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Arithmetic Repeat Sales Price Estimators

Abstract
Repeat sales price estimators are designed to infer price indexes of
infrequently sold and unstandardized assets, such as houses, based only on
changes in prices of those individual assets that are observed to be sold
twice. Repeat sales price estimators are proposed here that are arithmetic,
and either value-weighted or equally-wejghted. Moreover, variants are
proposed that are interval-weighted, i. e., that correct for a form of
heteroskedasticity, and that include additional regressors representing
changes in hedonic variables. Some of these methods are applied to data on

house prices in Atlanta, Chicapgo, Dallas and San Francisco 1970-1986.
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Until now, repeat sales price estimators have provided estimates that
are essentially equally-weighted geometric averages of individual prices.l
It is well known that the geometric average of any set of positive numbers
not all equal is less than the arithmetic average of them.2 Portfolios of
assets have values that are related to arithmetic, not geometric, averages
of prices. Moreover, the geometric averages of house prices do not give
more weight to the more valuable houses; they are equally weighted indexes
rather than value-weighted indexes. The weighting may make a difference to
the estimated index if price changes in more valuable houses are different
from price changes in less wvaluable houses,

Those who wish to study the covariances between housing prices and
prices of other assets for the purpose of constructing a well-diversified
portfolio would prefer to use an arithmetic index that represents the value
of a portfolio of housing, and may prefer to see a value-weighted index that
provides an index of the total value of real estate,.

Goetzman [1990] has proposed an estimated index of housing prices that
is produced by first forming a geometric repeat sales index and then
correcting this index by multiplying by a factor that depends on the cross-

sectional variance of asset prices. The correction factor may be motivated

lThere has recently been a great deal of interest in developing better
price indexes for housing and other nonstandardized assets. For example,
repeat sales price estimators have been studied in connection with housing
prices by Abraham and Schauman [1990], Case and Quigley [1990], Case,
Pollakouski, Quigley and Wachter [1991], Case and Shiller [1987], [1989},
Mark and Goldberg [1984], Pollakowski and Wachter [1990) and with art
prices by Goetzman [1990].

2The arithmetic average of a set of n numbers is their sum divided by
n; the geometric average is the nth root of their product; see Ito [1987],
p. 807, for a discussion of inequalities.
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either by truncating a Taylor series expansion or by assuming cross-
sectional variation in log housing price changes is lognormal.

ﬁhile Goetzman's method appears to be serviceable, I propose here
arithmetic repeat sales estimators that are simpler and more direct than
his, and that do not rely on approximations or lognormality assumptions.
There are several variations on the arithmetic repeat sales estimators: the
value-weighted arithmetic repeat sales estimator (VW-ARS), the equally-
weighted arithmetic repeat sales estimator (EW-ARS), and the interval-
weighted and hedonic-variable-augmented wvariations on these.

The different variants may serve different purposes. For example, the
value weighted arithmetic repeat sales (VW-ARS) estimator gives an index of
the price of the aggregate stock of housing, an index of the value of an
investment in a portfolio of all real estate, whose value is more influenced
by the appreciation of the more valuable houses in the portfolio. The
equally-weighted repeat sales (EW-ARS) estimator gives an index of ﬁhe value
of a portfolio that is more concentrated in smaller houses, holding equal
dollar amounts of houses in each value category.

The differences among these different estimators may often be small, if
the cross-sectional variation of prices is not too large, as we shall see in
some examples below. However, the differences are not negligible in our
examples, and in principle the differences between geometric and arithmetic
indexes could be enormous. If there were ever an observation of a price
equal to zero for one house, the geometric index, related as it is to
products rather than sums of numbers, would be zero for that period, while
the value of a portfolic of houses might hardly be affected by the zero. If

a single house is sold for one dollar (as sometimes happens) this would,



unless sampie size is very large, have a devastating impact on a geometric
index, but not on an arithmetic index. The alternative indexes proposed
here are no more difficult to calculate than the gecmetric; in fact they are
more natural analogues to familiar indexes, such as stock price indexes,
than are the geometric indexes. It is thus worth getting the index
calculations right; practitioners may want in most applicétions to use cone
of the methods proposed here rather than the geometric estimation methods.

