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ACTUAL AND WARRANTED RELATIONS BETWEEN ASSET PRICES

ABSTRACT

Efficient markets models assert that the price of each asset is equal
to the optimal forecast of its ex-post or fundamental value. These models
do not imply, however, that the covariance between two asset prices is given
by the covariance between the ex-post values they respectively forecast:
these two covariances can even have opposite signs. However, it is possible
to place bounds on the covariance between asset prices given the covariance
matrix of ex-post values. We present such bounds for both covariances and
correlations and show how such bounds can be tightened using information
beyond the covariance matrix of ex-post values,

The methods are used to examine whether the historical correlation
between the U. S. and U.K. stock markets 1919-1989 is warranted. The bounds

on the warranted covariance are very wide and include the actual

correlation.
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(1) INTRODUCTION
A variety of efficient markets models can be represented in the form

P where P is the price of asset i at time t and P

*
ie = EtPit it is its ex-

*
it
post value, i. e., fundamental value.1 In this paper, we inguire what such
theory implies for the govarjance and for the correlation between the prices
of assets of the assets in terms of the covariance matrices of the ex-post
values. Certainly, there is a common sense presumption that these
covariances, correlations, and betas have something to do with the
covariances or correlations of ex-post values, but apparently the actual
relations (which are generally interval relations and not functional
relations) have never been set forth in a general form before. This is an
important thing to set forth, since empirical finance is widely concerned
with these covariancés, correlations, and much work is based on the general
notion that these have something to do with fundamentals. We will apply ouf
theory to a study of the covariance and correlation of log price-dividend
ratios between the United States and the United Kingdom.2

Knowing the reltions among these covariances and correlations is

important for a number of purposes. They would help us to understand

whether International transmission of asset price movements can be

1Typically, ex-post value is a present value of dividends per share at
time t. It may have other interpretations as well; for example if p_ is a
forward price ex-post value could be the subsequent spot price. Also,
prices and ex-post values may be transformed as in the empirical work below.

2The transformation of price and of the present value referred to above
is its log minus the log dividend. This is a nonlinear transformation, but
the transformation can be justified in terms of an approximation to the
present value model; see Campbell and Shiller [1988]. The transformation
causes the variable Pit to be stationary through time.



understood in terms of present value models; that is our immediate objective
here. Beyond that, they may help us to understand how fundamentals interact
with investor information to determine betas or factor loadings of asset
prices.

The key problem in carrying out this objective is that we do not
observe the full information set available to market participants to
forecast present values, and in the framework of efficient markets theory,
we must assume that market participants have superior information. This

means we cannot observe the optimal forecast at time t of P cannot

*
ic’
observe directly its covariance with anything, and thus cannot calculate
just what the covariance of prices should be,

We can only put bounds on the warranted covariances of prices from
knowledge of variance matrices of the ex-post values. In section 2 we
derive covariance boﬁnds for the case when no forecasting information is
avajlable to the econometrician, while in section 3 we show that using more
information is helpful both iIn deriving more efficient covariance bounds and
in deriving bounds for the warranted correlation between the two assets.
Section 4 contains a description of the pricing theories which we use for

stocks, section 5 describes the data, section 6 describes the econometric

methodology and section 7 gives the results.
(2) THE CASE OF NO FORECASTING INFORMATION AVAILABLE TO ECONOMETRICIANS

Suppose that we, econometricians, observe only the covariance matrix of

* * *
the vector Pt - [Plt, Pzt]', whose ith element is the present value of the

dividends accruing to asset i. The corresponding vector of prices Pt has as



ity ith element the price of asset 1. We will suppose that the present
values and corresponding prices have been suitably transformed so that they
are stationary, and so that variance matrices var(P*) and var(P) exist,

How large can the covariance between P1t and P2t be, given var(P*)? To
answer this, we must solve a nonlinear programming ﬁroblem: maximize
cov(Plt, P2t) subject to the inequality restrictions implicit in the
requirement that var(P) and var(P*) - var(P) are both positive
semidefiniteB. The positive-semidefinite requirements impose eight
inequality restrictions on the elements of the two matrices, twe of which
are binding at the maximum: cov(Pl,Pz) <= a(Pl)a(Pz) and cov(Pl,Pz) ]
cov(P:,P;) + ((U(P;)2 - a(Pl)z)(a(P;)2 - a(P2)2))'5. The maximized
covariance (and the solution teo the analegous minimization problem) gives

us the following limits on the covariance between P. and P,:

