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ABSTRACT

This paper is concerned with the estimation of first-order autoregressive/unit root models with independent
identically distributed normal errors. The models considered include those without an intercept, those with an
intcrcept, and those with an intercept and time trend. The autoregressive (AR) parameter o is allowed to lie
in the interval (-1,1], which includes the case of a unit root. Exactly median-unbiased estimators of the AR
parameter a are proposed. Exact confidence intervals for this parameter are introduced. Corresponding exactly
median-unbiased estimators and exact confidence intervals are also provided for the impulse response function
and the cumulative impulse response. An unbiased model selection procedure is discussed. The procedures that
are introduced are applied to several data series including real exchange rates, the velocity of money, and indus-

trial production.

JEL Classification Number: 211,

Keywords: Autoregressive process, confidence interval, deterministic time trend, impulse response function,
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1. INTRODUCTION

This paper considers point and interval estimation in a first-order autoregressive/unit root (AR /UR) model
that may contain an intercept and time trend and has independent identically distributed normal errors. Exactly
median-unbiased estimators and exact confidence intervals are introduced for the AR parameter, the impulse
response (IR) function, and the cumulative impulse response (CIR). An unbiased model selection procedure
is also introduced.

A basic motivation for this paper is the emphasis placed in the unit root literature on testing for a unit root
and the relative neglect of point and interval estimation. A problem that arises with hypothesis tests in the unit
root context is that tests have low power in many scenarios of empirical interest. In such cases, the failure to
reject the null hypothesis cannot be construed as providing evidence in favor of the null? One needs to provide
additional information. Point and interval estimators are statistics that can be used for doing so.

The problem with utilizing estimators in AR/UR models is that of bias. Standard estimators, such as the
least squares (LS) estimator, are significantly downward biased in AR/UR models that contain an intercept or
an intercept and time trend, especially when the AR parameter e is large. For example, in the model with
intercept and time trend, sample size equal to 60, and normal errors, the LS estimator has downward median-
biases when the AR parameter @ equals .7, .85, and 1.0 of .08, .09, and .15 respectively. Even when a is as small
as .3, the downward bias is .05. These downward biases are considerable, especially when a is large. They cause
the LS estimator to be a misleading indicator of the true value of . For example, the probabilities that the LS
estimator underestimates the AR parameter o in the model above when « equals .3, .7, .85, and 1.0 are .66, .78,
87, and 995 respectively. See Table 1 for a list of such probabilities for a more complete grid of o values in
[0, 1.0]. (Note that in models with no intercept or time trend, which are of relatively limited practical impor-
tance, the downward bias of the LS estimator is very much smaller than it is in models with an intercept or with
an intercept and time trend. For models with no intercept, the LS estimator is not a misleading indicator of the
true value of a, at least for samples of size sixty or more.)

To deal with the problem of downward bias, this paper introduces an exact bias correction for the LS esti-
mator. The method is as follows: If the LS estimate equals .8, say, one does not usc .8 as the estimate of a,
but rather, one uses the value of a which yields the LS estimator to have a median of .8. In the model described
above this is .9. With this bias correction, the estimator is exactly median-unbiased. Note that the magnitude
of the correction can be quite large -- a LS estimate of .85 corresponds to a median-unbiased estimate of 1.0 in

the model described above.



A similar procedure can be used to obtain exact confidence intervals for a. These confidence intervals are
useful in their own right, as indicators of the variability of the median-unbiased estimator, or as the basis of exact
hypothesis tests. We focus attention on central confidence intervals which by definition have equal probabilities
of over-estimation and under-estimation.

The reason for emphasizing median-unbiased estimators and central confidence intervals in the present paper
is because of their impartiality properties. In cases where the magnitude of a parameter is a contentious issue,
as it is in (trend) stationary versus unit root debates, it is useful to have statistical procedures available that treat
different parameter values on an even footing. Classical hypothesis tests do not do this and neither do proper
Bayes estimators.

It is interesting to note that much of the work on Bayesian estimation of AR/UR models concerns estima-
tion using some version of a flat or non-informative prior. For example, see DeJong and Whiteman (1991),
Schotman and van Dijk (1991a, b), Sims (1988), and Sims and Uhlig (1991) for the use of a flat prior and Phillips
(1991) for the use of a non-informative prior. The motivation for the use of such priors is the desire for a
certain degree of impartiality in the estimation or model selection procedure. This is similar to the motivation
for using median-unbiased estimators and central confidence intervals. The latter two, however, avoid the diffi-
cult question of choosing the most appropriate prior to use. They also avoid the problems that arise due to the
question of whether the prior used is really non-informative, e.g., see the discussion of Phillips (1991). On the
other hand, Bayes estimators do possess other attributes that are attractive, see the references above for a discus-
sion of these.

Median-unbiased rather than mean-unbiased estimators are considered here for several reasons, First,
median-unbiased estimators have the intuitively appealing property that the probability of over-estimation equals
the probability of under-estimation. Second, mean-unbiased estimators do not generally exist when the param-
eter space is bounded. Third, the median-unbiasedness condition is not reliant on the tails of an estimator’s
distribution as is the mean-unbiasedness condition, which is desirable when estimators’ distributions are skewed
and kurtotic. Fourth, the median-unbiasedness property facilitates the construction of exact confidence intervals.
Fifth, the median-unbiased estimators of one parameter, such as the AR parameter a, can be used to obtain
median-unbiased estimators of other parameters, such as the IR function at different time horizons and the CIR,
whereas mean-unbiased estimators cannot be so used.

The point and interval estimation procedures considered here have the following attributes. They are exact
procedures rather than asymptotic ones. They exhibit a smooth transition between the (trend) stationary case

when |a| < 1 and the unit root (random walk) case when a = 1. They utilize desirable assumptions regarding



initial conditions -- if |@| < 1, a stationary initial condition is imposed and if @ = 1 an arbitrary initial
condition is allowed. In addition, the median-unbiased estimator is unbiased whether the AR parameter o is
fixed or is random, as in a Bayesian context. In the latter case, it is median-unbiased for all possible distributions
of a, _

A drawback of the exact procedures considered here is that they only apply to first-order AR processes and
not to more general p-th order processes. The extension of the procedures of this paper to AR(p) models is
considered in Andrews and Chen (1991), se¢ also Rudebusch (1990) and Stock (1990). For AR(p) models, the
procedures are no longer exact; they are only approximate.

A second drawback of the procedures considered here is that they require the specification of the distribution
of the innovations in the AR /UR model. If the distribution is specified incorrectly, then the procedures will not
be exact. On the other hand, it is shown below that the specification of normally distributed innovations is
surprisingly robust against a variety of non-normal distributions. For such distributions, the procedures are
approximately valid and the approximation error is small.

A third drawback of the median-unbiased estimator that is considered here is the lack of an explicit optimal-
ity property for it--we do not know whether it is a best median-unbiased estimator. It is possible that the
estimator does not fully exploit all the information in the sufficient statistics for the parameters. Note that the
LS estimator, which is widely used in practice, is also subject to the latter criticism.

There are a number of papers in the literature that are related to the present one. For stationary AR pro-
cesses, Quenouille (1949, 1956) introduced the jackknife estimator of the AR parameter a that is mean-unbiased
to order 1/T as T - «. His results do not allow for a time trend or for an AR parameter of one. Marriott and
Pope (1954) and Kendall (1954) established the mean-bias of the LS estimator in the same model as considered
by Quenouille (1949). Orcutt and Winokur (1969) used the latter results to construct approximate mean-
unbiased estimates of the AR parameter in stationary models. Independent of the present paper, Rudebusch
(1990) has considered approximately median-unbiased estimators of the AR parameters in an AR (p) model with
a time trend and Stock (1990) has introduced asymptotic confidence intervals for the largest root in an AR(p)
model with a time trend (using largest root local to unity asymptotics). Rudebusch’s median-unbiased estimators
are not exact and are not provided with any formal justification of the approximation involved or with a measure
of uncertainty to accompany the estimate. They do apply, however, in more general models than those consider-
ed here. Lastly, we note that there are numerous papers that consider hypothesis tests in the AR/UR models

considered here, For brevity, we do not provide references.



The remainder of this paper is outlined as follows. Section 2 defines the models that are considered and
points out a useful invariance property of the LS estimator for these models. Section 3 introduces the median-
unbiased estimator of the AR parameter a. Section 4 provides exact confidence intervals for o. Section 5 dis-
cusses median-unbiased estimators and exact confidence intervals for the IR function and the CIR. Section 6
introduces an unbiased model selection procédu:c. Section 7 demonstrates the robustness of the procedures
introduced in Sections 2-6 to some forms of non-normality of the innovations in the AR/UR models. Section
8 provides a discussion of some properties of the LS estimator and Bayes estimators. Section 9 describes the
application of the results of the paper to a number of exchange rate series (analyzed previously by Schotman and
van Dijk (1991a)) and the velocity and industrial production series of Nelson and Plosser (1982). Section 10
describes the numerical methods that were used to construct the tables given in Section 3 that enable one to

compute the median-unbiased estimators and exact confidence intervals.

2. DEFINITION OF MODELS

Three models for the time series {Y, : ¢t = 0, ..., T} are considered. Each is based on a latent AR(1) time
series {Y: :t=0,.,Th
Y, =aY_ + U fort =1, ., T, where a € (-1,1],

(1) U, ~ iid N0, 02 for 0% > 0, Y, ~ N(0, 0%/(1-a2) if a € (-1,1),

and Yy is an arbitrary constant or rv if a = 1.
As defined, {Y;} is a strictly stationary, mean zero, normal, AR(1) process if « € (-1, 1). If @ = 1, on the

other hand, {Y:} is a normal random walk with arbitrary initial condition.

The three models for {Y,} are defined as follows:
Model 1: ¥, = Y: fort =0, ., T and e € (~1,1),

(2.2) Model 22 Y, =p +Y, fort =0, .., T, for some s € R and a € (-1, 1},

Model 3: Y, =p + Bt +Y, fort =0, ., T, for some p, 8 €R and a € (-1, 1].
Models 1-3 can be written equivalently as:
In (23), {U,} is as in (2.1), Yy ~ N(0, 0%/(1 - a?)) in Model 1, ¥;, ~ N(g, 02/(1 - a?)) in Models 2 and 3 if

a € (-1, 1), and Y} is an arbitrary constant or rvin Models 2 and 3 if o = 13



Model 1: Y,

aY,; + U fort =1, ., Tand a € (-11),

Model 2: Y, =g +aY,; + U fort =1, ., T, where i = p(l-a) and @ € (-1,1],
2.3)

Model 3: Y, =4 + Bt +aY,; + U fort =1, .., T, where i = p(1-a) + af,

B = B(1-a), and a € (-1,1].

Below we use the term sample size to denote the number of Y, observations, viz., T+1. We refer to the
number T of dependent variable values in Models 1-3 as the sample NDV.

In Model 1, {Y, : t = 1, .., T} is a strictly stationary, normal, AR(1) process with mean zero. In this model,
the nonstationary parameter value & = 1is excluded. The reason is that the LS estimator of & has distribution
that depends on the initia} condition Y} in this case and in consequence the exact procedures that are introduced
below do not apply when a = 1. Since Model 1 is not of great practical importance -- one rarely assumes the
mean is known and equals zero, this is not a serious restriction. Model 1 is included in the discussion for com-
parative purposes and for completeness, rather than for its applicability in practice.

In Model 2, if @ € (-1, 1), {Y,: ¢ = 1, .., T} is a strictly stationary, normal, AR(1) process with mean p.
In this model, if @ = 1, {Y,: ¢ = 1, .., T} is a normal random walk with arbitrary initial condition. In Model
3,if @ € (-1, 1), {Y, : ¢ = 1, ..., T} is a strictly stationary, normal, AR(1) process around a deterministic trend
line with intercept p and slope 8. In this model, if & = 1, {¥;: ¢ = 1, .., T} is a normal random walk with drift
$ and arbitrary initial condition Y;,. The results of this paper also apply to models with higher-order time trends.
For brevity, we only consider Models 1-3 here. The extension of the results to models with higher-order time
trends is straightforward.

Let &; 5; denote the LS estimator of & corresponding to Model j given in (2.3). That is, & 5y, &y g3, and
&, ¢4 are the LS estimators of & from the regression of Y, on Y,_;, (1, ¥;.y), and (1, 1, Y,_y), respectively, for

t = 1,.., 7. We note the following: Forj = 1,2,3,

PROPERTY of G;5;: The distribution of &; ¢; depends only on a when Model j is correct.
In particular, it does not depend on o? in Model 1, (6%, p) in
Model 2, or (02, g, B) in Model 3, nor on the value of Y, when
a = 1 in Models 2 and 3.

This property is exploited in the construction of median-unbiased estimators of o in Section 3 below. The
proof of this property is as follows. Consider Model 3. To obtain d; g3, first regress Y,on (L, and Y, 0n

(1, ) for t = 1, .., T. Then, & g3 equals the LS estimate from the regression of the residuals from the former



regression on the residuals from the latter regression. Since Y, = p + gt + Y: by (2.2), both sets of residuals
are invariant with respect to the values of 4 and £. In consequence, the distribution of &; ¢, is invariant with
respect to (u, B).

Given this invariance, we can suppose g = 8 = 0 when analyzing the possible dependence of &; ¢, on o?
and of &; ¢; on Yy when @ = 1. When p = B =0, Y, =Y, fort = 0, .., 7. Multiplying o® by a positive con-
stant ¢ in {2.1) causes Y: and Y, to be multiplied by the same constant ¢ fort = 0, ..., T when ¢ € (-1, 1). In
consequence, the residuals from the regression of Y, on (1, f) and of Y,_; on (1, f) are multiplied by the same

constant. This constant cancels out when the former residuals are regressed on the latter to obtain &; ¢4, Thus,

the distribution of & g is invariant with respect to o2 when a € (-1, 1).

t
Next, suppose p = § = Oanda = 1. Inthiscase, Y, = Y, =¥y + 3 U, fort = 0, .., T and the residuals
s=1

from the regression of Y, on (1, {) and of Y,_, on (1, f} are invariant with respect to the value of Y. In conse-
quence, the distribution of & ¢ is invariant with respect to the value of ¥, when a = 1. Given this invariance,
suppose ¥y = 0. Then, the multiplication of o? by a constant ¢ causes Y: and Y, to be scaled up by the same
constant. As above, this leaves & ¢, unchanged. Hence, the distribution of &; ¢ is invariant with respect to o2
when a = 1. This completes the proof for Model 3.