I assume throughout that there are n cbservations of repeat sales of
individual assets (let us say, houses), 2n sales in total. Each observation
consists of the first sale price’ the time period of the first sale, the
second sale price of house i, and the time period of the second sale. I
suppose that the time period is sufficiently long (let us say, monthly) so
that there is at least one sale in each time period, where there are T+l

periods in the sample, numbered from t = 0 to t = T.

I. The Simple geometric repeat sales (GRS) price estimator.

I begin with a review of the geometric repeat sales estimators in use
today. The Bailey-Muth-Nourse procedure, here called the geometric repeat
sales or GRS procedure, estimates an index of log prices by regressing log
price changes on a matrix of dummy variables. The matrix of independent
variables is the n x T matrix Z whose ifjth element is -1 if the first sale

of house i occurred in period j, is 1 if the second sale of house i occurred



in peried j; and is zero otherwise.3 The first column of Z corresponds to
t = 1: there is no column for t = 0 since the estimated (log) index will be
zero at t = 0 (the base year) by construction, so that its antilog will be
one at t = 0, The dependent variable vector y has ith element equal to the
change in log price for the ith house, using pij - ln(Pij) where Pij is the
price of the ith house at time j. The model to be estimated asserts that y
- Z1_+ e, where the ith element of 4 is the log price index for time t, and
for the purpose of computing standard errors it is assumed that the elements
of the vector of error terms e are independent of each other, reflecting the
notion that individual house price variations unrelated to the city-wide
variations are due to idiosyncratic value changes. Then the estimated log
price index for time t is the tth element of the ordinary least squares
regression coefficient vector ; - (Z'Z)“lz'y.

1f the change in log price of a house is given by the change in a true
city-wide price index vy plus a zero-mean error term that is uncorrelated
with the error terms associated other houses, and if the wvariance of this
error term is the same for all houses, then the standard error matrix of ;
has the usual form 52(2'2)-1. The assumption that the error term has zero
mean implies that the true vy to be estimated is a geometfic, not arithmetic
index. Moreover, the Gauss-Markov theorem applies and the estimator ; is

best linear unbiased. In practice, it is likely that the variance of the

error term depends on the interval between sales, implying that a more

3The same GRS estimator can be written in another way, so that the
estimate is a vector & of estimated changes in the log price index; it is
produced by regressing the same vector y on a matrix Z_ whose ijth element
is 1 if house i was between sales at time j, i. e., time j was after the
first sale but nokt after the second sale. The vector of estimated
coefficients is Sy where S is a TxT lower triangular matrix with ones along
the main diagonal and -1 along the first off diagonal.
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efficient estimator is a weighted regression, to be discussed below. But
one might still desire to use the simple GRS estimator if one does not
accept this model, or if ome values simplicity and ease of understand-
ability. Other published price indexes are also simple indexes that do not
involve weighting of observations.

For an example of the estimator, let us consider, for simplicity, an
extremely small data set consisting of only five houses, and only three time
periods, 17 e., two index values to estimate. Suppose houses 1 and 2 were
each sold in periods 1 and 2, houses 3 and 5 were each sold in periods 0 and

1, and house 4 was sold in period 0 and 2, then we have:

-1 1 Py,-P
11 P25 Py
(1) Z - 1 © y = Paq-P
31" P30
0 1 P, P
1 o 42 Pao
P517Psg

L3

The normal equations Z'Zy = Z'y for the GRS estimator are easily
interpreted: the ith equation gives the estimated log index for the ith
period as the average log price of all houses sold in that period minus thé
average of their base-period log price inferred from their other sale price

using the estimated index. In this example the normal equations are:

(2) v, =Pl Pt Pyt Py . _(Pyp m M) * (Byy " 7p) * Pyp * Psg
4 4 .

(3) v, = P2t Pp tPup . gyt M) * Byym M) Ry
3 3

A

The first normal equation, the equation for Yy the index for period 1, is

based on the four houses scold in that period, two of which (houses 3 and 5)
5



had their other sales in the base period, and two of which (houses 1 and 2)
had their other sales in period 2, which had to be corrected by subtracting

A

T to infer a base period price. The second normal equation, the equation
for ;2, is an average of the log prices of the three houses that were sold
in period 2 minus the average inferred log price of these three houses in
period 0. |

Note that the estimated log price index is based on averages of log

priée changes of individual houses, so that if we take exp(y) as an index of

the level of housing prices, then this index is based on geometric averages

of individual house price relatives.