1 2

* % * * 9 < < * % * *
(cov(Pl,Pz)-a(Pl)a(Pz))/ = cov(Pl,Pz) < (cov(Pl,P2)+a(P1)a(P2))/2 (L

We shall refer to the range specified in this inequality as the range of
warranted covariance between Pl and P2. Note that the warranted covariance
between prices can exceed the covariance between the present values, even

when this covariance is positive. As noted in Shiller [1989], this happens

*
when there is "positive information pooling,"™ when the forecast error P

it
*
P1t is negatively correlated with the forecast error P2t - P2t' In this
* *
case, the variance of the forecast error Plt + P2t - (P1t + PZt) is less

than the sum of the variances of the individual forecast errors, In this

3 Here, the term positive-semidefinite is taken to allow striectly
positive definite matrices as well as singular ones.
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* *
case, information 1s more about the aggregate Plt + P2t than about the

individual present values, 1. e., the information about the present values
is pooled.

Note, for example, from (1), that if P;t and P;t are highly positively
correlated, then Plt and P2t can have both positive or negative covariance,
but possible covariances include large positive covariances but only small

* %

negative covariances. For another example, note that if Plt and P2t

uncorrelated and have the same variance, that the covariance between P1t and

are

P2t can range between minus half the variance to plus half the variance,
It was concluded in Shiller [198%) that, for a transformation of UK and
US stock prices indexes 1918 to 1988 (where the transformation consists of
dividing price by a long moving average of lagged dividends) cov(Pl,Pz)
exceeded cov(P:,PZ) with a constant discount rate used to compute present
values, and there was no evidence of information pooling. It is not
surprising, therefore, that the inequality (1) is strongly violated with
that data too. However, when the discount rate is allowed to vary with the
prime commercial paper rate, the bounds in (1) are no longer violated.4
That result, if valid, implies that with constant discount rates there
is excess covariance between the U. K. and the U. S. stock prices. But, it
does not tell us whether or not there is excess correlation between the two

countries’ stock prices. Covariance tells us the magnitude of their

comovements, but does not tell us whether the two prices closely resemble

AVariance matrices var(P) and var(P*) are given in Table 1 of Shiller
[1989]. The covariance between P and P 1919 to 1987 (between the
transformed UK and US prices) was reporteatas 39.73. With a constant
discount rate assumption, the upper bound allowed by (1) using the estimated
covariance matrices is 8.84. With a discount rate varying with the prime

commercial paper rate, the upper bound allowed by (1) using the estimated
covariance matrices is 45.18.



each other,

In fact, if we have only var(P*) to work with, lacking any components
of the information set that the public uses to forecast, and if this matrix
is not singular, then we cannot say anything at all about the warranted
correlation between P1 and P2. As long as var(P:) is monsingular we can
always write P: = u_+ v_where u_and v_ are random vectors uncorrelated

t t t t

with each other, and v1t and v2t are uncorrelated with each other, and all

elements have nonzero variances. Suppose that information consists of Ui, +

Uy, + noise, Vie and Vopr As the variance of Vie and Vo 8re taken to
zero, the correlation between prices approaches 1.00. As the variance of
noise is increased toward infinity, the correlation approaches zero.:

Now suppose that the second asset is the return on the market
portfolio, that prices are scaled to 1.00 in the preceding period, that
there are no dividends paid this period and that the variance matrix of P*
is conditional on information before this period. Then the conditional
beta of the first asset is given by g = cov(Pl,Pz)/var(Pz). We can always
write P: -u +v, where u, and v, are random vectors uncorrelated with each
other, and as long as var(P*) is strictly positive definite, we can take
the var(ul)/var(uz) = X for arbitrary positive x. Suppose the information
set consists only of u, +u,. Then the beta iz x , which can be made
anything from 0 to infinity for positive x. It can similarly be shown that
beta can also range from 0 to minus infinity by taking the information
vector to be Uy ot U, Thus, the variance matrix of fundamental values
places po_restrictions at all on beta. It is still possible to put bounds

on the correlation between the two prices, or on the beta of an asset,, even

without specifying the full information set used by market participants, so



long as we know part of the information set used by the market. Using such
a subset of public information also allows us to tighten our bounds on the
covariance between P,  and P

it 2t

{3) THE CASE WHEN FORECASTING INFORMATION IS AVATLABLE TO ECONOMETRICIANS

If we know a subset of the information set available by market
participants to forecast present values, and thereby observe the varignce
matrix of the forecast Pt' - E(P:'It) where I is the subset of information,
then this will allow us to put tighter bounds on the warranted covariance
between prices.

