn Tl

and the "Bayes factor" in favor of Ha is dP:/dPn . If we use a loss structure to penalize incorrect
decisions and form a basis for action, then the Bayes solution corresponds to the choice that minimizes
the Bayes risk. When the loss function is symmetrical in the sense that the losses from type I and type

11 errors are set to be the same, the decision rule is (cf. Zellner, 1971, pp. 295—297):
. a Ly
(65) if dPn/dPn > xl/wa , then decide in favor of Ha

i.e. decide in favor of Ha if the posterior odds > 1. The criterion (65) is sometimes called the "best
Bayesian test" of Ha against Hl (e.g. Grenander, 1981, Theorem 3, p. 111) or the Bayes solution
(Hall and Heyde, 1980, p. 163).

From (32) we have the density process

(66) dP%/aP_ = exp(u3]Y, | AY, ~ (/2078323

where h = o—1. Theorem 3.6 tells us that use of Bayes methods implies the existence of the Bayes

model H& given by (49) with an evolving, data dependent parameter an—l . Substituting the
n—1

latest estimate &n =1+ {ln in (66), we get

-

(67) dpnn /ap_ = e"P{f‘anlly AY, — (1/2){12213{2 } = exp{(1/2)l§i)3’1’Y

2
t—1 7t 17t—1 4

Ny

Twice the logarithm of (67) gives us

~

a R 2
(68) 2a(aP_"/aP ) = h2(EVE_ )= [ féSdSJ 13s%,
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which is the square of the Dickey—Fuller t—ratio statistic and its limit process. That is, (67) leads to the
usual classical test if conventional critical values are used.

Let us suppose, however, that the posterior odds criterion is to be employed rather than the
classical test and that we set =, = T, that the prior odds are equal. In that case since

1

-

a
n
(69) dp "/dP_>1=x /%

we would always accept H& using the posterior odds criterion (65). Clearly, this is not a fair test and
n

-

we may well ask why not. The reason is that dPnn/dPn is not a density and (69) is therefore not a
proper Bayes test in the sense of (65). This raises the next question, which is whether we can modify
(69) so that it is a proper Bayes test. The answer is yes and, furthermore, the resulting test relies on the
Bayes model likelihood ratio introduced earlier.

Recall from (68) that

a
n =2 2
dP_"/dP_= cxp{(l/?)hnzli'Yt__l} .
To transform this expression into a density we need to standardize it by the square root of the condi-
tional quadratic variation E?Yt—-l , Eiving the Bayes model density process

a R
dQE dp _/dp_ exp{(l/z)hzz‘l‘yzt_l}

dpn= p 172~ 5 1172
| [EY ] [E“Y ]

(70)
1°t-1 17t-1
If we now employ (70), whic)h is a proper demsity upon suitable initialization, in the posterior odds

criterion we have the decision rule

(71) i dQE/dPn > 7 /x_, then decide in favor of H_.

a
This decision rule can be translated into a criterion for dPnn/dPx1 . Indeed, from (70) and (71) we have

the equivalent rule
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a 9 1/2
dP x E“Y J
n 1171 t=1
(72) >—— .

Thus, our "Bayes model likelihood ratio posterior odds test" is equivalent to a "best Bayes test” when

1/2
the prior for HI is L [Elyt—l] . In other words, to make the Bayes posterior odds test that is

-~

based on the "likelihood ratio" dP:n/dPn valid, we need to weight the prior odds on H1 with a
Jeffreys—type prior. (See Phillips, 1991, for a development of Jeffreys priors in models where no station-
arity assumption is made.) In the present case, E?Yf_l is the conditional variance of the martingale
EI{Yt—lAYt under Hl and is a form of conditional information measure that measures the amount of

information there is in the data about «.

4. TOWARD A GENERAL THEORY

4.1. The Likelihood

Let {Yt}rll be a time series defined on the filtered sequence of measurable spaces (02, 7t) . Let
P: be a parameterized probability measure of {Yt}? in which 0 € ©, an open subset of R.
Suppose 90 is the true value of # and that Pa <<wv_, some o—finite measure on (1, Tn) . We

n
9 < 0 _ o
write the RN derivative of Pn with respect to PII = Pn as

(73) L () = dp’/ap’ = (dP:/dvn)/(dPg/dun)

and set L 0(9) = 1. Finally, we assume that Ln(ﬂ) is twice continuously differentiable and that these
derivatives are dominated by absolutely integrable functions, so that passage under the integral of differ-
entiation with respect to 6 is permissible.

