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ABSTRACT

This paper provides a general framework for comstructing specification tests for
parametric and semiparametric models. The paper develops new specification tests using
the general framework. In particular, specification tests for semiparametric partially linear
regression, sample selection, and censored regression models are introduced. The results
apply in time series and cross-sectional contexts. The method of proof exploits results
concerning the stochastic equicontinuity or weak convergence of normalized sums of sto-

chastic processes.
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1. INTRODUCTION

Semiparametric models and estimation procedures have become increasingly popular
in the econometrics literature because they relax some of the parametric assumptions often
used in econometric modelling. Semiparametric models, however, still are not robust to a
variety of specification errors. Existing specification tests for parametric models are not
applicable in such models and there have been few attempts made in the literature to
develop new specification tests for semiparametric models.

The purpose of this paper is to provide a general framework for constructing specifi-
cation tests for parametric and semiparametric models. We use this framework to develop
new specification tests for parametric and semiparametric models and to generalize existing
specification tests. The general framework considered here covers cases in which the null
model is parametric or semiparametric and the alternative model is parametric, semipar-
ametric, or nonparametric. Examples are given below.

Qur strategy in constructing the general framework is to extend existing results in
the parametric econometrics literature. We note that the work of Newey (1985a, b) and
Tauchen (1985) (also see White (1987)), hereafter NT, has provided a single unifying
framework for specification tests in parametric models. This framework embeds many
available results as special cases. For example, Lagrange Multiplier (LM) tests, Cox’s
(1961, 1962) test of non—nested hypotheses, White’s (1982) information matrix test, and
Newey’s (1985a) conditional moment tests all fit into the NT framework.

The basic idea of the NT approach is as follows: Consider a vector—valued criterion
function that is indexed by a (finite dimensional) parameter. The criterion function is
chosen so that its expected value evaluated at the true parameter equals a zero vector if
the model is correctly specified and is not necessarily zero if the model is misspecified.
Then, a test statistic is constructed by forming a quadratic form in the sample moments of

the criterion function evaluated at an estimator of the parameter.



The assumption of finite dimensionality of the parameter space in the NT frame-
work is too restrictive for our purposes. In our general framework, we explicitly introduce
infinite dimensional nuisance parameters in the criterion function. This allows us to
consider tests of specification of semiparametric models against semiparametric and non-
parametric alternatives. It also allows us to consider tests of specification of parametric
models against semiparametric alternatives. In addition, we do not make specific distribu-
tional assumptions on the underlying random variables (rv’s) in the general framework.
Therefore, the general framework developed here can be utilized for developing new specifi-
cation tests for parametric and semiparametric models and for extending the domain of
applicability of existing results, e.g., to dependent non—identically distributed (dnid) rv
cages.

The asymptotic distribution of the general form of the test statistic is derived under
a set of "high—level" assumptions as in Andrews (1990a, b). In particular, we take as basic
assumptions certain pfoperties, including consistency, of the infinite dimensional nuisance
parameter estimator and the fulfillment of a uniform law of large numbers (ULLN), a cen-
tral limit theorem (CLT), and a stochastic equicontinuity condition for certain rv’s and/or
stochastic processes. Advantages and disadvantages of adopting the "high—level" assump-
tions are discussed in detail in Andrews (1990a). Andrews (1990b) provides primitive
conditions under which the ULLN and stochastic equicontinuity conditions hold. It also
provides primitive conditions under which kernel estimators of the infinite dimensional
nuisance parameters satisfy the requisite properties. In addition, primitive conditions for a
CLT are widely available in the literature. Thus, primitive conditions are available to
replace each of the high—level assumptions in any given example. We note, however, that
the mobilization of these primitive conditions does require work, with the amount of work
depending on the context. In some of the examples given below, we present more primitive

assumptions than the high—level assumptions referred to above.



We now specify examples that fit into the general framework discussed above.
Those marked with an asterisk are discussed in the paper. (For a discussion of those
without an asterisk, see Whang and Andrews (1990).)

(1)* Tests of omitted variables, heteroskedasticity, and autocorrelation in partially
linear regression models.

(2)* Tests of omitted variables and heteroskedasticity in semiparametric sample
selection models.

(3)* A test of the parametric linear model against the semiparametric partially
linear regression model.

(4)* Tests of distributional assumptions in parametric censored regression and
sample selection models.

(5)* A test of the semiparametric partially linear regression model against a
nonparametric regression model.

(6) Tests of omitted variables and heteroskedasticity in semiparametric binary
choice models.

(7) A test of distributional assumptions in parametric binary choice models.

(8) Tests of normality (standardized +b; and b, tests) in nonlinear regression
models.

(9) Chi—square diagnostic tests.

The remainder of this paper is organized as follows: Section 2 defines the general
form of our test statistic, derives its limit distribution under the null hypothesis and local
alternatives, and establishes consistency results for it. Section 3 discusses examples in
which both the null and alternative models are semiparametric, viz., examples (1)-—(2)
above. Section 4 discusses examples in which the null model is parametric and the alterna-
tive model is semiparametric, viz., examples (3) and (4) above. Section 5 discusses an

example in which the null and alternative are semiparametric and nonparametric,



respectively, viz., example (5) above. An Appendix contains proofs of the results given in
Sections 2-5.

Throughout the paper all limits are taken as the sample size, T, goes to infinity,
unless specified otherwise. We let "with probability - 1" abbreviate "with probability that

goes toone as T-w." Welet [|A|| denote the Euclidean norm of a vector or matrix A,

b
ie, Al = (trace(A'A))ll 2 | For notational simplicity, we let E: denote ¥ and
t=a

E[IX[|® denote E(|X|)*.

2. GENERAL FRAMEWORK

In this section, we define the general form of the specification test statistic and give
sufficient conditions to obtain its limiting distribution under both the null hypothesis of
correct specification and local alternative hypotheses of misspecification. Consistency

properties of the test are also derived.

2.1. Some Preliminaries
The data are given by a triangular array of rv’s {Wn,} = {WTt t=1, ..., T;
T > 1} defined on some probability space ({,8,P). In the case where WTt does not

dependon T, we writeitas W, .

k
We consider a criterion function th(-,-,-) 'R T, B x II - R™ that satisfies

Eth(th’ ﬁo, 1r0) =0 for t=1,...,T; T21 (2.1.1)

when the model is correctly specified, where th is a positive integer < w, ﬁo € BcRY,
Ty € I, and II is a pseudo—metric space with pseudo—metric deﬁned below. Let § and
# be estimators of ﬂo and Ty respectively. Note that 7 can be an infinite dimensional
estimator. It is assumed that 7 is a random element of Il with probability - 1.

Our test statistic is constructed as follows. Let



Ep(B) = A8 tq, (Wepy, B, ) (2.1.2)
Heuristically, we expect the above sample average (2.1.2) to be close to zero if the model is
correctly specified. In order for fT(f)’,-?r) to serve as a useful indicator of misspecification
of the model, however, it should ﬁot be close to zero if the model is misspecified.

Below we provide sufficient conditions under which

VT £7(81) -S4 N, ) (21.3)
if the model is correctly specified, where ® isan m x m positive definite matrix. Let &

be an estimator of @ that is consistent under the null hypothesis of correct specification.

We define a general form of specification test statistic as follows:
Gy = Teg(B7) 7 p(BA) - (2.1.4)

The test statistic G is shown to have a limit x2 distribution with m degrees of free-
dom under the null hypothesis of correct specification. We also show that GT has a
noncentral x2 distribution with m degrees of freedom asymptotically under a sequence of
local alternative hypotheses of misspecification. |

Throughout this paper, all functions that are introduced (such as g, ,
th(-,-,-) ) are assumed to be B/Borel or Borel/Borel measurable. The only exceptions
are the stochastic processes VT(-) and VT(- ,) defined below, which need not be measur-
able. Thus, we assume away measurability problems except in those circumstances where
measurability may be of real concern.

Below welet r,(f,7) denote th(WTt’ B, =) for notational simplicity.

2.2. Asymptotic Properties of the Test Statistic under Correct Specification
In this section, we give sufficient conditions for the asymptotic normality of
JT fT(B,Er) (see equation (2.1.3)). Consistent estimation of & is discussed and the

asymptotic distribution of the test statistic GT under correct specification is derived.