Wé can, following Campbell and Shiller [1988a,b], include the vector of
actual prices in the subset of information, since surely the market knows
market prices. Under the efficient market hypothesis, then Pt' should equal
Pt’ and so under the efficient markets hypothesis the covariance between
P, and P2t' should equal the covariance between Py @nd P, . A comparison
of cov(Plt'PZt) with an estimated cov(Plt',Pzt'), which should (except for
estimation error) be the same, is thus a valid way of testing the efficient
markets model. The problem comes in interpreting violations of the
efficient markets relation: we cannot take cov(Plt’P2t) greater than
cov(Plt',Pzt') as evidence of excess covariability. Suppose, for example,
that prices are not set by Pt - EtP: but by Pt - EtP: + W, vhere v is a
"noise" vector whose variance matrix is diagonal (noise in one asset is
independent of noise in the other asset) and which is independent of EtPi:

(noise is independent of true fundamentals). If Pit (i=1,2) is taken as the

*
projection of Pit on Pit’ then we will find that (by usual errors in



variables results) the coefficient on price Pit is less than one so that the
fitted value Pit does not equal Pit' Thus, the efficient markets model is
(correctly) found to be violated. However, it would be incorrect to infer
that it is violated because of excessive covariance between P1t and P2t'

The covariance between Pit and Pét will be less than the covariance of Plt

and P2t' and yet clearly the covariance between P1t and P2t is quite right.

We want instead to put bounds on the covariance between P, and P

1t 2t

that are violated eonly when there is in fact excess covariance between the

asset prices, and yet we still want to use information about var(P'). Ve
- '

can write Pt Pt + v

where the vector v, is uncorrelated with Pé since it

t’ t
represents an error unforecastable from the subset of information used to
compute Pé._ To put an upper (lower) bound on cov(Pl,Pz) we must solve the
nonlinear programming problem to maximize (minimize) it In terms of the
three elements of vaf(P) subject to the inequality restrictions implicit in
var(P) - var(P’') and var(P*) - var(P} both positive semidefinite, in other‘
words, to maximize (minimize) in terms of the three elements of v such that
var{v) and var(c*) - var(v) are positive semidefinite, where var(e*) =
var(P*) - var(P'}). This is really essentially the same maximization problem
that we discussed in the preceding section, and the bounds implied by the

solution to this problem and by the solution to the corresponding

minimization problem are:

o * * %* *
cov(Pl,Pz) + (COV(El,62)-0(61)0(62))/2 =< cov(Pl,Pz)

=< cov(P',Pé) + (cov(e:,e;)+a(£I)a(e;))/2 (2)

This inequality can put much tighter bounds on the warranted covariance



between Plt and P2t' Suppose, for example, var(P*) is the identity matrix,
so that by (1) cov(Pl,Pz) can range between -.5 and +.5. Suppose, however,
that var(P’') has all four of its elements equal to 0.5. Then the upper
bound to cov(Pl,Pz) is .5, the lower bound is zero: the extra information
reduced the range of warranted covariances by a half; moreover, in this case
ve knoﬁ that the upper bound to the covariance between Plt and P

2t 18

exactly equal to the covariance between Pit and Pét'

Knowing var(P’) now enables us to put bounds on the gorrelation between

P1t and P2t' Since v is uncorrelated with Pt and we have:

cov(Pi,Pé) + cov(vl,vz)
corr(P ,P ) = : (3

P2 (e@pPeephHieep? + e

We can put maximum and minimum values on this function with respect to
var(v) subject to the restriction that var(v) and var(c*)-var(v) are both
positive semidefinites. This will give us bounds on the correlation between
P1 and P2 that are analogous to the bounds (1) and (2) above. Plainly, go
long as cov(Pl,Pz) is nonzero then this procedure will put some meaningful
bounds on the correlation between P, and P,. Since P =Pl 4V

1 2

and v, are uncorrelated, and since the variance matrix of Ve is limited by

var(e), there is no way that perfect positive or perfect negative

PI’
. where ‘

correlation between P1 and P2 can be achieved. By a similar argument, if

the second asset is the market portfolio, we can place bounds on the beta

between the two assets.

