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1. INTRODUCTION

It is a well-established empirical fact that standard unit
root tests fail to reject the null hypothesis of a unit root for
many economic time series. This was first argued systematically
in the influential article of Nelson and Plosser (1982), who
applied Dickey-Fuller type tests (Dickey (1976), Fuller (1976),
Dickey and Fuller (1979)) to 14 annual U.S. time series and
failed to reject the hypothesis of a unit root in all but one of
the series. These results are not changed by allowing for error
autocorrelation using the augmented tests of Said and Dickey
(1984) or the corrected test statistics of Phillips (1987) and
Phillips and Perron (1988). Similar results are obtained for
many other macroeconomic time series. A partial listing of
empirical studies yielding these findings can be found in DeJong
et al. (1989).

The standard conclusion that is drawn from this empirical
evidence is that many or most aggregate economic time series
contain a unit root. However, it is important to note that in
this empirical work the unit root is set up as the null
hypothesis to be tested, and the way in which classical
hypothesis testing is carried out ensures that the null
hypothesis is accepted unless there is strong evidence against
it. Therefore, an alternative explanation for the common failure
to reject a unit root is simply that most economic time series
are not very informative about whether or not there is a unit
root; or, equivalently, that standard unit root tests are not

very powerful against relevant alternatives. Several more recent



studies have argued that this is indeed the case. For example,
DeJong et al. (1989) provide evidence that the Dickey-Fuller
tests have low. power against stable autoregressive alternatives
with roots near unity, and Diebold and Rudebusch (1990) show that
they also have low power against fractionally integrated
alternatives.

Bayesian analysis offers an alternative means of evaluating
how informative the data are regarding the presence of a unit
root, by providing direct posterior evidence in support of
stationarity and nonstationarity. Working from flat priors,
DeJong and Whiteman (1990) found only two of the Nelson-Plosser
series to have stochastic trends using this approach. Phillips
(1990) used objective ignorance priors in extracting posteriors
and found support for stochastic trends in five of the series.

These studies suggest that, in trying to decide by classical
nethods whether economic data are stationary or integrated, it
‘would be useful to have available tests of the null hypothesis of
stationarity as well as tests of the null hypothesis of a unit
root. Specifically, if we test both the null hypothesis of a
unit root and the null hypothesis of stationarity, there are four
possible outcomes, all but one of which seem easily
interpretable. If we accept the unit root and reject
stationarity, we have found a unit root. If we reject a unit
root and accept stationarity, we have found stationarity. If we
accept both the unit root and stationarity, we conclude that we

can't be very sure whether or not there is a unit root. Finally,
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if we reject both the unit root and stationarity, it is not clear
what should be concluded.

This paper provides a straightforward test of the null
hypothesis of stationarity against the alternative of a unit
root. There have been relatively few previous attempts to test
the null hypothesis of stationarity. Park and Choi (1988)
consider a test statistic which is essentially the F statistic
for "superfluous" deterministic trend variables; this statistic
should be close to zero under the stationary null but not under
the alternative of a unit root. Rudebusch (1990) considers the
Dickey-Fuller test statistics, but estimates both trend
stationary and difference stationary models and then uses the
bootstrap to evaluate the distribution of these statistics under
each model. Using the Nelson and Plosser data, he often cannot
reject either the trend stationary model or the difference
stationary model. DeJong et_al. (1989) consider the Dickey-
Fuller regression
(1) Y, = a + 6t + py,.., + €,
in which the unit root corresponds to p = 1, but they also test
the stationary null hypothesis , = .85. For most of the series
used by Nelson and Plosser, they can reject neither , = 1 nor p =
.85. Furthermore, this failure to reject both hypotheses is
shown to be reasonable in terms of the powers of the tests, which
they explore through Monte Carlo experimentation.

These are reasonable first attempts to test stationarity,
but they all suffer from the lack of a plausible model in which

the null of stationarity is naturally framed as a parametric



restriction. Only DeJong et al. test a parametric restriction
that implies stationarity, and their choice of p,=.85 to represent
stationarity (as opposed to p=.70 or .95 or whatever) is
obviously arbitrary. <Clearly stationarity is a composite null
hypothesis in models like (1) above.