The log—likelihood is
(74) A= &a(L () =B [ta(L,(8) — (L, _,(8)]
and the score function process is

(75) N =0A, /00= Ezzl(a/aa)[m(l,n(a) — &L, (8)]= 2§=1ek(9) , say.
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Set ¢ = ¢

k(ao = 22__ 60 and define

=1%
1(6) =2 B(e (7|7, )= <NN>_, =10

=1
We also define the second derivatives
. 0 0
7 (0) = 8¢, (8)/88, n =n(8),
and the accumulated derivative process

1,0 =5 _m(®, =10

Following conventional theory for maximum likelihood estimation of stochastic processes, we assume that
(76) 1(6)- 0 as (PY)
n n

and that under Pg

(77) IO/ (6)» ~1
uniformly in 6 (cf. Hall and Heyde, 1980, p. 160).
Under PO, E(eol}- })=0 and s0 NO is a Po—mart'mga]e, a well known feature of
n k' k=1 n n
maximum likelihood theory for stochastic processes (e.g. Hall and Heyde, 1980, p. 157). Similarly,
((e + nklf =0 and Jg + 12 is also a Pg—martingalc. Suitable transforms of measures
preserve these martingale properties for 6 # 90 .

Let 6= #(u) be a continuously differentiable path from &(0) = & to 6(r) = 6. Asin (36),

we have

(78) _j (8A, /38)dé(u) = f N_(u)df(u) .
We write Q%= PX®) and

(79) N =B q @) =3, sy

We now assume that for some a > 0 the moment generating function of e” is bounded above for

k
0<u<r, le

(80) supu{E(cxp{aez})} <wm.
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This assumption, which is restrictive, will facilitate some of the derivations below. It will not be needed
in the alternative approach given in Section 5. Let Eu() signify expectation without respect to Qz

measure. Then
u
Blelf ) =0
and so Nn(u) is a Qz—martingale. Note also that, by the discrete time Girsanov transformation

theorem, the Pg—martingale Ng is transformed into a Qz—martingale by the mapping

0 0 O,u, u =
Ny Ny =D Bl 1R ) =N @), sy

Using {74) and (76) we write

L‘; = L (8w)) = exp{A g o} = exp{ f;Nk(v)d )}

=Ly exp{f(e e}

Hence,

2
O
I}
1”4
THR=
|
e

_Ele, exp{fSerda} |7, ]

=1{e£ - E[eg exp{fge;dG(v)} l 7]:—1]}

Now Eu(?;|fk_1) =0 and N (u) isa Qg—martingalc. It is, in fact, an approximation to the
Qz—martingalc Nn(u) given in (79).
To see this let 1]’; = qk(ﬂ(u)) y 6= 6(u) — o° and note that
v 0 0 0
€@ =6 + qk(B(v) —-0) + op(&) .

Then, we have to the given order of approximation

R0 = N) =55 Bl 1 + qot0) = ) + o (B}F, ]
=N - 5B’ 17, )00w) — ) + 0 (6)
=N —1 (6")(0w) - &) + o, (8)
(81) =N — <N N (o) — &) + 08
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Turning to (79) and expanding about u =0 we have
(62) N (w) = N0 + 33(6w) - &%) + 0 (9
n n n p’’

which differs from (81) by a term that tends in probability to sero in view of (77). Thus, ﬁn(u) may
be taken as a local approximation to Nn(u) and both are Qg—martingales.
Now let {[ui-l’ ui] iz, ., U= 0, u = u} be a partition that decomposes the path

&u) into I segments with maximum mesh sise §. In a similar fashion to (82) and (81), we have

N (w) = N () + T (60, ))(0) — ;) +o (6)

(5) SN (ay_ ) = <N N> (Bu) = Hu_)) +o ()
% i1
where Nn(ui—l) = 2§=1€k s a Q ‘—martingale and <N(u.1_1), N(ui—l)>n

u .2
= EE_IE((ekl_l) ‘?k——l) is its conditional quadratic variation process. Expression (83) leads directly

to the rolling quadratic approximation to the log—likelilhood A on given in the following result.
THEOREM 4.1

(84) Ay - 2§=1{N:i (/<N | Nui>n}

where

N =N G (0 — o))

is a discrete in—l—mariingale for each i =1 .y 1.0

Now consider a grid with I=2. Set 8= 0(u2) and select g and u, so that bn = 0(\11)
is the maximum likelihood estimate and 8 = ﬁ(uo) is some preliminary consistent estimate. Note that
with the initialization 0 (in place of 90 = B(uo) ), the reference measure is f’n = P: and the likeli-

hood function is
(85) L (9) = dr¥/ap
n n "n’

Since the score at 9n is zero, we have from (83)
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0= Nn(ul) = Nn(uo) - <N(u0), N(u0)>n( 9n —6) + op(6) .
This leads to the following approximate representation of the MLE

‘é = E + <ﬁ,ﬁ>-lﬁ s
n n n

where ﬁn = N(uo) . In this form, bn is a linearised MLE constructed from the initial estimate 8 .

Now apply Theorem 4.1 with the same grid and set ﬂn = bn -8 , h=10— 9 and rename

A, as A, in this new parametrization. We obtain from (84)

“én . hn
~ - o 12 e ~ 2
(86) Ahn = Nnhn - (1/..)<N,N>nh]J - (1/2)<N,N>n(h - hn) s
where
N_= Ei:l‘k = Eizlek(on) =0,
and

<NN>_ = T EEIR ).