We will discuss below a present value model of stock prices that will

This will be done by means of numerical methods described in Section
VI.



allow us to compute var(P') and var(P*) for a certain transformation of
stock prices. We will tﬁen compute cov(Pl,Pz) and compare this with
cov(Pl',Pz') as well as the bounds in (2), and compute corr(Pl,Pz) and
compare this with corr(Pl',Pz') as well as the bounds implied by the

maximization of (3).

(4) THE DATA

For the U. §., the annual stock price is the Standard and Poor
Composite Stock Price Index for January of the year., The dividend is total
dividends per share adjusted to index, four quarter total, fourth quarter of
the year, backdated before 1926 using the dividend series in Cowles [1939].
The interest rate in the United States is the continuously compounded annual
return on 4-6 month prime commercial paper computed from January and July
commercial paper rates assuming a 6-meonth maturity. For the U, K. the
annual stock price is the Barclay de Zoete Wedd (BZW) stock price index for
the end of the preceding year, and the dividend is the associated BZW
dividend series for the year. The U. K. interest fate is the three-month
prime bank bill rate, averaged over the year, as a continuocusly compounded
return. These are the same series as used in Shiller and Beltratti [1990].

For both the U, §. and the U. K. we shall detrend stock prices in each
yvear by using as Pt and P: the log of the price and present value
respectively divided by the dividend for the preceding year. This differs
from Shiller [1989], where prices were detrended by dividing by a long
moving average of dividends, and the resulting ratio was not logged. The
dividing of nominal prices by nominal dividends serves to put the data in

real terms: the variable Pt may be regarded also as the log of real price



divided by real dividend, where the deflator used for both is the same.

{5) THE PRESENT VALUE RELATION

We shall use a log-linearized version of the present-value model,
developed by Campbell and Shiller [1988a,b], so that variances and
covariances of P* can be estimated using linear time series methods even
though the discount rate in the present value formula is allowed to vary
through time. Otherwise, the present value relation would be essentially

nonlinear. The model is:

o
* . * n
Pst- EtPst where Pst = nEO psGst+n + ks/(l'ps) (4)

and where s = UK (United Kingdom), US (United States).

Here, Pst is the log price-dividend ratio for country s, Gst is defined as
Adst - ist’ Adst is the change from the preceding period of log nominal
diyidends in country s, ist is the nominal one-period interest rate in
country s, and ks and p, are constants of linearization (see Campbell and
Shiller [1988a]). For each country, P, was taken to be exp(gs~§s), where ES
is the average rate of growth of dividends and ﬁs is the average return on
stocks over the sample, and ks does not affect our analysis when we
calculate a time series for Ps:. Expression (4) says that the log of the
price divided by dividend (January log price minus the log total dividends
over the preceding year) Psg is equal to the expectations at time t of

*
future ex-post value Pst' Equation (4) is a sort of dynamic Gordon model

10



replacing the original Gordon model, which was a steady-state growth path
condition, with a present value relation.6 The model (4) says simply that
stock prices will be high relative to dividends when dividends are expected
to grow more than average and/or short-term interest rates are expected to
be 1ow in the not-to-distant future, where not-to-distant is defined in
terms of the discount parameter P By this model the log price-dividend

ratio will be stationary if the fundamentals are themselves stationary.
(6) THE ECONOMETRIC METHODOLOGY

The Sounds on the covarlances and correlations which we can derive are
based on the moments of the vector of ex-post values. We will use two
different methods to compute these moments. The first one is the same method
usually followed in the literature and proposed by Shiller [1981]; it is
based on calculating a time series for Ps: subject to a terminal condition

*
which says that PST in the last year T of the sample is equal to the actual

P on that date:

sT
T-k-1
* k T-t
Pst = kEO psGst+k + Ps PsT’ s = US, K. )

From these time series one can then estimate the sample covariance matrix
for 2" = [P . ", B_ "] i fons (1)-(3
or P = [ Ust * Fuke ]' to use in expressions (1)-(3).