As a general statement, it is certainly not obvious that a
parameterization (like the one underlying the Dickey-Fuller
tests) that is natural and useful to test the null of a unit root
should also be natural and useful to test the null of
stationarity. In this paper we will use a parameterization which
provides a plausible representation of both stationary and
nonstationary variables and which leads naturally to a test of
the hypothesis of stationarity. Specifically, we choose a
components representation in which the time series under'study is
written as the sum of a deterministic trend, a random walk, and a
stationary error. The null hypothesis of trend stationarity
corresponds to the hypothesis that the variance of the random
walk equals zero. Under the additional assumptions that the
random walk is normal and that stationary error is normal white
noise, the IM statistic for the trend stationarity hypothesis is
the same as the locally best invariant (LBI) test statistic, and
follows from Nabeya and Tanaka (1988). However, the assumption
that the stationary error is white noise is not credible in many
empirical applications, since it implies that under the null
hypothesis the variable in question should have iid deviations
from trend. We therefore proceed in the spirit of Phillips

(1987) and Phillips and Perron (1988) by deriving the asymptotic
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distribution of the LM statistic under rather general conditions
on the stationary error, and we propose a modified version of the
LM statistic that is valid asymptotically under these more
general conditions. The asymptotic distribution is non-standard,
involving so-called higher ofder Brownian bridges.

When we apply this test to the Nelson-Plosser data, our
results depend on the way that the deterministic trend is
accommodated. For almost all series we can reject the hypothesis
of level stationarity, but for many of the series we cannot
reject the hypothesis of trend stationarity. The latter result
is in broad agreement with the results of DeJong et al. (1989)
and Rudebusch (1990), and with the aforementioned Bayesian
analyses of DeJong and Whiteman (1990) and Phillips (1990). It
suggests that for many series the existence of a unit root is in
doubt, despite the failure of Dickey-Fuller tests (and other

related tests) to reject the unit root hypothesis.

2. THE LM STATISTIC FOR THE STATIONARITY HYPOTHESIS

let y,, t =1, 2, ..., T be the observed series for which we
wish to test stationarity. We assume that we can decompose the
series into the sum of deterministic trend, a random walk and a
stationary error:
{2) Y. = £t + r, + €, .
Here r, is a random walk:
(3) e = Ty + 4,
where the u, are iid (0,0,%). The initial value r, is treated as

fixed and serves the role of an intercept. The stationarity



hypothesis is simply ¢, = 0 (or equivalently o, = 0). Since ¢,
is assumed to be stationary, under the null hypothesis y, is
trend stationary. We will also consider the special case of the
model (2) in which we set ¢ = 0, in which case under the null
hypothesis y. is stationary around a level (r,) rather than
around a trend.

The statistic we will use is both the IM statistic and the
LBI test . statistic for the hypothesis of = 0, under the stronger
assumptions that the u, are normal and that the €, are iid N(o0,
o2). Nyblom (1986) considers a model equivalent to our model
above and gives the LBI test statistic, but a more convenient
expression follows from deriving the statistic as a special case
of the statistic developed by Nabeya and Tanaka (1988) to test
"for random coefficients. (Other relevant references include
Tanaka (1983), Nyblom and Makelainen (1983), Franzini and Harvey
(1983), and Leybourne and McCabe (1989), and a general discussion
can be found in Harvey (1989).) Nabeya and Tanaka consider the
regression model
(4) Ye = X8, + 2,y + €, ,
in which the scalar g, is a normal random walk (B8, = B..; + u,,
with the u, iid) and the errors ¢, are iid N(0, ¢/). They test
the hypothesis 02 = 0, so that they test the null hypothesis of
constancy of regression coefficients against the alternative of
random walk coefficients. Our model (2) is obviously the special
case of their model in which x, = 1 for all t, z, = t, and their
B, is our r.,. If we set ¢ = 0 in (2), so as to test the

hypothesis of level stationarity, this corresponds to eliminating



z, from their medel, in which case we have the simpler model of
Nyblom and Makelainen (1986) and Tanaka (1983).