Note that, in view of (83), we have

PPN

(87) <N N> =<NN> +0 (8.
n n P

We deduce the following approximate form of the likelihood function (85) when it is reparameterized as

L (b) = dP"/dP_ with h=6—8, via.
n n n

(88) L_(b) = exp{N_h_— (1/2)h2<FN> Jexp{~(1/2)(h — b ) <NN>_}
= exp{(1/2)2A Jexp{—(1/0(b B )"A}
where

A =<ﬁ,ﬁ> , A =<1:I,1:I> .
n n n n

The approximation (88) is a local approximation to the likelihood in the vicinity of the MLE ﬂn .
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4.2. Bayesian Inference
Let «(h) be a prior demsity for h, which may be implied by a corresponding prior for 4.
The posterior density process is obtained by combining this prior with the approximate likelthood func-

tion (88) giving

I, = *(h)L (k) = x(b)exp{(1/2h A _Yexp{~(1/2)(a — b )4 } .

n

Using (87) we may write this process as

) 1 - (A7 (/282K Nl Pexpi~1/2)(0 — 5 )74 )
(90) - A7 Pexp{(1/20R2A Nl Zexp {1206 — B )4 11 .
LEMMA 4.2
(91) (/2R2 A m<in+1)}=(1/z){£2i — (A )}
+{hns R TC N A L SN (RS GO N 1/
(92) (/22 A L - m<£n+l)} = (1/2){£n01n0 - zn(&n )
+30_ (1/2)133E(;§+1(f )} +0 (2““1[e +E(E | /E 0

As in the discrete AR(1) case we now let

(93) ¢y = A;llzexp{(l/Z)l;i A }
0 0 "o

be an initialization of the process in the first square bracket factor of (89). We may determine n, as

the stopping time for which there is minimal information in ‘&k , Le.

n

0=min{k:.‘llk2c}

where ¢ > 0 is a preassigned constant.

Using (89), (92) and (93) we find that the posterior density process is approximately

(94) T - [c exP{En b2, — (/2B +1|fs)]}] [x(h),&i/ 2exp{—(1/z)(h—£n)2;1n}] .

B s+1
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LEMMA 4.3
Rn = exp{Ei;'l[l‘:s'és.*_l + (1/2)];?%(;34-1 lfs)]}
(95) =exp{Gn -1 /2)<G,G>n}

1 is a discrete f’n—mnrtingdc and where }73( <) is ezpectation taken with

where G =3"h 2
n n. s s+
0
respect to f’n measure. -0

The process Rn defines an approximate change of measure from the reference measure f’n to

the new measure Qi given by

B -~
(96) dQn/dPn = Rn = exp{Gn - (1/2)<G’G>n} .
Using (95) and (96) in (94) we have

I = s(b)(€PL/EP,) - cq(dQu/dP Nxt)A, Pexpt1/2)( — B )A 1

o
The posterior density process with respect to Qz—measure is then
B h B
12 = s(u)(@pt/aQ?)
(97) - e x(m)A Zexp{—(1/2) 0 — Y%A}
0 n o’ "o’

We now give the main result on Bayesian inference for the case of a general likelihood.

THEOREM 4.4

(a) Under a uniform prior =«(h), 115 is approzimately Gaussian with distribution N(};n’ ,&n—l

)
at time n .
(b) Bayes methods imply the use of a new reference measure QE in constructing the likelihood.

(c) The model for the data that is implied by Qi has a likelihood function (with respect to the

reference measure f’n ) 1hat is obtained by the recursive updating formula
(98) R =R exp{h ¢ —(1/DR°E(Z2]F )}
n n—1 n—l n n - n' n—l

that relies on the MLE, I;n from the first n—1 observations and the increment in the score 2n

-1

arising from the latest observation. 0O
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Following the terminology of the previous two sections, Q? may be called the Beyes model
measure. The Bayes model here is again a trajectory dependent one and is defined recursively through
the formula (98) that updatgs the likelihood as new observations arrive. In (98) fln__l provides the
present estimate of the parameter change {vis. an——l - 5) while ;n gives the change in the score

with the latest data, so that the product l;n_lzn provides the increment in the likelihood. This is
compensated by the quad;atic term in the exponent (viz. —(1/2)ﬁiE(?§lTn_l)) which keeps the result
close to a density process. The resulting process, R.n , is here only approximately a };n——martingale, in
contrast to the corresponding process in the Gaussian AR(1) mode! of Sections 3.1—3.2 where Rn is pre-
cisely a Pn—ma:tingale (cf. Lemma 3.5). Nevertheless, the implications of the replacement of the
measure remain the same: viz. (i) that Bayesian inference relates to a different model concept from

classical inference; and (ii) that the Bayesian model has a time varying parameter that evolves according

to the path of the recursive MLE computed from the given data trajectory.