I1., The Value-Weighted Arithmwetic Repeat Sales (VW- timator

| An arithmetic estimator that is entirely analogous to the GRSQ can be
obtained by defining a matrix of independent variables X by Xij equals miﬁus
the price of the first sale of house i if the time of the first sale was j,
equals the price of the second sale of house I if the time of the second
sale was j, and zero otherwise. The vector Y of observations on the
dependent variable is given by Yi equals the price of the first sale of

house i if the first sale was in period 0, and is zero otherwise. Moreover,

4The simpler expedient of replacing logs of prices with their levels in
the GRS estimator would not be desirable, since we expect that it is more
likely that the percentage change in house prices, rather than the absoclute
change, may be constant across houses of different values. The resulting
estimator would not effectively control for the change in mix of houses
through time; if larger or better houses are sold at one time than at
another, the estimator would show a larger price increase, even if all
houses appreciated at the same rate. The different expedient of replacing
log differences with percentage changes in the GRS estimator runs afoul of
compounding problems; ten-year growth percentages are in effect treated as
simple sums of two consecutive five-year growth percentages.
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let us define a vector B whose ith element is a reciprocal price index for
time i, equal to the estimated price at time zero divided by the estimated
price at time i. By estimating reciprocal price indexes, rather than price
indexes themselves, we have that the elements of X8 are all based on prices
expressed in base-year units.5 Here, the base period, as with the GRS
index, will again be period 0, but now the index at time 0 is 1, not zero.

In the example here, one may write the X and Y matrices as:

Py By 0

Por Py 0

4y X = P 0 Y «| p
T 230
0 r42 P40
51 50

Note that this X matrix has zeros in the same places as did Z, replaces -1
with minus a price and replaces +1 with a price.
Let us call the error term uy the price of a house on its second sale

date j times a& true city-wide reciprocal price index 8, on that date minus

h|
the price of that house on its first sale date times the reciprocal of price
index Bi on that sale date. The vector of error terms is then u = Y - Xg.
We will suppose, as before, that these error terms are uncorrelated across
houses, reflecting individual house price variation alone. Now, one could
conceive of taking an estimate of the vector B as an ordinary regression
coefficient vector (X'X)'1X’Y, but since there are stochastic independent
variables, there is an errors in variables problem, Let us take instead an

~
instrumental variables estimator 8 = (Z’X)-IZ'Y, where Z is as defined in

5Using the price index itself rather than its reciprocal suggests an
ARS estimator where the inferred missing prices in the normal equation are
given nonunitary weights,



the preceding section, or equation 1.6 Under the assumptions that
plim(Z'u/n) = 0 and plim(Z'X/n) is nonsingular, then 5 will be a consistent
estimator of . That plim{Z‘u/n) = 0 is a representation of the assumption
that B is an arithmetic, not geometric, index.

The normal equations Z'X; = Z'Y have an interpretation analogous to
that of the GRS estimator except that the estimator is now based on
arithmetic instead of geometric averages. The ith diagonal element of Z'X
equals the sum of all prices of homes sold in period i. The ijth element, i
» j, of Z'X is minus the sum of all j-period prices of houses sold both in
period i and period j. Thus, the ith normal equation gives the index for
period i as the mean ﬁrice of all houses that were sold in period i divided
by their mean price in the base period, where base-period prices of those

houses not actually sold in the base period are inferred from their other

prices using the estimated index. In our example, these normal equations

are!:
- Pt Bt Bty
{5) ﬂl - Index1 - . _
PoF1a + BaPpp + By * Bgy
.1 Fro* By * By
(6) ﬂ2 = Index2 -

AP * PPt By
If follows from these normal equations that should there be any time

period 1 in which all houses sold in that period were also sold in period O,
then the index in that period is the same as a value-weighted arithmetic

price index: it is (dividing both numerator and denominator of (5) and (6)

6There would be no effect on the estimates if the ZD of footnote 3 were
used in place of Z.
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by their respective number of elements in the summation) the ratio of the
average price of these houses in period i to the average price of these
houses in period 0.7