Three alternative sets of sufficient conditions are introduced — Assumptions 1, 1%,
and 1**. Each is sufficient for the asymptotic normality of /T ‘fT(B,ir) . Each involves a
different tradeoff in the assumptions it imposes. In particular, Assumptions 1 and 1* allow
7 to be infinite dimensional, whereas Assumption 1** requires it to be finite dimensional.
Also, Assumptions 1 and 1** assume rt(ﬁ,vr) is differentiable in £, whereas Assumption
1* only requires Ert(ﬁ,vr) to be differentiable in §. For example, Assumption 1* allows
one to consider speciﬁcatidn tests using least absolute deviation (LAD), censored LAD, and
weighted censored LAD estimators. On the other hand, most tests do satisfy the differen-
tiability condition of Assumptions 1 and 1** and the imposition of this condition allows

other conditions in Assumptions 1 and 1** to be weakened.

2.2.1. The Definition of Stochastic Equicontinuity

Before introducing Assumptions 1, 1*, and 1**, we define the concept of stochastic
equicontinuity of a sequence of stochastic processes. Below we consider the stochastic equi-
continuity of two particular sequences of stochastic processes {a)T(-) :T>1} and
{UT(-,-) +T > 1}, which are indexed by 7€Il and (f,7) € B x I respectively. The
first sequence is used only in Assumption 1 below and the second only in Assumption 1*.

Neither is assumed to be measurable. By definition,
vp(m) = YT(E (B, 7) — T3(fy, 7)) and
vp(B,7) = VT(Ep(B,m) — t3(6,7)), where (2.2.1)
= 1T
r'*i‘(ﬂ:ﬂ') = TEIErt(ﬂa"r) .
Let pn(-,-) and prI‘I("') denote pseudo—metrics on II and B x 1l respective-
ly. The former is used with Assumption 1 and the latter with 1* Convergence in

probability of 7 to ) and (B,7) to (ﬂO, 1r0) means convergence with respect to q

and PBxTI respectively.



Given the pseudo—metric pp(-,+), stochastic equicontinuity of {vp(-): T 21} is

defined as follows:

DEFINITION: {vp(-): T 21} is stochastically equicontinuous at w, if: For all ¢ >0
and 7> 0 there exists § > 0 such that

ITm P¥( sup lvp(m) — v(m)ll > 1) < €, 2.2.2
Teo  mellpp(m,my)<6 T 0 (222)

where P* denotes outer probability.

Stochastic equicontinuity of {vp(+,:): T2 1} at (B my) is defined analogously with
replaced by (8,7) and 11 replaced by PRy - For notational simplicity in Sections 3—5
below, we say that a stochastic process {XT(-) : T 21} minus its mean is stochastically
equicontinuous if {Xp(-) —EXp(-): T 2 1} is stochastically equicontinuous.

The stochastic equicontinuity condition is used to establish the asymptotic normal-
ity of semiparametric estimators in Andrews (1990a). Primitive sufficient conditions for

stochastic equicontinuity are discussed in Andrews (1990b).

2.2.2. Asymptotic Normality of /T fT(B,?r)

We now state Assumptions 1, 1*, and 1** and the asymptotic normality result for
JT TT(B,%) . Throughout this paper, we let B, denote a subset of B (c RY) that con-
tains a neighborhood of ﬂo .

ASSUMPTION 1: (2) VT(B-fy) = 775, Yipy(Wrpy, fp) + 0,(1) and

FT1 By (W, fp) + 0, where bp(r) R T A B AR for =1, .., T; T 1)
(b) P(eM)-1 and #—Es 1y forsome 75 ell.
(¢) VT 5(6 1) 2+ 0.

VT(E (B, my) - 4By 7))
VT(hy(By) - #h(6,))

8By 1) = w5188y mo) » Brp(By) = 51 Ypy(Wopys By) » ¥(6,) = Edp(By) , and

(d) VT BBy 1) = 4, N(0,Z) , where



L= ,}‘:m Var(yT gfp(ﬁo, 1r0)) .
m
(e} {vp(-):T2 1} is stochastically equicontinuous at 7 .
(f) 1,(8,n) is differentiable in § on By Vrell Vt21 Vwe Q. {-a%rt(ﬁ,w) P 1}
satisfies a uniform WLLN over By« II. R(4,7) = l im TZIEEZTI ,T) exists uniformly

over ByxII and is continuous at (}30, 1r0) with reSpect to some pseudo—metric on

By x I for which (5,7) -2 (A, 75)

ASSUMPTION 1*: (a) Assumption 1(a) holds.

(b) P(xeM)=~1 and (B,7) L (By) m) for some 7 €1l

(c) Assumption 1(c) holds.

(d) Assumption 1(d) holds.

(e) {vp(+):T2 1} is stochastically equicontinuous at (6, ;) -
(f) Er(6,7) is differentiable in fon By VeIl Vt21.

R(f,7) = r}\:ﬂ;l %Erf -a%Ert(ﬂ,vr) exists uniformly over By« Il and is continuous at
(ﬁO, 1r0) with respect to some pseudo—metric on B0 x II for which (f,7) - (ﬁg, 7r0) :
ASSUMPTION 1**: Assumption 1 holds with II C R"Y for some u < w, with ppp &iven

by the Euclidean metric on I1, and with Assumptions 1{c) and 1(e) replaced by 1**(c)

and 1**(e) respectively.

1¥+(c) YT £4(fy, 1) — 0 -

1**(e) yT(7—my) =0 (1) -a—r (ﬁo, 7) exists VeIl Vt21 Ywe Q, {aa—r (,60, T

t> 1} satisfies a uniform WLLN over 7€ I, Q(ﬂo, )= lim TETEa—r (ﬁo, T) exists
Too

uniformly over Il and is continuous at =, (ﬂo, 7r0) =0, and E sup”-a-;r—,-rt(ﬁo, 7r)“
: - 7ell

<w Vt21.

The (m+q) x (m+q) matrix ¥ in part (d) of the above Assumptions can be parti-

tioned as follows:



) %
¥ = 11 ~12

, , where X, =1im Var(yT T4.(5,, ™))
212 222 T-w

319 = Lim Cov(yTtq(Fpmg), VTp(4y)) , and By = Lim Var(yTy ()

(2.2.3)

Let I denotean mx m identity matrix. Using this notation, the asymptotic normality

of T fT(ﬁ,v‘r) is given in the following lemma.

LEMMA 1: Suppose Assumption 1, 1*, or 1** holds under the null hypothesis of correct
specification. Then,
= may d . .
JT TT(ﬁ,W) S— N(Q, &), where ¢ = [Im : R]E[Im . R}’

(2.2.4)
=%y + RE{y + IjoR" + RIR’ and R = R(By: ™) -

COMMENTS: 1. It is the mean zero property of the asymptotic distribution of
JT TT(B,%) under the null hypothesis of correct specification that makes T fT(Zi,%) a
useful indicator of misspecification. Under a sequence of local alternatives, the mean
generally differs from zero as is shown below.

2. We note that assumptions on 7 and on the random criterion function fT(ﬁ,w)
are split apart. Assumption 1(b) only involves # and Assumption 1(c) only involves 7
and the non—random function f,}(ﬁo, 7). Thus, the fact that 7 and the random function
fT(ﬂO, x) are defined using the same underlying rv’s does not present a problem.

3. Suppose 7y is a function of x for x € 4 and % is an unbounded set. One may
wish to trim the criterion function fT(B,ir) by multiplﬁng each summand th(WTt,ﬁ,fr)
by 1(Xp, €2*), where X* (c ¥) is a bounded set and Xy, is a subvector of W, .
There are two reasons for such trimming. First, trimming can eliminate observations from
the sample average fT(B,ir) for which the nuisance parameter estimator #(Xq,) is esti-
mated with relatively large error in comparison to non—trimmed observations. This may
reduce the discrepancy between the true and nominal size of the test. Second, trimming

allows one to obtain uniform consistency of #(x) for 7r0(x) over 4* under suitable
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conditions. Uniform consistency simplifies the verification of Assumption 1(b) (see the dis-
cussion of Assumption 1(b) below). On the other hand, trimming using a single fixed set
r* affects the asymptotic distribution of T fT(fi,ir) under the null and local alternatives
and may lead to a reduction in the power of the test. For simplicity, we do not make trim-
ming explicit in the expressions given for rt(ﬂ,ar) and other quantities either in this
section or in others below. If trimming is carried out, then indicator functions need to be
added in the appropriate places.