The proofs for Models 1 and 2 are analogous, except that for Model 1 the argument for the invariance of
the LS estimator with respect to ¥y when 4 = 8 = 0 and a = 1 does not hold (because Y, and Y,_; are
regressed on 0 rather than on (1, f) in this case). This does not affect the result stated in (2.4) because a = 1
is excluded in Model 1.

3. MEDIAN-UNBIASED ESTIMATION OF THE AUTOREGRESSIVE PARAMETER

This section introduces median-unbiased estimators of « for Models 1-3.
A number m is a median of a rv X if
(3.1) PX=zm)z1/2 and PX s m) 2 1/2.
This definition of a median allows for non-uniqueness, but all of the medians considered bere will be unique.
The definition also allows for the median of X to be a probability mass point of X. This feature of the definition
will be used here. If a median m of X is not a probability mass point, then P(X > m) = P(X < m) = 1/2.
Let & be an estimator of the parameter a. By definition, & is median-unbiased for a if the true parameter

o is a median of & for each a in the parameter space. The condition of median-unbiasedness has the intuitive



impartiality property that the probability of under-estimation equals the probability of over-estimation. This
holds unless the true parameter value is estimated with positive probability and in this case the probabilities of
under-estimation and over-estimation are each less than one half. In scenarios where the magnitude of 2 param-
eter is a contentious issue, such as in the (trend) stationary versus unit root debate, this impartiality property is
quite useful. Advocates of one view are not likely to except estimates that are biased towards a different view.
Median-unbiased estimators are more likely to be exceptable to a broad audience than biased estimators, because
they do not favor any particular outcome.

Median-unbiasedness is a special case of the concept of risk-unbiasedness when loss is given by absolute
error. In particular, & is median-unbiased for a, if and only if it has the property that
(32) E,l& -e| <E,la -~a’| foralla,a” €A,
where A denotes the parameter space of @ and E, denotes the expectation operator when o is the true param-
eter value, see Lehmann (1959, p. 22). In words, & is median-unbiased if and only if the distance between &
and the truc parameter on average is less than or equal to the distance between & and any other parameter
value. In this sense, the value that & is best at estimating is the true value o regardless of what a is.

The condition of median-unbiasedness is often more useful than that of mean-unbiasedness when the param-
eter space is bounded or when the distributions of estimators are skewed and/or kurtotic. When the parameter
space is bounded and closed, it is impossible to have a mean-unbiased estimator because all estimators are biased
at extreme boundary points. Boundary points do pot present problems, however, for the condition of median-
unbiasedness: 1f an estimator is median-unbiased for a parameter space 4 C R, then the estimator restricted
to a closed subset 4~ of A is median-unbiased for the restricted parameter space 4", (The method of restricting
the estimator, say &, to A" is to set & equal to the nearest element of A” that is larger or smaller than &.) Next,
when estimators have asymmetric distributions, there is no unambiguous measure of the centers of their distribu-
tions. In this case, the median may be a preferred measure to the mean, especially in kurtotic cases, because
the median is less sensitive to the tails of the distribution.

We note that in the classical normal linear regression model with fixed regressors the LS estimator is
median-unbiased. In fact, it is the best median-unbiased estimator for a wide variety of loss functions (see
Andrews and Phillips (1987)). In the AR/UR model, on the other hand, the LS estimator is not median-
unbiased, and hence, does not possess the same optimality properties. |

We now discuss an exact method for median-bias correcting an estimator. (This method is not original to
the present paper, €.g., it more or less corresponds to the method discussed by Lehmann (1959, Sec. 3.5, p. 83),

but the application of the method below to the LS estimator in Models 1-3 is original.) Suppose & is an esti-



mator whose median function m(a) (= my{a)) is uniquely defined and is strictly increasing on the parameter

space A which is a finite interval, say (-1, 1}. Then &y is a median-unbiased estimator of o, where &y is

defined by
' 1 if & > m(l)
G3) dy = {m @) if m(-1) < & = m(1),
' -1 if & sm(-1)

where m(-1) = lim1 m(a) and m™! : (m(-1), m(1)] = (-1, 1] is the inverse function of m(+) that satisfies
mYm(a)) = ;or a € (-1, 1]. (Since the parameter space is (-1, 1) in Model 1 rather than (-1, 1}, m(1)
needs to be defined as lm; m(e) in this case.)

Figure 1 illustrates :he relationship between & and &y The horizontal axis corresponds to different values
of a. The median of &, m(a), is shown. (Its numerical computation is described in Section 10 below.) Given
a value of & on the vertical axis, one finds the corresponding value of &;; on the horizontal axis using the func-
tion m(a). If @ > m(1) the corresponding value of &;; is 1 and if & < m(-1) the corresponding value of &,
is -1. In the figure, the estimator & (which corresponds to &; ¢4 for T+1 = 60) is biased downward for all
values of @ € (-7, 1], so if & € (-.7, 1] the bias correction increases the value of the estimate,

To show that &;; is median-unbiased, we write

Polbeyr = @)

-

=P (dy2za,d >m(l) + Play 2z o, m(-1) < & = m(l)) + Pp(éy 2z a, & < m(-1))

oy " Pal@ > mO) ¢ Pn @) 2 0 m-D) < & 5 m()

=Py @ > m(1)) + Py(& = m(a), m(-1) < & < m(1))
- Py(a = m(a))

> 1/2,

where P, denotes the underlying probability distribution when a is the true parameter. By an analogous argu-
ment, Pp(éy < @) 2 1/2 Ya € (-1, 1]. Hence, &y is median-unbiased for a.

The above method of bias correction can be applied to the estimators &; g, &; ¢, and &; g5 defined in
Section 2. Each of these estimators has a distribution that depends only on a (and the sample size T+1) and
numerical evaluation of their median functions m(a) show the latter to be strictly increasing, as one would

expect® In consequence, we can define three corresponding median-unbiased estimators &y, G, and &g



using the formula given in (3.3) with & replaced by &; ¢y, &; ;. and &; g3 respectively. These estimators can be
computed given &; g; if the function m~1(+), or equivalently, m(- ) is known.

Table 2 provides values of the median function m(a) of &; ¢ for a grid of a values in [0, 1) for illustrative
sample sizes of 60 and 100. (Since the median function m(a) is odd in Model 1, ie., m(a) = -m(-a), only
results for & € [0, 1) are given in Table 2.) Tables 3 and 4 do likewise for a grid of « values in (-1, 1] for the
estimators &; g, and & g3, respectively, but for a variety of different sample sizes. Table 2 is restricted to two
sample sizes for brevity, since Model 1 is only of limited applicability in practice. The numerical method used
to construct the tables is described in Section 10 below.

To illustrate the use of the Tables, consider the estimator &, ¢4 for Model 3 and sample size 7+1 = 60.
As shown in Table 4, m(1) = 853, so any value of &; ¢, that is > .853 corresponds to &p3 = 1. Similarly,
m(-1) = ~.997, so any value of & ¢ that is < -.997 corresponds to éy; = -1. For any value of &; 53 between
-.997 and .853, one finds the entry in the m(a) column (i.e.,, the .5 quantile column) that equals & 55 and the
o value that corresponds to this entry is &gy That is, &3 is chosen such that m(&ys) = &y g5 For example,
if &; gy = 80, then &3 = .90. Since the grid of a values given in the tables is finite, interpolation between o
values is often needed. Similarly, for sample sizes not given in the tables, interpolation is required. For small
sample sizes this interpolation may introduce a non-negligible error. In this case, an alternative is to simulate
the function m(e) for a particular sample size of interest. This is cheap to do in terms of computer time, but

requires some programming effort, see Section 10.

4. EXACT CONFIDENCE INTERVALS FOR THE AUTOREGRESSIVE PARAMETER

This section derives exact confidence intervals for the parameter a in Models 1-3 of Section 2. These con-
fidence intervals can be used by themselves, in conjunction with the median-unbiased estimator &; of a (to
provide a measure of accuracy of &), or to construct exact one- or two-sided tests of Hy : a = o for arbitrary
o € (-1, 1].

For Model j we construct the confidence interval using &sz forj = 1,2,3. Asshown in Section 2, the dis-
tribution of &y g; depends only on the parameter a for which we wish to construct the confidence interval. In
addition, its distribution is absolutely continuous and has support R for all a in (-1, 1] ((-1, 1) for Model 1).
Let g,(a) denote the p-th quantile function of &; ;. That is, for fixed p € (0, 1), qp(a) gives the p-th quantile

of & g; as a function of the true parameter a. By definition,
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(4.1) P,(a L5j < qp(a)) =p.
A 100(1-p)% confidence interval (set) for a in Model j is given by the realization of the set

(4.2) feel-11]: gy (e) S br5 < qu(a)},

where p; > 0, p; > 0, and p; + p = p. “This set has the correct coverage probability because for all

C!O [=3 ("1, 1]

43) Pofoo € (o € 10, 1) 4, (@) 5 brg = g, (@)

=P “o(qu(“l‘) Sbapg = qu(‘*o)) = 1-p.
(Note that the method used here of constructing confidence intervals is time honored, only the application of
it in this context is original.)
If the quantile functions qpl(a) and qu(a) are strictly increasing in « (as they are in almost all the cases

tabulated in Tables 3 and 4),5 then the set in (4.2) equals the interval {o : &; < a < &y}, where

y

>1 if &5 > qu(l)
=1,. : o
& = ) 9, (&) if qu(—l) < g < qu(l) and

(4.4) -

1l a; > q,(1)
-1,. . -
ey = |4, Grs) i g (D) < drg < g, °

\

In(44),fori=1,2, qp_(—l) = li qpl(a) and qp' 1. (qp_(~1), qp_(l)] -+ (-1, 1] is the inverse function of 4(*)
I 1 & ] 1] 1 ]

[

that satisfies q;il(qpt_(a)) = o for @ € (-1, 1]. (For Model 1, ‘IP,-(l) = Eﬂ qp‘_(a) and the domain of q‘;il is
(2, (-1), 45, (1)))

Figure 2 illustrates how the confidence intervals {¢;, é,] are formed. The horizontal axis corresponds to
different values of a. The p, = .05 and p, = .95 quantile functions of &; ¢4 are graphed for a sample size of
60. For a given value of &; ¢4 on the vertical axis, the confidence interval contains all points in [-1, 1] that lie
between the two quantile functions. Two examples of observed &; ¢, values and their corresponding confidence

intervals are given.
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Tables 2-4 provide values of the quantile functions g s(a) and g g5(a) of &; ¢y, &; 55, and &; ¢, for different
sample sizes. These values can be used to construct two-sided 90% confidence intervals and one-sided 95%
confidence intervals for a. (For a lower bound one-sided confidence interval, one takes p; = 0 and the interval
is of the form [¢;, 1]. Analogously, for an upper bound one-sided confidence interval, one takes p, = 1 and the
interval is of the form (-1, &,].)

The interval endpoints &; and &, are obtained from Tables 2-4 in exactly the same way as is the median-
unbiased estimator &, ;. For example, consider a 90% two-sided confidence interval for « in Model 3 with
sample size 60. As shown in Table 4, g g5(1) = .956, so any value of &, ¢ that is = .956 corresponds to &; > 1.
Similarly, g g5(-1} = -.945, so any value of &, ¢, that is < -.945 corresponds to &; = -1. For any value of &; ¢4
between -.945 and 956, one finds the entry in the g gs(a) column (ie., the 95 quantile column), that equals
&7 g3 and the e value that corresponds to this entry is & . For instance, if & ¢3 = .80, then &; = .74 (utilizing
an interpolation). One obtains &;; in exactly the same manner using the column of g gs(a) values (i.e., the .05
quantile column) rather than the column of g gs(@) values. For example, if &; g3 = .80, then é;; = 1.0, since
8753 = qs(1). Hence, if & ¢3 = .80, the median-unbiased estimator &3 equals .90 and the 90% confidence

interval [¢;, &;] equals [.74, 1.0] when the sample size is 60.

5. ESTIMATION OF THE IMPULSE RESPONSE FUNCTION

The impulse response function of a time series {Y,: ¢t = 1, 2, ... } measures the effect of a unit shock to ¥,
occurring at time ¢ (i.e., U, = U, + 1 in Models 1-3) on the value of ¥, at the future time periods t+1,1+2, ...
This function is of interest, because it quantifics the persistence of shocks to the time series and the latter is
often of substantive importance. For example, much of the interest in the trend stationary/unit root debate for
macroeconomic time series centers on the question of the degree of persistence of shocks to these series.

Given the definition of Medels 1-3 in equations (2.1) and (2.2), it is clear that the effect of a unit change
in U, on future Y, values is independent of 4 and 3. Hence, the impulse response functions of {Y;} in Models
1-3 are all equal and are equal to that of {Y;}. The impulse response function of {Y7} is obtained quite simply
by writing

h
(5.1) Y,':,, = a""lY,’_l + jga"‘jU,*j + a"U, for h =0,1, ...
It is evident from (5.1) that the effect of a unit shock in U, on Y:,,, » equals &". In consequence, the impulse

response function for each of the Models 1-3 of Section 2 is given by



12

¢2) IR(R) = for h=0,1,2, ...
A useful scalar measure of persistence that summarizes the impulse response function is the cumulative
impulse response (CIR). The CIR gives the total cumulative effect of a unit shock on the entire future of the

time series. For Models 1-3, we have

(53) CIR = 3 R(A) = 1
=0 l-a

The impulse response function at horizon 4 and the CIR for Models 1-3 are each strictly monotone functions
of a. In consequence, one can obtain median-unbiased estimators of each by plugging in the median-unbiased

estimator &py; in place of & in their definitions:

1

(5.4) IR(h) = (&)" for h=0,1,2 .. and CIR = -

One can obtain exact confidence intervals for IR(h) and CIR in a similar manner. For IR(%), the 100(1-p)%

confidence interval is

(5.5 [€), @) for k=12, ...

where ¢; and ¢;; are defined in (4.4). For CIR, the confidence interval is
(56) [1/(1 - &), 1/ - )] -
In sum, it is straightforward to extend the median-unbiased estimation and exact confidence interval results for

a given in Sections 3 and 4 to the impulse response function and the CIR.

6. MODEL SELECTION

The median-unbiased estimators introduced in Section 3 can be used to construct unbiased model selection
procedures. By definition, a model selection procedure is unbiased if for any correct model the probability of
selecting the correct model is at least as large as the probability of selecting each incorrect model. For example,
in Model 2 or 3, one might want to select between the (trend) stationary model for which a € (-1, 1) and the
unit root (with drift) model for which @ = 1. An unbiased selection procedure in this case has the property that
if @ = 1 the probability of selecting the unit root model is = the probability of selecting the (trend) stationary
model and if a € (-1, 1) the P -probability of sclecting the (trend) stationary model is = the P,-probability
of selecting the unit root model for each a € (-1, 1). Unbiased selection procedures exhibit an intuitive impar-

tiality property that may be useful if the selection of one model or another is a contentious issue.