5. AN ALTERNATIVE APPROACH TO A GENERAL THEORY

In dealing with the case of a general likelihood function, the approach adopted in the previous
section relies on discrete time martingales. TUse of the discrete Girsanov transformation necessarily
involves the conditional quadratic variation process, whose existence puts moment restrictions on the
score function process. In an asymptotic theory we would expect that strong moment restrictions such as
(80) are unnecessary. It is therefore of interest to explore ways in which the likelihood approximations
derived in Section 4.1 can be developed under less restrictive conditions.

This section will look at a different approach to a general theory that presents large sample

approximations in terms of continuous L, martingales. Qur starting point is related to recent work by

2
Strasser (1986) and Jacob and Shiryaev (1987, Ch. X) on the limiting form of likelihood ratios. We com-
bine the limiting likelihood density process with a prior to induce the posterior density process. Then,

fouowing the analysis of earlier sections, we derive the implied limiting Bayes model and limiting Bayes

model measure under which Bayesian inference takes place.



33

5.1. The Limiting Likelihood Density Process

We start with the following representation for the likelihood

(99) L_(6) = exp{A g} = exp{/ (N (u)df(u)}

based on (74) and (78). We shall now consider a local quadratic approximation to the log—likelihood in
the neighborhood of 8 =. 00 . This will lead to a simple and recognizable form of the limiting density
process.

Let Hn be a sequence of parameter values for 8 with Gn -+ 80 and define the deviation

hn = Hn - 90 . Recall that at u = 0 the score process given in (389), viz.

0 0
Nn - Nn(o) - 22:161: ’

is a Pg——martingale. We define

)= B{S_ B’ |7}

n n k=1 n—
In the usual asymptotic theory for stochastic processes, a serves as 2 normalization factor for the
martingale N0 (e.g. Hall and Heyde, 1980, p. 160, Proposition 6.1). Following this approach, we may

let
_ 1/2
(100) hn = h/an , h>0

so that Gn is, in effect, a sequence in © that is local to 00 in the traditional sense. Corresponding to
the path {Hn(u) :u€ [0} from 9n(0) =6 to Bn(r) = Bn, we now have the induced path
{a(u) : w € 0]} with (0) = 0, and h=h(r) = /(6 —6").

In addition to (76) and (77) we shall assume that
(101) 1 (011 as (29
n*'n’''n TN

(ef. Hall and Heyde, 1980, p. 160).
Next let s, 0<s<1, denote an arbitrary fraction of the total sample n . Then, working

from (78), we can write the likelihood process as

ho =e r u u)} = ex ra—1/2 u u
(102) L[ns] = L[ns](gn) = XP{IDN[HS]( )den( )} = P{!O - N[ (u)dh(u)}

ns]
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in terms of the random element N[ns](u) . To proceed with the asymptotics we assume that N[ns]
converges weakly in the space D[0,1] after suitable standardization. In this latter respect, we may con-
‘struct the localizing sequence hn ip (100) as is required for this purpose. Specifically, we shall assume
that we have joint weak convergence, as n= o, of the process N[[)ns] = N[ns](D) and its conditional
quadratic variation, i.e.

Len®, N0>[

1720
ns)

N

- 0 0 -0
n [ns]' "n )2 (Tn’ <., T >s)

(103) (

In (103), N[[)ns] and the limit process TE are defined on a probability space (0, 7, PD) where

UTfn CF and Pg = E(Polfn) . We shall assume that the limit process TS is a continuous L2(P0)
integrable process and a Po—martingalc, just as its finite sample counterpart Ng is a Pg—ma.rtingale.
We call TS the limiting score process. Since TS is a continuous martingale (by assumption) we have
<T’T>s = [T’T]s .

The following theorem describes the limiting behavior of the likelihood function L?ns] given in

(102).
THEOREM 5.1
(104) -/ 2N[ns](u) 3T () = T — (1%, T h(w)
R S LN I 0 2.0 0
(105) Ling ? Lo = p{fDTS( Jdh( )} _.exp{hTs (1/2p1%, T ]s} .

E: is a Po—mariinga.le with E([‘:) =1.0

COROLLARY 5.2. Let P}; be the measure defined by the Hmiting density process .C}sl , t.e. define

PE by the RN derivative
dPh/dP = ﬁh
s’ s s
Under the change of measure PS -+ P]: , the limit process Ts(u) in (104) becomes a P]:——mariingale. D
Suppose we now select u = U such that

S e _ 125 0
bo=h (i)=a'%0 —0),
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where @n is the MLE of GD . Setting 8 = 1 so that the full sample is used, we have
- - h 0,0 L0
hn 3h= a.rgmax(ﬁl) = Tl/[T , T ]l .
As an illustration, take the case of the AR(1) (31) with’ ao =1. Then
0 8 0 -0 8.2
T8=IOWdW, [T ,T]S=IOW ,
and
: - 0 1 1,2
hn =n(an—-a )2 fOWdW/IOW .
where W(-) = BM(1).
As a further illustration, suppose we have a sequence of models like (31) with ag = exp(—/n)
for some constant ¢, so that the autoregressive root is local to unity. Then,
0 ] 0 0 8.2
T =[@dw, [T, T] =/J,
where Jc(-) is an Ornstein—Uhlenbeck process satisfying the linear stochastic differential equation
dJc(r) = ch(r)dr + dW(r) .
We then have the limit theory
. - 0 1 1,2
hn = n(czIl —a )3 IOchW/IOJc
(cf. Phillips, 1988).
We now return to the general form of the limit density process [1: given in (105). Define
(106) B(s) = B(d) = argma.x([:}:) = 1o/m% 19, .
Note that at the point 1 we have

