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Abstract. The two most fundamental questions in cooperative game theory are; When
a game is played, what coalitions will be formed and what payoff vectors will be
chosen? No previous solution concepts or theories in the literature provide satisfactory
answers to both questions; answers are especially lacking for the first one.

In this paper we introduce the refined bargaining set, which is the first solution
concept in cooperative game theory that simultaneously provides answers to both of the

fundamental questions.

* Some contents here were reported in an earlier manuscript entitled "An Equilibrium
Existence Lemma for N-Person Games and Its Applications” [13]. I want to thank
T. Ichiishi, A. Klevorick, M. Maschler, A. Mas-Colell, H. Moulin, B. Peleg,
H. Scarf, R. Vohra, and J. Zhao for helpful comments during various stages of the
writing of this paper. All remaining errors, however, are mine.



1. INTRODUCTION

MANY PROBLEMS IN ECONOMICS and other social sciences in which people interact in
making their decisions can be analyzed by using the model of a cooperative game. A
cooperative game, Or a game in coalitional form, specifies for every coalition of players
a set of payoff vectors that are feasible for players within the coalition if they agree to
cooperate. Each player is free to decide with whom to cooperate and how to cooperate. A
coalition is formed and a feasible payoff vector is chosen only when the coalition and the
payoff vector are agreed to by all players involved. For such a model to contribute to our
understanding of the problems it is used to analyze, it is important to know what
coalitions will be formed when a game is played and what payoff vectors will be chosen
in each of these coalitions. These are the two most fundamental questions in cooperative
game theory.

Game theortsts usually provide their answers in the form of a solution concept, which
identifies for each game some coalition structures and some payoff vectors that are
consistent with the coalition structures. Almost all existing solution concepts in the
literature are defined, however, for exogenously given coalition structures ( see Aumann
and Dreze [1] for a collection of them ).! Hence, these concepts cannot answer the first
question directly. The argument for using these concepts is that they provide an answer
to the second question given that a particular coalition structure is already formed.
Behind this argument is an implicit assumption that each game is played in two stages: In
the first stage players decide what coalitions to form, and in the second stage players
within each coalition formed in the first stage decide what payoff vectors to choose. This
is made explicit in some theories that try to answer the first question using the existing

solution concepts. In my view, such an assumption is overly simplistic. When a game

1 Ichiishi brought to my attention the paper by Boehm [4] which discussed the core of an
economy with production, which was independent of any particular coalition structure.
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is played, players' decisions about with whom to cooperate and how to cooperate are not
separately made. Therefore, satisfactory answers to the two basic questions must be
simultaneously given in the fashion of general equilibrium analysis. 2

What properties should an ideal solution concept satisfy so that it can provide proper
answers to both questions ? First of alf, it should have its own intuitive content. But
besides that, it also should satisfy the following three properties: (1) It is not a priori
confined to payoff vectors of a particular coalition structure; (2) it always includes some
payoff vectors of some coalition su'uéture; and (3) it does not always contain payoff
vectors of every coalition structure. Such a solution concept would yield for each game
simultaneously and endogenously a selected set of coalition structures and payoff vectors
consistent with the selected coalition structures. Notice, however, that there is a tension
between the second and the third conditions. If the requirements imposed on a solution
concept are too strong, as in the case of the core, then the set of solutions can be empty
for many games. On the other hand, if the requirements are too weak, as in the case of
the Aumann-Maschler bargaining set, then the set of solutions can contain payoff vectors
of every coalition structure for all games. Since every solution concept currently in vogue
in cooperative game theory violates either one or another of the above properties, one has
to wonder whether there exists a solution concept that satisfies all properties.

In this paper we consider a solution concept called the refined bargaining set. This
concept is based on the idea of Aumann and Maschler [2], yet it is formalized in a
~ different way. The addition of an essential nonempty intersection condition (among
others) remedies a basic problem common to all previous versions of bargaining sets. It
makes the outcomes contained in the refined bargaining set far more reasonable than those
in other bargaining sets. To our greatest satisfaction, we are also able to demonstrate that

the refined bargaining set indeed satisfies all three properties listed above. Hence, we

2 This view is certainly not new. It can be found in the paper by Aumann and Dreze [1].
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have introduced into the literature for the first time a solution concept that provides proper
answers to both of the two most fundamental questions in cooperative game theory.

In Section 2 we give the definition of the refined bargaining set for transferable utility
(TU) games, which is independent of any particular coalition structure. We then prove
the main result that the refined bargaining set is nonempty for any TU game, and we
show by a simple example of a game how some unreasonable coalition structures are
eliminated since they never emerge at the refined bargaining set.