The concept of unbiased selection procedures is a special case of that of risk-unbiased decision rules, see
Lehmann (1959, p. 12). For selection procedures, the space of actions is finite - one chooses one model from
a finite set of models. If the loss function equals zero when the correct model is chosen and one otherwise, then
a risk-unbiased decision rule for this problem is an unbiased selection procedure.

Given Model j of Section 2 for j = 1, 2, or 3, suppose the problem is to select one of two models defined
by a € I, and a € I, where I, and I, are intervals that partition the parameter space (-1, 1] for & ((~1, 1)
in Model 1). For example, one might have I, = (-1, 1) and I, = {1} or I; = (-1, .975) and I;, = [.975, 1].
(The latter are considered in DeJong and Whiteman (1991) and Phillips (1991).)

The selection procedure we consider here is
{6.1) *choose I, if ay €I, form = a, b,”
where &y is the median-unbiased estimator defined in Section 3.

This procedure is unbiased. To see this, suppose I, lies to the left of I, then for all a € I,

(6.2) Pyby; € I)) < Poléy; > @) S = S Polby; < @) < Po(éy; € 1),

J

o =

where the second and third inequalities use the median-unbiasedness of &g;. For a €1, the argument is anal-
ogous, so the selection procedure of (6.1) is unbiased. We note that the selection procedure of (6.1) is also a

valid level .5 (unbiased) test of Hy: a €I, versus Hy : a €, and of Hy: a €Iy versus Hy @ € [,

7. ROBUSTNESS TO NON-NORMAL INNOVATIONS

In one respect, the methods introduced in Sections 2-6 do not rely on the assumption of normal innovations
{U,:1 =1, .., T}. Any other scale family of distributions could be used in place of the normal family (provided
new tables of quantiles of &, 5; are constructed). On the other hand, the methods of Sections 2-6 do rely on the
specification of some scale family of distributions of the innovations and it is of interest to know whether the
methods are sensitive to the specification. In consequence, we investigate here the sensitivity of the mecthods of
Sections 2-6 to the assumption of normal innovations.

We consider the question: Suppose one assumes the innovations are normal but they actually have some
other distribution, such as a ¢-distribution, then how close is the estimate & yto being median-unbiased and how
close is the coverage probability of the confidence interval [¢;, £y to the desired probability of 1-a? These
questions are most easily answered by constructing analogues of Tables 3 and 4 that correspond to some non-

normal distributions of interest and then assessing the difference between Tables 3 and 4 and the new tables.
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This has been done, see Table 5, for the case of t-distributions with d degrees of freedom ford = 1, 2, 3, 4, and
10 and shifted chi-square distributions with 4 and 8 degrees of freedom (i.e., chi-square distributions shified left
by 4 and 8 units, respectively, so that they have mean zero).

Table 5 presents the .5, .05, and .95 quantiles of &; ¢4 for the different innovation distributions considered.
A corresponding table for &; g, was constructed, but is not reported here due to its similarity to Table 5 (in
terms of the magnitudes of the effects of non-normality on the quantiles). For brevity, Table 5 only reports
results for sample size sixty and positive values of a. Unlike Tables 3 and 4, Table 5 has been constructed using
simulation, For each entry in the Table, ten thousand repetitions were used. For each repetition, an approxi-
mately stationary initial random variable Y, was obtained by setting Y_54; = 0 and generating {Y, : ¢ = -200,
. 59} according to Model 3 with 4 = 8 = 0 (without loss in generality) and with {U, : t = -200, ..., 59} being
iid with the desired non-normal distribution. The final sixty observations {Y,:¢ = 0, .., 59} were used in
simulating the quantiles of &; g3.

Table 5 shows that the quantiles &; ¢3 arc not very sensitive to the underlying innovation distribution with
the exception of the very heavy tailed ¢; (i.e., Cauchy) distribution. For the .5 quantile and all values of a, the
maximum difference between the quantiles for the normal distribution and those for any other distribution except
t, or t; is 005, For many values of a and many of the distributions the difference is less than .005. Further-
more, the standard errors on the simulated estimates of the .5 quantiles are approximately .002, so a maximum
simulated difference of .005 corresponds to a noticeably smaller exact maximum difference. For the .5 quantile
and the t, distribution, the maximum difference is .006. For the .5 quantile and the ¢, distribution, the maximum
difference is .025, which is much larger than for any other distribution.

For the .05 and .95 quantiles and all values of a, the maximum difference between the quantiles of &; g5 for
the normal distribution and those for any of the other distributions except x% - 4,1,, and 1, is 011, which is fairly
small. For these quantiles and the xﬁ - 4, t,, and ¢, distributions, the maximum differences are .015, .020, and
064 respectively, (The standard error of the simulated estimates of the .05 and .95 quantiles is approximately
001.) As above, the ¢, distribution yields by far the largest differences from the normal distribution. Also, it
is clear that the effect of non-normality on the the .05 and .95 quantiles is greater than its effect on the .5
quantiles. Thus, the median-unbiased estimates of a are somewhat more robust to non-normality than are the
confidence intervals.

In conclusion, the median-unbiased estimates of a (and monotone functions of a) and the corresponding
exact confidence intervals for a are quite robust against substantial skewness and kurtosis in the underlying

innovation distribution. Only when the innovations have very thick tails (e.g., Cauchy distributions) are the
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estimates and confidence intervals in need of significant adjustment. The necessary adjustment in this case is
not surprising, because the asymptotics that hold for normal innovations differ from those for Cauchy innova-
tions. More surprising is the degree of robustness of the estimators and confidence intervals against finite
variance symmetric and asymmetric innovation distributions.

Last, we note that there is an alternative a{railable to using simulation methods to assess the effects of non-
normality on the procedures suggested in this paper. Specifically, one could compute numerically the quantiles
of & ¢y for Edgeworth-type distributions using exact formulae that are available in the literature, see

Subrahmaniam (1966, 1968), Davis (1976), and Knight (1985a, 1985b).”

8. PROPERTIES OF THE LEAST SQUARES ESTIMATOR

In this section, we discuss various properties of the LS estimator of . We show that some of these proper-
ties are quite sensitive to the inclusion or exclusion in the regression model of an intercept or an intercept and
time trend. This sensitivity has been noted elsewhere in the literature, e.g., see Orcutt and Winokur (1969).
Orcutt and Winokur (1969), Phillips (1977), and Evans and Savin (1981, 1984) provide further analysis of the
finite sample properties of the LS estimator of Models 1 and 2.

We note first that the LS estimator of @ is the maximum likelihood estimator if one conditions on the initial
observation. It also is the Bayes estimator of a for an (improper) flat prior if one conditions on the initial obser-
vation. Use of the latter estimator (in models with or without intercepts and time trends) has been advocated
by Sims (1988, p. 467) and Sims and Uhlig (1991). Some of the arguments given by Sims (1988) for use of the
flat-prior Bayes estimator, however, are based on the first-order AR model with no intercept or time trend and
do not carry over to the more practically relevant models that contain an intercept or an intercept and time
trend.

Table 6 shows the downward bias of the LS estimator of a in Models 1-3 when the sample size T+1 equals
60. The table illustrates a striking difference between the bias for Model 1 with no intercept and the bias for
Models 2 and 3. For Model 1 the bias is very small, being roughly -.01 for most values of a. Only if « is very
close to one is a bias of this magnitude of import. Thus, in many cases, it does not matter appreciably if one
uses the LS estimator or the median-unbiased estimator when Model 1 is employed. On the other hand, the
downward bias for Models 2 and 3 is quite large, especially for o large and especially for Model 3. In these

Models, there is an appreciable difference between the LS estimator and the median-unbiased estimator.
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Table 7 shows the variability of the LS estimator of a as measured by its 90% range for Models 1-3 when
T+1 = 60. (The 90% range of an estimator is the length of the interval bounded by the estimator’s .05 and .95
quantiles.) For Model 1, the variability of the LS estimator is a decreasing function of @ and it decreases dram-
atically as o approaches one. Sims (1988, p. 4§9) has pointed out this property of the LS estimator and argues
that it counter-balances the downward bias of the LS estimator with the net result being that one is as likely to
get a spuriously high LS estimate of & when a is less than 1 as one is to get a spuriously low LS estimate of
when a is close to one. Indeed, for Model 1 with T+1 = 60 we find that when @ = 999 the .05 quantile of the
LS estimator is .94 and when & = .94 the 95 quantile of the LS estimator is .98, so there is a near balance
between spuriously high and spuriously low estimates. When a = .99, the .05 quantile of the LS estimator is
.89 and when o = .89 the .95 quantile of the LS estimator is only .95 (rather than .99), so there is somewhat less
of a balance between spuriously high and spuriously low LS estimates for these values of a.

For Models 2 and 3, the variability of the LS estimator is also a decreasing function of a. It is not, however,
neatly as sensitive to the value of a as in Model 1. For example, the 90% range for a = .8 is only 1.14 times
as large as for @ = .999 in Model 3 and only 1.36 times as large in Model 2, whereas it is 3.9 times as large in
Model 1. This relative insensitivity to a of the variability of the LS estimator in Models 2 and 3 coupled with
its large downward biases in these models, causes the LS estimator to yield spuriously low estimates of & when
a is near 1 with much greater frequency than spuriously high estimates of @ when a is less than 1. For example,
when @ = 1, the .05 quantile of & ¢4 is .67 for T+1 = 60, whereas when a = .67, the .95 quantile of &; ¢ is
only .75 (rather than 1). Similarly, when a = .9, the .05 quantile of &; g7 is .61, whereas when & = .61 the .95
quantile is only .71 (rather than .9},

In fact, the probability of spuriously high LS estimates in Model 3 is very low. The .95 quantile of &; ¢, for
a=6is.7when T+1 = 60, for a = 8 it is only .85, fora = 9it is 91, for a = 95 it is .94, and for o = 1.0
it is .96. Thus, in this mode! there is a very low probability of getting a LS estimate close to or greater than 1
no matter what the value of « is within (-1, 1). In contrast, the probability of spuriously low LS estimates in
Model 3 is quite high for all values of a. For example, for @ = .6 the .05 quantile of & ¢ is .32 when T+1
= 60, fora = 8itis .52, fora = 9itis .61, for @ = 95 it is .65, and for a = 1.0 its .67.

In sum, for each value of a over a wide range of values there is a high probability of spuriously low LS esti-
mates and a low probability of spuriously high LS estimates in Model 3. Since this is true conditional on e for
each value of g, it is also true unconditionally if a is viewed as being random, as in a Bayesian context. Hence,
the LS estimator of o in Model 3 is simply too small and this is true whether or not one views a as being

random. Similar, but somewhat less dramatic, conclusions apply to the LS estimator in Model 2.
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Next, we discuss an argument given by Sims (1988, p. 469) regarding the unbiasedness of Bayes estimators.
The argument given is that the mean of a Bayes estimator equals the mean of the random parameter being esti-
mated. This might be referred to as unconditional (on the parameter) unbiasedness of the Bayes estimator, The
above argument is subject to a number of caveats, however, and at best illustrates only a very weak sort of
unbiasedness that does not reflect impartiality of the estimator in our opinion.

First, the argument does not apply to Bayes estimators based on improper priv:n's.8 In particular, it does not
apply to the LS estimator. The LS estimator is downward mean-biased conditionally on « for each a in (0, 1]
in Models 1-3, and hence, is downward biased unconditionally for any distribution of a with support in (0, 1).
Hence, the above argument has no bearing on the relative attributes of the LS estimator and the median-
unbiased estimator of a.

Second, the argument relies on the prior that is used to form the Bayes estimator being equal to the mar-
ginal distribution of the parameter. If they differ, unconditional unbiasedness does not hold.

Third, the criterion of unconditional unbiasedness is very weak. To see why, suppose the parameter a has
distribution P(e) on (-1, 1] with mean equal to .8. Then, the Bayes estimator with prior P(a) has unconditional
mean .8 and is unconditionally unbiased. But, the constant estimator .8 also has mean .8 and is unconditionally
unbiased. This constant estimator does not exhibit any sort of impartiality -- it is completely partial. Thus, the
property of unconditional unbiasedness does not reflect impartiality of an estimator.

Note that, roughly speaking, the way in which a (proper) Bayes estimator achieves unconditional unbiased-
ness in the AR/UR model is by having a downward conditional bias for values of o greater than the mean of
a and by having an upward conditional bias for values of a less than the mean of . That is, the Bayes estimat-
or tends to be conditionally biased towards its unconditional mean. In contrast, the median-unbiased estimator
of Section 3 is median-unbiased for each value of @, and hence, is conditionally and unconditionally median-
unbiased for any distribution of a on (-1, 1]. This property reflects a strong degree of impartiality of the

estimator.

9. EXAMPLES

In this section, we apply the methods introduced above to a number of data series that have been analyzed
in the literature. First, we consider cight real exchange rate series that have been investigated recently using
Bayesian methods by Schotman and van Dijk (1991a). Model 2 is used for these series (as in Schotman and Digk

(19912)).° Second, we consider two of the series considered by Nelson and Plosser (1982), viz,, the velocity of
i



18

money and industrial production in the United States. Model 3 is used for these series. (Nelson and Plosser
(1982) use Model 3 for the velocity series, but allow for an AR(6) model with intercept and time trend for the
industrial production serics. We argue that the much more parsimonious Model 3 may provide an adequate
represcntation for industrial production.w)

We describe the data series here only briefly, see Schotman and van Dijk (1991a) and Nelson and Plosser
(1982) for more detailed information including plots of the series or summary statistics. The first six real
exchange rate series are of the U.S. dollar against the currencies of France (FR), West Germany (WG), Japan
(JP), Canada (CA), United Kingdom (UK), and the Netherlands (NL). The last two real exchange rate serics
are of the German Dmark against the currencies of France and the Netherlands, both of which are fellow mem-
bers of the European Monetary System. The real exchange rate serics is definedtobe Y, = ¢, - P, + P;, where
e, is the logarithm of the nominal exchange rate expressed as the domestic price of one unit of foreign currency
and P, and P; are the logarithms of the consumer price indices of the domestic and foreign countries respectively.
The data are monthly. The nominal exchange rate and consumer price indices are from the IFS databank --
series ae and 64 -- for the sample period 73:01 to 88:07, except for Canada and the United Kingdom where the
terminal date is 88:06. Hence, the sample size T+1 of the series {Y,: ¢ = 0, ..., T} is 187 for all series except
the latter two, for which it is 186,

The velocity and industrial production series are annual series covering 1869-1970 and 1860-1970 respectively.
Hence, the sample sizes T+ 1 of these series {Y,: ¢ = 0, ..., T} are 102 and 111 respectively. Both series are
from data files supplied by Nelson and Plosser. The velocity series is originally from Friedman and Schwartz
(1963) with revisions provided by Schwartz, The industrial production series is from Long Term Economic
Growth (1973).