The estimated index also has an interpretation in terms of the wvalue of
a portfolio consisting of all houses, The index in period i is an
estimated value of the portfolio of all houses in time period i divided by
an estimated value of the portfolio of all houses in period 0. The
denominator of the index, the estimated value of the portfolic of all houses
in period 0, is made using the price in period 0 of all houses, or, when
period O prices are not observed, an inferred priée using the index and the
price observed closest to period 0. The numerator of the index for period
i, the estimated value of the portfolio of all houses in period i, is made
using for each house the price observed in period i, or, failing that, a
price inferred using the index from the price observed closest after period
i, or, failing that, a price inferred using the index and the price used in
the denominator. To see that the estimator has this Iinterpretation, it is
helpful to use a transformation of the normal equations Z'X = Z'Y written8

as follows. Let us also, for illustrative purposes, suppose that there was

Note that if we next constructed the corresponding equation for the
base year t = 0, the mean of prices of all houses sold in period 0 divided
by the mean of their other sale prices each deflated by the estimated index
for the period of this other sale, then this base year index value equals
one by construction. This would not generally be true if we used median or
mode Iinstead of mean as a measure of central tendency in the numerators and
denominators of (5) and (6); this discrepancy in the base year indicates the
kinds of conceptual problems one faces 1f one replaces means with these
other measures of central tendency to try to derive median- or mode- based
repeat sales price indexes.

8This interpretation uses a linear combination of the normal equations,

or more simply, the normal equations ZD’X - ZD'Y, vwhere ZD is as defined in
footnote 3.



a sixth house that was sold only once, in period 1; we will include it in
the portfelio although it will not affect the estimated index. The normal

equations (5) and (6) are thus rewritten in the form:

. Byyt Bort Byp +6,P,0/8) + Bgy 4Py

(5') ﬁil - Index; =

A

B1Pyyt B1Ppq * Pyg + Pyt Pgg + B1Pgy

A

_1 P1o¥ Bag ¥ F3o/By ¥ Byp * P5o/Byt BPey/Py
(6") ﬂz - Index2 -

BiPy1* ByPort Bagt Bug + Pgg + B Py,

Standard errors of the estimator should take account of the
heteroskedasticity of the errors u = Y - X8, a heteroskedasticity
potentially related to the rows of Z. For example, repeat sales where the
interval between sales is a long one may show a lot of error, due to drift
in the value of the individual home. An asymptotic standard error of the

~
estimate B that takes account of this is given by:9

()  var(g - p) = (z'%) xrz)!

n A A
- [ [
where V iflz iuiui Zi

and where ; -Y - X;. If, as we suppose, homes with a larger interval
between sales tend to have errors uy with a larger squared value, then this
will tend to affect var(g - B) and this may cause it to show substantially
different elements than if this heteroskedasticity were not properly

accounted for. Standard errors for the growth rate of prices from

9White [1984], Theorem 4.26 p. 69 and p. 136.
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t to t+k can be inferred by a lirearization, giving standard error equal to

2

~ 2 " » 4 ~on 3 ~
Se. /By St+k,t+k(‘8t / By ) - 2S1:,1:+k(ﬁt/‘9t+k ) where S = var(g - §).

e Equally-Weighted Arithmetic Repeat Sales (EW-ARS) Estimator

The error terms Y - Xp are likely to have variance that depends on the
price. More valuable houses have larger price movements. To obtain an
equally-weighted arithmetic repeat sales (EW-ARS) estimator, we may divide
each row of the matrix X and Y by the price of the first sale corresponding
to that row, thereby converting the error term Yi - Xiﬁ from a levels error
to a proportional error, and weighting each asset, each house, the same.

An advantage to the equally-weighted index is that the estimated index may
be more efficiently estimated since the estimation procedure in effect takes
account of the greater variance in the error terms in homes that have a
higher initial price.

If we assume that the error term from the value weighted arithmetic
repeat sales estimator is also independent of the first price, then the
probability limit of the EW-ARS estimator is the same as that of the VW-ARS
estimator. However, one may not wish to assume this. If, let us say, more
valuable houses are appreclating slower than the less valuable houses, then
a8 VW-ARS estimator may tend to show lower price growth through time than the
EW-ARS estimator, and for good reason.