(107) T =T (i) = Tg — b’ 1, =0,

i.e. a zero value for the limiting score. We decompose the path integral of the score process in (105) as

féTB(u)dh(u) = ngs(u)dh(u) + ]ETs(u)dh(u) .

Now

-

(108) J3T (w)dh(u) = B(s)T) — (1/2)h(s)

%, 10,
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and writing, for u € [u, 1] ,

- - a -

T (u) = T, — [1,T],(b(x) — b(s)) = ~{T,T], (b(u) — h(s)) ,

we have

(108) [T (wdb(s) = 1,7 fX(b(w) — h(s))dn(w) = —{T,T) {(1/2)6% — h(s)") — B)(b ~ BN}
= —{T.3],(172)(6 ~ h(s)”

Combining (106), (108) and (109) we obtain

(110) [ (war(a) = (17286 71", T, ~ (1/2)6 — BE) ALY,

which leads directly to the following result.

THEOREM 5.3. The limiting process E? may be ezpressed in the form
h s 2.0 .0 PRy Sl
(1) Lo = exp{(1/2RE 0, T Jerpf—(1/2)(k — B(s)) (23]}

where fl(s) is the process given in (106) that represents the limiting form of the standardized and

centered MLE. O

5.2. The Posterior Density Process
Based on (102) and constructed from the fraction s, 0 < s 1, of the total sample n, the

posterior density process is

h
Mg = "0

Using (105) we have

h
.

g% 106) = *(h)L

[n
Next define
A =% 1Y,
5 5

and then, from (111), we have the following alternate form for I(s) , viz.
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(112) () = (4 Pexp{(1/2)56) A NI(0) A Pexp{—(1/2)(n — B(aDAY] -
Let
76) = £ exp{(1/25°A} | aad 1, = 26)Tay)

where 8y > 0 is some given initialization of the process R(s). We note the properties of these pro-

cesses in the following lemma.

LEMMA 5.4
(113) E('l(s)|7t) =Ry, s>t>0
(114) r=1+] :Ortdgt = exp{g, — (1/2)le.e),}

where g = [° ﬂ(t)dTo and T are Po—martingales and
S sD t s

(115) Er)=1.1O

8
The limit process T is a density process. It defines a change in measure from PS to a

measure QE given by the RN derivative

(116) 4QC/daP) =« = exple, — (1/2)[g8),} -

The limiting posterior density process is then

I1(s) = ¢y (dQ" /aP))ia(b) A Pexp{~{1/2)(b — BENAY

where ¢y = 'B(so) . Changing the measure by which II(s) is defined we have

n8) = x(h)(dpi_‘/dqf) = «(a)(dp?/ap))(ap?/aQP)

(117) = e a(n) A 2exp{—(}/2)(h —BE)4}

We deduce the following analogue of Theorem 2.5 for the limiting posterior density IIB(s) .
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THEOREM §.5

(a) Under a uniform prior the limiting posierior density process IIB(s) is Gaussian with
marginal distribution N(ﬂ(s), A;l) centered ot the limiting MLE ﬂ(s) .

(b) Bayes methods involve a reference measure given by the limiting Bayes model measure QI:
defined by (116).

(c) The model for the data implied by Q? has limiting likelihood density process (114) which

satisfies the stochastic differenticl equation
(118) dr =t lhl(s)dT0
5 8 5’

according to whick the likelihood is updated from the limiting MLE ﬂ(s) and the sncrement in the score

process Tg . o

Note that the major difference between this case and that of the continuous time Gaussian
AR(1) considered in Section 2 is that the updating equation (118) above relates to the density process I
that defines the limiting Bayes model measure. (In this sense, Theorem 5.4 is a limiting process version
of Theorem 4.4.) However, for the Gaussian AR(1) in Theorem 2.5 we were able to deduce the nonlinear
stochastic differential equation, viz. equation (l)B, to which the Bayes model measure directly relates. In
other words, an explicit Bayes model was available in that special case. In the general case, we are
forced to deal with models in terms of tﬁeir associated likelihood functions or density processes. We
cannot, therefore, be any more explicit about the implied Bayes model than to give the differential equa-

tion (118) by which the density process that defines the Bayes model measure is updated.