Table 8 provides the results for the real exchange rate series. For each of the U.S. dollar exchange rates
except UK/US, the median-unbiased estimate of a is 1.00. For UK/US it is .995. For the FR/WG and
NL/WG exchange rates, the median-unbiased estimates of o are 968 and .965 respectively. In each case, the
median-unbiased estimates of a exceed those of the LS estimates by between .017 and .022. While the magni-
tudes of these differences are small in absolute terms, they are large in terms of their implications for the
persistence of the time series. This is illustrated by the corresponding median-unbiased and LS estimates of the
impulse response function and CIR given in Table 8. Because of their impartiality properties, we view the
median-unbiased estimates as providing a better "best guess” of the true model and its persistence characteristics
than do the LS estimates. The 90% confidence intervals for a, IR(4), and CIR (given in square brackets below

the median-unbiased estimates) indicate the degree of uncertainty of our best guesses.
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Inspection of the residuals {Y, - &Y, : ¢ = 1, .., T} for the eight real exchange rate series reveals
evidence of non-normality for some of the series. The sample coefficients of skewness and kurtosis (/8, and
B,) for the eight series of residuals are FR/US (.09, 3.91), WG/US (-.22, 3.88), JA/US (-.27, 3.87), CA/US
(.84, 5.43), UK/US (-.42, 3.51), NL/US (-.10, 3.59), FR/WG (1.16, 6.09), and NL/WG (.43, 8.36). (The popu-
lation cocfficients of skewness and kurtosis for normal random variables are (0, 3.0).)

When the innovations {U, : f = 1, .., T} arc normal, the standard errors of the sample coefficients of skew-

ness and kurtosis are approximately /6/(7+1) and /24/(T+1), respectively, which equal .18 and .36 in the
present case. Thus, the estimated coefficients of skewness are within two standard errors of those for normal
random variables for the first four data series, but not for the last four. Also, the estimated coefficients of kur-
tosis are within two standard deviations of those for normal random variables for the UK/US and NL/US series,
but not for the remaining series. The largest deviations from normality are the high estimates of kurtosis for the
CA/US, FR/WG, and NL/WG series and the high estimates of skewness for the CA/US and FR/WG series.

The robustness of the results in Table 8 to non-normality has been checked by calculating the median-
unbiased estimates of & and the corresponding exact 90% confidence intervals for a for a number of symmetric
and asymmetric thick-tailed innovation distributions. The quantiles of &, ¢, that were needed for these calcula-
tions were computed using the method outlined in Section 7. The non-normal distributions used were ¢ and
shifted x? distributions whose degrees of freedom yield coefficients of skewness and kurtosis that cover the range
found in the residual series. The following distributions were considered (with coefficients of skewness and
kurtosis given in parentheses): (£5(0, =), £5(0, 9.0), 1;;(0, 3.9), 1,4(0, 3.6), X3 - 4(1.4, 6.0), and 3 - 8(1.0, 4.5).
(The ¢, distribution was considered as an extreme case even though its degrees of freedom lie outside the range
found in the residual series.)

In short, the results reported in Table 8 were hardly changed at all when any of the above non-normal
distributions was used to compute the bias-corrected estimates and exact confidence intervals. The median-
unbiascd estimates of a were unchanged except for the FR/WG and NL/WG series for which the estimates
differed by at most .001 and .002, respectively, when any of the alternative distributions was used. The confi-
dence intervals were unchanged except for the FR/WG series for which the confidence interval changed from
{.92, 1.00] for normal innovations to [.93, 1.00] for all other innovations. (The latter difference is due to border-
line downward rounding for the normal case and borderline upward rounding for the other distributions.) In
conclusion, non-normality of the innovations does not seem to be a problem in the present case.

Schotman and van Dijk’s (1991a) Bayesian estimates, based on a data-dependent uniform prior for « on

[a*, 1) and no prior mass on a = 1, lie between the LS and median-unbiased estimates. For the series ordered
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as above and as in Table 8, their estimates are 982, .982, .99, .987, .977, 983, .954, and .965. If prior probability
mass is placed on o = 1, then their estimates are a corresponding weighted average of the estimates listed above
and one. Depending on how much prior mass is placed on @ = 1, Schotman and van Dijk’s estimates may be
close to or somewhat distant from the median-unbiased estimates. An advantage of the median-unbiased esti-
mates is that they do not rely on the resolution of the contentious question of how much prior mass should be
placedon e = 1.

Table 9 provides the results for the velocity and industrial production series. For velocity, the median-
unbiased estimate of a is 1.0 compared to the LS estimate of .94. In fact, the LS estimate is barely above the
bottom edge of the 90% central confidence interval of [.93, 1.0]. In consequence, this series exhibits the most
dramatic differences of all the series between the LS and median-unbiased estimated persistence of shocks to
the series, as measured by IR(k) and CIR. The differences are quite substantial. For velocity, the unbiased
model selection procedure of Section 6 chooses the random walk with drift model over the trend stationary
model.

For industrial production, the median-unbiased estimate of a is .89 as compared to the LS estimate of .84,
This yields a 50% larger estimate of CIR using the unbiased estimate rather than the LS estimate. This is a
fairly large difference, but it is not as dramatic as for the velocity series. The length of the 90% central confi-
dence interval [.79, 1.0] for « indicates that a cannot be estimated very precisely in this example. Although the
random walk with drift model is not rejected at level .05 (since the upper bound one-sided confidence interval
for @ contains 1), the unbiased model selection procedure of Section 6 chooses the trend stationary model.

The bottom half of Table 9 provides some information re the adequacy of Model 3 for the velocity and
industrial production series. For industrial production, there is some evidence of skewness and kurtosis in the
residuals. For velocity, the magnitude of the estimated coefficient on the time trend is small, but appears large
relative to its standard error given that Model 3 requires # = 0 when a = 1. The standard error estimate is
spuriously precise, however, since it does not take into account the variability of &

The difference between the median-unbiased estimates, confidence intervals, and unbiased model selection
results for the velocity series and those for the industrial production series indicates the value of having such
statistics available. The outcome of a level .05 test of a unit root is the same for both series -- it does not reject.
But the evidence for a unit root is much stronger for the velocity series than for the industrial production series,

as indicated by the median-unbiased estimates, 9% confidence intervals, and unbiased model selection results.
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10. COMPUTATION OF QUANTILES

In this section, we describe the numerical procedure that was used to compute the .05, .5, and .95 quantiles
of the LS estimators &sz, j = 1,2, 3 which are reported in Tables 2-4. The basic idea is to write Pa(é‘LSj =¢)
as the probability that a quadratic form in standard normal variates is less than or equal to zero, to apply the
Imhof (1961) algorithm to compute such probabilitics, and to compute the desired quantiles using an iterative
procedure that involves computing such probabilities for different values of ¢ uatil the value of ¢ is found that
yields the desired probability .05, .5, or .95.

First, we define the LS estimator &; g; as

(10.1) &p5 = YDy'(l - PYDY/Y'Dy(I - PAD7Y for j=1,23,

where Y = (¥, .., Yp)*, Dy = [0:11€ RPUT*D, pp = 1} 0] € RT*T*1), 1 equals the T dimensional identity
matrix, P; = 0 € R™T, P, = XXXy X[ forj = 2,3, X, = (1, ., 1)’ € RT, X, = (X, i x;) € RT*2 and
X3 = (1, 2, . n’ .

Next, we write Y in terms of the underlying errors {U,}. By the invariance properties of & ; described in
Section 2, it suffices to consider the case where 4 = 8 = 0 and 0% = 1in Models 1-3and Y, = O whena = 1

in Models 2 and 3. In this case, we have
Y = RU, where U = Uy, .. Up, U ~ N, Ir,p),

b 0 0 ---00W

R =|ba® @ 1 - 00,5 =1/(1 -a®)"? when « € (-1,1), and b = 0 otherwisc.

Ll:u:n:T el aT? . a1

We now can write
Polépg = c) = PUW, U = 0), where

Wy = RlDoI-P)D1/2 + D1{I-P)Dy/2 - cD{I-P)D7IR, .

(Note that, as defined, the weight matrix Waie is symmetric.) Since U" Wy U is a quadratic form in standard

(10.3)

normal variates, Po(&;s; < ¢} can be computed using Imhof's (1961) algorithm. This was done by employing
the FORTRAN subroutines given by Koerts and Abrahamse (1971, Ch. 9.1t
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To obtain the p-th quantile of & giy We need to find the value [ such that Po(é; g; < ¢p) = p. Since we
can compute Po(d; 5; < ¢) for arbitrary ¢ and Poldyg=c) is increasing in c, a simple iterative procedure was
used to determine c,. The results given in Tables 2-4 were obtained in this manner.

We note that two alternative methods of calculating the quantiles of &, ; are numerical complex integration
and simulation. These methods are particularly useful when the sample size is large -- say, greater than one
hundred, and especially when it is greater than two hundred. Simulation aveids the use of FORTRAN sub-
routines, which may be an advantage in some cases. Of course, many repetitions and a good random number

generator need to be used when the simulation method is employed.
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25ce Andrews (1989) for further discussion of this problem in the context of nonlinear models without determin-
istic or stochastic trends.

3Mode! 3 is quite similar to that considered by Bhargava (1986) who is concerned with tests of a unit root.
Model 3 is less restrictive, however, in that it allows the initial observation ¥}, to be arbitrary when o = 1,
whereas Bhargava requires it to have a particular normal distribution. On the other hand, Bhargava considers
cases where o > 1. The approach of the present paper could also be extended to cover cases where o > 1, but
only by imposing a very specific assumption on the initial observation Y, (as in Bhargava (1986)} and this
assumption seems to be somewhat arbitrary.

“It would be useful to have an analytic proof that the median of & g; is strictly increasing for a € (-1, 1] for
all Tz 4andj = 1, 2,3, but we do not have such a proof at present. We do know, however, that the more
general proposition that all of the quantiles of & g; are strictly increasing fora € (-1, 1 forall T>4 andj = 1,
"2, 3is false. Numerical calculations of the .95 quantile function of &, ¢, for sample sizes 7+1 = 10, ..., 60 reveal
that the function dips very slightly for a very close to one, see Table 2. For T+1 = 10, where the dip is the
largest, the numerical calculations have been substantiated by simulation results. For sample sizes of 70 or more
the dip disappears. The fact that monotonicity is not a universal feature of the quantiles suggests that its proof
for those estimators, quantiles, and sample sizes for which it holds may be more difficult than it appears it ought
to be.

SAs mentioned in footnote 4, the .95 quantiles of & ¢, are not increasing over a tiny range of a values near one
for some sample sizes, e.g., see Table 2 with T+1 = 60, a = 995, and a = .999. For the estimators &; ¢, and
&y ¢3, the .5 and .95 quantiles of &; 5; are monotone for all sample sizes in Tables 3 and 4. For these estimators,
however, a dip occurs in the .05 quantile function of &; ¢; for values of & near -1 for sample sizes of 60 or less
for & g, and for sample sizes of 70 or less for &; ¢3. Except for sample size 10, the dip always occurs in the
interval (-.999, -.99]. For practical purposes, this region of o values is very rarely of interest. In consequence,
non-monotonicity of the quantiles of & g; is of little or no practical import for the estimators, quantiles, sample
sizes, and « values of interest.

bAs defined, if &5 > 49p (1), then &, > 1,&; = 1, and the confidence interval [¢;, ¢y7] equals the null set. This
2

definition guarantees that the coverage probability of the random interval [¢;, &/ is exactly p when a = 1 just
as it is for all other values of @, An alternative, and perhaps more natural, definition of ; is to set it equal to
1when ;g > ¢ 2(1) and then the confidence interval is the single point {1} in this case. If this is done, the
coverage probability of the random interval [¢;, é] is exactly 1-p for alla € (-1, 1), but is 1 - py (>1-p)
for & = 1 (since there is no way for the confidence interval to miss the point @ = 1 by being to the right of 1).
This asymmetry between the coverage probabilities of the confidence interval for the (trend) stationary and non-
stationary cases may be deemed undesirable if attention is focussed on which of the two models is correct. H
it is deemed to be undesirable, then one can define the confidence interval as in (4.4) and view an occurrence
of a null confidence set as evidence against the model restriction that e € (-1, 1], since the test "reject H :
a € (-1 1] in favor of Hy : & > 1if &7 5; > g, (1)" is a valid level p, significance test.
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7As pointed out by Peter Phillips (personal communication), the results of Knight (1985b) suggest that the
estimators &w forj = 1, 2, 3 and the confidence intervals [¢;, é,;] may be robust against some non-normal
innovation distributions. Knight found a lack of sensitivity of the moments of the LS estimator and the two stage
LS estimator of linear simultaneous equations models to the introduction of some skewness and kurtosis in the
equation errors. His results are relevant, because the estimators that he considers, like &ng, are rafios of
quadratic forms in the errors.

The argument that establishes the unconditional unbiasedness of a Bayes estimator is as follows: Let & 5(Y)
denote the Bayes estimator of a as a function of the data Y. Then,

Eyap(Y) = EyE(a|Y) = Eyaa = E,a,

where Ey,, Ey, and E, denote expectations with respect to (Y, @), Y, and a respectively. This argument relies
on E,|a| being finite, which does not hold if the prior on a is improper. In fact, the posterior mean of a
does not necessarily exist if the prior on a is improper, e.g., it does not exist for a Jeffrey’s prior, see Phillips
{1991).

®Schotman and van Dijk (1991a) use Model 2 but condition on ¥, We view it to be an attribute of our
procedure that we do not need to condition on Yy, since Y, contains information about a when a € (-1, 1).