We include in Section 3 comparisons between the refined bargaining set and related
works in the literature. First, we compare it to the bargaining sets defined by Aumann
and Maschler, and by Mas-Colell [6], each of which has influenced our work in its own
way. Examples will illustrate the differences between the concepts, which are largely
due to a nonempty intersection condition in the refined bargaining set, and we shall
discuss the significance of the differences. Second, we compare the refined bargaining
set to a few other theories of endogenous coalition formation that go beyond a simple
standard solution concept { Shenoy [10], Hart and Kurz (5}, Bennett [3] ). These two
sets of comparisons strongly show that why the refined bargaining set should be favored.

Our analysis is extended to nontransferable utility games in Section 4. All definitions
and comments made in previous sections apply to non-transferable utility (NTU) games.
Nevertheless, whether the refined bargaining set exists for any NTU game remains an
open problem. We are only able to give several partial answers. First, we provide a
sufficient condition for the existence of the refined bargaining set, which is inspired by
Scarf's work [9] on the existence of the core and, in particular, by Vohra's work [12]
on the existence of the Mas-Colell bargaining set. This condition is used to show that a
large class of NTU games do have nonempty refined bargaining sets. Second, we
consider a concept of the quasi bargaining set which is weaker yet closely related to the

refined bargaining set, and we prove that each NTU game has a nonempty guasi



bargaining set. We hope that these results shed some light on the open problem of

existence of the refined bargaining set for an NTU game.

2. THE REFIND BARGAINING SET OF A TRANSFERABLE UTILITY GAME

Let N={(1,2,..,n} be the set of players and 2V the set of all nonempty coalitions
S ©N. An n-person transferable utility game V in coalitional form is a function from 2V
to subsets of R™. For each coalition S, V(S) Igs » the projection of V(S) on RS, is the
set of payoff vectors that players in § can guarantee themselves if they cooperate. It is

assumed that V satisfies the following conditions: 3

(TU1) V(N} is nonempty, closed, comprehensive (x e V(N) = x - Ri < V(N) ),
and bounded from above (thereisan M >0, ue VIN) N R = u; <M foralli )
(TU2) Forevery S %N, there exists a number v(S) such that V(S)={xe R" |
Zx svSh
ieS§

(TU3) Forevery playeri, b; =v({)>0.

We assume that (TU1)-(TU3) have specified all aspects of a game that are relevant to
our analysis. For example, the fact that a coalition § is not allowed to form ( by law or
whatever the reasons ) is reflected by assigning v(S) some large negative number. Any

form of superadditivity thus is not thought as natural and not assumed.4

3 A TU game in our terminology is more general than a TU game in ordinary terminology
in that it does not have the transferable utility property for the grand coalition N. As we
shall see, it has a great advantage from a technical point of view. Other notations and
definitions are also made as general as possible for later discussion on NTU games.

4 For a more detailed discussion on non-superadditivity, readers are referred to the
paper by Aumann and Dreze [1].



A payoff configuration of a game Visapair { x; Q} = { x,, .., x, ; Sp s Sg b
in which xis a vectorin R?, Q a partition of N, and x e V(Sq) for all Sq in Q. We
often denote a payoff configuration { x; Q } simply by x when there is no confusion. A
payoff configuration {x; Q) is dominated by another one {y; R Yify; >x; foralli.
Notice that the coalition structures of two payoff configurations in comparison can be

different. A payoff configuration {x; Q} is efficient if it is not dominated by others.

DEFINITION 2.1. An objection from S against a payoff configuration x is a pair
(S,y), inwhich ye V(5) and y; >x; forallie §.

A very intuitive solution concept for a game is the core that consists of payoff
configurations against which no coalitions have objections. But except in some classes of
games of special features ( pure exchange games, simple matching games, etc.), the core
of a game 1s usually empty. Hence the core, as a solution concept, is inadeguate for the
investigation of general games in coalitional form.

Aumann and Maschler [2] initiated the study of bargaining sets. The key idea is to
distinguish objections that are justified from the unjustified. Suppose that at some payoff
configuration x a coalition S has an objection to x. It then demands more for its members
from the rest of players by threatening to withdraw from x and make themselves better
off with payoff y. But some players not in S can counter this objection if they can lure
some players in § into a new coalition T to achieve a payoff z that pays themselves no
less than x and players lured away from S no less than y. An objection is justified only
when it cannot be countered. A payoff configuration is then stable if it has no justified
objection. Based upon different formalizations of this idea, various bargaining sets have

been proposed since Aumann and Maschler. In this paper we formalize it as follows.

DEFINITION 2.2, Let ( S, y) be an objection against a payoff configuration x. A

counterobjection from a coalition T against ( S, v ) is a pair ( 7, z ) in which z € V(T) and



(RB) T\S %@, S\T Xx@, andS N"T x@;
(RB2) zj 2x; forallke T\S, andz; 2y; foralil e § NT.