We now discuss Assumption 1. Assumption 1(a) can be verified for most paramet-
ric and semiparametric estimators that are yT—consistent and asymptotically normal using
results in the literature. For example, for semiparametric MINPIN estimators, 1(a) can be
verified using results of Andrews (1990a, b). Note that for the parametric ML estimator
"th(WTt’ ﬁo) is just the score function evaluated at ﬁo premultiplied by the inverse of
the information matrix.

Assumptions 1(b), (c), and (e) are key assumjations — they are discussed below.

Assumption 1(d) can be verified using any of a number of CLTs for iid, inid, and
dnid contexts. For example, see McLeish (1975, 1977), Hall and Heyde (1980, Chs. 3-5),
Herrndorf (1984), Gallant (1987), and Wooldridge and White (19882, b).

Assumption 1(f) requires rt(ﬁ,‘n’) to be differentiable in 4. This assumption can
be avoided, if necessary, by using Assumption 1*. Assumption 1(f) requires a certain uni-
form WLLN to hold. This can be verified using stochastic equicontinuity results (see
Andrews (1990b)), generic uniform WLLN results (see Andrews (1987, 1990¢), Potscher
and Prucha (1989), and Newey (1989)), or empirical process or Banach space WLLN
results (see Pollard (1984, Theorems I1.2, 11.24 and I1.25)). Assumption 1(f) also requires
that R(B,7) is continuous with respect to some pseudo—metric on B0 x I1  for which

(B,n L (ﬁo, my) - A convenient choice of the pseudo—metric is

p*((By, mp), (By, mg)) = E §E§E|’3g,—rt(ﬁ1, m) - ng"t(ﬁz’ 7r2)H . (2.2.5)
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With this choice, continuity of R(G,m) at (ﬁo, 1r0) automatically holds (since
IR(By, ™) — R(By, m)ll € £*((By, 7y, (62, 7,)) ) and it suffices to verify that
PHBA), (B ) B 0.

The stochastic equicontinuity assumption, Assumption 1(e), can be verified using
results in Andrews (1990b) or other results in the literature. In order to obtain stochastic
equicontinuity, the elements of the index set II need to satisfy some conditions. This
creates a tension between Assumption 1{e) and the first part of Assumption 1(b), since the
more restricted is I, the more difficult it is to show that P(% € I1) - 1. For example, if
II is an infinite dimensional class of functions, the stochastic equicontinuity results of
Andrews (1990b) require the functions in II to satisfy smoothness conditions. When II is
defined as such, one has to show that the nonparametric function estimator 7 also satisfies
these smoothness conditions with probability —+ 1 to verify the first part of Assumption
1(b).

For example, if T is a function of x for x€ 7, G satisfies the smoothness con-
ditions of Andrews (1990b), and % and a suitable number of its derivatives converge in
probability vniformly over x € X to T and its corresponding derivatives, then the first
part of Assumption 1(b) will hold. Note that uniform convergence of nonparametric regres-
sion estimators and their derivatives generally requires the domain & of the functions to
be bounded and the absolutely continuous components of the distributions of the regressor
variables {Xt} to be bounded away from zero on X . If ¥ is unbounded, these properties
can often be obtained by restricting 4 to a large but bounded set. Alternatively, one can
employ a trimming procedure that replaces the uniform convergence requirement with con-
ditions that allow 4 to be unbounded and {Xt} to have distributions with densities that
are not bounded away from zero on its support. In either case, when establishing the first
part of Assumption 1(b), one can exploit existing consistency results and proofs for nonpar-

ametric estimators of regression and density functions and their derivatives.
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Next we discuss the pseudo—metric pp; on IT. As with the choice of IT, thereis
a tension between Assumptions 1(b) and (e) with regard to the choice of pp; . The strong-
er is the pseudo—metric, the easier it is to verify Assumption 1(e), but the more difficult it
is to verify the condition of Assumption 1(b) that pp(, 7)) B, 0. It is this tension and
the availability of stochastic equicontinuity results for different pseudo—metrics that deter-
mine the most 'appmpriate choice of pseudo—metric. Examples of pseudo-metrics for which

stochastic equicontinuity results are available (see Andrews (1990b)) include:

/2
]1

pH(Wl’ 1r2) = &gg[ﬁszllft(ﬁo, Wl) - rt(ﬁO’ 7"2)“2 and (2.2.6)

1/2
oy, ™) = U”"r(w, By ) — (W, By, 1r2)||2dw] . (2.2.7)

The pseudo—metric defined in (2.2.7) can be used when th(-,- ,») does not depend on T
or t and W, takes values in a bounded set ¥ .

| Assumption 1(c) is a key assumption. It is needed to show that preliminary estima-
tion of m; does not affect the asymptotic distribution of T fT(B,'?r) . Assumption 1{c)

holds if a probability model satisfies
T5(6y, 7) =0 V7 in some neighborhood of = (2.2.8)

for all T sufficiently large. In those cases where Assumption 1(c) holds (for suitable 7 )
but (2.2.8) does not hold, Assumption 1{c) often can be verified if 7 is Lé-consistent for

1/4

at rate T for some ¢2 1, ie.

0
1/¢
4 [[lGe) = ml b T R,
e.g., see the partially linear regression and sample selection model examples of Section 3
below. In some other cases where Assumption 1(c) holds (for suitable 7 ) but (2.2.8) does

not hold, one may need to verify LE—consistency of 7 and some of its derivatives for )

and its corresponding derivatives at some rate such as TI/ 4 , e.g., see the binary choice
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example in Whang and Andrews (1990). Note that the criterion function should be chosen
such that T,}.(ﬂo, 7r0) =0 forall T sufficiently large if the model is correctly specified.
Next, we discuss Assumption 1* and compare it with Assumption 1. Assumption
1*(b) requires prH((B,ir), (Bys 7)) ~P, 0, where PBxqy 18 @ pseudo—metric on B x II
that is suitable for establishing the stochastic equicontinuity condition of Assumption

1*(e}. For example, one could take

1/2
Pprr((By T (B, ) = [I%E?Ellrt(ﬁl, ) = 1,(fy, w2)||2} . (22.9)

= sup
N>1
Alternatively, one could take

1/2
pper((Bys 7)), (Byy 1)) = U (w, By, my) — (%, By 1r2)|l2dw] (2.2.10)

”llr
in the case where ry,(-,+,-) does not dependon T or t and Wr, takes valuesina
bounded set ¥.

Assumption 1*(e) is stronger than Assumption 1(e), because it requires stochastic
equicontinuity to hold for a sequence of stochastic processes that is indexed by two param-
eters rather than just one. Assumption 1*(e) also can be verified using results of Andrews
(1990D).

Assumption 1*(f) is weaker than 1(f), because it requires differentiability of
Ert(ﬁ,vr) rather than rt(ﬁ,w) and it does not require certain uniform WLLNs to hold. To
verify continuity of R(g,7) at (ﬁo, 1r0) , as required by Assumption 1*(f), the following

pseudo—metric can be used:
P8y 7 (By 1)) = TTm B8y ) — BBy m)| - 2211)

With this choice of pseudo—metric, continuity of R(#,7) at (ﬁo, wO) automatically holds
and it suffices to verify that p*((B,7), (By> 7)) Lio.
Now we briefly discuss Assumption 1**. This applies in the case where 7 is finite

dimensional and rt(ﬁ,vr) is differentiable in # and 7. Assumption 1** is more general
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than the corresponding assumptions in Newey (1985a) and Tauchen (1985) in that the

latter papers consider only iid rv’s.

2.2.3. Asymptotic Distribution of the Test Statistic

In this section, we discuss consistent estimation of the covariance matrix &
(defined in (2.2.4)) of the limit distribution of T TT(ﬁ,%) . We also derive the asymptotic
distribution of the test statistic Gp (defined in (2.1.4)) under the null hypothesis of
correct specification.