10The LS estimates of the five regressors AY,_y, ..., AY,_g that appear in Nelson and Plosser’s (1982) model for
industrial production but do not appear in Model 3 equation (2.3} are .10, -.04, .04, -.05, -.22, respectively, each
with a standard error estimate of .10. This pattern of coefficients seems somewhat implausible, since there is
no good reason to expect a significant coefficient on AY,_;, but zero coefficients on the other lags. In fact, the
F-statistic for testing jointly whether the coefficients on all five AY,_; regressors are zero is .2, which is very small
(standard asymptotics are applicable for this test statistic whether or not @ = 1). This and other evidence sug-
gest that Model 3 with no AY, -j Tegressors may be appropriate for modelling the industrial production series,
although one cannot be certain of this.

[p Koerts and Abrahamse’s (1971) subroutine FQUAD, the tolerance parameters EPS1 and EPS2 were set
equal to 10°® and 1073 respectively. This condition was found to provide a good tradeoff between speed and
accuracy.
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TABLE 1

PROBABILITY OF UNDERESTIMATION OF « BY THE LEAST SQUARES ESTIMATOR
IN MODEL 3 FOR SAMPLE SIZES 60, 100, AND 150

Probability of Underestimation

e T+1 = 60 T+1 = 100 T+1=150
0.0 61 58 57
05 61 59 58
10 62 60 S8
15 63 60 58
20 .63 61 58
25 65 61 59
30 .66 61 59
35 .68 63 60
40 69 63 61
45 69 65 63
50 70 .65 63
55 12 67 65
60 74 .68 65
65 76 ) 67
70 I8 iy 67
75 81 75 69
80 84 g8 73
85 87 82 77
90 92 87 81
95 97 94 90
99 99 99 99

1.00 995 995 996

The table gives P,(G; g3 < @) for Model 3 (which contains an intercept and time trend) of Section 2. This
table was constructed via simulation with 10,000 repetitions for each entry.



TABLE 2
QUANTILES OF THE LEAST SQUARES ESTIMATOR OF o« FOR MODEL 1*

T+1 =60 T+1 = 100
ao\Quantile 05 S 95 05 5 95
00 -211 000 211 -.164 000 164
05 -.164 049 258 -.115 050 212
10 -.116 098 34 -067 099 259
15 -.068 148 350 -.017 149 307
20 -019 197 395 032 198 353
25 030 246 440 082 248 400
30 080 295 434 132 297 446
35 130 344 528 83 347 491
40 181 393 Y 235 396 536
45 233 43 614 286 446 581
50 285 492 656 339 495 625
55 338 541 697 392 545 669
60 392 590 738 445 594 711
65 446 640 T 500 644 754
70 502 689 816 555 693 795
75 559 738 B854 611 743 835
80 618 787 890 669 792 874
85 678 837 924 728 842 912
90 719 886 957 790 891 948
93 784 917 975 829 921 968
95 213 937 987 844 941 OR(
97 846 958 998 .B86 962 092
99 891 981 1.009 920 983 1.003
995 910 989 1011 935 990 1.005
999 944 997 1.010 955 997 1.007

#Numerical calculations show the distribution of &; ¢, to be an odd function of a. Thus, the .05, .5, and .95
quantiles of &; ¢; for & € (-.999, 0) equal the .95, .5, and .05 quantiles, respectively, of &; ¢, for -a € (0, .999).
In consequence, Table 1 provides the quantiles of &; ¢, for all values of a € (-.999, 999!5



a/Quantile

-.999
-.9%85
-.990
-.970
-.950
. 930
-.900
-.850
~.800
-.750
-.700
~. 650
~.600
~-.550
-.500
-.450
-.400
~.350
-.300
-.250
-.200
-.150
--.100
-.050
.Qoo
.050
-100
.150
© 200
. 250
.300
.350
-400
.450
-500
-550
-600
-650
.100
.150
.800
.850
. 900
.930
.950
.970
. 990
. 995
1.000

.05

-1.048
~1.073
-1.084

~1.0%4

-1.092
-1.086
-1.074
-1.050
~1.024
-.998
=-. 971
-. 945
-.919
- Bo4
—. 870
- 845
-.820
-. 794
- 768
- 142
- 716
-~ 689
-. 662
-. 635
—. 607
-, 580
- 552
=524
=495
467
—. 438
—.409
— 381
-.352
—-. 321
-. 295
~-.266
~.238
=210
-, 183
. 156
~. 130
=.1058
«. 091
-. 082
-.0714
- 066
-. 064
-. 061

TABLE 3

QUANTILES OF THE LEAST SQUARES ESTIMATOR OF ¢« FOR MODEL 2 FOR SAMPLE SIZES (T+1) 10-200

T+1 =10

.5 .95
=.997 -—. 849
-. 987 =.723
-.976 =.660
~. 942 =— 548
=914 =. 487
-~.890 - 443
-. 859 -390
=812 =—. 319
=.768 =— 258
-.724 =203
-, 682 ~.153
=~. 640 <105
=-.5%9 =-.059%
=~.558 ~.015
-~.517 1,028
—. 416 .069
- 436 -.10%
=.396 .149
- 355 .188
=315 '.226
—-215 L2621
235 .299
=196 .33%
=156 . 370
-.117 405
-.078 . 439
-.038 1.472
.000 . 505
.039 .538
077 .570
116 . 601
154 .633
.101 -664
.228 . 695

. 265 L1217
.302 . 159
.33 .191
L3712 .824
.407 . 857
.4490 .889
472 .922
-503 . 953
.533 .982
L5591 .999
563 1.010
.574 1.020
586 1.029
.588 1.032
591 1.034

T+1 =20

.05 .5 .95
-1.026 =.997 =.8%3
-1.036 -—.987 -.B16
-1.038 ~.%77 -.776
-1.034 ~—,947 -,701
-1.025 —.923 -~.656
-1.0114 =202 =619
-.997 -=.872 513
=.969 =—.825 =505
~, 942 =118 —. 444
-.%14 -—.732 =.387
—.B86 —.686 =—.333
=. 856 =—.640 —. 280
—-.826 =—.595 =229
—, 795 =550 —-.179
—.763 =504 =131
-.730 -—-.459 -.083
- 697 =414 -.036
- 663 —.369 .010
- 629 =329 .055
- 5%4 =279 -09%
~-. 558 —234 .113
-.5%22 =189 .186
-. 185 =—. 144 .228
-. 448 - 099 .270
— 111 =051 .311
- 313 =.009 -351
-. 334 .035 .391
- 29% .0B0 .430
- 256 L3125 469
- 216 .169 .507
- 175 -213 L9435
=135 .258 .582
-~ 0941 . 302 .618
— 052 -346 -653
=011 -390 . 688
.031 -433 .122
074 A L7156
116 920 .188
.158 562 .820
.201 .604 -852
242 .b414 .883
.2814 .684 915
.323 121 -946
.36 -743 -965

- 361 . 151 .9786
-375 170 .988
.387 .183 -998
<3N .186 1.000
394 .78% 1.002

.05

-1.018
~1.024
-1.024
~1.016
-1.005
-. 999
-.917
~.948
—.919
-.889
—.B57
-=.824
-, 790
-, 756
-.720
-, 66841
. 617
=. 609
=.571
-.5132
-, 493
—. 453
-.412
-.371
-.330
—-.281
-=.215
. 202
~—.158
=.115
- 0170
~. 025
.020
.066
112
.159
.2086

. 254
i)

. 350

. 398

. 445

. 492
.519
-937

. 553
.569
572
.576

T+1 =30

.5 .95
—. 997 -—.915
~.988 —.BS58
—.979 =.828
-.951 =—.768
~=.930 =-.729
-=.9092 ~.6%6
=.87% =—_652
—.831 -.586
-. 784 =,525
=.136 —. 467
-.68% =412
—. 642 =358
-.596 =.305
-. 549 —.253
=502 =203
=.455 =,153
~.408 =104
“.362 —.056
=.315 -.009
v, 268 -038
- 222 . 084
=-.175 -130
-.128 175
~.082 .219
=035 .263
011 .306
.058 .349
-104 .3
.151 .432
.197 .473
.244 .514
.290 . 554
-336 .593
.382 .631
-429 .669
-474 .706
-320 .7142
.566 .18
611 .B812
.636 .B46
700 ..878
.743 .910
.785 L9141
.ao8 . 960
.B23 .972
.820 -98¢4
.851 . 994
.855 . 997
.858 .999

T+1 = 40
.05 .53 .95
~1.014 =,997 =928
-1.018 —.9B8 =--.88)
~1.017 *1.980 ~-.858
-1.007 —.955 -.806
=.996 =.933 =770
“.984 =913 ~.739
—. 967 =—.884 ~-.697
*=.938 =.835 =632
907 ~—.187 =572
~=.B714 =,739 ~—.514
=840 -—.692 =457
“~.805 =.644 -—.403
—.76% =596 ~— 349
- 132 =.549 =297
—~. 694 —.501 = 246
=656 =—.453 ~.195
=616 —_ 406 =145
=571 =—.358 =.096
~.536 =.311 -.047
~—.495 =261 . 001
~.454 -=.216 .048
—.412 ~.168 . 095
~. 369 =,121 141
—.326 =073 187
. 282 =.026 .232
-.238 .021 277
=~ 194 .069 .321
=149 .116 L3865
=103 -164 .408
— 057 -211 .451
=. 011 .258 .493
.036 . 306 .534
.082 .353 . 575
.131 .400 .615
-180 L1417 - 655
.229 .494 .694
.28 .541 .132
.328 .588 .769
.378 .635 .BOs
.29 .681 . 841
. 480 .121 .B7%
.532 172 . 908
.982 .816 - 939
.612 .64l .958
-631 .857 . 970
-619 .872 .983
-666 .Bo6 .999
-670 -890 996
.679 .893 .999

.05

-1.012
-1.014
-1.013
-1.002
-=. 990
-. 979
-, 962
-.931
- B98
~.B64
-.828
=792
-. 154
-.715
~.676
-. 636
—. 595
- 554
-.512
- 470
- 427
-. 384
-. 340
-.295
=251
=, 205
=. 160
=112
- 067
=020
.028
L0786
.124
113
.223
.273
.324
L3175
.427
.479
.532
. 385
.638
.669
-690
. 706
121
131
. 135

T+1 =50

.5 .95
~.997 —.938
,~-989 —. 899
=.98] ~—~.878
=957 =831
~.936 —1797
-~ 916 =167
-~ 886 =726
-~ 838 =662
— 783 = 602
=741 = 544
— 693 —.488
=645 =433
—597 =, 379
~549 - 326
=501 =274
=453 —223
=405 +,173
-=357 -.123
—309 =074
-.261 =025
=213 023
-.165 .071
-.117  .118
~.069  .165
-.021 .?211
.027  .256
.075  ,302
123 346
171 390
219,434
267 417
.315  .520
.363  .562
410 .603
458 . 644
.506 .84
554 L7124
.601  .762
613 800
.596  .837
743 872
789,906
.834 938
.B60  .957
.877  .970
893 (982
.907  .994
911 936
914 9399

-.999
-.99%
-.990
-.970
-.950
-.930
-.900
-.850
-.800
-.7150
-.700
-.650
-.600
-.550
-.500
-.450
-.400
-.350
-.300
-.250
-.200
-.150
-.100
-.0350
-000
.050
.100
-150
.200

.250
. 300

L350
.400
-450
. 300
.550
- 600
.650
.100
. 150
.800
«B50
. 900
.930
.95%0
L9710
.990
.995
1.000



a/Quantile

-.999
-.995
-.9%0
-.9270
-.950
-.930
-.900
-.850
-.800
-.1750
-.7100
-.6530
-.600
-.550
-.500
--450
-.400
-.33%0
-.300
-.250
-.200
~-.150
-.100
-.050
.000
-050
.100
.150
.200
.250
300
.350
100
.450
500
.550
- 600
. 650
. 100
.7150
.8uG
«B50
. 9006
.930
. 950
310
.990
.995
1.000

.05

-1.010
-1.011
-1.0)o0
-.999
-. 987
-.976
~.958
-. 926
-~ 892
- 856
-81%
-182
-, 743
- 103
-. 661
- 621
-. 580
-537
-, 195
- 451
-.407
=.363
-.318
-.273
=228
= 181
~ 135
~.088
=.04q1
.007
.056
.10
.151
.203
254
. 304
©. 356
.408
160
-513
. 567
. 622
.676
.709
. 130
. 750
. 769
LT3
L7717

T+1 = 60

.5 .95
=997 =945
-.989 =—.91]
=.981 =892
-.958 =849
-.938 -—.B16
=-.%18 -, 787
-. 888 = 746
~.840 =-,683
“. 791 —.624
- 142 =566
=.694 =,510
C =646 =455
=597 =401
=.549 =348
-~.500 =+ 296
=452 =243
=404 =193
=355 =143
=307 -.09]
=259 =044
-. 210 .004
=162 .053
-.114 .1o0C
=065 147
=017 .194
-031 .241
.079 .286
.128 .332
176 L3717
224 A2
.213 465
321 . 508
-369 . 551
.417 .594
.165 . 615
.514 L6717
.562 L
.610 157
.658 . 195
. 105 .8313
. 753 .80
800 . 905
.84¢ .938
.B813 .957
.890 L9690
. 9086 .982
.921 .994
.925 .996
-928 .9%9

.05

-1.009 .

-1.009
-1.007
“-.99¢
~. 985
-.973
-.955
-, 922
- 887
-.B850
-. 0812
-7713
- 7319
- 623
- 652
- 610
- 567
- 524
~—.481
- 437
-, 392
- 347
-, 302
- 256
-, 210
=.163
- 116
—.06B
-, 020
.028
L0717
.126
116
.226
216
.328
.Atg
.432
.4185
.539
.591
. 648
. 704
.137
. 759
. 780
.199
.803
.a07

T+1 =170
.5 .95
-, 997 = 850
-, 989 ~—.,%920
=982 =903
-~.960 - 862
=919 = 81ip
~.919 = B802
-.B%0 =762
—. 841 =—.699
=792 =—.640
-.743 =582
—. 695 =.526
- 646 =471
=598 =417
=519 =164
=500 =112
=452 =260
=.403 =209
—.35% -—.159
- 306 —.109
-=.257 =.059
-.209 =.010
-.160 .038
- 112 .086
- 063 -134
-.015 .181
;034 .228
.082 271
L131 .320
.180 . 366
.228 411
L2117 .155
.325 .499
.37 .5343
422 .586
.470 . 628
.519 .670
.967 L7111
.616 152
. 664 -191]
112 . B30
. 160 .B67
.BO7 . 903
.85 . 937
.382 . 957
.099 . 9689
-916 . 982
.931 . 994
.935 . 996
.938 .999

TABLE 3 (cont.)