An objection ( S, y ) against x is justified if there exists no counterobjection from any

other coalition T to ( S,y ).

DEFINITION 2.3. The refined bargaining set of a game V, denoted by RB(V), is the

set of payoff configurations against which no coalitions have justified objections.

What constitutes the novelty and the essence of the refined bargaining set is (RB1) in
Definition 2.2 which has three conditions on the initial objecting coalition S and the
subsequent counterobjecting coalition T. First, a counterobjection must be launched by
some player who is not in the initial objecting coalition, hence T \S % @; second, a
counterobjection should not reinforce the initial objection, hence S \T % @; and third, a
counterobjection should nullify the initial objection, hence SN T & @&, We believe that
all three conditions are important for a sensible theory of bargaining sets and that it is the
absence of one or another of these conditions (especially the third) that accounts for the
inability of the current theory on bargaining sets to provide any direct answer to the
question of coalition formation.

Unlike the Aumann-Maschler bargaining set that is defined for an exogenously given
coalition structure and is nonempty for each coalition structure, the refined bargaining set
is defined free of any particular coalition structure and contains payoff configurations of a
selection of coalition structures only. Therefore, it determines endogenously coalition
structures as well as payoff vectors. Coalition structures that do not emerge at any payoff
configurations in the refined bargaining set are thus regarded as incompatible with the

game and eliminated. It can be illustrated by a simple example.



EXAMPLE 2.5. Let V be a 4-person TU game with v(12) = v(34) = 4, and w(S) = IS
otherwise. Its refined bargaining set contains the following payoff configurations: { 2+1,
2-1,2+4s,2-5; <12>,<34>}, 0<t <1, and 0 <5 £ 1. Hence the refined bargaining

set selects { <12>, <34> } as the only coalition structure that is compatible with V.

Of course, it is important to know whether the refined bargaining set exists for every
game. A potential problem with nonexistence could be that for some game we might
eliminate all coalition structures. The most important result in this paper is the following

theorem that shows that the refined bargaining set does exist for every TU game.
THEOREM 2.4. The refined bargaining set is nonempzty for every TU game V.

Before giving a proof of Theorem 2.4, we consider other interesting properties of the
refined bargaining set. Some of them follow directly from the definitions. First, an
objecton from an individual { has no counterobjections since no coalition T satisfies both
{{}\T = @ and {i} M T x @. Hence payoff configurations in the refined bargaining set
are individually rational. Second, an objection from the grand coalition N has no
counterobjections since T \ N = @ for all coalitions T. Hence payoff configurations in
the refined bargaining set satisfy collective rationality at the grand coalition. But this is
short of overall efficiency. The efficiency property of the refined bargaining set deserves

a more careful consideration.

We say that a game V is superadditive at N if P ﬁo V(S,) € V(N) for every
kE

partition & of N. Obviously payoff configurations in the refined bargaining set of a
superadditive V must be efficient. But generally the refined bargaining set of a game can

contain payoff configurations that are not efficient.



EXAMPLE 2.6. Vis a 4-person TU game with v(T) =4 for any coalition T of two
players and v(S) = IS| otherwise. The payoff configuration { (1, 1, 1, 1) ; <1234> }isin

the refined bargaining set, and it is obviously not efficient.

However, the refined bargaining set in this example does have payoff configurations
that are efficient such as { (2, 2, 2, 2) ; <12>, <34> }. In fact, we will see from the proof
of Theorem 2.4 that the refined bargaining set of any game contains at least one efficient
payoff configuration. So even had we imposed overall efficiency in the definition of the
refined bargaining set, we still could have the universal existence result. Some may
prefer doing so since it further restricts payoff configurations in the final solution set. We
refrain from doing so because we are not quite sure about players’ capabilities of
achieving overall Pareto improvements, which usually require changes from one coalition
structure to another entirely new one. They seem too complicated to take for granted.

The properties of the refined bargaining set are summarized in the following theorem.,

THEOREM 2.7. (i) All payoff configurations in the refined bargaining set are
individually rational, and collectively rational for the grand coalition;

(ii) all payoff configurations in the refined bargaining set are efficient for a game that

is superadditive at N ; and at least one of them is efficient for a general game .
The rest of the section is now devoted to a proof of Theorem 2.4.

A Proof of Theorem 2 4.

We begin with games that are superadditive at N. Define for each coalition ScN a
subset O; of Bd(V(N)) as follows:

Og ={xe€ Bd(V(N))| § has a justified objection against x }.



If we can show that there is an x € Bd(V(NV)) \ (SK{N Og), then { x; N} € RB(V). In
€

order to do this, we investigate some properties of {Og) seon that are stated in the form

of three lemmas.