The second method which we use does not involve computation of a time

*
- ¥
series for Pt' Defining Gt [GUSt' GUKt] , and defining p as a 2x2 matrix

6The Gordon model [1962) says that in a present value model with a
steady state growth path for dividends and a constant discount rate the
dividend-price ratio is the discount rate minus the growth rate of
dividends. The original Gordon model does not apply if the growth rate of
dividends or the discount rate is not constant through time.

11



ok
-7ith Pus and Pyg On the diagonal, then from (4) Pt E(k—o,m)pk G (plus a

t+k’
*
constant which we will disregard) and so var(Pt ) is given by:

var(P ) = = T pleov(G,_,,,G' Dy (6
t =0 k=0 t+] ' Tt+k

Using (6) to estimate var(Pz) of course involves estimating the
complete autocovariance function for G, at all leads and lags.
Unfortunately, for a given sample of data, we cannot estimate all the
infinite series of covariance matrices, and we have to truncate the
estimated autocovariance function after a finite number of lags. According
to Box and Jenkins [1974] one should not go beyond the covariance at lag
n/4, where n is the sample size. We report results for lag n/4 as well as
for lag 30. Note that in (6), future covariances are multiplied by the terms
pUé and PUK which are less than one; this means that autocovariances at
long lags are already given less weight because of the very definition of
the vector P:, so that truncation is not likely to affect the results much.

As to the bound on the covariance and the correlation which we have
derived for the case when some forecasting information is available to
econometricians, that is (2) and (3), one can see that the information
contained in the perfect foresight price must be supplemented with
information contained in the econometrician’s estimate of the fundamental
price of the assets. An econometric model is therefore necessary to this
purpose,

Following previous work by Campbell and Shiller [1988a,b] we use
vector autoregressions to test the models and to calculate the expectations

of future fundamentals given an a priori specified information set. In the

12



case of a VAR of order 17 we consider the following vector:

G

- [
¢ = [Pyser Cyse-1' Puke’ Suke-1] 7

where variables are demeaned. Note that the Gst' s = US, UK, are lagged in
this vector, so that it contains only information known by the agents at the

beginning of period t.

We assume an autoregressive form for the vector x:

e+l A X+ a8, (8)

where at is a white noise term with a covariance matrix which can have non-

zero contemporaneous correlations. The model (4) implies:

P =P s = US, UK, where,

st st
' ' -1

PUSt = e2' A (I - PUsS A) X, {9a)
' ' -1

PUKt =4’ A (I - pUK A) xt (9b)

vhere ei is a vector of zeros apart from the i-th element which is equal to
1. The expressions (9) in turn imply the following cross-equation

restrictions on the estimated matrix A:

el' (I - pUSA) - e2' A {(10a)

7We consider in the text only the first-order VAR case, since higher-
order VARs can be easily treated with the same methodology after putting

them into a first order "companion form" VAR, as described in Campbell and
Shiller [198Ba,b].
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ed’' (I - PUK#) = e4" A (10a)

We test these linear restrictions by means of Wald tests. Beyond
testing the models, if we are willing to identify expectations with linear
projections, we can use (9) to derive the expectations of future
fundamentals under the hypothesis that the model is true (see Campbell and
Shiller [1988a,b]), and then use these estimated values to compute what in
the previous sections was defined with the variable P'. Then we can use P’
to compute the theoretical covariances and correlations between the two
assets, the ones that should hold under the null hypothesis that there is no
noise in market prices.

In order to consider the possibility of small sample bias we calculate
empirical distributions for all the statistics which we report in the
tables8 by a Monte Carlo experiment which generates 2,000 series of the
variables contained in the vector x subject to the restrictions that the
models for the two assets are true, We report both numerical standard
errors for the statistics, and the p-value corresponding to the empirical
distribution. |

We can also use our P’ to calculate the bounds in expressions (2) and
(3). Apain we can use two methods to compute the covariance bounds. One
possibility is to compute P* with a terminal value, compute P' from the VAR,
calculate s*-P*- P', as with expression (5). From these time series one can
compute the variance matrices var(P*), var(P'), var(c*). This guarantees

that all matrices are positive semidefinite. The second possibility is to

8 . e
These statistics are the Wald tests, and the ratio between theoretical
and actual covariances and correlations.