When Assumption 1 or 1*¥ is used, we define

s 1eT 8 3a
R = g8 -aﬂ,—rt(ﬁ,vr) . (2.2.12)

~

R is consistent for R under the null hypothesis of correct specification when Assumption
1 or 1** holds. We define R differently when Assumption 1* is used, since (2.2.12) does
not exist when rt(ﬂ,vr) is not differentiable in §. In this case, we consider the following
finite difference estimator of R. For a constant or scalar v ep > 0, define the jth
column of R by

R = 81 (r,(B + eges, #) — (B~ eqe,, 1))/(2eq) (2.2.13)

J J J

where e.=(0,...,0, 1, 0,...,0)° is the j-th elementary g—vector for

J
j=1, ..., q. Theestimator R of (2.2.13) is consistent for R under Assumption 1* and

the following assumption.

ASSUMPTION 2*: (a) e ~E+ 0 and ef' = 0,WT).

(b) Er,(f,7) is differentiable in § uniformly over fe By, m€Il, and t21 (ie,
9

(Ert(ﬁ + Eej$ "T) - El't(ﬂ - Eej? 7’-))/(26) - EﬁjEmt(ﬂ:W)l

lim sup sup '
-0 t21 ﬂEBO,erH

(c) (B+eTej, 7) 2 (B, 7,) and (B-eTej, #) B (B, mp) Vi<q.

=0 Vj<q)
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Note that Assumption 2¥(c) is very similar to the second part of Assumption 1*(b).
In consequence, the verification of the former is usually a trivial extension of the verifica-
tion of the latter.

Next, we discuss estimation of the matrix %. Let % be an estimator of £. If
{8, (8p; 1r0)} (defined in Assumption 1(d)) is a sequence of independent or orthogonal rv’s,

then we can take

5= 13 8B )e, B - (2:214)
If {gt(ﬁO’ 7r0)} is m—dependent, then the following estimator can be used:

8 1gTs =, , 5 1gT  po s I

Rk T}:lgtgé + V21'1‘21+V[gtg£—v + gt-—vgi] ’ (2.2.15)
where g, = gt(B,%) I {g, (Bys ’:TO)} is neither orthogonal nor m—dependent, then a more
complicated estimator of ¥ is required. In particular, we can apply results for heteroske-
dasticity and autocorrelation comsistent (HAC) covariance matrix estimators for
parametric and semiparametric estimators, using {gt(ﬁ,ir)} as the underlying 1v’s, see
White (1984, pp. 147-161), Newey and West (1987), Gallant (1987), Andrews (19904,
1991b), and Andrews and Monahan (1990).

The estimator $ of ¥ that is adopted is assumed to satisfy:
ASSUMPTION 2: £ -2+ % (where ¥ is as in Assumption 1, 1*, or 1%¥).
We also assume:

ASSUMPTION 3: & is nonsingular.
Let
o= RIYI_ : R] . (2.2.16)

We now state the main result of this section.
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THEOREM 1: Suppose Assumptions 1, 2, and 3, or 1¥*, 2, and 3, or 1%, 2* 2, and 3 hold
under the null hypothesis of correct specification. Then,

= aan i2—1l_ ma 2
Gy = TEg(BA) $ 7 rp(B) L x2 (2.2.17)

where R is as defined in (2.2.12), or (2.2.12), or (2.2.13) respeciively, and xi denotes the

chi—square distribution with m degrees of freedom.

»

(Under the assumptions of the theorem, ¢ is nonsingular with probability - 1, and so

41 is well-defined with probability - 1.)

2.8. Asymptotic Power Properties of the Test under Misspecification
In this section, we establish local power and consistency results for the test dis-
cussed above. To obtain asymptotic local power (£p) results for the test, we impose one of

the three following assumptions.

ASSUMPTION 1-fp [1*—fp}: Assumption 1 [1*] holds with JT(B-ﬁO) replaced by

JT(B - ﬂT) in part (a), where fp = f, + nfy/T for some 7€ RY, and with 1(c) [1¥(c)]
replaced by T 14(6,, 7) B, ¢ for some £eR™.

ASSUMPTION 1**—{p: Assumption 1** holds with yT(5— f,) replaced by JT(B~ B)
in part (a), where ﬁT = /30 + n/yT for some n¢ RY, and with 1**(c) replaced by
JT f,‘f(ﬂo, 7r0) — ¢ forsome ¢£e€R™.
COMMENT: In the above Assumptions, we consider a sequence of local alternatives under
which the mean of the limit distribution of ‘/T(ﬁ—ﬁg) is non—zero and part (c) of
Assumptionqs 1, 1*, and 1** is violated. There are two potential sources of local power of
the test since the noncentrality parameter of the limit distribution of the test statistic GT
depends on £ and % as shown in Theorem 2 below.

In some examples considered below, we show that the values of £ and % can be

determined more specifically. For example, both £ and 7 are non—zero vectors under a
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sequence of local alternatives for a test of omitted variables in partially linear regression
models. For a test of autocorrelation, however, 7 equals zero because we expect B to be
consistent for ﬁo even in the presence of autocorrelation of the errors (see Section 3.1
below). On the other hand, in first—order conditions based tests (see Section 4 below) ¢

equals a zero vector, but # does not equal zero in general.

TAEQREM 2: Under Assumptions 1-fp, 2, and 3, or 1¥*—{p, 2, and 3, or 1¥*—{p, 2%, 2, and
3,

G = Tep(BH) ¢ (B3 - X2 () (2.3.1)

where & is as defined in Theorem 1, 8 = (E+Rn)'¢_1(§+Rq) , and Xri(a?) denotes
the noncentral chi—square distribution with m degrees of freedom and noncentrality

parameter 62 .

Next we consider the consistency properties of the test GT . We note that the par-
ameters ﬂo and Ty are defined to be the probability limits of f and # under the null
hypothesis. Under alternative distributions, these probability limits may be different.
Thus, we suppose that ﬂ—p—v B and #—E+ 7 under a given alternative distribution,
where (B,7) may differ from (4, =) -

Below, we show that the test G is consistent against alternatives for which

[=(B)] >0, where 1(B) = Lim AsTEe (B7) (2.3.2)

provided the following assumptions hold. Define BO to be a subset of B (c Rq) that

contains a neighborhood of B.

ASSUMPTION 4: (a) f-E+ B forsome BeB.

(b) P(reld)=~1.

(c) {It(ﬁ,’il’) :1> 1} satisfies a uniform WLLN over EO «II. r(fm) = %‘im %Er{Ert(ﬁ,vr)
—+m

exists uniformly over BO x TI and is continuous at (B,7) with respect to some pseudo-

metric on B, x II for which (B,7) 2 (B,7) for some 7eIl.
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(d) & -2+ & for some nonsingular matrix & .

THEOREM 3: Suppose Assumption 4 holds and ||x(8,7)|| > 0. Then,

£ oA

Gy = Trp(Bi) ¢ ip(Ah) Lo w. (2.3.3)

COMMENTS: 1. If 7 is a quasi-MLE in a parametric model, then J is the parameter
vector that minimizes the Kullback—Leibler Information Criterion (KLIC) between the
~ true distribution and the alternative distribution if there exists a unigue minimizer (see
White (1982)). When 7 is infinite dimensional, 7 is usually equal to a nonparametric
regression or density function under the alternative distribution.

2. To verify continuity of r{f,7) at (B,%) in part (c) of Assumption 4, the follow-

ing pseudo—metric can be chosen:
Tm LN
P**((ﬁla '”1), (ﬁ2, Wz)) = Nlm NzlE”rt(ﬁla 7"1) - rt(ﬁ2: '"'2)” ‘ (2.3.4)

With this choice, continuity of r(f,7) at (B,7) automatically holds and it suffices to
verify that p**((B,%), (B,7)) =+ 0, where p**(-,-) is now defined with the expectation

operator E taken under the alternative distribution.

3. SPECIFICATION TESTS FOR SEMIPARAMETRIC MODELS

In this section, we consider some specification tests for partially linear regression
(PLR) models (see Robinson (1988)) and semiparametric sample selection models (see
Powell (1987) and Newey (1988)). Specifically, tests of omitted variables and heteroske-
dasticity are considered. In the PLR model, a test of autocorrelation is also considered.