LEMMA 2.8. Ifx; =0, then x € O;;. Obvious from the definition.

LEMMA 2.9. Og is open (relative in BA(V(N)) ) for each coalition S.

Proof. Suppose that O is not open for a coalition S of two players or more. Then
there would be some x, and a sequence {x™) such that x € Og, x™ e Bd(V(N)\Og,
and x™ — x. Since x € Og, there is a justified objection ( S, ¥ ) against x. Because
xM™ — x, (§,y)is also an objection against x™ for large m . Butx™e Ba‘(V(N))\OS
means that ( S, y ) is not a justified objection against x™. Thus for each m there is a
counterobjection 2 € V(I™) from some coalition T against y ( viewed as an objection

against x ) with

(1) T™\S 2@, S\T"x @, andS "NT"x@;
(2) 2 2xP forall ke T"\S§, andz]'2y, forall le SMT™,

Without loss of generality, we can assume 77" =7 for some fixed coalition T since there
are only finitely many coalitions. We also assume that z™ converges to some z because
{z™} is bounded from above through V(T) and bounded from below through x™. That

V(T) is closed implies z € V(T). Hence when we take the limit, we have

(2) z; 2x; forall keT\S, andz; 2y, for allie SMT.

(1) and (2') means that ( T, z) is a counterobjection against y ( viewed as an objection

against x ). But this contradicts that ( S, y ) is a justified objection against x. Q.ED.

The next lemma involves the notion of a balanced collection of coalitions. A collection

¥ of coalitions is balanced if there exist positive numbers A forall § € ¥ such that



2 A =1, forall ie N.
€S
SerF

LEMMA 2.10. s Q_ O; =@ for any balanced collection ¥ of coalitions.

Proof. First notice that if a balanced collection ¥ of coalitions contains no partitions,

then there are two coalitions S and T in ¥ such that

T\S 20, S\T X0, andS N T x0@.

Here is a proof.5 It is obvious when n=2. Assume that it is true for all n < k. Consider
the case n = k. Let 7 = {S\{k) |Se ¥ ). Then #*is balanced. If #* contains a
partition, then by the definition of #* and the condition that ¥ contains no partitions we
can find the desired coalitions. If #* does not contain a partition, then we can find the
desired coalitions by the induction hypothesis.

Now suppose that there is an x € Bd(V(N)) and a balanced collection of coalitions F
such that every coalition in ¥ has a justified objection against x. V is superadditive at N
implies that F does not contain a partition. Find coalitions S and Tin ¥ such that T \S

%0, S\T %@, andS M T X . Given that § has a justified objection y against x,

the excess of T at x must be less than that of S, i.e., w(T) - .ETxi <v(S) - _):Sxi. For
lE 1€

if it is not, we define z by

z; =x; for ie T\S, and 3;=y; for le SMT,

then (7, z ) would be a counterobjection against ( S, ¥ ) since

Yz = X x;+ X y

iceT i€eT\S V' ieTns™}
= 2 X+ X yv+ Xy - Xv+ T -3 x
ieT\§ } seTnsy‘ ieS\Ty‘ ses\ry' i€TNS b ieTns ¢

3 1thank Peleg for allowing me to use his simple proof here.
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|

Tx;+ 2y - X .- X x,
ieT +  ie§ i i(-:.’i\TyI ieTns ¢

< Zx;+Xy - X x - X x
ieT el ieS\T ieTS

IA

JEET xi + V(S) - I_Es xi
< y(T).

But the same argument also leads to the conclusion that the excess of S at x must be less

than that of 7. We thus have a contradiction. QED.

We now map Bd(V(N)) M R” homeomorphically onto the standard (n-1)-simplex

n
AN={peR"lp, 20, and2p5=1} by g.
i=1

Given that V() is comprehensive and bounded from above and that V is superadditive at

N, itis easy to check that g is indeed a homeomorphism. Denote by g(Oy) the image of

O under g. So far, Lemmas 2.8 - 2.10 prove three properties of {g(O)} ¢ N :

(a) aMD = g0y forall ie N; where &Mil={pe AV p; =0};
(b) (O ) is open ( relative in AV ) for each coalition S < N; and

(c) SQF 2(0 §) = @ for any balanced collection Fof coalitions.

To complete the proof, we need yet one more lemma on open coverings of a simplex.

LEMMA 2.11. If {C; }s N is a family of open sets of AV that satisfy AWM Ci)
forall ie N, and SK{N Cs = AN, then there is a balanced collection of coalitions ¥ such
€

M
that s C; % 0.
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Proof. Scarf {9] proved the lemma under the identical assumptions except that all sets

involved are closed. In the case of an open covering {C; }¢ v, we take an £> 0 and

consider for each coalition S a closed set defined by

Fo = {xeaV | dist (x, ANC)2¢ ).