Appendix A gives the details of the simplifications of the
Nabeya and Tanaka statistic that apply in our model. The end
result is very simple. let e, t =1, 2, ..., T be the residuals
from the regression of y on an intercept and time trend. Let 33
be the usual estimate of the error variance from this regression
(the sum of squared residuals, divided by T). Define the partial
sum process of the residuals:

t

(5) s, = .E e,

I’ t = 1; 2' LR B B ] T.
t j=1

Then the IM (and LBI) statistic is

2

neaH3

2 ~
S,/ ¢©
1 t €

(6) IM =
t

Furthermore, in the event that we wish to test the null
hypothesis of level stationarity instead of trend stationarity,
we simply define e, as the residual from the regression of y on
an intercept only (that is, e, =y, - y) instead of as above, and
the rest of the construction of the test statistic is unaltered.
The test is an upper tail test. Critical values that are
valid asymptotically will be supplied in the next section.
| Note that the IM statistic (6) can be interpreted as a
functional of the partial sum process S, given in (5). As such,
the statistic is also related to the generic class of tests for a
unit root developed recently by Stock (1990). However, unlike

the tests considered in Stock's paper, our statistic is intended
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as a test for stationarity and not as a test of a unit root null.
In consequence, the asymptotic theory of our tests statistic is
quite different in certain respects from that of Stock, as we
shall indicate below. |

The statistic (6) also may arise in other contexts.
Saikkonen and Luukkonen (1990) derive (6) as the 16ca11y best
unbiased invariant test of the hypothesis ¢ = 1 in the model
Ay, = €, = f€,.,, with E(y,) unknown and playing thé role of
intercept in our model, and with the ¢, iid normal. Since ¢ =1
is a stationarity hypothesis, as our hypothesis ¢? = 0 also is,

this is not really a surprising result.

3. ASYMPTOTIC THEORY

In this section we consider the asymptotic distribution of
the LM statistic given in (6) above. The LM statistic was
derived under the assumption that the errors e, were iid N(O,
of). (It was also assumed that the random walk component r, was
normal, but this assumption is obviously irrelevant to the
distribution of the test statistic under the null hypothesis,
since the null eliminates the random walk component.) However,
in this section we will consider the asymptotic distribution of
the statistic under weaker assumptions about the errors. As
argued in the Introduction, this is important because the series
to which the stationarity test will be applied are typically
highly dependent over time, and so the iid error assumption under
the null is unrealistic. To allow for quite general forms of

temporal dependence we may assume that the e, satisfy the (strong



mixing) regularity conditions of Phillips and Perron (1988, p.
336) or the linear process conditions of Phillips and Solo (1989,
theorems 3.3 and 3.14). These conditions put some limits on the
degree of heterogeneity and autocorrelation allowed in the ¢
sequence but are otherwise fairly general. On the one hand, they
are weaker conditions than stationarity, because some
heterogeneity is allowed; on the other hand, they are stronger
than stationarity alone, because there are limits on the degree
of allowable autocorrelation. The Phillips-Perron regularity
conditions have been used extensively by subsequent authors,
including Leybourne and McCabe (1989). The Phillips-Solo
conditions are especially useful because they conveniently allow
for all ARMA processes, with either homogeneous or heterocgeneous
innovations.

Nabeya and Tanaka provide the asymptotic distribution of our
test statistics for the case where the € process is iid, and our
results are therefore an extension of theirs. Also, their
results are given in terms of limiting characteristic functions,
while ours involve simple functionals of Brownian motion, which
lead to more compact expressions. Finally, some of our results
are a special case of results in McCabe and Leybourne (1988).
(See also Leybourne and McCabe (1989).)