6. CONCLUSION

This paper puts forward the idea that Bayesian modeling of time series involves a special frame
of reference, very different from classical modeling. In classical models, the starting point is a model or
likelihood in which a hypothetical true value of the parameter is postulated. By contrast, the conven-

tional Bayes treatment of the same problem involves the replacement of the classical model with one
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where the parameter is updated each period according to the latest observation. Conceptually, the
Bayesian frame of reference, which eschews the notion of a $rue parameter value, is a time varying par-
ameter model in which the parameter value is determined by the penultimate value of the MLE, i.e. by
recursive maximum likelihood. We call the new model the Bayes model and its associated probability
measure the Bayes model measure.

The new frame of reference in Bayesian modeling arises incidentally in the passage from prior to
posterior density and results from the data conditioning that is explicit in the Lkelihood principle. One
consequence that has important practical consequences is that the Bayes mode! inevitably inherits the
statistical properties of the recursive MLE on which it is based. In time series models, this includes the
bias and skewness of the finite sample distribution of the MLE. Whereas classical methods compensate
for these properties by taking the sampling properties of the estimator into account, conventional Bayes
methods do not. This helps to explain the poor sampling properties of Bayes methods in autoregressions
that were reported in the simulation exercises in Phillips (1991).

In spite of the above mentioned difficulties, we have shown that it is possible to mount meaning-
ful Bayes model tests by taking into account the correct Bayes model measure that underlies
conventional Bayesian inference. When applied to autoregressions, it turns out that this principle can be
used to derive classical Dickey—Fuller and augmented Dickey—Fuller tests. Alternative Bayes model like-
lihood ratio tests and posterior odds criteria are also suggested. In the case of posterior odds we find that
correct use of the Bayes model measure in computation of the Bayes factor leads to a scaling that is
equivalent to the use of a Jeffreys—type prior.

This paper is a beginning. Qur main concerns have been: (i) the conceptual framework that the
Bayes frame of reference implies; and (ii) the practical import of the new frame of reference in modeling
and in statistical tests. Later work will attempt to extend our treatment to more general models and to

illustrate the use of our methods in empirical work.
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7. APPENDIX
PROOF OF LEMMA 2.1. Write

L = dQY/dP_= dp” Alu )/dP = exp{B(u)V, — (1/2)6(u 1A

a}'

Taking stochastic differentials and employing Ito's rule, we have

dL_ =L {dV A(v) — (1/2) Bu)?da J+(1/2) Lsﬂ(u
= Lsdvsﬂ(u) .

The quadratic covariation differential is now

d[L,V]s = LsdAsﬂ(u) .
Under the change of measure Pt - C}"t1 and using the Girsanov theorem we have the mapping

t
(Al) Vt - Vt - jo(l/Ls)d[lels
from the Pt—martingale | Vt to the Q‘::—ma.rtingale
t
Vt - ,J'[),B(l.x)dAs =V, - /.’3(u)At = Nt(u) .

Hence, Nt(u) is a Qt—martingale as required.

PROOF OF LEMMA 2.2. Since Nt(u) = Vt - /S(u)At we have

Aoy = jBNt(u)dﬂ(u) = 2?:1 Jui N, (u)dA(u)
i—1
=31V, (B0) = Ax_)) — (1/2)A,(B(w)

1=

2B

2 2

1— 1

=3 {N(a_)(8u) — Ay,

2
=B N, )(A) — Blu_,)) — (1/2)A,(B(u) — Als,_ )}

=%_ { — (1/2) [Nui, Nui] t}

as stated in (13), since
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u. u
g1 2 2 2
[N + N ]t = (/5(\11) - ﬁ(ui—l)) [N»N]t = (ﬂ(ui) - ﬁ(ul—-l)) [V,V]t = (ﬁ(ul) - ﬁ(ul-—-l)) At .
U
To prove (15) we first note that the continuous Qt1 —martingale Nt(ui——l) can be represented
under an appropriate time change as Brownian motion, vis.

Nt(ui—l) = W[N,N]t a.s.

(e.g. Protter, 1990, Theorem 41, p. 81).

Now
NN, = [V, V], = JEv2ds
By T 0°s
and the stopping time t is defined s0 that
[NN]_ = [7Y2ds = A
i 0"s ’

where A > 0 is fixed. It follows that under the stated time change

Moreover,
u, .
[N Y ‘J =b’NN] =12
T i T i

and the required result now follows.

PROOF OF LEMMA 2.3. Taking stochastic differentials and employing Ito’s rule, we have
-9 s s e -9 -1
(a2) A/DEA, — (/DA )] = BABA, + (V2RBAA, + (/258 — (1/24;aA, .

Recall that J, =A;1Vt 50 that

- =2 -1
(A3) dﬂt = —At dAth + At th
and

- -2
(A4) d[ﬂ,ﬂ]t = At dAt .

Using (A3)—(A4) in (A2), we have
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N - -1 N -1 - N
BAV, — BrdA, + (1/2DA]dA, + (1/2)82da, ~ (1/2)A] dA, = BaV, — (1/2);3;?@t ,

giving the required result (24).