5

It is obvious that F is a closed subset of C; for each S. Since 4V and AV are

cornpﬁct, so if we choose an £ small enough, then we still have ANM) c F (1) for each i

and SK{N Cs = AN, Thus Scarf's result implies that there exists a balanced collection of
€

. ~ s ~
coalitions ¥ such that & Fg %@, whichin turn leads to s Cs 50. QE.D.

Now given that {g(Q)}¢.onv satisfy (a)-(c), Lemma 2.11 immediately leads to the

conclusion SL{N g(0) = AN, Since g is a homeomorphism between Bd(V(N)) N R7
€
and 4V, we have ské'v Og %Bd(V(N)). Thus RB(V) % @ because { x; N} € RB(V)
E .

for any x € Bd(V(V)) \ (M O5) .

The proof of the existence of the refined bargaining set of a general game V is now

straightforward. For any game V, we construct an auxiliary game ¥ :

V(S) = v(§), forall ScNbutS XN, and

= U m * - . - -
176 op s b V(S,), in WthhP is the family of all partitions of N.

Since the only change made is to P(), V is still a TU game in our terminology. It is
obvious that ¥ is superadditive at N. Thus there is an x € Bd(V(V)) such that {x;N)e
RB(V). -But Bd(V(\V)) is precisely the set of all efficient payoff configurations. Hence,
if Q is a coalition structure of N that generates x, then { x; Q) belongs to the refined

bargaining set of V. Q.ED.
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3. COMPARISONS WITH OTHER WORKS IN THE LITERATURE

The discussion in this section is largely expository. Since the refined bargaining set
uses the basic idea of Aumann and Maschler that is behind all variants of bargaining sets,
it is important to see what the distinct features of the refined bargaining set are and how
significant they are. We choose to illustrate them in comparisons with the bargaining sets
by Aumann and Maschler {2], and by Mas-Colell [6]. Also, since one main motivation
behind the introduction of the refined bargaining set is to provide a solution concept that
endogenizes coalition formations, we will compare it to few theories by other authors on

the same issue.

3.A. COMPARISONS WITH THE OTHER BARGAINING SETS

Although we use in the refined bargaining set the same idea Aumann and Maschler
used in their original bargaining set M{", our formalization of this idea has several major
differences from theirs.

In the refined bargaining set objections and counterobjections are defined through

coalitions of players, while in M 5") they are defined through individual players. A pair
(S, v) that is an objection against some u is considered in M{? as an objection of any
player in § against any player not in S. It thus has many identities. It is justified in M{)
as long as there are some i € S and j € S such that j has no counterobjection against it
when viewed as an objection of i against j. Hence it allows a coalition to justify its
objection by choosing cunningly a particular representative and a particular target. But
such a manipulation should not be successful if the players outside the coalition are
sophisticated enough. We believe that it is more reasonable to assume that an objection

( S, v ) is justified only if forall ie Sandj & S, jhas no counterobjection towards i,
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which is equivalent to the first two conditions in (RB1) of Definition 2.2. The following

example is an illustration of this difference.

EXAMPLE 3.1. Let V be a 4-person TU game with v(23) = v(34) = v(42) = 4.1,
v(1234) = 6, and v(S) = 1 for others. Take any payoff configuration { x; <1234>) in the

Aumann-Maschler bargaining set M§‘7(1234). Since x; 2 I foreach i and Xy + Xy + X5
+x,=6, x,+x3<4. Nowif x, > 1, player 2 can raise an objection against 1 through
coalition <23> to which 1 has no counterobjection. Hence, x, =1 for any { x; <1234> }

in M{?(1234). But the refined bargaining set contains many other payoff configurations.

For instance, it contains { ( 1.5, 1.5, 1.5, 1.5 ); <1234> }. This is because when 2 has
an objection against 1 through coalition <23>, 1 can count on 4 10 counterobject even
though he has no counterobjection of his own. We believe that this is a very plausible
outcome. Player 1, on the one hand, is the weakest among all judging from marginal
contributions to various coalitions; but the rest of the players, on the other hand, are
severely hurt by their conflicts { which are reflected by v(23) = v(34) =v(42) =4.1, and

v(123)=1). Hence 1 can take advantage of the latter factor and gain considerably!

Some readers might not share our view on this point. Also some might think that if
this were the only difference, then the refined bargaining set would simply enlarge the
Aumann-Maschler bargaining set. What really makes the refined bargaining set different
from the Aumann-Maschler bargaining in an essential way is the following point.