The equally-weighted repeat sales index has a portfolio interpretation
just as does the value-weighted index, The index in period i is an
estimated value of a different portfolio of houses in time period i divided

by an estimated value of this portfolio in period 0. In this case, the
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portfolio invests in a share in all houses such that each share is worth $§1
when the house is sold first. That the index has this form can be readily
seen by dividing all terms in the numerater and denominator of (5') and (6')
by the first price observed for that house., Note that if prices are
generally rising houses that were not sold until late in the sample are
given less weight in the portfolio. Note also that one would not generally
have had information in period 0 to invest in such a portfolio, since the
amount to be invested in each house not actually sold in period 0 is not
observed yet; in practice one might often approximate this portfolio by
investing relatively heavily in smaller houses.

An alternative to this EW-ARS estimator is one that makes the index the
estimated value of a portfolio of houses that had equal dollar-value
investments in each house in the base period. The normal equations for this
base-period-equally-weighted arithmetic repeat sales price estimator are
derived by dividing, for all j, the terms corresponding to house j in the
numerator and denominator of the mormal equations (as exemplified here by
(5) and (6) or (5') and (6')) by ﬂini where 1 is the date of the first sale
of this house. Unfortunately, one must generally use iterative methods to
solve the resulting normal equations which are usually nonlinear in the
parameters, and the equations do not have a simple instrumental variables
interpretation. One might also, if data are available, use a different
equally-weighted estimator derived by dividing through the ith row of X and
Y by some objective measure of the size (e. g., square footage) of the house
corresponding to that row, thereby producing a physically-equally-weighted
arithmetic repeat sales price index, which represents the value of a

portfolio that invests in the same physical amount of each house.
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Iv. Application to Repeat Sales Data for Four Citjes

The figures show estimated VW-ARS and EW-ARS estimators along with
. simple GRS estimators for four cities, Atlanta, Chicago, Dallas and San
Francisco, quarterly data 1970-1 to 1986-2 (1986-3 for San Francisco).
These are the same data used by Case and Shiller [1987, 1989); there are
8,945 repeat sales pairs in Atlanta over this sample; the corresponding
number for Chicago was 15,530, for Dallas 6669 and for San Francisco 8,066.

Despite the fact that ARS estimators are, under assumptions noted
above, estimates of arithmetic averages, which are always greater than the
geometric averages estimated by the GRS estimator, the ARS estimates are not
always greater than the corresponding GRS estimates in the sample. The
value-weighted ARS eétimators in this sample are often less than the GRS
estimator, and show no strong upward bias relative to the latter. It was
noted above that since the VW-ARS estimator is value-weighted, the GRS
estimator equally weighted; a slower growth rate for the VW-ARS estimator
may reflect a slower growth path for houses in the high price range. The
EW-ARS estimator is more consistently greater than the GRS estimate than is
the VW-ARS estimator in these data. At the end of the sample, the EW-ARS
estimator for Atlanta was 4.6% higher than the GRS estimator at the end of
the sample; for Chicago the corresponding figure was 4.4%, for Dallas 7.3%,
and for San Francisco 2,0%,

Since the VW-ARS estimator does not downweight observations
corresponding to very expensive‘houses, there is some concern that it may be

more influenced by an occasional sale of a very expensive house. This
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tendency is probably a disadvantage of the VW-ARS estimator, related to the
fact that the estimator takes no account of heteroskedasticity. This
importance of this disadvantage could be reduced by obtaining a larger
sample, or by following a rule of tossing out all houses that are at the
extreme high limit of the range of house values. However, even without
doing this, there is only a little suggestion in the figures presented here
that the VW-ARS estimator is noisier than the EW-ARS estimator. This
disadvantage of VW-ARS estimator does not appear to be very damaging here;
one may wish to live with it in order to have a value-weighted estimator,
which produces an index of the total value of all house. The value-weighted
index may be regarded as more representative of the direction of housing
value; the equally-weighted index could possibly be unduly influenced by the
effects of a transactions of very small homes, homes that may contribute

negligibly to overall housing value.