.05

-1.0086
-1.008
~1.00¢
- 9%
=-.983
-. 971
-~.952
-.918
=, 882
~. 845
-. 806
- 1617
=-.72%6
~. 685
-. 643
=. 600
~. 557
=514
- 469
=425
—. 380
=-. 331
—.288
- 242
- 195
=148
=101
=053
- 005
MILE ]
.093
.143
.193
.243
-294
. 346
. 398
LA51
. 501
.558
-612
.668
LT124
.758
. 180
-802
822
826
.81

T+1 = 80

.5 .95
~.997 =-.954
-.990 -, 927
—.983) =, %11
-.961 -—.872
~=.940 =.B41
—.921 -—.813
—~.891 =—17179
—-.842 =.,712
-, 793 =-.653
—.749 -,595
-~. 695 -—.539
—.647 = 485
=598 — 431
=.54% -~.1377
- 500 -—.325
=151 =273
=403 =222
- 334 =171
- 305 =121
~- 256 =011
=208 =022
- 159 L0217
— 110 L0715
=061 .123
— 013 170
.036 .218

. 085 .264
21233 .311
.82 . 357
.231 402
.280 447
.J328 .A%2
L3717 ..538
L4286 .5179
474 -622
.523 .665
.5712 . 106
-620 . 748
-66% . 788
-717 .827

. 7165 .B65
.B813 . 902
.861 . 937

. 088 . 356

. 206 .969
923 .982
.939 .999
L9421 .99
.96 .999

.05

-1.007
~1.007
-1.005
=-.993
~=.981
~.969
-~ 950
215
- 879
-~.841
-. 801
-. 161
=120
~. 678
-. 636
~. 592
=-. 549
- 505
=. 460
- 115
-, 370
—. 324
—=.2717
=.231
- 184
~ 136
=088
=. 040
.008

. 0587
.107

.157.

, 2017
.258
» 309
. 360
2113
.166
.519
L5713
.620
. 684
LD
]
.798
.820
. 840
.845
. 849

T+1 =9

-5 .95
—.997 =958
=.990 = %33
=983 ~.9%918
-.962 -—.88¢0
—.941 =850
~.922 =823
—. 892 =784
—. 843 =722
— 794 =—.663
=745 =606
-.696 =550
T=.e47 — 495
=.598 =441
=.549 -—.388
=500 =.336
=451 =284
=402 +. 233
- 354 -—.182
=.305 =131
=256 =.082
=207 -.032
-. 158 .017
=109 .065
-~ 060 .114
=01l .161
.Q038 .209
.086 .256
.135 -303
<184 349
233 .385
'.282 .440
A .485
-380 .530
.428 .574
-477 -617
.526 . 660
.575 .102

. 629 .744
672 . 185
.721 . 8235
'.769 L8623
.818 . 901
.B865 .936
.8%] .956
.912 .969

. 929 . 981
. 945 -9919
.948 . 996

. 952 .9%9

.05

-1.006
-1.006
~1.004
-.992
—.980
-.968
=.948B
-.913
-—. 876
-. 837
-. 7917
-,.756
- 715
—. 872
-. 629
-. 5086
-. 542
- 497
—. 452
-, 407
—. 36}
-.315
~. 268
- 221
- 174
~. 126
=078
~. 030
.019
.069
.118
. 168
.219
.269
321
L3713
.425
.478
.532
. 588
. 641
.697
. 159
.788
.B11
.834
. 854
. 859
.86l

T+1 = 100

.5 .95

- 997 =91
-390 =938
-.984 —.924
—.962 ~.803
=.942 858
-.922 ~=.830
~.893 —.792
—.843 =.730
~.194 -, §72
-.745 =.615
~ 696 —.559
— 647 -.504
-.598 =, 450
-.549 = 397
=500 "~ 345
—.4as1 -.293
—402 —242
—353 —191
-.304 =140
—-.255 =090
—.206 =041
-157 .009
=108 .057
-.059  .10%
—010  .154
.039 201
.088 249
137 298
.186 342
.235 308
1284 .434
L3313 479
.18z 524
.431  .569
.480 512
528 .656
.577  .699
626 .. 741
615 .782
.72 022
21713 Ipe2
.B21  .900
.B69  .916
.B97 956
916  .969
.933 _9gl
L350 .99
.953  .996
.957  .999

-.999
-.995
-.9%0
-.970
-.950
-.930
=900
-.850
-.800
-.750
-.700
-.650
-.600
-.530
-.500
-.450
-.400
-.35¢
-.300
~.250
-.200
=-.150
-.100
-.050
-000Q
-050
. 100
.150
.200
.250
L300
.350
.400
.450
.500
.5350
.600
-650
.100
.150
.800
-850
-900
.930
-950
.970
-99%0
-995
1.000

=1L



a/Quantile

. 999
. 995
=990
-%70
. 950
-930
.900
-850
-800
-150
700
.650
. 600
. 550
-500
.450
.400
.350
.300
.250
.200
.150
.100
.050
-000
-050
.100
.150
.200
L2539
. 300
.350
.00
-450
.500
. 350
. 600
. 650
.100
. 150
800
.850
. 900
.930
. 950
.970
.990
.995

1.000

-05

~1.006
~1.005
-1.003
-. 991
-.919
-. 967
-. 947
=911
-. 813
- 834
- 793
~, 152
-, 710
-. 667
-. 6219
- 580
-. 535
—. 491
-. 145
=400
=333
-. 307
-+ 260
—.213
=165
-.117
=-.069
-~.020
.029
.018
.128
.118
.228
279
.331
.383
. 435
.488
.542
.5%6
.652
.708
. 165
.199
.B821
.B845
.866
.87
.85

T+1 = 110
.5 .95
~-.997 =, 0§63
-.990 -,942
-.984 ~—.928
-.963 ~—.893
-.9413 -.864
-, 923 -.837
~8%3 =798
- 844 = 137
- 799 =679
=.746 —.622
-. 697 =_567
- 6§47 =512
~-.598 =.458
~.549 =405
-.500 =353
~ 451 = 301
—402 =249
-.353 =198
—.300 =~ 148
=255 - =.098
- 206 =-.048
-.156 .001
-.107  .050
-.058 .099
~.009 147
.040 195
.089 242
.138 .290
.187  .33s
.236 .383
.285 -429
L334 474
.383 .519
432 .964
.48} .508
.530 .652
.579  .695
.628  .738
.61 .719
. 1286 . 820
L1115, 860
.824  .g98
.872  .935
.901 . 956
.919  .969
.931 981
.953 . 994
.957  .996
. 961] . 999

.05

-1.005
~1.004
-1.002
-, 990
-. 979
-. 965
-. 945
-.908
-.869%
-. 830
-.789
-, 7147
=. 701
- 661
-. 617
-.572
-.528
-~. 482
-.437
=.3%0
= 341
-.297
-.250
-, 202
- 155
=106
-. 058
-, 009
.040
.090

. 140
.190
.241
.292

. 343

. 395
.418

. 501

. 555

. 609

. 664
.121
.178
.813
.86

. 859

. 881
.8B6

. 890

T+1 =125
.5 .9%
~.997 — 966
-. 991 —947
-. 985 —.934
— 964 —.900
- 944 —.871
~.924 — B45
-,894 -.807
=. 845 =746
—-.795 - 688
~. 146 =631
-~ 697 —.576
—-.648 =—.522
=599 — 4588
-.549 =415
-.500 =+ 362
=451 =310
- 402 = 259
~352 -~208
=303 =-,197
—.25%1 -.107
-205 =—-.057
-.1%6 =-.008
=106 -091
-.057 .090
-.008 .139
L0141 .187
.090 .239
.139 .282
.189 .329
.238 .376
.287 . 422
-33e .468
. 385 .513
.435 .558
.484 . 603
.533 -647
.582 . 691
.631 .734
. 680 116
129 .817
.118 . 858
.8217 .097
.876 . 934
904 . 955
.923 .969
. 941 . 981
.9%8 . 994
. 962 .997
. 965 .999

TABLE 3 (cont.)

T+1 = 150
.05 .5 .95
-1.004 =.997 =~ 910
-1.003 ~=.991 - 953
-1.000 -.985 - 941
~.989 =,965 -—.9p9
-.976 «~.945 -.881
~.963 ~.925 =-.855
~.942 —.895 -—.811
-.904 =~.846 -, 1751
~.B65 —.796 ~.700
~.824 =.7471 —_644
-.782 —.697 ~—.588
-.739 ~.648 =~.534
-.696 ~.599 =-.480
-.652 =.549 -.4217
~.607 -.500 -.375
~,562 =.451 -—.323
=517 —.401 ~-.212
-.471 -.352 ~-.220
-.425 =.303 =,170
«.378 ~.253 =-,119
~.337 ~.204 -.069
-.284 -.155 —.020
~.237 -.105 .030
~.189 =.056 .079
=-.141 —=.007 .127
-.092 .043 .17¢
-.013  .092 _224
.006  .141  .271
.055  .191  .319
L105 240 366
.155  .289  .413
206 .339  .459
.257  .388  .505
.308 431,551
.35%  .486 ..596
-412  .536 g4l
.464  .585  .685
.517  .634  .728
L5711 .eB4 .17
.625  .733  .Bl4
.81  ,182  .B55
.137  .831  .B95
.794  .880  .933
.829  .909 955
.8%3  .928  .958
.B76  .947 .98l
.898  .964 994
.904  .968  ,997
.908  .971  .999

T+1 =200

.05 .5 .95
-1.003 -.998 =, 97¢
-1.002 =—.992 -~ 961
—.999 =,986 =951
=987 =.966 . %20
-.974 =~-.946 =.893
=-. 960 ~.926 ~.BEB
=.938 ~-.B96 ~-.81]1
—~.B98 =847 =-.1772
-.B58 —-797 =-,715
=815 -—748 =660
=172 -.698 =, 605
- 729 = 64% -.551
-. 684 ~—.599 —.498
=639 —.550 -—-.445
~-.594 =500 -.393
=.518 =—.451 -, 311
-.502 =-.401 -.289
—. 456 =.352 =-.239
~.409 —302 =-.187
~.361 253 =137
=314 —203 =-,p87
~. 266 =.154 =~.037
-.218 =104 .013
~. 170 -.055 062
-.121 -.005 111
- 072 .044 .160
-.023 .094 .208
027 .143 .256
.076 .193 .304
.126 .242 L3152
17 .2%2 .399
L2217 341 -946
.278 .391 .493
.330 -440 .539
. 381 -490 . 585
-123 .539 . 631
186 .589 .676
.539 .638 .120
.593 . 688 -764
.647 L1317 -808
.102 .787 .850
.158 .836 .891
.815 .885 .931
-850 .91%  ..953
.B74 .934 . 969
-898 .953 .981
921 91 .994
.926 .975 .997
.931 .978 .999

-.999
~.995
~,990
~.970
-.950
-.930
~-.900
-.850
-.800
-, 150
-.700
-.650
-.600
-.550
-.500
-.450
-.400
~.350
-.300
-.250
-.200
~.150
-.100
~.050
.000
-050
.100
.150
.200
-250
. 300
. 350
.400
.4150
.500
.550
. 600
.650
.1700
.730
-800
.850
. 9300
+ 930
950
970
.990
. 995
1.000



1

a/Quantile -3
.999 -1.050
.99% -1.078
.990 ~-1.091
.970 :w.“ow
~1.10
o 101
.900 -1.091
LBS0 -1.071
s00 -1.048
-1.024
-130 “1.000
. 650 =.371
600 —. 953
.550 =931
—-.50%
1350 -~ 828
.400 —- 867
.350 - 847
. 300 - 826
—. 805
360 =784
-150 ~. 763
.100 =.743
.050 .r..“ﬁ
=.702
1090 =682
.100 <. 661
150 ~- 641
.200 622
=. 602
300 RELE
-. 564
.350
400 — 546
— 529
.450
.500 - 512
.550 I.“mu
- 480
. 600
_650 =. 166
700 =152
. T50 - 441
LBOO =430
.900 -. 415
.93p - 412
950 -.410
.970 —.A09
.990 -.40%
.99% -, 409
000 -, 109

TABLE 4

QUANTILES OF THE LEAST SQUARES ESTIMATOR OF « FOR MODEL 3 FOR SAMPLE SI1ZES (T+1) 10-200

T+1 =10
.5 . .95
=997 —.858
~—.988 -, 741
—.979 -, 683
—.948 =580
-.922 =525
~.301 — 484
—.873 =435
—.832 —.370
~-.793 =315
=755 =265
— 718 =219
— 681 =175
-.645 =133
- 609 —.093
=573 =-.053
~-.538 =015
-.503 .023
~.468  .059
=.434 -.09%
~.399  .130
—366 .164
=332 197
=293 .230
-266 .262
-.233 .29
~201 .325
=170 .35%
—.138  .386
=107 .416
-017  .44%
—047  .475
—-.018  .505
010 .535
.037  .564
.063  .594
.0B8 .23
.112 651
.13 .678
.154  .703
173 L7127
L1839 (749
.203 .768
.214  .783
.219  .790
221 194
.223 .19
.224 .798
.224  .1798
.224  .198

.05

-1.0217
-1.037
-1.040
-1.036
-1.028
-1.018
-1.001
. 974
=~.948
-.922
-. 895
~. 867
=.839
“=.B10
—=. 781
=-. 750
=120
~. 689
~. 657
- 625
-.5%2
-.559
-526
~. 492

=159
=425
. 390
. 358
=321
- 286
-~ 251
- 2186
=.182
*.147
=113
- 019
=046
=013
.018
.018
.075
-100
120
.130
2135
139
111
L1411
. 141

T+1 =20
.5 .95
—.997 ~—~. 896
—-.988 —.822
—~.878 =.785
-.949 = 713
~.927 =.670
~.907 — 635
—.879 ~.59)1
—. 831 —.526
—~ 789 ~-. 468
=746 —. 413
=702 =361
~. 659 =.310
~. 616 = 261
~.5714 —.214
-.5311 =167
—.188 =121
~.446 —.076
—- 403 —.032
~361 .01
=318  .054
=216  .09s
—239  .138
-192 .179
-.150 .219
-.108  .759
- 0671 .298
-025  .336
016 .374
L0517 412
.098 .48
.139 485
L1179 .520
.219  .555
.258  .589
297 . 622
.335  .§55
.31713 . 687
.09 717
A9 747
476 176
-S07  .BO3
.534  .829
.558 852
.569  .B63
.574  .B69
-57%  .pH
581  .877
.581  .877
.581 .87