It is required in the refined bargaining set that the objecting and the counterobjecting
coalitions have a nonempty intersection. But it is not so in the definition of the Aumann-
Maschler bargaining set. As we have argued in the last section, such a requirement is
conceptually indispensable. Here we further discuss some undesirable features of the
Aumann-Maschler bargaining set that are consequences of the lack of this nonempty
intersection requirement. First, the Aumann-Maschler bargaining set has no intrinsic

linkage to coalition structures. The key result by Peleg [7] states that for any non-
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negative TU game the Aumann-Maschler bargaining set M{)(Q) is nonempty for every
coalition structure Q. It exists even for obviously unreasonable coalition structures.
Hence it does not select coalition structures endogenously as the refined bargaining set
does. Second, even for a reasonable coalition structure it includes many unreasonable

payoff configurations .

EXAMPLE 3.2. V is a 5-person TU game with v(12) = v(34) = v(45) = v(35) = 4.1,
v(12345) = 10, and v(S) = 1 for all others. The payoff configuration {(2,2,2,2,2);
(12345) } belongs to the Aumann-Maschler Bargaining set M{?(12345). But intuitively
this is not a reasonable outcome. If players 1 and 2 leave the grand coalition and get 2.05
to each, players 3, 4, and 5 can do nothing to undermine it. Hence a reasonable payoff
configuration should give players 1 and 2 a total of at least 4.1. Many configurations in

M{?(12345) do not satisfy this property. In contrast, all configurations in the refined

bargaining set do satisfy this property. 6

Of the two differences that the refined bargaining set has with the Aumann-Maschler
bargaining set, the first makes counterobjections easier in the refined bargaining set but
the second makes them more difficult. Hence, there is no set inclusion relation between
the refined bargaining and the Aumann-Maschler bargaining set. At the conceptual level,
although it is arguable which has a better view concerning the first difference, it is no
doubt that the refined bargaining set represents a much sounder approach concerning the

second and essential difference. Another important point is that in the Aumann-Maschler

6 It may be worth mentioning that { (2, 2, 2, 2, 2); (12345) } is the nucleolus for this
game and ( 1.85, 1.85, 2.10, 2.10, 2.10 ) the Shapley value, both of which are not in
the refined bargaining set. Hence, it is in general impossible to have an algbraic proof
for the nonemptiness of the refined bargaining set. This shows that the refined bargaining
set and Theorem 2.4 are technically deeper than the Aumann-Maschler bargaining set and
the corresponding existence results.
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bargaining set of any coalition structure, players across the coalitions cannot bargain with
each other; therefore, itis a concept for exogenously given coalition structures. While
the refined bargaining set places no restrictions on bargaining players. Hence, in our
judgement, the refined bargaining set is an overall more satisfactory soluﬁon concept than
the Aumann-Maschler bargaining set.

~ Another recent version of a bargaining set was proposed by Mas-Colell [6], in which
objections and counterobjections were entirely defined through coalitions ( Shapley and
Shubik [11] earlier considered a similar bargaining set but to a lesser extent ). However,
a very serious weakness of the Mas-Colell bargaining set is that it imposes none of the
three conditions in (RB1) on a counterobjection. Thus it is very difficult to make sense of
a counterobjection defined there. Qur criticisms on the Aumann-Maschler bargaining set
clearly applies to the Mas-Colell bargaining set as well. Even Mas-Colell himself pointed
out that "the really serious problem is that the set is too large.” 7 In fact, it is almost a
superset of both the refined bargaining set and the Aumann-Maschler bargaining set. It is
not exactly so only because it requires that at least one inequality in (RB2) must be strict.
Of course, we could have required the same in the refined bargaining set. But we did not
do it for the following reasons.

First, the refined bargaining set, as a correspondence, is upper-hemi-continuous for
suitable topologies on the set of all games, such as the closed-convergence topology. If
one wants this property, considered by many as a necessity for a reasonable solution
concept, then one has to be content with weak inequalities. The Mas-Colell bargaining
set, on the other hand, is not upper-hemi-continuous as shown by Ekample 2.2 in Vohra

[12]}. Second, if one wants to prove for a general game the existence of the refined

7 But keep in mind that the emphasis of Mas-Colell's paper was not on the bargaining set
pre se. The primary result there was the equivalence of his bargaining set and Walrasian
equilibrium allocations in an atomless exchange economy. So an enlarged bargaining set
only makes the equivalence result even stronger.
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bargaining set with (RB1), then again one has to be content with weak inequalities. The
existence of the Mas-Colell bargaining set was proved only for games with a weak
superadditivity property ( Vohra [12] ). Third, in most games the requirement of at least
one strict inequality shrinks the refined bargaining set only marginally anyway. 8