V. Interval Weighted Versions of the Above Estimators

It was documented in Case and Shiller [1987] that when homes have a
longer interval between sales, the squared error term in the GRS regression
tends to be largef; we proposed a model of the error term in the_GRS
regression in which the expected square error term is given by a constant
plus a term proportional to the interval between sales. This then suggests
a generalized least squares estimator that should be more efficient than the
ordinary least squares estimator offered by Bailey, Muth and Nourse.
Analogous estimators were proposed by Webb [1988] and Goetzman [1990]. This
same model can be used here to downweight the rows of X and Y in the GRS,

the VW-ARS and the EW-ARS that correspond to longer intervals between sales.
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These interval-weighed estimators will be referred to here as the I-GRS,
IVW-ARS and I-ARS estimators respectively.lo

Before defining these, it is important first to consider the issue of
multiple sales of the same house; most earlier treatments of the repeat
sales estimators assumed that no single house was observed sold more than
twice.ll The crudest way to handle the multiple sales problem is to
represent the data on each such house as a number of pairs of sales,
applying the above procedures and disregarding the fact that these are on
the same house. When this is done, some arbitrariness is introduced inte
the estimator, since there are more than one way to decompose the multiple
sales into pairs of sales. For example, a house sold in periods 1, 2, and 3
could be considered as repeat sales in 1 and 2 and 2 and 3, or as repeat
sales in 1 and 2 and 1 and 3. The choice made affects the estimated
coefficient vector. It should generally affect the estimated coefficient
vector, since the assumption that regression errors are uncorrelated with
each other canmot be compatible with both decompositions. The assumption
that uy is uncorrelated with uj for all i and j is actually no longer
plausible in either decomposition, since the same price appears in two
different rows of the y vector. If multiple sales of the same house arise
frequently, then a generalized least squares estimator that takes account of
the correlation across error terms should ideally be used.

As in Case and Shiller [1987], we assume that the natural log of the

price of house i at time t is given by:

1OCase and Shiller [1987] referred to the I-GRS estimator as the
weighted repeat sales (WRS) estimator. The new name for the estimator is
introduced here to distinguish it more accurately from the others.

11But see Palmquist [1982].
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(8) ln(Pit) - co?xstanti + Ct + Hit + Nit

where constanti is a house specific constant term, reflecting such things as

the size of the house, Ct is a city-wide price factor, Hit is a random walk

(where AHit has zero mean and variance aH2) that is uncorrelated with Ct and

HjT i»j for all T, and Nit is an identically distributed noise term (which

has zero mean and variance aNZ) and is uncorrelated with CT and H for all

jT
j and T and with NjT unless i=j and t=T. Here, Hit represents the drift in

house value through time (say, through changes in tastes or population

distribution) and Nit represents noise at the time of sale (due, say, to

random arrival of interested buyers or tc errors in judgment). Then, the

error term in the GRS estimator has variance equal to 20N2 + o 2,x (interval

H
between sales). Case and Shiller [1987] estimated the parameters of this

model for the four cities Atlanta, Chicago, Dallas, and San Francisco for

1970 to 1987, and the average (over the four cities) estimate of 20N2

0084 and of aH2 was .0011. This means that the standard deviation UN of

the noise in price associated with the time of sale is about 6.5% of the

was

value of the house, and the standard deviation %y of the quarter-to-quarter
change in value of a house is 3.3% of the value of the house. A simple
arithmetic average of price relatives (the price relative defined as the
house price in the last quarter divided by house price in the first quarter
of the sample, assuming these were observed) ought to be, assuming this
model and lognormally distributed prices, at the end of a sample 66 quarters

long, higher by a factor of exp(.50H2*66) than the corresponding geometric
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average;12 using the above estimate of °H2 this suggests tltat the EW-ARS
estimated index should be 3.7% higher than the GRS estimated index at the
end of the 66-quarter sample; the estimated figures reported at the end of
the preceding section are on average a little higher than.that. The actual
discrepancies between the EW-ARS and GRS estimators may not follow this
simple ratio rule for various reasons; for example, price relatives may not
be lognormally distributed; actual price relatives may have "fat tails".