.05

-1.019
-1.024
-1.025
-1.017
-1.9007
~-. 995
-, 979
-.951
-.923
- 894
~.863
-.B832
-. 799
. 166
- 132
~. 598
— 662
- 627
-, 590
=553
~-. 516
=-. 478
=440
- 401
-. 362
~-. 323
. 283
=.243]
-, 202
- 162
=121
=079
-. 038
.003
.045
-0B6
127
.168
208
L2417
.284
.319
.349

. 365
L3113

. 379
.383
.3B3
.383

T+1 = 30

.5 .95
=.997 —. 917
—.988 —.862
~-.%379 =.833
-, 953 174
—.932 -=.136
=-.912 =704
—=.B83) ~-.662
-.837 =.598
=791 =539
=745 =483
«. 700 =429
~.655 =376
=610 =—.325
=564 =275
—=51% = 22%
“~.q4719 - 177
=.129 -—.129
=-. 384 —.083
=339 =036
—29 .009
=249 .054
—.20% -099
—.160 .143
=113 .186
=.070 .229
-.0286 .271
.019 .313
.063 . 354
-108 .395
-152 .435
196 L4714

. 240 .513
.283 .552
.327 .589
.70 . 626
413 .662
2155 .698
-497 .732
-537 . 765
.576 .797
-614 .828
.619 . 856
.679 .883
-694 .897
.703 .904
. 709 . 911
L7113 .915
.T13 -915
713 -915

.05

~1.015
-1.018
~1.017
-1.008
-.997
—.985
. 969
. 910
=-. 910
- 878
. B45
=-. 811
- 116
=. 740
=, 104
—.666
-.628
=.590
-.585]
-.511
-.471
=431
-, 390
-, 349
=307
- 265
- 222
~. 179
- 136
=092
- 048
~. 004
. 010
. 083
.130
115
.220
.265
310
. 354
.397
.438
A5
. 494
. 509
.513
.518
.519
.519

T+1 = 40 T+1 =50
.5 .95 .05 .5 .95
-.997 =930 -1.012 =997 -.939
= _ 9888 =-.BB85 -1.014 =-.98% —. 901
—_ 980} =.B61 -1.013 =.981 =880
=-.956 =.810, -1.003 =.958 =834
=.935 *.1175 -.99]1 ~-.%937 =-—.801
=.9%915 —.745 -.980 =.,917 ~-.771
-. 887 =703 -.963 =-.889 ~-—. 7211
= B39 = 640 —.933 ~.84] ~.668
—.793 =581 ~.901 =794 —.609
- 746 = 525 867 =.746 —.552
- 699 =470 ~-. 832 —.699 -—. 497
=653 =.416 =797 =.652 =443
- 607 = 164 ~. 760 *~.605 =390
=.560 =.312 =.722 =.558 -—.338
. 514 =—.262 =684 =.511 - 287
- 468 =— 212 =645 =464 ~, 237
=.421 =.163 -, 605 =.417 =187
-.375 =115 ~.565 =—.370 =-.138
=.329 ~-.067 =.524 =323 =-.0%0
—.283) —.020 ~. 483 *=.276 —.042
-. 2317 . 026 -. 441 =229 .006
=190 .072 =.399 =.182 .053
-.144 .118 -=.357 =.135 .099
~.098 -163 =.314 ~-,088 .145
~-.052 .207 -.270 —-.041 .1%1
-.006 . 251 -.2217 .006 .236
.040 . 295 -. 182 .052 .280
086 kN - 138 .099 .3214
132 .380 ~— 093 .146 .368
.178  .422 =048  .193 411
.223 . 463 —.002 .23% -454
.269 L5049 . 049 .2B6 .49%6
2314 .544 . 090 .332 537
.360 . 584 L1317 L3719 .578
405 .623 .184 .425 .61%
450 .661 .231 471 . 658
.494 .699 .279 .517 L6497
.538 . 735 -326 562 .136
.582 L1711 L3174 . 608 . 113
.624 L 805 -421 . 652 . 809
.665 .838 .467 .695 .83
. 704 L8469 . 512 737 .876
140 .898 -55¢4 L7716 . 807
.758 .913 .576 . 796 .923
.768 .922 .509 .808 L9313
.776 . 930 .599 L8117 . 941
.781 .935 . 605 .8213 . 947
.782 .935 .606 -824 .948
.782 .935 . 606 .024 .948

-.999
-.995
-.9%0
-.970
-.950
-.930
~.900
-.B850
-.800
-.150
-.100
~.650
-.600
-.550
-.500
-.450
-.400
-.350
-.300
-.25%0
-.200
-.150
-.100
-.050
.000
.050
-100
.150
.200
.250
.300
. 350
.400
.50
.500
.550
. 600
.650
.700
.750
. 800
. 850
. 900
.930
.950
970
.99%0
. 995
1.000



a/Quantile .05
-.999 -1.010
-.995 -1.012
~.9%0 -1.010
-.970 ~.999
-.950 - 987
-.930 =.976
-.900 -. 959
-.850 -, 927
-~.800 ~.694
-.150 -.859
~ 100 —.9823
-.650 —.786
-.600 —~ 148
-.550 —-. 709
-.500 - 669
-.450 —.629
-.400 —.588
-.150 ~. 547
~.300 -, 505
-.250 ~— 162
-.200 - 420
-.150 —-. 316
-.100 -.333
-.050 —.288

.000 - 244

050 — 199

.100 —.154

.150 ~.108

.200 = 062

.250 -~ 016

.300 03]

.350 .078

.400 126

.450 113

.500 .222

-550 .270

.600 .319

.650 . 168
700 .7

.150 .466

. 800 .515

.850 .562

.900 . 607

.930 L 632

.950 646

2970 .658

.990 . 665
.995 . 666
1.000 . 666

T+1 =60

.5 .95 .05
—.997 =945 -1.009
—.989 —.912 -1.010
—.982 =~.894 -1.008
=959 = 851 -.996
=, 939 =—,819 -.985
-.919 =790 -.971
-, 090 = 750 —-. 955
—.B42 —. 688 - 923
—794 =, 629 - 889
=141 =572 - 853
-. 699 =517 — 815
—652 =463 - 111
—604 =410 -. 1318
—.551 =158 -. 698
—509 -.306 =657
=461 =255 —6l6
=414 —.205 -~ 575
— 366 —.156 -.532
=319 =107 = 490
—-271 ™.058 —. 418
- 224 =00 =~ 403
=177  .037 ~. 359
=129 .085 -. 314
=082 .131 —-.269
-034 177 — 224
L0133 .223 ~.178
.061 .269 -~ 132
.108  .313 - 086
.155  .358 -.039
.202 .402 .908
_250  .445 .056
.297  .488 .104
L3449 .533 -152
L3910 .573 .200
.438  .814 -249
.485 655 .299
.532 .695 -349
.518 .734 .399
.624 7713 .119
.670  .B10 499
115 .Bd6 .549
.758  .880 .599
L7991, 912 .616
.821  _929 .6172
.834 940 -688
.845 949 L7001
.851  ,955 .109
852  .956 .101
.853  ,956 11

T+1 =

-7

-.997
—-.989
—-.982
-. 960
-. 340
~-. 921
~-.891
~—.843
-. 195
-. 747
-, 699
-, 651
. 603
. 555
—. 508
- 460
- 412
—.364
-, 316
— 268
-. 220
- 173
-.125
=077
- 029
.019
.066
114
162
.209
.257
.305
.352
-100
447
.495
.542
.5B9
.636
.682
.128
7173
.815
.839
.852
.B64
.872
.873
873

70

.95

-.95]
-. 921
-. 904
-. 864
~.833
—. 804
=765
—= 102
— 645
~. 588
- 532
- 478
— 425
=313
=321
— 2170
- 219
- 169
- 120
=011
- 023
.025
L0173
.120
167
.213
.259
.304
. 349
. 3919
.438
.482
.525
. 568
.610
.652
. 692
. 133
112
.B10
.847
.883
L9186
.934
. 945
. 994
. 961
. 962
.962

TABLE 4 (cont.)

.05

-1.008
-1.008
~1.006
~.995
~.981
- 271
=.953
=920
-, B84
-. 8417
-. 809
- 770
=730
—. 589
~—. 640
=. 606
. 561
=. 521
- 417
=433
= 389
—. 341
~. 299
—. 2519
=208
—.162
~ 115
~. 068
—. 021
-027
075
.124
172
.221
.2
321
.31
.A22
.473
. 9324
.575
.626
.675
.703
. 720
.734
. 713
L7414
7145

T+1 =80

-5 .95
=.997 =, 955
~.990 -—.928
~-.983 =,912
=.961 *=.B71
~=.941 =.843
- 922 =—.816
=.892 =771
=844 =115
=796 -.657
- 747 —.600
—.699% =—.545
—.651 =.490
=603 —.4317
=.555 —. 385
=.507 =.333
=.458 —.281
=410 ~—.231
=.362 -.181
=.314 =131
~.266 ~—.082
—218 =013
=170 .015
~.122 .063
—074 .111
=026 .158
-023 .205
.07 . 251
.119 .2917
167 .342
.215 .387
.263 .432
.311 176
.359 .520
-406 -563
.4154 - 606
.302 .648
-5350 . 690
L5917 -731
-644 L1171
.691 .810
.738 .848

. 784 -804
.827 .918
.B52 .937
.866 .948
879 .958
-887 . 966
.888 967
.889 -967

.05

-1.007
~1.007
-1.003%
-.9%93
-.9%82
-.970
=.951
=917
~.B80
~=.843
=.B04
=. 164
=123
-. 682
=. 640
—~. 598
—. 555
- 511
=.467
— 423
-~ 378
=,333
- 287
=241
=195
—. 148
- 101
=054
=006
.042
091
-140
.189
.238
.208
L339
.389
-441
.492
AL
.99%6
.648
-698
.21
L
. 159
L0
LT
L2

T+1 =9

.5 .95
~.997 -~_95B
-.990 -.334
-. 993 =~_91%
=-.962 *.BB2
-. 942 -—B52
=-—.922 =—.B24
=.B8%3 =—.786
—.B45 =725
=196 667
~=.748 =610
=699 =555
=~ 65%1 501
— 603 =447
=.55%4 = 1495
—.506 =, 343
—.457 =291
—.409% ~—.240
=.361 =.190
—. 312 -.140
—.264 —,0091
=216 ~—.042
-. 168 .007
—119 .055
~. 071 .103
=023 .150
.026 <197
.074 L2449
122 .290
.170 -33s
.219 .382
.267 427
.315 471
.363 .5186
.411 .559
.460 . 603
.508 . 645
.556 .687
.603 .29
.651 . 769
.698 .809
. 145 .848

. 192 . 885
.B36 .920
.861 .93%
877 . 951
.890 .961
.B99 . 969

. 900 .970
.9301 971

T+1 = 100
.05 .5 .95
-1.006 =—.997 —.961
=-1.006 =—.990 =.938
-1.004 — 9B4 -=.921
~.992 =963 — 888
=.9%981 =941 -—.859
~.968 =923 =832
=.949 =894 . 794
-.914 =845 =133
—.B¥IT —.196¢ ~. %15
-—.839 =, 148 =. 618
-=. 799 =—.69% —.563
=759 “= 651 —.509%.
=718 602 456
=.676 ™.554 =403
=. 631 = 50% -—351
=, 590 “—. 4597 = 299
- 547 =—.q08 =, 248
=503 =—.360 -—.198
=458 =311 -— 1418
=414 -~ 263 =098
—.368 —.214 -,049
—=.323 =.}66 . 000
~. 217 =117 .048
==.230 "—.069 .096
=.184 =020 .144
-. 137 .028 .191
~.0B9%9 017 .238
-. 042 -12% . 285
L0077 .1713 . 331
L0557 L2222 L3177
104 210 .422
-153 319 .467
.202 <367 .512
.252 415 . 5586
.302 .46 . 599
. 353 512 . 643
.404 .560 . 685
. 456 .608 . 127
.508 .656 .768
.560 - .704 . 808
.612 . 751 . 848
.665 . 798 . BBS
7116 .844 .921
.16 .869 .914]
. 764 . 885 . 953
.780 .B9g . 964
. 791 .90% L9712
. 193 .910 .913
.7913 911 L 971

-.999%
-.995
~.990
-.970
-.950
=-.930
-.900
-.0850
-.800
-.750
-.700
.650
.600
-.550
-.500
-.450
-.400
-.350
-.300
-.250
-.200
-.150
-.100
-.050
.000
.0%0
.100
.150
.200
- 250
. 300
L350
.400
.450
-500
.550
.600
.650
.100
.150
-.800
-850
. 900
.930
. 950
970
.990
.995
1.000



TABLE 4 (cont.)