We note that to date none of these tests has been considered in the literature.
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8.1. Specification Tests for Partially Linear Regression Models
3.1.1. Introduction

The model is given by:

Y, = X6, + f(Z,) + U, and E(U,]X,,Z,) =0 as. (3.1.1)
for t=1, ..., T, where the real function f is unknown, Yt’ Ut €ER, Xt’ ‘60 e RY,
and Z, € RP . Assumptions on (Yt’ X 24, Ut)' are given below.

Define
wlO(Zt) = E(Ytlzt) and 1r20(Zt) = E(thzt) . (3.1.2)

Let #(-) and 7o(+) be estimators of myo(*) and Toqo(+) respectively. We consider the

following semiparametric estimator g of ﬁ{} :

A= [zf(xt — Fo(Z))(X, — %2(Zt))'] lz"f(xt — a2 ))(Y, ~7y(2)) . (3.13)
Robinson (1988), Chamberlain (1986), and Andrews (1991a) establish the asymptotic
normality of A defined using different nonparametric estimators of T and 7o -

The semiparametric estimator B is attractive in the sense that parametric esti-
mators of f, based on an incorrect parametrization of f(-) are generally inconsistent. As
in parametric models, however, statistical inference based on the model (3.1.1) may result
in misleading conclusions about ﬁo if some relevant regressor variables have been left out
or if the errors exhibit heteroskedasticity or autocorrelation when they are assumed to be
iid. Below we consider testing procedures to detect possible misspecifications of the above

type using some well-known methods for parametric models.

3.1.2. A Test of Omitted Variables

Suppose the model (3.1.1) is a potentially misspecified version of the model:
Y, =X{f+ f(Z,) + Q{1y + ¢ and E(e, | X,, Zy, Q) =0 as. (3.1.4)

for t=1, ..., T, where Qt’ T € R™ . The null hypothesis of interest is H0 ST = 0.
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Define
1r30(Zt) = E(Qtlzt) (3.1.5)

and let 7,(-) be an estimator of 7go(+) - The models (3.1.1) and (3.1.4) can be re-

written as follows:
Y, —mg(Z2,) = [X; — 79o(Z N By + U, and (8.1.1)
Now a comparison of (3.1.1)” with (3.1.4) shows that
Ut = [Qt - 1‘.3_0(Zt)]’70 e ' (3.1.6)
To test the null hypothesis HO P79 =0, wecan consider a test of the significance
of the regression coefficients when we regress th against Q, —7y(Z;), where
th =Y, - T (2,) — (X, — '}“rz(Zt))’Zi is a semiparametric residual and 7 is as defined in
(3.1.3). That is, we take the sample covariance between fIt and Q, — mq(Z,) as the

basis of our test. Specifically, define -

= (as _ 1T A - s .

IT(ﬁ,'Ir) = TEI[Yt - Wl(Zt) - (Xt - Wg(zt))'ﬂ][qt - 1r3(Zt)] ‘ (3.1.7)
This choice of sample covariance is similar to that of Pagan and Hall (1983) who consider a
test of omitted variables in the linear regression model. Essentially, their testing procedure
applies to the case where the rv’s Y, — wm(zt) , X — 20(Zt) , and Q, — wsO(Zt) are
all assumed to be observed.

The definition in (3.1.7) corresponds to

rt(Wt’ B, m) = It(ﬁ:"r) = [Yt - Wl(zt) = (Xt - Wg(zt))'ﬂ][qt - 7r3(Zt)] ' (3.1.8)
where W, = (Yt’ X 2y, Q%)' and 7= (1rl, Lo wé)' . Note that under the null
hypothesis Hj: 9, =0, Ert(ﬁo, 1ro) = Eet(Qt — 11'3O(Zt)) =0.

For simplicity, we assume below that {W,} areidentically distributed.

Let
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®=[I_ :RJSI_:R]", where

, %1 Iy
R = —E[Q; — m0(Zy)][X; — mpp(Z)l» T = voon i’
12 722
_q1:. 1T T .
Byp = Lim ¥y %0 BepeglQq = mag(Z)lIQg — m30(Z)]
T-o . (3.19)
212 = [’}‘Lf th =lzs =1Eet€s[Qt - 1r30(Zt)][XS - rzo(zs)] ],] ,
222 =J [r}\i’]:: TEt =1_Es =1E6t€s[xt - 7F2O(Zt)][xs - 7r20(ZS)] }J , and

J = E[X, — moo(Z)lIX; - Too(Z)]” -
. PP . 14T . . 5
Let @=[1_:RJI :R]", where R= -2 (Q - 1g(Z X, — 7y(Z,)]” and % is

an estimator of ¥. (See the comment following Theorem PLO below for an example of

-~

£.)

Our test statistic for testing Hy: vy =0 is defined as follows:

= (asm, a1l ms
PLOg = TIT(ﬁ,vr)“I) rT(ﬂ,w) , (3.1.10)

where TT(fi,:Tr) is as defined in (3.1.7). To obtain the asymptotic null distribution of

PLOT , we impose the following assumption.

ASSUMPTION PLO: (a) yT(B—f,) = I 711, BT (X, — 7p())¢; + 0 (1)
(b) () P(rell)=1. (ii) J”'?rJ(Z) - wjo(z)||4dP(z) 2,0 for j=1,2,3, where P(.)
denotes the distribution of Z, . (iii) Eef <a, E[X,I% <o, and E|Q,* <o

1/2

(©) T1/4U|[7“rj(z)-wjo(z)”zdP(z)] 2,0 for j=1,2,3.

(d)y {(X;, Z:, Q{;, et)’ : > 1} is a sequence of iid rv’s or identically distributed, strong
mixing rv’s with mixing numbers that satisfy 2‘;=1a(s)6/ (2+9) < o for some 6> 0 such

246 246 ,
that  Blle,(X, — Too(ZII*T° <o and Ele,(Qq — 73(2,))] t0c¢p. X, defined in
(3.1.9), exists.
1 T . : :
(e) {71'21[% + WlO(Zt) ~m(Z,) + (1r2(Zt) - WQO(Zt)) ﬁO][Qt - 1r3(Zt)] T > 1] minus

its mean is stochastically equicontinuous at 7 = =, with ppy defined by (2.2.6).
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(0 {[Q, — my(ZIX, — 7o(Z,)]” : t 2 1} satisfies a uniform WLLN over =€ .
(g) T2,
(h) @ has full rank m .

THEOREM PLO: Suppose Assumption PLO holds for model (3.1.4) under H0 1Yy =0.

d, 2
Then, PLOg — X -

COMMENTS: 1. Assumption PLO (a) can be verified using results of Robinson (1988),
Chamberlain (1986), Andrews (1991a), or Andrews (1990a) under suitable assumptions.
This assumption combined with Assumption PLO (d) implies asymptotic normality of
JT(B—5y)

2. If the underlying rv’s are iid and E(e%IXt, Qt’ Zt) = "g < o a.s., then the
expression for ¥ defined in (3.1.9) can be simplified. For example, 211 can be written as

Ell = gE[Qt - W30(Zt)][Qt - 7r30(Zt)]’ (3.1.11)

-~

and 212 and 222 can be defined similarly. In this case, the following estimator 211 carn

be shown to be consistent for 2‘11 under suitable conditions:

-

.2 14T . R ,
I =0 T21 [Q‘t - “3(Zt)][Qt - W3(Zt)] ) (3.1.12)
where &% = %E?[Yt -7 (2,) - (X, - 7o(Z4))’ ﬁ]2 . Consistent estimators of %, and
222 are defined similarly with a consistent estimator of J defined by
5 _ 14T - - ,
J= ,If‘El[Xt — 1r2(Zt)][Xt - 1r2(Zt)] . (3.1.13)
Next, we consider the local power properties of the test described above. Specific-

ally, consider a sequence of local alternatives Hrp : 7, = p/{T for some pe¢ R™, 4+ 0.