We define the "long run variance"

(7) o> = 1lim T 'E(S2)

T+
which will enter into the asymptotic distribution of the test

statistic. A consistent estimator of ¢, say s’(f), can be
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constructed from the residuals e,, as in Phillips (1987) or
Phillips and Perron (1988):; specifically, we will use an

estimator of the form

T L T
2 -1 2 -1
(8) s“(¢) =T Z e_ + 2T z w(s,t) z e.e
t=1 t s=1 t=s+1 tt-s

Here w(s,%) is an optional lag window (or weighting function)
that corresponds to the choice of a spectral window. We will use
the Bartlett window w(s,£) = 1 - s/(£+1) as in Newey and West
(1987), which guarantees the non-negativity of s?(¢). For
consistency of s?(¢), it is necessary that the lag truncation
parameter £ - © as T - ©». The rate & = o(T'?) will usually be
satisfactory under both the null (e.g., Andrews (1989)) and under
the alternative (see Section 4 below).

For the tests of both the level stationary and trend
stationary hypotheses, the denominator of the LM statistic in (6)
is 33, which converges in probability to ¢,2. However, when the
errors are not iid, the appropriate denominator of the test
statistic is an estimate of o® instead of ¢,%. To establish this,
we consider the numerator of the test statistic, normalized by
division by T%:

(9) n=T%zxzs?2 .

We will show that n has an asymptotic distribution equal to o?
times a functional of a Brownian bridge, so that division by
s?(¢) (or by any other consistent estimate of ¢?) gives a
statistic.with an asymptotic distribution free of nuisance
parameters. For clarity, we will consider separately the tests

of the level stationarity and trend stationarity hypotheses.
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3.a Level Stationary Hypothesis

The model- is as in equation (2) with ¢ set to zero, so that
the residuals e, are from a regression of y on intercept only;
that is, e, = y, ~ Y. 8, is then the partial sum process of the
residuals e, as in equation (5). Let n, be as defined in (9),
with the subscript "u" indicating that we have extracted a mean
but not a trend from y. It is well known that the partial sums
of deviations from means of a process satisfying the assumptions
of Phillips and Perron (1988) converge to a Brownian bridge, and
this implies that

1

(10) n - ¢% [ vl .
K 0

Here V(r) is a standard Brownian bridge: V(r) = W(r) - rw(l),
where W({r) is a Wiener process (Brownian motion). The symbol "-="
in (10) signifies weak convergence of the associated probability
measures. The limit (10) is a special case of a result obtained
previously by McCabe and Leybourne (1988) in the context of tests
for random regression coefficients.

As noted above, we now divide n by a consistent estimate of
o’ to get the test statistic that we will actually use. We will
indicate this division with a "~", s0 that the test statistic is
(11) n,=n./ S*(2) = T2z 82/ s*e).
It follows immediately from (10) and from the consistency of
s?(2) that

n 1
(12) n,~» [ V(r)? ar
0
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Table 1 gives upper tail critical values of [ V(r)? dar,
calculated via a direct simulation, using a sample size of 2000,
50,000 replications, and the random number generator GASDEV/RAN3
of Press, Flannery, Teukolsky and Vetterling (1986). These
critical values agree quite closely with those given by MacNeill
(1978, Table 2, p. 431), Nyblom and Makelainen (1983, Table 1, p.
859), McCabe and Leybourne (1988, Table 3), and Nabeya and Tanaka

(1988, Table 1, p. 232).

3.b Trend Stationary Hypothesis

The analysis of the trend stationary case is very similar to
that of the level stationary case. The model is now exactly as
in equation (2). Let e, be the residuals from a regression of vy,
on intercept and trend, and let S, be the partial sum process of
the e, as in (5). Furthermore let 7, be as defined in (9), where
the subscript "r" indicates that we have extracted a mean and a
trend from y, and serves to distinguish the trend stationary case
from the level stationary case.