14



calculate var(P*) from the covariance matrix of Gt using (6), and then
calculate var(s*) as the difference between var(P*) and var(P'), where the
last is computed from the time series of P’.

As to the correlations between the two assets, we generate upper and
lower bounds by means of numerical methods. We use a Monte Carlo program
that generates random positive definite matrices var(v), and which tests
then 1if var(e*)-var(v) is also positive semidefinite. If it passes the
test, the program calculates the correlation coefficient using expression
(3). After repeating the exercise 4,000 times we pick the highest and the
lowest correlation. In particular, we make the diagonal elements of var(v)
uniform from zero to corresponding diagonal elements of var(c*). In each
iteration we compute from these diagonal elements a(vl)a(vz), and maké off
diagonal elements of var(v) uniform from -a(vl)a(vz) to +a(v1)a(v2). So
var(v) is positive semidefinite, and the diagonal elements of var(e*)-var(v)
are nomnegative. We then only need to check that the determinant of var(e*)-
var(v) is nonnegative in each iteration.

Both for the covariance bounds and the correlation bound we calculate
standard errors by means of Monte Carlo simulations. In this case we
generate 4,000 series of variables from the estimated VAR and we use thenm to

calculate the standard errors of the bounds across iterations.

{7) RESULTS

Table 1, panel, A shows that the Wald tests usually reject the
restrictions (10), and this is similar to previous results (Campbell and
Shiller [1988]}, Beltratti [1989] and Shiller and Beltratti [1990]. We

report both asymptotic p-values, and p-values from the empirical

15



distribution function obtained from the restricted model. Note that the
asymptotic standard errors sometimes overreject the model, though the
differences are minimal even for large order VARs,

Table 1 Panel B shows that the correlation between the estimated
warranted prices P’ tends to be higher than the correlation between prices,
but that the covariance between the estimated warranted prices tends to.be
lower than the covariance between the actual prices. This sort of
différence between the results with covariances and with correlations has
been noted before (see for example, Campbell and Shiller [1988b)); the
difference reflects the estimated "excess volatility" of both markets, which
drives up covariances but not correlations of actual prices relative to
warranted values.l Of course, these results take no account of the
possibility that the market may have superior information from that used to
make estimated P’', and hence we turn to the covariance and correlation
bounds.

Table 2 reports results for the covariance bound that can be derived
when no information is available to the econometrician, that is the bounds
given in expression (1). The actual covgriance is within the bounds in all
cases, but close to the upper bound. There is not much difference between
the results obtained by estimating the covarlance matrix of the time series
of P* or by estimating the autocovariance function of fundamentals when only
(n/4) terms are included in the last, However, when 30 terms are considered
the upper bound gets much closer to the actual value.

The same structure of results appears in Table 3, when the information
set contained in the estimated VAR is used for the covariance bounds given

by expression (2). Again, the actual covariance is usually within the

16



bounds. Again a long estimated autocovariance function tends to lower the
upper bound. Results from VARs of order 1, 2 and 3 are not very different
from each other,

Finally, also the actual correlations shown in Table 4 are in general
inside the bounds computed using expression (3). When only one lag is used
in the vector autoregression, the estimated correlation bounds are extremely
wide, allowing almost anything from no correlation to perfect positive
correlation. The bounds are substantially tighter when more lags are

introduced, reflecting the information available in the further lagged

values.