Under Hrp, Assumption PLO (a) is violated generally and the following relationship

holds under suitable assumptions:
VI(B—fBp) = T I8T(X, = 7m0 (Z,))e, + 0 (1) (3.1.14)
T JTO1V A — Tl 44 //6 T Opl) s 4

where ﬁT = ﬁo _J R u/JT . Equation (3.1.14) implies that Assumption 1-{p{a) holds
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under HT with 7 defined by —J_lR',u, . Assumption 1(c) also fails to hold under Hep .
We can show that JT T3(f,, 7) B, E(Q, - 1r30(Zt))(Qt — ma9(Z;)) 1 = { under Hy and
Assumptions PLO (b) and (c). To see this, note that under Hrp,

”ﬂ T’_‘T‘(BO; ';r) - E(Qt - W30(Zt))(Qt - 7"30(2'1‘))’”’”

1/2
<tV [g@) - mygali%ar(@)] | T4 [ 17 (2) - (211 %P ()
/2 (3.1.15)

/2
]1

1/2 i
4 pl/4 [Ill%z(z) — ﬂzo(z)"2dP(z)] ||ﬁ0||} + 2]l [E”Qt"2]

« [ [rg(a) - mgg(alaP@)] 2 200

Thus, under the local alternatives {Hp} and Assumption PLO with PLO(a)
replaced by (3.1.14), we find that Assumption 1—£p holds with 5 and £ as above. In this
case, PLOT converges in distribution to a noncentral xi v with noncentrality param-

eter given by
2 |
6pr,0 = (6 + Rn)’@ (€ + Ry), where

€ + Ry = [E(Q, — ma(Z)NQ, — Tap(Z,)) —RI"RJu.

(3.1.16)

Next we discuss the consistency properties of the test PLOT. Suppose the
following assumptions hold under the alternative hypothesis Hy : 7,#0:
B2 gy -37 Ry =B, P(rem) -1, BIX|? <o, EQ <o,

{I¥, — 7,(2,) = (X, = 7y(2,))" AQ, ~ 74(Z,)] : 2 1} satisfies a uniform
3.1.17
WLLN over By xTI, Jna‘rj(z) - wjo(z)l|2dP(z) 2.0 for j=1,2,3, (3147

and & —B+ & for some positive definite matrix & .
These assumptions are sufficient for Assumption 4 with 7 = Ty - In addition, we have
A A ] —1 ¢
(fymy) = Er (B, m) = (E(Q, — maq(ZINQ, — m3g(Z,))’ —RI "R7]yy.  (8.1.18)

Hence, by Theorem 3, the test based on PLOT is consistent whenever the expression

inside the square brackets in (3.1.18) is nonsingular.
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3.1.3. A Test of Heteroskedasticity
Consider the following PLR model:

Yt=X£90+{(Zt)+Ut for t=1,..., T, (3.1.19)
where X, 00 € R . The error Ut is assumed to satisfy the following relationship:

U =mne and 7, =1+ h(Qi70) , (3.1.20)
where Qt’ Y € R™, Qt does not contain a constant term, h(-) is a known, contin-
vously differentiable function with h(0}=0 and |h’(0)| <w, ‘and {e} satisfy

2 2 |
E(et|Xt, Z,, Qt) =0 a.s. and E(etlxt, ( Qt) = 05> 0 as.
For a test of heteroskedasticity of the errors {Ut} , wetake Hy:yy=0 asour
null hypothesis. Let W, = (Y,, X}, Z{, Q)" and B=(4, ) eOxRT =BeRY. Let
T=(m, wé)’ € 1 be as defined in (3.1.2). Let @ be the semiparametric estimator B of

equation (3.1.3). We consider the following statistic as the basis of our test statistic:

- (h= 1oT/n2 22
ip(67) =2 (Uy - 0)Q; (3.1.21)
o a2 - N N . -2 _ 15T2
where f=(4,5%), U, =Y, —m(Z)— (X, — wz(Zt)) 6, and o° = 27Uy . The def-
inition in (3.1.21) corresponds to
2 2
1 (B7) = [[Yt —n(2,) — (X, — 1p(2)) O 0 ]Qt . (3.1.22)
. 2 2

Under the null hypothesis Hy: 7, =0, U, =¢, and hence Er, (6, m) = E(U} - 70)Q,

=0. If {Ut} are heteroskedastic, however, the latter result no longer holds.

The statistic TT(EI,?r) in (3.1.21) is closely related to the test statistic suggested by
Breusch and Pagan (1979) and Koenker {1981) who considered tests of heteroskedasticity
in the linear model with errors of the form given by (3.1.20). In fact, if we regard B and
fIt as the OLS estimator and the OLS residual, respectively, the statistic defined in
(3.1.21) is exactly the same as that used by Koenker (1981). We note that our general

framework can be used to generalize the results of Koenker (1981) to the PLR model.®
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In this section, we assume that {Wt} = {(Yt’ X{, 24, Q{;)'} are identically dis-
tributed. Let

=3 —(EQ)¥{3— 213(EQ’) + (EQ,)%q 3(EQ;) , where

i 1aT T
211—,}1:ng1; —125= E( 0)(E "0) Q4

o (3.1.23)
T 9 2 2
13 = pim T8 =10 =1 Ble — 0)(eg — 9)Qy » and
1,T T g2 22 2
B33 = i T8 2155 = 1Bl — og)eg — 7p) -

In the case where the underlying rv’s are iid and € is independent of Qt , the expression

for ® simplifies:

¢ = ¢'[EQtQ£ - EQtEQﬂ ’ (3'1'24)

2 .
where ¢ =E(¢f—o2) . Let & be defined as & is but with EQ,, 5

233 replaced by (1/T)ETQt, 11 213, and 233, respectively, where ., 213,

213 , and

11>

~

and 233 are some consistent estimators of 211 , 213 , and 233 .

Our test statistic is defined as follows:
P, P
PLH, = TrT(ﬂ,':r) o rT(ﬂ,vr) , (3.1.25)

where fT(ﬁ,%) is as defined in (3.1.21). To analyze the asymptotic behavior of PLHp,

under HO P = 0, weimpose the following assumption.

Y -1

-8 J75 0 (X, = mon(Z,))e

ASSUMPTION PLH: (a) T 0 = LTt 200074 4 6 (1),

-2 2 yI'1 2 2 P

0" —ay 0 1 €, — g
where J is as defined in (3.1.9).
() @) PGem-1. (i) J||1r(z)-1r0(z)||3dp(z) P,0 for j=1,2, where P()
denotes the distribution of Z, . (iii) Ef <w, E”Xt“ <wo, and E[Q, || <wo.

1/4
(©) T1/4UH%(Z)—wjo(z)l|4dP(z)] 2,0 for j=1,2.
(d) {(X{,Z, Q¢ et)’ .1 1} is a sequence of iid rv’s or identically distributed, strong
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mixing rv’s with mixing numbers that satisfy X7 a(s)'S/ (2+9) < o for some &> 0 such

2+6 2 6 4426
that Ee2Q,I°t0 < a, Elle,(X; — gz )* T’ <, and E|e |+ <

2 « —1 c e 2 2 .
I= éi{:l Var[ [(e —~0g)Qf : T (X —m90(Zy)) € ;€ — 00]] exists.
a2 2 o

(e) { [(e + 110(2,) = 11 (Zy) + (mo(Z,) — 190(Z,)) 8)" — 00] Q:T2 1} minus its
mean is stochastically equicontinuous at 7= 7, with p; given by (2.2.6).
() {le, + wlO(Zt) —m(Z,) + X{(0y — 0) + 79(Z,)" 0 — my(Z,) 611X, — oy (2,)]Q1
t 21} satisfies a uniform WLLN over (6,7) € €, = II, where ©, denotes some neighbor-
hood of 00.
() 3, B3, &35, and &, B3,
(h) Assumption PLO(h) holds.

THEOREM PLH: Suppose Assumption PLH holds for model (3.1.19)—(3.1.20) under

d 2
Hy: 7y =0. Then, PLH - x .