PROOF OF LEMMA 24. From (23) and (24), we deduce that
R, = cxp{ jto[[szadvs — (1/2)Fda J}
= exp{1} Bav, - /2, o)
= exp{Gt —(1/2) IIO[G,G]S}

(45) = oG, ~ /2004,
as required for (25). By stochastic differentiation
1
th = Rt{th - (1/2)d[G,G]t} + §th[G,G]t
= thGt ,
and integrating we have

t t
/ tOdRs = jtodeGs

or

t
R,=1+] todeGs

since Gt = 1. This proves (26). Finally, note that when Vt is a martingale (i.e. when S=10) we
0
. have th = ﬁtht and
E(dG t:ft) = ﬁtE(th|ft) =0
80 that Gt is also a martingale. It follows from (26) and Theorem 5.3 of Ikeda and Watanabe (1981)

that

E(Rt) =1,

as required.
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PROOF OF THEOREM 2.5
(2) Under a uniform prior the posterior density process is

02 o Ay Pexpi—(1/2)08 - )74} « N3, A7)

(b) As explained in the argument that follows equations (30) of the text the posterior density is
B B
I = x(8)(@PP/aQ’) .
Under Bayes methods of inference, working with II? is equivalent to working with
= Brap
I, = ~(8)(dP’/ap,)

since the factor dQ?/dPt by which they differ is only data dependent and becomes constant upon data
conditioning. The absorption of this factor in the constant of proportionality ensures that the effective
likelihood function for Bayes inference is the RN derivative de/dQ? .

(¢) From (28) we have the RN derivative
4Q} /4P, = e BV, (/2)ea )
= cxp{ jzo[ﬁsysdys —(1/2) Ejfyids]}
which is the likelihood ratio density process for the model

dY, = Y 4t +dW, , t > ;.

In other words, Q? is the probability measure of the output process of this nonlinear stochastic dif-

ferential equation in place of the linear model (1).

PROOF OF LEMMA 3.1

L = ep(d, )= expaBlY, | AY, - (1/28°50Y0 3.

n t—1

under H, and thus Mn is a Pn-—martingale. Its

Note that Mn = hlelYt_lAYt = hE?Yt—lut 1

conditional quadratic variation process is

20,2 2 20,2
MM> =BE Y E(AY)T|F,_) =TI,



44

and expression (33) for Ln follows directly.

Setting M 0, (34) holds identically and

0 —3
2
B(Ly/L, ]73._1) =E [exp{h‘{j_luj - (1/2)h2Yj__1} lfj_l] =1

so that E(r.|F, .)=0. Thus, r. is a martingale difference, L_ is a martingale and E(L_) =1.
11 J n n

PROOF OF LEMMA 3.2. Observe that
u 2
L11 = ciQn/ciPn = exp{h(u)Vn — (1/2)h(u) An}
= exp{U} ~ (1/2)<U", U"> }
n n
where Uz = h(u)Vn . By the Girsanov theorem for discrete time processes (e.g. Jacod and Shiryaev,
1987, Theorem 3.46, p. 165), the mapping
(A6) V +V —<V,U%
n n n

takes the Pn—martingalc Vn into the Qz-martingalc

Vn - <V’U>n =V - h(u)<V,V>£l = V11 - h(u)Al1 = Nn(u) .
Hence, Nn(u) isa Qz—martingale as required. Next note that

@)= EnYt (AY, —b(u E"Yt

! Y, )= y = @ B@)Y, =Y, v ), sy

1

Under QE 1:(u)l 1) =0, sothat v (u) isaQ —-ma.rtmgale difference and thus, by definition

EDY2

, ) =8 Yy =AL

<N(u), N EnY2 [

PROOF OF LEMMA 3.3. The proof is identical to the proof of the first part of Lemma 2.2 upon

replacement of square bracket processes with sharp bracket processes.
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PROOF OF LEMMA 3.4

(1/2)A_ B2 = (1/2)[Ah_ +Y AY_

2
n+l n+41 "~ /(An + Yn)

+1]2
= (1/2)A B2 + 20 Y AY Lt Y2y +1)2/;,11] [1 + YE/AD] -
= (1/2h%A_+ (Y AY - (1/282v2) + op(vi/.an) .
Also
(1/2)&(A__ ) = (1/2)&[A_(1+ Y24 )

= (1/2)m A_+ OP(YE/An)

o+l
and (41) follows. A similar decomposition yields (42).

PROOF OF LEMMA 3.5. Under H1 we have
B(b Y AY lfs) =E(b Yo |7s) =0

and Gn is a discrete martingale. Its conditional quadratic variation is

<G,6>_ =P NAv%Ew? | [F) = 1Ay
n no 8 s+1'" s no 8 B

8
proving (44). Next

and E(Rj/Rj—II:r' 1) =1, sothat R is a martingale with E(Rn) =1.

J_

PROOF OF THEOREM 3.6. Parts (a) and (b) follow directly from the forms of (48). To prove (c) note
that from (44) we see that Rn is the likelihood function and Qﬁ is the probability measure for the
model

AYs-+-1 = ths + us+1

ie.