The partial sum process of residuals from a regression of a
process satisfying the assumptions of Phillips and Perron (1988)
on intercept and trend converges to a so-called second-level
Brownian bridge, as given by MacNeill (1978) or Schmidt and
Phillips (1989), Appendix 3. Thus we have

1
(13) n, » o ,gvz(r) dr ,

where the second-level Brownian bridge V,(r) is given by

1
(14) Vy(r) = W(r) + (2r - 3r%) W(1l) + (-6r + 6r’) [ W(r) dr .
0
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(our V, is MacNeill's B,, p. 426.) As previously, we use a "~"
to indicate that the test statistic has been divided by a
consistent estimate of o?, and in this notation the test
statistic is
(15) o= n, / 82(8) =TI 87/ %L .
Its asymptotic distribution is given by
A 1
(16) n, = [ Vo(r)?ar .
. 0
The upper tail critical values of [ V,(r)? dr are also given in
Table 1. They agree quite closely with the critical values given
by MacNeill (1974, Table 2, p. 431) and Nabeya and Tanaka (1988,
Table 2, p. 233).
Note that the limit theory given by (12) and (16) under the
null of stationarity is different than that of Stock (1990}.
Under the null that the time series has a unit root, Stock works
with functionals of the detrended series itself and shows (e.g.,
in his Theorem 2) that those converge weakly to functionals of a
detrended Brownian motion. In our case, a partial sum process is
constructed from the residuals of a regression with a time series
that is stationary under ocur null, and in consequence the limit
process is a Brownian bridge or higher level Brownian bridge,
corresponding to the degree of the extracted trend. Thus, even
though the functionals that appear in (12) and (16) are related
to some of those employed by Stock (as in his extended Sargan-
Barghava tests), the limit processes are different. As we shall

see in the following Section, so too is the limit theory under

the alternative.
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4. CONSISTENCY OF THE TEST

In this section we consider the asymptotic distributions of
the 3“ and 3, tests under the 5lternative hypothesis that ¢ # o0,
so that y is an integrated process. Specifically, our interest
is in showing that the tests are consistent. This is non-trivial
because, under the alternative hypothesis, both the numerator
[T = s5,°] and the denominator [s*(£)] of the test statistics
diverge. Basically, we show that the numerator is of order in
probability T? [denoted 0,(T?)] while the denominator is 0,(eT),
so that the test statistic is 0,(T/2). Since T/¢ + = as T = o,
the tests are consistent.

We establish this result first for the level-stationary
case. We start with the numerator of the statistic, and we first

observe that, since the u, are iid,

-1/2 -1/2 (bT]
(17) T Typyy = T Zu = oW(b)

=1

where b € [0,1] and [bT] is the integer part of bT. Then

(18) T2 gy = T2 {aT](r - 1) + T2 [ zT] €
tam) = . 3 (e; - €)
372 12T =
=T Z (r; = r) + 0,(1)
i=1
., [aT]

=T" T r, - ([aT)/T) T T

j=1
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a 1 a
+~ g, [ W(b)db ~ ac, [ W(b)db = g, [ W(s)ds
0 0 0

where W(s) is the demeaned Wiener process

1
(19) W(s) = W(s) - [ W(b)db
0
Therefore
T T 1 a 2
(20) T £8%=T'z (T 8)% > 0?2 [ [ [ W(s)ds ] da
j=1 j=1 olo J

so that T2 x s.? is indeed O,(T?) as claimed in the preceeding
paragraph.

The argument for the denominator of the test statistic,
s?(2), is more straightforward. From Phillips (1991, unnumbered

equation between (A10) and (All)) we have that
1

(21) (eT)? s?(e) - Ko.? [ W(s)ids
0

provided T% - 0 as T -+ ». The constant K is defined by

1l
(22) K= [ k(s)ds

-1
where k(s) represents the weighting function used in s(2); in
our case, w(s,£) = k(s/£) in the notation of equation (8) above.
For the Newey-West estimator, k(s) = 1 - |s| and therefore K = 1.
Obviously (21) implies that s?(2) is 0, (€T).

Since T2 = §,* is 0 (T?) and s?(2) is 0,(2T), we deduce that

7, is 0,(T/2). Given that ¢ grows less quickly than T, the test
is consistent. However, we have in fact established more than

just the order in probability of the test statistic. Under the

alternative hypothesis, (20) and (21) imply that
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1 [ a

F.Y 2 r
(23) (¢/T)n, » J ) [ W(s)ds } da / K [ W(s)ds
olo

O by

>

Note that this limit is nuisance parameter free because the scale
effect from the variance of # 0 in the numerator and denominator
of the limit cancels.