COMMENTS: 1. Assumption PLH (a) requires that
Assumptions PLH (b)—(d) plus the following assumptions are sufficient for (3.1.26) using a
similar argument to that given in the proof of Lemma 1:
. 1 «T 2 . . .
() {VI'SI[Yt —my(2,) — (X, —7m5(Z,)) 6" : T2 1} minus its mean is
stochastically equicontinuous at 7 = G with respect to the pseudo—metric
511/2
px(+,+) on II, where P*("ra: '”b) = I:E”mt(%, Wa) - mt(BO’ Wb)” ] and
2
mt(ﬂo, 1r) = [Yt - Wl(Zt) - (Xt - Wg(zt))' 9] ) (3.1.27)
. 1T .
(if) {Tzl (Y, = 73(Z,) = (X, = 7(2,)" A1X, — 1y(Z)] : ¢ > 1} satisfies
uniform WLLN over @0 x I, and

(iii) vT(8- ) = 0,(1) -
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2. If the underlying 1v’s are iid and € is independent of Qt , then a consistent

estimator of ¢ defined in equation (3.1.24) under Hy: vy =0 is as follows:

2
s |1sT[n2 .2

[’%‘Erfqtqé - H*E.ert] [r}rz}‘Qg]] : (3.1.28)

In this case, the test statistic PLHT is equal to TR2 , where R2 is the coefficient of
determination from a regression of fJf against unity and Qt .

Now, to analyze the local power of the test PLH., consider a sequence of local
alternatives Hr: M= pfyT for some pe R™, p# 0. Under Hy, Assumption PLH
(a) is violated generally, but Assumption 1—{p holds under suitable conditions with
Ap = (0, 2agh'(0)EQ£,u,)’ and R = (0 —EQt) . Assumption 1(c) of Section 2 also fails

to hold under Hr. . If Assumption PLH (c) holds and E||Qt|l2 <o under Hp, then
T5(f,, 7) —2 207 (0)02[EQ, Q:]u = 3.1.29
\fr IT(ﬂO: 7r) ( )00[ QtQt]Ju' = E (Sa'Y)‘ ( R )

Therefore, the noncentrality parameter of the limit distribution of PLHT under Hrp is

62, 1 = 40°h (02w E(Q, — EQ)(Q, — EQ,)’ & 'E(Q, —~BQ,)(Q, ~EQ,)'x, (3.1.30)

which is positive provided & and E(Q, —EQ,)(Q, — EQ,)’ are nonsingular.
Under the fixed alternative hypothesis H1 Y #0, # and 7 are consistent for

2

6, and m, respectively, but 5 L2, agE(l + h(Q£7O))2 =g (say). Let

g = {6, 62)' . The test PLH, is consistent against H, under assumptions that imply
Assumption 4 whenever

1(B, mg) = Bry(B, mg) = o [E(1 + h(Qq79))’Q, ~ E(1 + h(Q10)°BQ,|  (3.1:31)

does not equal zero.
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3.1.4. A Test of Autocorrelation
Consider the PLR model described in equation (3.1.1) with errors {Ut} that satisfy

U, =1U,_; +¢ forsome 1,€R, (3.1.32)

where |70| <1 and {et} are iid with mean zero, variance o2 , and are independent of
{X;,Z;}. The null hypothesis of interest is Hy:7,=0. Let fIt =Y, - #(Z,)
-(X; - ?r2(Zt))’ B be the semiparametric residual with j defined as in equation (3.1.3).

To test Hy: vy =0, wecan consider the sample covariance between fIt and ﬁt—l as

the basis of our test statistic. Specifically, deﬁne Wt = (Yt’ Z‘E’ XE’ Yt—l’ Z,;_l, Xé—l)' ,
T= (7, 75) and

P H o 1 T. =

E(B7) =57 0,0, ;. (3.1.33)

When th is the OLS residual in a linear model, the statistic defined in (3.1.33) is the
basis of the test statistic of Pagan and Hall (1983).

The definition in (3.1.33) corresponds to

() = (Yo (B)~(X=m(2)) ALY, =7y (By_HXy_y=my(Zy VA (3134)
This choice of the criterion function fits into our general framework since, under
Hy:7 =0, ¢ =U, and hence Ert(ﬁO’ 1r0) =Eege, 1 =0.
Let
5= ot and &= [15T02)" (3.1.35)
The test statistic is defined as

. -2 2
1eTH2 1 «TH 7

ASSUMPTION PLA: (a) Assumption PLO (a) holds.
(b), (c) Assumptions PLO (b) and (c) hold with j=1,2,3 replaced by j=1,2 and
with BJQ* <o deleted.

(d) {(X;, Zi’)’ 4> 1} is a sequence of iid rv’s or identically distributed, strong mixing
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6/(2+5)

rv’s with mixing numbers that satisfy IT__,a(s) <o for some &3>0 such that

246 2+6 <

E|e <o and E||X w. {g} areiid with mean zero, variance ag , and are

! ¢l
independent of {X,, Z,} .
1 T )

(e) {71'21[% + 7y0(2y) = 7y () + (7y(Z) — 70(Zy)) Blley g + myo(Z_y) — m (24 _y)
+ (12 1) — moq(Zy_1) Bl : T 2 1} minus its mean is stochastically equicontinuous at
™=@, with ppy defined by (2.2.8).
(f) {[ft + 7"10(Zt) - Wl(zt) + (xt - Wzo(zt))'ﬁo - (Xt - W2(Zt))'ﬂ][xt_1 - Wg(zt__l)]
ey ¥ mg(Zyy) = (B g) + Xy = 7ag(Zy )Y By — Ry g = 7ol 1)) A)
% [X, —79(2,)] : t 2 1} satisfies a uniform WLLN over (f,7) € By xII .

~2 2
(g) & L ag -
THEOREM PLA: Suppose Assumption PLA holds for the model (3.1.1)—(3.1.32) under

d

2
H = 0. Then, PLAT — X7

0° 7o
COMMENT: We can easily extend the above results to tests for autocorrelation of the

form U, = 70Ut—j + & for j>1.

The test PLAg can be shown using Theorem 3 to be consistent against the fixed

alternative hypothesis H1 Y # 0 because f-&+ ‘60 and 72 Ty under H. , so that

1 H
(g mg) = Ex, (B, 7y) = EU, U, _; #0. (3.1.37)

8.2. Specification Tests for Semiparamelric Sample Selection Models
3.2.1. Introduction
This sectior considers tests of omitted variables and heteroskedasticity in semipar-

ametric sample selection models. The model is given by

i’t = )"{i 0+ U, and D, = 1(h(Z, o) + ¢, > 0), (3.2.1)
where (Y, Dy, X,, Z,) = (¥,D,, D;, X,D;, Z,) are observed for t=1, ..., T, Y, is
unobserved when Dt =0, it may or may not be observed when Dt =0, the real



30

function h(-,-) is known, {(U X, Z;) 1121} areiid, and (U, ¢,) is independent

€
A
of (Xt’ Z,) and has unknown distribution. The first equation of model (3.2.1) multiplied

by D { can be re—written as
Y, =X{0,+ Dtg(h(Zt, a,)) + 4, , where
g(v) =E(U,| ¢, > —v), u, =Dy(U, - g(h(Z;, ap))) , and (3.2.2)
E(y|D, =1,X,,%) =0 as.

The function g(-) : R+ R is unknown, since (U,, ¢;) has unknown distribution.

Define
7 o(av) = E[Y, |h(Z;, a) = v, D, = 1],
Toolav) = E[X, |h(Z,, @) =v, D, = 1}, and (3.2.3)
2

Ta9(av) = E[uf[h(Z;, o) = v, D, = 1].

Let '?rj(-,-) denote an estimator of 1rj0(-,-) for j=1,2,3. Note that the first equation

of the model (3.2.2) can be re—written as
Y, — mo(ag h(Zy, o)) = [Xt — mpol g, B(Zy, ao))] Oy + uy - (3.2.4)

Define ﬂo = (aé, 0[’))' € qu x qu =RY. Let & be some preliminary estimator of ap -
Below we assume that & is Ichimura’s (1985) or Klein and Spady’s (1987) semiparametric
estimator of o - Specifically, & is defined to minimize |

A2T0(D,, Fe(a, h(Z,, o)) (3.2.5)

9
over o€ ACR

. Here, %5(-,-) is an estimator of 1r50(-,-) , 7r50(-,-) is defined by
myo(av) = E(D, |h(Z;, a) = v) for vER, (3.2.6)

and 7(-,-) is some "distance" function. Ichimura’s (1985) estimator takes

7Dy, m) = (D, — 75)°/2 (3.2.7)
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and Klein and Spady’s (1987) estimator takes
7Dy, 7g) =D, fn 7y — (1 — D, )én(1 — 1) . (3.2.8)
As an estimator of BO , we consider the three—step estimator of Andrews (1990a).
The three-step estimator 8 of 90 is defined by

) , -1
b= {z’f[xt — o b(Zy, W)X, — Fo(& h(Z,, &)] /g, B(Z,, a))]

T R . o nga gm X (3.2.9)
« [B], - Fy(8 b(z,, ADIY, - 7y (& (2, &)}/ g3, bz, )]

Andrews (1990a) gives high—level conditions under which @ is yT—consistent and asymp-
totically normal. Note that Powell’s (1987) and Newey’s (1988) two—step estimators equal
the three—step estimator § when the latter is defined with wq(@, h(Z;, &)} = 1. Powell
uses (higher order bias reducing) kernel estimators to estimate T and 7,5, whereas

Newey uses series estimators.