Y

s+1 =1+ ha)Ys + us

+1°

The stated result now follows.
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PROQF OF THEOREM 3.7. Under Hl we have

BLR = [E’;Yt_lut] 2/(2"\(2

1 t—l)

- tn(n—zzn"{z_l)

17t
2
3 [jéSdS] 113"~ &(]1s%)

Since 32 - 02 a.s. under Hl , the same result applies to BLR(7 .

PROOF OF THEOREMS 3.8 AND 3.9. These proofs follow the same line and involve a routine applica-
tion of functional limit theory and the L2 projection geometry given in Park and Phillips (1988, 1989)

for sample moments of residuals from regressions of integrated processes on deterministic trends.

PROOF OF THEOREM 4.1. From (78) and (83) we have
A, =[UN (v)do(v)
fn 0" n

= 2§= IJui Nn(v)dg(v)

1—1
- ELJui [N, (3_,) = <N(s,_,), N(u_)>_(&+) — Bu,_))ld6v)
%
=3 [Nn(ui_l)J:i a8(v) — <N(u,_), N(ui_1)>n“ui o(v)do(v) — G(ui_l)J:i ae(v)}]
i—1 Y1

i—1
I[Nn(ul—l)(e(ul) - a(ui—l)) - (1/2)<N(u1_1)1 N(ui_1)>n(9(u') - e(ul_l))z]

1
EI ui ui U.i
= i:I[Nn —(1/2)<N | N >n]

as required for (84).
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PROOF OF LEMMA 4.2.. First,

n+1 11+1 n+1 kITk 1))

= [Efllzk-yznﬂ] /[E’{E(zk[fk_ +E(e ll? J

~2 ~ - ~2 ~ -2
= [N11 + 2Nn€n+1 -+ en_H]/[An + E(en_HI?'n)]

L ) 2
82 A N2 J<N.¥>_ =[)3‘1‘+1‘ék] /()3’1‘“3(2

_+ 9h 7 . .—h2E(s

n n+1 n 11-'}-1l )
Next,

- - ~2 -
LA = f[A (1+ B(e +1|T /A

n+l)
=& )+ 0 (B2 |7 )/h) .

Combining these expansions we have (91). Recursive calculations then lead to the decomposition {92).

PROOF OF LEMMA 4.3. Under 1311 measure we have

E(e . |7) =0

sothat G_ = En-ll; € isaPp —martingale. Its conditional quadratic variation is
n n, s s+l n
<G,G>_ 2‘1 b E( A

giving (95).

PROOF OF THEOREM 5.1. First note that

a——l/2N[ ](u) - a—1/22[ns]e:
_ U0 2y 2
“n N[ns] Ty [ns] B(u)l

0

where J¥ . =17 %) for some & on the line segment connecting §_ and 90. Since § =6
[ns] n n

[ns)

and in view of (77) we have
* * -
Mg Mas 5 7

where ITns] = I[ns](ﬂ*) . However, from (101) we also have
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0
]/1[ g les @)

[ns
Hence,

-1

®n J:Ens] an I;E%s](]fns]/ I:Ens]) !
=—e I[ns] + op(l)

20 /20

=—<a_ a8 N >[ns] + op(l)
3 —<T0, T0>l

using (103). It follows that

-1/2 0 0 0
2 N[nS](u) 3 Ts -<T,T >sh(u)

and since Tg 1s continuous we have <T0, T0>3 = [’I‘O, To]s , leading to the stated result (104).

Next from (102) and (104) we have

L’Ens] 3 cxp{ f;Ts(u)dh(u)}

where

Thus
r 0
[5T (w)dh(u) = ’I‘sh rr®, 19 Job(w)dh(w)
%
% — /2, 77 b
where h = h(r) —h(0) = h(r), as required for (105). As in the proof of Lemma 2.4 we have the

stochastic differential
df? = nelar?
8 B s
: h h 0 . 0 . 0 . . .
so that E(dﬁslfs) = hﬁsE(del?'s) =0 since T is a P —martingale. Integrating and using the

initialization ,Ch =1 we have

0
£y —1= Ity = bt e,

so that
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and ﬁl: is a limit density process as required.

PROOF OF COROLLARY 5.2. By the Girsanov theorem we have the mapping
10410 _ g3 ( bt —ld[L‘h(“) Y =1°
M 017t YT T

from the Po-ma.rtinga]e TS toa Pl:—martingale T: . But d[l,:(u) = h(u)[l:(u)dTg , so that

apc) ™), = h(u)[l:(u)d[’l“o, ),
and then
u 0 g,,0 0
T =T, —h(u)jodrr T,
=T, - h(u)r’, T, = T,

giving the required result.

PROOF OF THEOREM 5.3. The stated result (111) follows immediately from (103) and (110).

PROOF OF LEMMA 5.4. It will be sufficient to show (114) and (115) since these latter results imply
(113). However, the proofs of (114) and (115) are identical (after suitable translation of notation) to the

proofs of Lemmas 2.3 and 2.4 above.
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