If we assume that multiple repeat sales are grouped together in our
listing of repeat sales and arranged as consecutive pairs of repeat sales
(so that there is no overlap Iin intervals between sales for a given house; a
house sold in periods 1, 2, and 3 is considered as a repeat sale in periods
1l and 2 and a repeat sale in pericds 2 and 3) then the covariénce between
consecutive repeat sales of the same house is -aNz. The wvariance matrix Qi
of the n-element vector of error terms is then block diagonal, with blocks
corresponding to individual houses; each block is tridiagonal. Hence, since
the size of the blocks is likely to be very small relative to the dimension
of O, 0 is easily inverted. We can then use a generalized least squares
estimate of vy, called I-GRS, ; - (Z'Q'IZ)-lz'ﬁ-ly. (This estimator

collapses to the WRS estimator of Case and Shiller {1987] if no house is

sold more than twice).13

12Goetzman [1990] has proposed correcting the GRS estimator by
multiplying by such a factor.

13Clapp and Giaccotto [1990] and Goetzman [1990] find that in their
appligftions the differences between this estimator and the GRS estimator
(Z'Z) "Z'y were small, and so the simpler GRS procedure (or, by extension,
the simple VW-ARS or EW-ARS estimators) may suffice. If one takes this
simpler route, there is no reason to give any special treatment to multiple
sales of the same house, so long as sales pairs are chosen so that intervals
between sales in the pairs for a given house do not overlap in time.
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The estimators IVW-ARS and I-ARS are defined analogously. Using the
same block-diagonal tri-diagonal I, these estimators are B - (z'n'IX)'lz'n'
1Y. Under general assumptions these GLS-like instrumental variables
estimators are asymptotically efficient in the sense defined by White
[1984], theorem 4.57. In practice, there are two unknown elements of the
matrix § that must be estimated: the dependence of the diagonal elements on

the interval between sales, and the value of the off-diagonal element.

v bining Repeat Sales wit onic Estimators

Methods of combining repeat sales estimators with hedonic estimators
have been proposed by Case and Quigley [1989], Case, Pollakowski, Quigley
and Wachter [1990] and Clapp and Giaccotto [1990]. Some of these methods
entailed using information about changed characteristics to improve the
efficiency of repeat sales estimators. We may follow such methods in
combination with arithmetic repeat sales estimators,

It is useful first to note that the GRS estimator can be derived as a sort
of special case of a hedonic estimator where hedonic variables consist only
of house dummy variables, one for each house; the ith element of the jth
dummy variable is 1 if the ith observation is on the jth house, and is zero
otherwise.14 With the hedonic regression, all houses may be included, even
those sold only once, although if there are house dummies in the regression
those houses sold only once will have no effect on the estimated price

index. The ith element of the dependent variable vector is the log price of

1Z'See also Palmquist [1982].
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the ith house sale; the matrix of independent variables consists of period
dummy variables, one for each period in the sample, and the house dummy
variables. There is, however, multicollinearity among the columns of this
matrix of independent variables, so one must drop one column of the matrix
of independent variables; let us drop the time dummy corresponding to the
Oth time period. It might not be advisable to estimate the coefficient
vector by ordinary least squares, since the error terms for any one house
are likely to be correlated; the GRS procedure will turn out to be the same
as a generalized least squares estimate of this hedonic regression that
takes account of this correlation. If we transform the vector of
observations on the dependent variable and the matrix of observations on the
independent variables by premultiplying both by a nonsingular matrix § that
replaces all but one of the rows for each house by consecutive differences
of rows, and leaving.one of the level observations for each house, then the
ordinary least squares estimate (which may be regarded as a generalized
least squares estimate of the model that takes into account the correlations
structure of the errors) of the coefficient vector returns for us a
coefficient vector consisting of the GRS estimator and the coefficients of
the house dummies. Whenever there is a dummy variable in a regression which
is zero except for one element, then the effect of including that duﬁmy in
the regression is the same, in terms of the coefficients other than the
coefficient of that dummy, of dropping the corresponding observation from
the regression. The transformed matrix of independent variables includes
dummy variables that eliminate the effect on estimated coefficients of all

the single-sale and level observations.
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Consideration of this hedonic regression suggests the possibility of
using changed characteristics in a repeat sales regressions, as suggested
earlier in Palmquist [1982], Case and Quigley [1989], and Case, Pollakowski,
Quigley and Wachter [1990]. Suppose that we augmented the set of regressors
for the original hedonic regression discussed above by some other hedonic
variables, e. g., log number of rooms in the house. Individual houses must
show some change in these hedonic variables between sales, otherwise the
hedonic variables will show strict multicollinearity with the house dummy
variables. Then, premultiplying the wvector of independent variables and
matrix of independent variables by the same matrix S would leave us with the
GRS regression estimator augmented by some additional independent variables,
the ith observation of each such additional independent variable being the
change between the corresponding pair of repeat sales of the additional
hedonic variable. Thus, for example, if one additional hedonie variable,
the log number of rooms, were added to the original hedonic regression, then
this would amount to adding to the GRS regression an additional regressor
which is zero for repeat sales for which rooms did not change between sales,
and equals the change in the log number of new rooms for repeat sales for
which number of rooms did change.