The analysis for the trend stationarity test statistic 3, is
only slightly more complicated. We just need to replace the
demeaned Wiener process W(s) above with the demeaned and
detrended Wiener process W*(s):

1 1
(24) W(s) = W(s) + (6b - 4) g W(r)df + (-12b + 6) g rW(r)dr
This is given by Park and Phillips (1988, egquation (16), p. 474),
who prove the equivalent of our -(18) above, when S, is the
partial sum process of the residuals of a random waik on
intercept and time trend. (Actually, they allow for general
integrated processes, but it is part of our maintained hypothesis
that r, is a random walk.) The rest of our analysis then follows
without further change.

Again we note the distinction between our limit theory and
that of Stock (1990). Under the alterantive of a unit root, our
IM statistics 3“ and 3, diverge, as does our estimate s®(2) of the
long run variance of the stationary component in the model. 1In
Stock's model, and under the null of a unit root, his statistics
converge weakly to functionals of Brownian motion. Moreover, his

estimate of the long-run variance converges to a non-zero
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constant, for both the unit root null and trend stationary

alternatives. (See his Lemma 1 for the latter.)

5. APPLICATION TO THE NELSON-PLOSSER DATA

In this section we apply our tests for stationarity to the
data analyzed by Nelson and Plosser (1982). These are U.S.
annual data covering from 62 to 11l years, and ending in 1970.
These data have been analyzed subsequently by many others,
including Perron (1988) and DeJong et _al. (1989). A rough
assessment of their findings is as follows. For 12 of the 14
series, we clearly cannot reject the null hypothesis of a unit
root. The unit root hypothesis is rejected at about the 5% level
for the unemployment rate series, and it is rejected at about the
10% level for the industrial production series. The conventional
wisdom is that these results indicate the presence of a unit root
in most of the Nelson-Plosser series. We wish to check whether
our approach to testing stationarity corroborates this reading of
the data. 1In particular, we propose to test whether the data
will reject a null hypothesis of stationarity, rather than just
not reject a null of a unit root.

In Table 2 we first present the ﬁa test statistic which we
use to test the null hypothesis of stationarity around a level.
We consider values of the lag truncation parameter £ (used in the
estimation of the long run varianée) from zero to eight. The
values of the test statistics are fairly sensitive to the choice
of 2, and in fact for every series the value of the test

statistic decreases as ¢ increases. This occurs because s?(¢)
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increases as £ increases, and is a reflection of large and
persistent positive autocorrelations in the series.

Nevertheless, the outcome of‘the tests is not in very much doubt:
for all series except the unemployment rate and the interest
rate, we can reject the hypothesis of level stationarity.

The ability to reject the hypothesis of level stationarity
is not vefy surprising in light of the cbvious deterministic
trends present in these series. We therefore proceed to test the
null hypothesis of stationarity around a deterministic linear
trend, for which 3, is the appropriate statistic. Once again the
test statistics decline monotonically as £ increases, and in this
case the choice of £ is important to the conclusions. If we did
not correct for error autocorrelation at all, which corresponds
to picking ¢ = 0, we would reject the null hypothesis of trend
stationarity for every series. As argued above, for temporally
dependent series such as the ones under consideration, iid errors
are not plausible under the null hypothesis, and our empirical
results show the importance of allowing for error
autocorrelation. Although the test statistics decline
monotonically as { increases, for most of the series the value of
the long run variance estimate has settled down reasonably by the
time we reach ¢ = 8, and so the value of the test statistic has
also settled down. Using the results for £ = 8, we find that we
can reject the hypothesis of trend stationarity at the 5% level
for five series: industrial production, consumer prices, real
wages, velocity and stock prices. For three other series (real

GNP, nominal GNP and interest rate) we can reject the hypothesis
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of trend stationarity at the 10% level. We cannot reject the
null hypothesis of trend stationarity at usual critical levels
for six series: real per capita GNP, employment, unemployment
rate, GNP deflator, wages and money. These empirical results
seem to be very much in accord with the Bayesian posterior
analysis in Phillips (1990).