T+1 =110 T+1 =125 T+1 = 150 T+1 = 200
a/Quantile .05 .5 .95 .05 .5 .95 05 .5 -95 .05 .5 .95 o
-.999 -1.006 —.997 — 963 ~1.005 -.997 — 966 -1.004 —997 =—.870 -1.003 -.998 =976 ~.999
~-.995 -1.005 =.990 =, 942 ~1.004 —.991 =-.9%47 -1.003 =.991 =953 -1.002 =092 =952 -.995
~.990 -1.003 -—.984 =,929 -1.002 —.985 =, 935 -1.000 —.985 ~— 942 =.999 —. 986 —.95] -.990
-.9%70 ~.991 =.963 =—.B94 —=. 290 =964 —,901 =.989 =965 =-.909 =987 =.966 —. 921 -.970
-.950 — 979 —.943 =845 ~. 978 -.944 —.872 =.976 ~—. 945 —.BB2 ~ 974 =—.946 =—. Ro4 -.950
-.930 - 967 —.924 -—.B38 — 965 —. 924 —.B46 =.963 =925 =~ 856 =960 =—.926 —.B869 -.930
-.%300 ~.947 =894 =-.800 ~ 945 =895 - 808 =942 — 896 - 018 =938 —897 =832 -.900
-.850 =.912 —.845 =—.740 - 909 —. 846 . 748 —905 =847 — 159 - 899 — B47 ~774 -.85%0
-.800 ~.874 —,797 = 82 —. 871 =—.797 =690 —B866 — 798 — 1702 =858 =198 =717 -.800
-.750 ~.815 —.748 - 625 =.831 —. 748 =§34 = 825 =148 — 646 -.816 749 — 661 -.150
-.700 ~.795 ~.699 =—.570 —=.790 —. 699 =579 =784 —. 699 —59] =774 =~ 700 -—. 607 -.700
-.650 — 155 — 651 =—.516 . 149 =651 =525 =711 =650 —537 =730 —.650 =553 -.650
~.600 — 713 —. 602 — 463 — 707 —, 602 ~.472 —.698 —.601 =484 =686 =601 = 500 -.600
-.550 ~ 671 =553 =.410 —. 664 —.553 = 419 =.654 =552 431 = 641 =552 =448 -.550
-.500 - 628 =505 =— 358 =620 =504 -, 367 — 610 =503 — 2379 —.596 =.503 =—39§ -.500
-.a50 —.584 =456 = 306 =576 =455 =115 —.566 -—454 =127 =.551 =453 =— 344 -.450
-.400 =540 =407 =,255 532 =401 —. 264 =.521 —.405 —.276 =505 ™.404 = 293 ~-400
~.350 =496 — 359 =205 =.487 —. 358 —. 214 =413 =356 =—225 =. 458 =355 =242 -.2350
-.300 - =451 =310 =155 ~.442 -.309 —. 163 =429 —.307 =115 =412 =306 =-.191 -.300
-.25%0 - 406 =262 =—.10%5 =.296 260 =113 =383 =258 ~.125 =.3J65 =256 =141 =.250
-.200 ~.360 —.213 = 056 ~=.350 -.211 =~ D64 =337 =209 =—07% ~. 318 =207 =091 -.200
-.150 =.314 =164 =~ 007 ~.304 ~.163 ~+,015 =290 =160 =—026 =270 =158 = 011 ~.150
-.100 -~ 268 =116 .042 —=.257 =114 .034 -.243 =111 .023 -222 =109 .008 -.100
-.050 —.221 =067 .090 ~.2k0 =065 .082 =~ 195 =062 L0712 =174 =-.05% .057 =.050
.000 —-.174 =018 .i38 =.163 =016 .131 =147 =013 121 =126 =010 .10% -000
.050 —. 1217 .030 .18% -. 115 .033 .1i78 =099 .036 .169 =017  .03%9 .155 -050
.100 - 079 .079 .233 =.067 .08l .22% =051 .0B4  .217 —029 .088 .203 .lo0
.150 -.031 .127 .280 =019 .130 .273 =002 .133 .264 .021 138 .251 -150
.200 L0117 116 326 L0330 179 .320 047 .182 .31 L0700 187 .299 -200
.250 .066  .224 L3712 079,228 L3686 .096  .231 .358 2120 236 346 -250
.300 15 L2713 418 .128 276 .412 .146 280  .405 . 1700 285,393 -300
.350 J164 322 463 .178  ,325  .458 .19 329 48] L2200 .335 440 .350
.400 -.214 .370 .508 .228 .374 .503 .24% .374 L1917 .27t .3e4 .487 -400
450 .264 .419  .553 L2786 .422  .548 .297 L4277 .542 2321 .433 .533 -450
.500 .314 LA87 .597 L3290 Lam .591 .348 .476 .587 2373 .482 .579 -300
.550 ©.365  .516  .640 -380 .520 .37 -399  .525%  .g32 .424 531  .624 -550
.600 417 .564 .83 .432  .568 . 680 . 451 -574 .67 .46  .581  ,669 -600
.650 LA68 812 .7125 .484 .617  .723 .503  .623 .719 .529 .30 .73 -630
. 700 .521  .660  .767 .536  .665% .765 .556  .671 . 762 .582 .67%  .157 - 100
.150 .573  .708 .808 .589 714  .@0¢ .609 720 .go4 .635 728 ,BOO - 150
.800 .626 756  .847 .643  .762  .BA7 .663  .769 . p4S -68% 777,843 -800
.850 .67%  .803  .88BS .696  _809  .BB¢ 117 817 . 885 M4 .826  .884 -850
. 900 L7131 .84 932 .749  .B856  .923 L7711 864 923 .199  .874  .923 - 900
. 930 .762  .816  .942 .780  .8B31 943 -803  .B92  .945 032 .902 .94 930
.950 L7010 .B92  .954 .800 .900  .95% .B24 909 958 .854  .921  .960 - 950
.970 L1397 .906  .966 .818  .915  .968 .843 925 97 .874 938 .973 970
.990 .809  .917  .974 -831 926 .9M} -857  .938  _9B0 .091  _952 .9pa - 990
.995 .B11  .918  .975 .832  .928  .978 .859  .939  _g9B2 .B93  .954 98¢ -995
1.000 .811 919 .97s -B33  .9728  .97% -860  .940 982 .831  .955  .987 1.000
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COMPARISON OF THE QUANTILES OF THE LEAST SQUARES ESTIMATOR OF «

TABLE §

FOR DIFFERENT INNOVATION DISTRIBUTIONS FOR MODEL 3 AND SAMPLE SIZE 60

a/Distribution

00
05
10
a5
.20
25
30
35
40
45
50
55
60
65
70
J5
80
85
80
93
95
97
99
995
1.00

a/Distribution

00
05
10
15
20
25
30
35
40
45
S50
55
60
65
70
75
.80
85
90
93
95
97
9
995
1.00

N(0,1)

-.034
013
061
108
155
202
250
297
44
391
438
485
532
578
624
670
715
758
799
821
834
845
851
852
853

N(O,1)

~.244
-.199
-.154
-.108
-.062
-.016

031

078

173
222
270
319
368
A7

515
562
607
632

658
665
666
666

I

=031
017
064
J12
159
207
253
300
348
395
442
489
S35
581
627
672
17
760
802
824
837
848
B854
835
855

i

-244
-.199
-.153
-.107
-.060
-.014
035
081
27
178
228
278
327
375
423
473
521
568
615
638
654
666
674
673
674

(a) .5 QUANTILE

ty

-.039
008
056
104
151
199
247
294
342
390
436
4383
530
577
623
669
J15
759
801
824
838
848
856
856
857

(b) .05 QUANTILE

Iy

-.238
-.193
-.147
-.101
~.055
-.009
038
084
131
180
228
275
324
371
422
A72
521
569
615
640
655
566
675
671
576

)

-.033
015
062
Jd11
158
206
253
301
348
395
442
489
535
583
628
675
719
761
803
825
838
848
855
855
856

I3

-.234
-.190
-.145
-.099
-.054
-.007
039
088
136
184
230
278
328
376
425
473
S23
SN
615
638
651
663
670
671
673

-.035
013
061
.108
156
203
251
298
345

441
A87
534
581
627
£73
.18
762
803
826
B39
851
857
858
859

097
145
190

288
337

434
482
531
578
620
641
653

671
671
672

L

-.032
017

13
161

257
305
353
401
A49
A97

592
639

TJ15
819
843
858
870
876
875
873

-.189
-.141
~.094
-048
-.001

093
141
190
237

331
379
428
476
524
570
613

665
675

687

X - 8

-.037
011
058
106
153
.200
247
295
343
390
A37
483
530
577
623
669
714
758
799
820
833
843
850
851
851

X5 -8

-242
-.196
-.152
-.107
-.061
-014
032
081
128
177

273
322
370
419
467
516

507
631

654
562
663
662

X; -4

-.038
009
057
104
152
198
.246
294
340
388
435
A82
530
576
622
667
J12
357
197
821
834
845
851
852
852

x3-4

-232
-186
-140
094
~048
-001
046
092
140
186
23
280
329
377
425
473
522
569
613
634
646
656
663
666
688
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a/Distribution

00
05
By [1]
a5
20
25
30
35
40
45
S0
55
50
65
J0
5
80
85
90
93
95
97
9
995
1.00

N(,1)
177

269
313
358
402
A45

531
573
614
655
695
734
773
810

.880
912
929
.940
949
955
956
956

TABLE 5, continued
{c) .95 QUANTILE

!

166
214
261
306
351
396
439
483
327
570
612
653
693
733
770
807
844
880
912
920
939
948
956
957
957

h

169
214
260
306
350
393
436
480
523
S65
607
649
689
728
766
805
842
871
910
928
939
549
955
956
956

205
249

339

428
A2
S14
356
599
642
£H83

.763
802

875

939
949
955
955
955

Jd17
165
210
257
303

394
439

529
515
619
661
J05
747
789
828

507
9532
950

957
950

x-8

130
226
.269
314
359

447
489
531
574
615
655
£96

J72
810

913
930
.940
949
954
955
955

X2 -4

186
232
278
322

452
495

- 535

577
618
658
697
737
774
812

881
912
929
939
948
953
954
955
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DOWNWARD MEDIAN-BIAS OF THE LEAST SQUARES ESTIMATOR OF « FOR SAMPLE SIZE 60

TABLE 6

o 0 3 5 g 8 9 95 99 |99 1.0
Model 1 0 005 | .008 011 | 013 014 | .013 009 | .002 -
Model 2 02 03 03 04 05 05 06 07 07 07
Model 3 03 05 06 08 08 .10 q2 14 A5 15
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TABLE 7

90% RANGE OF THE LEAST SQUARES ESTIMATOR OF « FOR SAMPLE SIZE 60°

a 0 3 ) a 8 9 95 99 | 99 1.0
Model 1 42 40 37 32 27 24 a7 12 07 -
Model 2 42 41 39 34 30 26 24 22 22
Model 3 A2 A4l 39 35 33 30 29 29

“The 90% range of an estimator is the length of the interval bounded by the estimator’s .

05 and .95 quantiles.
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TABLE 8

REAL EXCHANGE RATE SERIES?

Data
Series  |Estimator a IR(3) IR(6) TR(12) IR(24) TR(36) CIR
FR/US LS 982 947 897 804 647 520 55.6
Median- 1.00 1.00 1.00 1.00 1.00 1.00 <«
Unbiased | [97,1.0) | [91,1.0] | [.83,1.0] | [69,1.0] | [48,10] | [.33,1.0] [33.3,]
WG/US LS 982 947 897 B804 647 520 556
Median- 1.00 1.00 1.00 1.00 1.00 1.00 @
Unbiased | [.97,1.0] | [91,1.0] |(.83,1.0]) |{.69,1.0] |[481.0] |[33,10] [333,=]
JP/US 1S 983 950 902 814 663 539 58.8
Median- 1.00 1.00 1.00 1.00 1.00 1.00 ©
Unbiased | [97,1.0] {{91,1.0] | [.83,1.0] |[.69,1.0] |[48,1.0] | [33,1.0] [33.3,@]
CA/US LS 983 950 902 .B14 663 539 58.8
Median- 1.00 1.00 1.00 1.00 1.00 1.00 w
Unbiased | [97,1.0) | [91,1.0] |[.83,1.0] i[69,10] |[48,1.0] |[3310} [33.3,=]
UK/US LS 973 921 .849 720 518 373 37.0
Median- 995 985 970 942 887 835 200
Unbiased | [96,1.0] | [.88,1.0] |[.78,1.0] | [61,1.0] |[38,1.0] |[.23,1.0] [25,=]
NL/US LS 981 944 891 794 631 501 526
Median- 1.00 1.00 1.00 1.00 1.00 1.00 @
Unbiased ! [97,1.0) :[91,1.0] | [.83,1.0] | [.69,1.0f [-48,1.0] [.33,1.0] [33.3,]
FR/WG LS 950 857 35 540 292 158 20.0
Median- 968 907 823 677 458 310 313
Unbiased | [93,1.0] | [.80,1.0] | [651.0] |[4210] | [.18,1.0] [.07,1.0] [14.3,e0]
NL/WG LS 947 549 721 520 27 141 18.9
Median~ 966 901 813 .660 436 288 294
Unbiased | [92,1.0] | [.78,1.0] | [6L1.0] |[37,1.0] |[14,10] {.05,1.0] [12.5,%]

The results of this table are based on Model 2 of Section 2. IR(k) denotes the impulse response function at
time horizon 2. CIR denotes the cumulative impulse response. The entries in the rows labeled LS are the esti-
mates of a, IR(h), and CIR obtained using the least squares estimates of o from the regression equation (2.3)
Model 2. The entrics in the rows labeled median-unbiased are the median-unbiased estimates Gy, IR(k), and
CiR of a, IR(h), and CIR, respectively, defined in Sections 3 and 5. The intervals in square brackets below the
median-unbiased estimates are the 90% central (i.e., p; = p, = .05) confidence intervals introduced in Sections
4 and 5.

The median-unbiased estimates and exact confidence intervals given in this table were determined using
quantiles generated by simulation (with 10,000 repetitions) for the exact sample size of each series. Interpolation
of the quantiles given in Table 3 for sample sizes 150 and 200 produces nearly the same results.
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TABLE 9
VELOCITY AND INDUSTRIAL PRODUCTION SERIES?

Data
Series  |Estimator a 1IR(2) IR(4) IR(8) IR(16) IR(32) CIR
LS 94 88 .78 61 37 4 16.7
Velocity |Median- 10 1.0 10 1.0 10 1.0 ©
Unbiased | [93,1.0] | [.86,1.0] |[.7510] |[56,1.0] |[3L,1.0] | [10,1.0] | [143,%]
Industrial LS 84 7 S0 25 06 004 6.3
Produc- |Median- .89 9 63 39 A5 024 9.1
tion Unbiased | [.79,1.0] | [.62,1.0] | [39,1.0] | [.15,1.0] | [.02,1.0] | [.00,1.0] [4.8,2]
. Durbin- Excess
I B o? Watson {Skewness | Kurtosis
LS 052 -.00032 0045 178 -49 35
Velocity (.035) {.00049)
Median- -.033 00040 0046 1.82 -35 .16
Unbiased | (.014) (.00023)
Industrial LS 043 0066 0096 179 -1.01 1.62
Produc- (.019) (.0022)
tion Median- 044 0045 0096 1.86 -.96 133
Unbiased | (.019) (.00029)

2The top half of Table 9 is analogous to Table 8 except that Model 3 equation (2.3) is estimated rather than
Model 2 equat:on (2.3). The bottom half of Table 9 provides addmonal information. The entries in the rows
labeled LS give the LS estimates of the parameters &, 8, and o? {with standard error estimates in parentheses)
as well as the Durbin-Watson statistic and the sample coefficients of skewness and excess kurtosis from the
regression of Y, on (1,1, Y,_;). The rows labeled median-unbiased report the corresponding statistics from the
regression with a restricted to equal its median-unbiased estimate, i.e., the regression of ¥; - &;5Y,_; on (1, 1).
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FIGURE 1 — Calculation of the Median-Unbiased Estimate &;; Given the Estimate & for Model 3 and Sample
Size 60
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FIGURE 2 — Calculation of the 90% Central Confidence Interval [, é,/] Given a Least Squares Estimate é; ¢y
for Model 3 and Sample Size 60