One might then consider adding as additional regressors (and as
additional instruments) to any of the estimators considered in this paper
additional variables representing such changes in hedonic variables between
repeat sales. This might be a useful alternative to dropping from the
sample all repeat sales for which there is evidence of change in the house
between sales. When there is a lot of evidence about housing

characteristics, we might find that most houses change between sales. Case,
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Pollakowvski, Quigley and Wachter [1990], who had a rich set of evidence
about characteristics of houses, found that 5/6th of their repeat sales
involved changes, although some changes were apparently quite minor. We
might not want to drop all such repeat sales observations. Including all
repeat sales along with the additional regressors carrying information about
the changes retains the desirable characteristic of repeat sales estimators
that there is no effect of the estimator of changes through time in the
representation of individual houses, and at the same time takes account of
some observed changes in houses.

It is worth noting, finally, that the above suggests another idea for
ordinary hedonic regressions, without the house dummies that would convert
them into repeat-sales estimators. To obtain a value-weighted arithmetic
hedonic regression estimator, we first form X and Y matrices with one
observation per housé. The vector Y of dependent variables has all of its
observations equal to 1.00. The jth of the first T+l columns of the X
matrix has ith element equal to zero unless the house corresponding to
observation i was sold in period j-1, in which case the element is the price
of that house, Hedonic regreésors can be appended as additional columns of
the X matrix. The estimator is then (Z'X)-lz'Y where the matrik 2 of
instruments is the X matrix where each price in the first T+l columns is
replaced with the number 1. The first T+l elements of the vector of
estimated coefficients are the reciprocal price index estimates. If there
are no hedonic regressors, this estimator returns as a price index for each
period just the averége price of a house in that period, just as if one had
simply regressed house price on period dummies. When hedonic regressors are

added, however, the estimators change from the usual hedonic regression
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estimators. For example, if there is a single hedonic regressor equal to
the number of square feet in the house, then an ordinary hedonic regression
setup where the dependent variable is the price (not log price) in effect
presumes that the number of square feet has the same linear effect on price
in time periods when housing prices are low as in time periods when housing
prices are high; the arithmetic hedonic price estimator proposed here would
not. As above, we can alsc form an equally-weighted hedonic regression
estiﬁato: by dividing each row of X and Y by the price of the house

corresponding to that row.
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FIGURE 1. Value-weighted repeat sales price index VW-ARS, solid line, and geometric repeat sales index GRS,
dashed line. The VW-ARS index shown is 100/8; plotted against i where §; is the i*" element of coefficient
vector estimated using VW-ARS procedure. The geometric index shown is 100exp(y;) plotted against i where
7;is the i*® element of coefficient vector estimated using GRS procedure. Data for Atlanta, Chicago, and Dallas
are quarterly 1970-1 to 1986-2; data for San Francisco are quarterly for 1970-1 to 1986-3.
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FIGURE 2. Equally-weighted repeat sales price index EW-ARS, solid line, and geometric repeat sales index
GRS, dashed line. The EW-ARS index shown is 100/8; plotted against i where B; is the i™ element of
coefficient vector estimated using EW-ARS procedure. The geometric index shown is 100exp(y;) plotted against
i where ; is the i'™ element of coefficient vector estimated using GRS procedure. Data for Atlanta, Chicago,
and Dallas are quarterly 1970-1 to 1986-2; data for San Francisco are quarterly for 1970-1 to 1986-3.
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Figure 3. Quarter-to-quarter

percentage change in GRS (unmarked line) and
VW-ARS (marked line) indexes,

from data plotted in figure 1,
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Figure 4. Quarter-to-quarter percentage change in GRS (unmarked line) and
EW-ARS (marked line) indexes, from data plotted in figure 2.
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