3.B. OTHER THEORIES OF ENDOGENCUS COALITION FORMATION

There have been few theories in the literature that address the issue of endogenous
coalition formation. Here we briefly discuss those theories by Shenoy [10}, Hart and
Kurz [5], and Bennett [3], and compare them with our theory based on the refined
bargaining set. Noticeably, all these theories were constructed beyond a simple standard
solution concept. It seems that their authors never believed that any standard solution
concept could have a chance at endogenizing coalition formation,

In Shenoy's theory, one first chooses a solution concept with coalition structures and
calculates the solution sets for all coalition structures. One then uses these solution sets to
induce a dominance relation on coalition structures and select the undominated ones as the
only likely coalition structures for a game. In his paper {10], Shenoy also illustrated the
theory using the Aumann-Maschler bargaining set as the solution concept. We find two
major defects with Shenoy's theory. First, by choosing a solution concept with coalition
structures, the theory implicitly accepts the faulty two-stage assumption mentioned in the
introduction. Second, the theory was actually more of a suggestion in that it was never
carried out for any chosen solution concept. Choosing the Aumann-Maschler bargaining
set as the solution concept, Shenoy was only able to show that for any three-player game

there exists an undominated coalition structure. No one has ever reported more successes

8 A precise formulation of this statement was contained in Zhou [13].
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since. Itis believed that there are games for which every coalition structure is dominated
according to Shenoy' theory. In this case, all coalition structures are eliminated!

Hart and Kurz's [5] theory of endogenous coalition formation is quite different from
other approaches including ours. Their view was that "the reason coalition forms in not
in order to get their worth, but to be in a better position when bargaining with the others
on how to divide the maximal amount available (i.e., the worth of the grand coalition,
which for superadditive games is no less than Ev(Bk))." Although this view has a point
for superadditive games, it does not apply to games that are not superadditive. But it is
precisely the lack of superadditivity that to a large extent leads to the issue of endogenous
coalition formation. This was missed in Hart and Kurz's theory. Finally, even taken as
a theory of endogenous coalition formation for superadditive games, it still possesses the
same two shortcomings that Shenoy's theory has.

The aspiration approach by Bennett [3] offers yet another theory of endogenous
coalition formation. Unlike standard solution concepts that select feasible payoff vectors
for a game, various aspiration solutions specify various prices demanded by the players.
These prices are realizable in the sense that each player belongs to a coalition which can
pay all of its players their demanded prices. The theory concludes that “the coalitions
which can afford to pay these prices are the coalitions which are predicted to form in the
game.” But we have strong reservations towards this theory. It is known that generally
these demanded prices are not feasible for any coalition structure; therefore, they cannot
be realized simultaneously. When some coalitions which can afford to pay their players
form, there must be other players (possibly many) not in these coalitions who cannot get
their demanded prices. The theory says nothing about what they will do and how much
they will get. Hence, the theory is clearly incomplete. Furthermore, itis no doubt that
what these players will do and how much they get should have an effect on players in
those supposedly formed coalitions. Hence, even the theory's prediction on those

coalitions and players is also highly questionable.
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To summarize, all theories of endogenous coalition formation reviewed have various
shortcomings. On the other hand, the refined bargaining set offers a much simpler yet
far more satisfactory theory. Of course, we do not mean that the problem of endogenous
coalition formation is actually solved by our approach. Any complicated problem like
this cannot be solved by any single solution concept, and as a matter of fact, not even by
any single theory. However, we have shown that it can be approached by the refined
bargaining set, and we do believe that the refined bargaining set represents a good

starting point for a more satisfactory theory.

4. REFIND BARGAINING SETS AND NON-TRANSFERABLE UTILITY GAMES

In this section we extend the analysis to nontransferable utility games. An n-person
nontransferable utility game V in coalitional form is a function from 2V to subsets of R”.

It is assumed that V satisfies the following conditions:

(NTU1)} For each coalition §, V(S) is nonempty, closed, comprehensive, bounded
from above, and it is a cylinder ( x € V(§), x;=y; forallie § = ye V(§5));
(NTU2) Forevery i, thereisab; >0, such that V({i})={xe R" | X; b ).

The definitions of objections, counterobjections, and the refined bargaining set are
the same as in Section 2 since they all were defined through V(S) without any reference to
the transferable utility property. However, the existence of the refined bargaining set of
a NTU game remains an open problem. We do not have a proof of it yet, nor do we
have any example of a game with an empty refined bargaining set. Given the arguments
we have had in favor of the refined bargaining set, this is certainly an important problem
to be answered. In this section we provide some partial answers that may shed some

lights on solving this open problem.
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4.A. A SUFFICIENT CONDITION FOR A NONEMPTY REFINED BARGAINING SET

If we examine the proof of Theorem 2.4 closely, we can find a sufficient condition
for the existence of the refined bargaining set of a NTU game. In fact, Lemma 2.10 was
the only place in the proof where the transferable utility property was used. It states that
for an efficient payoff configuration x of a TU game the collection of coalitions that have
justified objections against x does not have a balanced subcollection. We can no longer
prove this for a general NTU game. However, if we simply assume it, then it implies

the existence of the refined bargaining set.