Combining the results of our tests of the trend stationarity
hypothesis with the results of the Dickey-Fuller tests of the
unit root hypothesis, the following picture emerges. The
unemployment series appears to be stationary, since we can reject
the unit root hypothesis and cannot reject the trend stationarity
hypothesis. Four series (consumer prices, real wages, velocity
and stock prices) appear to have unit roots, since we can reject
the trend stationarity hypothesis énd cannot reject the unit root
hypothesis. Three more series (real GNP, nominal GNP and the
interest rate) probably have unit roots; we cannot reject the
unit root hypothesis, and the evidence against the trend
stationarity hypothesis is marginally significant. For six
series (real per capita GNP, employment, unemployment rate, GNP
deflator, wages and money) we cannot reject either the unit root
hypothesis or the trend stationarity hypothesis, and the
appropriate inference is that the data are not sufficiently
informative to tell whether or not there is a unit root.

Finally, for the industrial production series, there is evidence
against both the unit root hypothesis and the trend stationary
hypothesis, and thus it is not clear what to conclude.

Presumably other alternatives, such as explosive roots,
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fractional integration or stationarity around a non-linear trend,

would have to be considered.

5. CONCLUDING REMARKS

We have presented statistical tests of the hypothesis of
stationarity, either arcund a level or around a detérministic
linear trend. These tests could be extended to allow for non-
linear trends, along the same lines as Schmidt and Phillips
(1989, section 5). The tests are intended to complement unit
root tests, such as the Dickey-Fuller tests. By testing both the
unit root hypothesis and the stationarity hypothesis, we can
distinguish series that appear to be stationary, series that
appear to have a unit root, and series for which the data (or the,
tests) are not sufficiently informative to be sure whether they
are stationary or integrated.

The main technical innovation of this paper is the allowance
made for error autocorrelation. Correspondingly, the main
practical difficulty in performing the tests is the estimation of
the long run variance. The types of series that one would
suspect might have a unit root are likely to be highly
autocorrelated, even at fairly long lags. Thus the choice of the
lag truncation parameter (¢) to use in estimating the long run
variance is a difficult problem. In our empirical work it is
clear that allowing for autocorrelation matters, and the
difficulty in choosing £ is reflected in the dependence of the
results on the choice of €. 1In this regard it should be noted

that we estimate the long run variance from residuals from a fit
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of the model with the stationarity hypothesis imposed (i.e., with
gl = 0 imposed), and so if the null hypothesis is not true we
should expect s’ge) to diverge as £ increases, as indeed it does.
An important topic for further research is to find an estimate of
the long run variance ¢? that is consistent under the null and

that increases the rate of divergence of the IM statistic under

the alternative.
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APPENDIX A

DERIVATION OF THE IM STATISTIC

Equation (4) of the main text is equation (1.1) of Nabeya
and Tanaka (1988, p. 218), and uses their notation. For this

model the IM statistic for the hypothesis o2

= 0 is given by
their equation (2.5), p. 219, as follows:

(A.1) IM = y'MD,ADMy / y'My

Here M is the projection matrix onto the space orthogonal to
(x,2), so that (My) is the vector of residuals from the
regression of y on (x,Z). In our model (2), (%,2) corresponds to
intercept and time trend, so (My) is the vector of residuals from
a regresgionrpf Yy on intercept and time trend. (These residuals
were called e, £ = 1, 2, ..., T, in the main text.)

The denominator of the statistic in (A.l)} Y'My, is just the
sum of squared residuals from this regression, and equals Taf in
the notation of the text. Apart from a factor of T, which is
inessential, this is the same as the denominator of the statistic
in equation (6).