Conclusion

We are unable to reject the hypothesis that the covariance and
correlation between the U. 8. and U, K. log price-dividend ratios is in
accordance with the present value model, The bounds on covariances and
correlations are quite wide and usually embrace the actual covariance and
correlations. This does not rule that if a larger information set were
used we might have been able to get narrower bounds on covariances and
correlations, and might then have been able to reject the model. Note also
that in this paper, in contrast with some results in Shiller [1989], time

varying interest rates are used to discount in the present value formulae.
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TABLE 1: Wald Tests and Comovement Measures

Panel A: results from VAR estimation
Tests of Restrictions Expressions (10)

Lags 1 2 3
Country: US

Wald test:

asymptotic p-value 0.009 0.014 0.015
p-value from e.d.f, 0.014 0.026 0.029
Country: UK

Wald test:

asymptotic p-value 0.000 0.000 0.C00
p-value from e.d.f. 0.000 0.000 0.000

Panel B: Comovements Between Stock Markets

Corr(PUS,PUK):

0.470 Cov(PUS,PUK):

0.033877

Warranted Comovements Estimated Using Expressions (9):

Corr(®?'. _,P' ) - Corr(PUS,PUK) 0.113 0,393 0.417
numerica§ std, error 0.339 0.205 0.179
std. error from e.d.f. 0.184 0.224 0.241
Cov{(P' P! - Cov(P._.,P._) -0.029 -0.018 -0.011
numerigal sgﬁ error Us* UK 0.004 0.013 0.016
std. error from e.d.f. 0.023 0.027 0.028

Note: Sample period is 1919-1989,
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TABLE 2: Covariance bounds from eqn (1) in the text

Actual Cov(P

us’ PUK) = 0,033877

Lower Bound Upper Bound
a. Var(P*) computed from time serles of P*, using expression (5).

-0.007864 0.045279
(0.012107) (0.026580)

*
b. var(P )} is computed from the estimated autocovariance function of
fundamentals up to 30 lags, using expression (6).

-0.009551 0.035559
(0.012309) (0.018608)

*
c. Var(P ) is computed from the estimated autocovariance function of
fundamentals up to (n/4) lags, where n is the number of observations, using
expression (6).

-0.005157 0.048412
(0.012107) (0.026580)
Note: The numbers In parentheses are standard errors cbtained from a Monte

Carlo simulation. Sample period is 1919-198%.
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TABLE 3: Covariance bounds from eqn (2) in the text

Actual Cov(P

Us’ PUK) = 0.033877

Lower bound Upper bound
a. Var(P*) computed from time series of P*, using expression (5).

'Order of the VAR

1 -0.004374 0.048823
{0.012458) {0.025063)

2 0.003075 0.045601
(0.015201) (0.029568)

-3 0.004996 0.050163
(0.026828) {0.042309)

b. Var(P*) is computed from the estimated autocovariance function of
fundamentals up to 30 lags, using expression (6).

1 -0.003321 0.033885
. (0.013186) (0.018712)

2 0.003131 0.034206
(0.014322) (0.018150)

3 0.008383 0.033310
(0.017621) (0.019741)

*
c., Var{(P ) is computed from the estimated autocovariance function of

fundamentals up to (n/4) lags, where n is the number of observations, using
expression (6).

1 0.001062 0.046749
(0.012458) (0.025063)
2 0.007541 0.047042
(0.014445) (0.018146)
3 0.012774 0.046167
(0.017732) (0.019281)

Note: Each sub-panel reports results from VAR of order 1, 2 and 3. The

number in parentheses are standard errors obtained from a Monte Carlo
simulation. Sample period is 1919-1989.
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TABLE 4: Correlation bounds from egqn (3} in the text
Actual corr(PUS, PUK) = 0.470
Lower Bound Upper Bound

a. Var(P*) computed from time series of P*, using expression (5).

Order of the VAR

1 . =0.212 0.929
(0.268) {0,106)
2 0.167 0.933
(0.298) (0.094)
3 0.186 0.932
(0.274) (0.058)

*
b, Var(P ) is computed from the estimated autocovariance function of
fundamentals up to 30 lags, using expression (6).

1 0.135 0.929
(0.185) (0.098)
2 0.437 0.940
(0.213) (0.082)
3 0.415 0.919
{0.256) (0.061)

%*

c. Var(P ) is computed from the estimated autocovariance function of
fundamentals up to (n/4) lags, where n is the number of observatioms, using
expression (6).

1 -0.148 0.899
(0.268) (0.106)
2 0.183 0.932
(0.279) (0.093)
3 0.324 0.896
(0.248) (0.059)

Note: Each sub-panel reports results from VAR of order 1, 2 and 3. The

number in parentheses are standard errors obtained from a Monte Carlo
simulation. Sample period is 1919-1989.
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