DEFINITION 4.1. A NTU game V is RB-balanced if for any efficient payoff
configuration x the collection of the coalitions that have justified objections against x does

not have a balanced subcollection.
THEOREM 4.2. Any RB-balanced game V has a nonempty refined bargaining set.

The proof of Theorem 4.2 is the same as that of Theorem 2.4 since Lemma 2.10 is
now replaced by the assumption of RB-balancedness. This result is analogous to that by
Scarf [9] on the existence of the core and that by Vohra [12] on the existence of the Mas-
Colell bargaining set. Its main weakness is that the condition of RB-balancedness is not
intuitive. But before there is a complete answer to the question of the existence of the
refined bargaining set, this approach is still the most powerful one.9 Here we show that

an important class of NTU games are in fact RB-balanced.

DEFINITION 4.3. A NTU game V is called a pairwise NTU game if it satisfies

(PNTU3) for every coalition § with 2 < ISI <»n, there is a number v(S)

9 To appreciate this point, readers are reminded that even though Theorem 2.4 deals
with TU games only, it is still necessary to adopt our approach or at least some form of
fixed-point argument ( see footnote 6 ).
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suchthat V()= {x e R" | EZS x; <v(S) ).

A pairwise NTU game best describes a situation in which cooperation between any
two players is quite successful and can take place in a nonlinear fashion, but cooperation
with more parties involved has to depend on a common medium of exchange, say
money. The class of pairwise NTU games is reasonably rich: It contains all TU games,

all games with three players, and all games of pairs ( Peleg [8] ).

THEOREM 4.4, Any pairwise NTU game V is RB-balanced, thus has a nonempty
refined bargaining ser.

Proof. As in the proof of Lemma 2.10, we have to show that for any x € Bd(V(\))
and any two coalitions Sand Twith T\S&x @, S\Tx@, andS M T % @, itcannot
be true that both § and T have a justified objection against x,. When both S and T have
more than two players, the proof of Lemma 2.10 applies. When either has two players,
the conditions on S and T imply that § T contains a single player. It is then obvious
from the definition that at most one of § and T can have a justified objection against x.

QE.D.
4.B. THE QUASI-BARGAINING SET

Here we consider another weaker version of the refined bargaining set for which the
existence is guaranteed. The basic idea is as follows. Once a payoff configuration x is
listed, players may try to form coalitions and raise objections against x. The question is
what coalitions and objections are most likely to emerge, especially when various
coalitions have to compete for some players in common. Obviously, if a coalition has an
objection that gives each of its players more than he can ever get by participating in other

coalitons, then such an objection is very stable and it definitely defeats x. But if there is
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no such an objection, then it is not clear what coalitions will be formed and what
objection will be raised. In this case, one might believe that no coalition will be able to

raise any objection. This is formalized by the next definition.

DEFINITION 4.5. Let ( S,y ) be an objection against x. A QB-counterobjection from

another coalition T to ( S,y )isapair(7, z)in whichze V(T) and

(QBI) T\S %@, S\T x@, andS NT x0;
(QB2) z; 2xj, forallke T, andz; 2y; foratleastone I € § NT.

An objection ( S, y ) against x is strongly justified if there exists no QB-counterobjection
from any other coalition T to ( S, y ). The quasi-bargaining set of a game is the set of all

payoff configurations against which no coalitions have strongly justified objections.

The proof of the existence of the quasi-bargaining set is the same as the proofs of

Theorems 2.4 and 4.4. We leave it to the readers.
THEOREM 4.6. Any NTU game V has a nonempty quasi-bargaining set.

Of course, many payoff configurations in the quasi-bargaining set are unreasonable.
Some of them could be dismissed through further refinements. But this does not mean
that we should dismiss the quasi-bargaining set as a meaningful concept, at least not
now. Since it is obvious that payoff configurations not in the quasi-bargaining set are not
plausible, the quasi-bargaining set at least eliminates some coalition structures that are
incompatible with a NTU game just as the refined bargaining set does to a TU game.
This feature is not held by any other existing solution concepts of NTU games. Before
we can prove the existence of the refined bargaining set or any other reasonable solution
concepts with the same feature for a general NTU game, the quasi-bargaining set is the
only solution concept that endogenously provides some answers to the two fundamental

questions in game theory.
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