The matrix D, in (A.1l) equals identity when x correséonds to
intercept, as it does in our case, and can therefore be ignored.
Therefore the numerator of the test statistic in (A.1) equals
e'Are, where e is the vector of residuals described in the last
paragraph. The matrix A; has (t,s)™ element equal to min(t,s),

so that
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111 a & 9 1
122 ® 8 & 2
(A.2) A =" |1 23 .03
123 ... T

This matrix creates reverse partial sums. That is, the numerator

of the test statistic equals

T

T
2
(A.3) e'ATe = T R ’ R= Z e, .
t= t =

1 i
This appears to differ from the numerator of the statistic in
equation (6) of the main text, which relies on the forward
partial sums S, defined in (5). However, the two expressions are
in fact equal. Because the sum of the residuals is zero, we have
R, =S =0, 8§ = -R, (£t=1, 2, ..., T), and the sum of squares

of the S, equals the sum of squares of the R,.



TABLE 1

Upper tail critical values for ﬁ“
1
(Upper tail percentiles of the distribution of [ v(r)? dr )
0

Critical level: .10 .05 .025 .01

Critical value: .347 .463 .574 .739

Upper tail critical values for 6,

1
(Upper tail percentiles of the distribution of [ V,(r)? dr )
0

Critical level: .10 .05 .025 .01

Critical value: .119 .146 .176 .216



TABLE 2

STATIONARITY TESTS APPLIED TO NELSON-PLOSSER DATA

au Test for Level-Stationarity
(5% critical value is .463)

Series [+]
Real GNP 5.96
Nominal GNP 5.81
Real per capital GNP 5.54
Industrial production 10.79
Employment 7.57
Unemployment rate 0.31
GNP deflator 7.51
Consumer prices 7.90
Wages 6.72
Real wages 6.96
Money 8.01
Velocity 8.40
Interest rate 0.78
Stock prices 8.01

i

3.06
2.98
2.84
5.48
3.87
0.18
3.82
4.02
3.43
3.55
4.08
4.29
0.42
4.10

2

2.08
2.04
1.94
3.70
2.63
0.14
2.59
2.73
2.33
2.40
2.76
2.90
0.30
2.79

3

1.59
1.56
1.50
2.81
2.01
0.11
1.97
2.08
1.78
1.83
2.10
2.21
0.24
2.13

4

1.30
1.28
1.22
2.27
1.64
0.10
1.60
1.69
1.45
l1.48
1.70
1.80
0.20
1.74

ﬁ, Test for Trend-Stationarity
(5% critical value is .146)

Series o]
Real GNP .630
Nominal GNP .755
Real per capital GNP .528
Industrial production .822
Employment .526
Unemployment rate .216
GNP deflator .492
Consumer prices 1.85
Wages .612
Real wages .956
Money .445
Velocity 1.78
Interest rate .845

Stock prices 1.23

P

. 337
.392
.283
.446
.278
.124
.256
-.943
«317
.511
.228
.932
.457
646

2

.242
.273
.204
.320
.198
L 094
.178
.641
.220
. 365
.158
. 647
.323
454

3
L4 198
.215
.167
.257
.158
.079
+140
.491
173
+.293
.124
.504
.255
.359

4
.173
.181
.147
.220
.136
.071
.117
.401
.145
L] 252
L] 104
.418
.214
.302

2

1.11
1.09
1.05
1.92
1.39
0.10
1.35
1.43
1.23
1.26
1.44
1.52
0.17
1.48

2

+158
.15%9
.134
.196
.122
.066
.103
«342
.128
.226
.092
.360
.186
+264

é

0.97
0.95
0.92
1.66
1.21
0.09
1.18
1.24
1.07
1.09
1.25
1.32
0.16
1.29

L]

L] 148
.143
.126
179
112
.063
. 093
.301
.115
208
.084
.319
.166
.237

Lag truncation parameter ()

1
0.86
0.85
0.82
1.47
1.08
0.09
1.04
1.10
0.95
0.97
1.11
1.17
0.14
1.15

Lag truncation parameter (Z)

1
.141
.132
.121
.166
«105
.061
.086
<270
L] 107
.194
.079
.287
.151
.216

g

0.78
0.77
0.75
1.32
0.98
0.09
0.94
0.99
0.86
0.88
1.00
1.05
0.13
1.04

137
.124
.118
155
.101
.061
.081
.246
.101
.184
.075
.262
+140
.199
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