3.2.2. A Test of Omitted Variables
Suppose the first equation of model (3.2.1) is a potentially misspecified version of
VvV — Y A # *
¥, = X0, + Qyny + U, (3.2.10)
where Q, = Q {Dy € R™ is observed and Qt may or may not be observed when D, =0
for t=1,..., T. Weassumethat (U}, ¢,) is independent of (Xt, Z,, Qt) . Define
myolev) = B[Q|MZ,, a) = v, D, = 1] (3.2.11)

and 7,(-,-) to be an estimator of 7,4(-,-}. The above model can be re—written as

Y, — myo(ag bz, ag)) = [X, — moq(0y, h(Z,, ap))] 4,
, (3.2.12)
+ [Qt - 7r40(a0, h(zt3 ao))] 70 + ‘u't g

where uf =D, [U} —E[U}|¢, > —h(Z,, op)]] and E[uf|D, =1,X,,2,,Q,]=0 as.
To develop a test of H0 M= 0, we adopt the strategy of Pagan and Hall (1983)

as in Section 3.1.2. As the basis of our test statistic, we consider the sample covariance
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between the normalized "semiparametric  residual" [Y, — 7 (& h(Z, &))
— (X, — 7o(&, h(Zy, a))) 9 [[7q( , h(Zy, a))]ll 2 and the normalized "left—out regressor”
[Q, — (& 1(Z,, @)))/[g(@ , h(E,, a))H2. (One could set Fy(& , h(Z,, &) =1, but

1/2 makes the residuals homoskedastic under the

the normalization by [7a(a, h(Zt, @))]
null hypothesis Hy . Specifically, we define Wt = (Yt’ Dt’ X‘E’ Zé, Q i)’ ,
B=(ar,0), 7= (7}, 15 7y, 1) , and
It(ﬁ:ﬂ-) = Dt[Yt - Wl(a! h(ztr a)) - (Xt - 2(&, h(zt: O!))' 0]
« [Q — my( h(Z,, 0))]/ng(a h(Z,, ) -
Note that under Hy:93=0, Ut = U’i',“ NS ,u’{ , and hence Ert(ﬂo, 7r0)

= By Q) — myp(ag, h(Z;, ap))] = 0

Qur test statistic is defined as

(3.2.13)

5507 = [Fr21DyilQ, — 7yl 1%, @)/ gl (2, )]
« 67| TETDIQ, - 7y( BBy, D))/ iyl Mz, &) .

where  f, = [Y, ~ iy (& 1y, &) — (X, — hy(@ b(Z,, &)W, &=[1, I REL, IR

(3.2.14)

is an estimator of ¢, and R, ¥, and & are defined below.

We now define &, R, £, R, and £. Let 5(-,-) be as defined in (3.2.7) or
(3.2.8) and let 7°(-,-) and #"(:,-) denote the first and second partial derivative of
n(-,-) with respect to its second argument respectively. Let (v) = P(Dt = 1|h(Zt, ao)
=v) and ¢, = ¢(h(Z,, ay)) - Note that mq(ap, *) = o(-). Let irg.i)(-,-) and

( )( -) denote the partial derivatives of 1r( )} and WJO( ,*), respectively, with
respect to their i—th argument for i=1,2 and j=1,2,3,4,5. Let ir(o)(-,-) and

( )( ,-) denote 7rJ( )t ) and 7r0( ,*), respectively for j=1,2,3,4,5. Let

Ht=[-a-a-h(zt, ao)—E[-aah(Zt, o) h(Zt,a)H G oh(Z,, o), (3.2.15)
9

where E[-aah(Zt, aO)Ih(Zt’ ao)] denotes [-g—h O)Ih(zt’ @) = v] evaluated at

= h(Zt, ao) . The expression for H, can be shown to equal gavrw(a » h(Zy, o)) -
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When estimating ¢ (defined below), the appropriate sample analogue of H, to use is

#(0(a, n(z,, &) + Ln(z, 9@, bz, 8) . Let

¢=[_ RIS R}

—_ _1 ’ _1 —1 —1 —1 ’
=) + RyM; RS + (Ry — RoMy "Mg)M, "5\ M (R — RyM, "M} ,
where R=[R; : Ry], M= , S= ,
M, M, 0 s,
1
£ 0 R,M
_ “le -1 T B |
T=| 0 M; 1S M7 —M7ls My Mg ,
MRy —mpmMTts M7 MY, + MMy ls o iagmg?
| My Ry MMMy TS Myt MRSy + MgMy 75, My " MaIM, |
211 = EDt[Qt - 7F40(0'.'0, h(Zt:QO))][Qt - 1!'40(0 ] h(zt:ao))] /7!'30(&0, h(ztaao)) b
(2
R, = ED,[Q, — myq(ay, h(Z,,cp)lI05ns2)(eg, b(Z,,a0)) (3.2.16)

— nag, h(Z,,00) g2, a0) a0, B(Zqep))
R2 = _EDt[Qt - 1l'40(0!0, h(Zt:ao))][Xt - 7r20(a0: h(ztsao))]'/w:;o(a L h(Ztaao)) )

, 24 1/
M, = En"(D,, p,)H.H; , S, = E[7’(D,, 9,)]"H.H{,

2
M3 = EDt[Xt - 7"20(00: h(Zt,ao))][%ng)(aoa h(zt:ao))
2 9
— (D, 12, 00 5Erh(Z, a0) Tagf g, h(Z,,a) , and
M4 = ‘“EDt[Xt_"rgo(a :h(ztaao))][xt_ﬂ'go(a ,h(Zt,aO))] /ng(ao:h(zt:ao)) = "Sg -
The estimators R and $ are defined by taking sample analogues of the quantities above.
The estimators (&), o(2,-) , and %4(&,-) can be obtained by nonparamet-
ric regressions of Y,, X,, and Q; on h(Z, &) using the observations for which
2
D,=1. Note that  mg,(av)= E{(Y, —X;6,)"|n(Z,, @) = v, D, = 1] — (m (V)
2 - fa PR A ra PR Ne
— Toq(@v) 63)" . Thus, one can take ma(8-) = oo (0:) — (T (@) — Ty(a,0 ) 6)7,
where 7, o(@°) is obtained by a nonparametric regression of (Y, - X£9)2 on h(Z, a)

using the observations for which D, =1 and @ is some consistent estimator of 8, - The
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most convenient choice for # is just the two—step estimator of 00 , which is the LS esti-
mator of f, from the regression of Y, - "1(&, h(Zt, a)) on X, — (& h(Zy, a)) .
We impose the following assumption under the null hypothesis H0 = 0.

ASSUMPTION $SO: (3) yT(B—fBp) = T "% VITZT Yiml%)| | 1),
-0y Yori(Bp) P
where 'ﬂbth(a ) = 1 7] (Dt’ ﬂ"t)H and ¢2Tt(ﬁ0) =-M, [Mgwth( 0)

+ ﬂt[x - 7!'20( 0 h(Zt,a ))]/1{'30(0 ? h(zt:a ))]

(b) () P(rel)-1. (i) Jl(D-l)Hvrl)(a ,v)—'ir( (eg VIEAP(D,Y) £+ 0 for (k)
= (0’1?4)’ (0’2’4)’ (0’3’8)’ (0}4’4)’ (1,1’2)’ (1’2’2)’ (1’3’4)’ (1’472)’ (211)4)1 (27214)? (2?3?8)?
and (2,4,4), E||wgé)(ao, B(Z, )  <w for j=1,2,3,4, and E||7rgg)(a0, h(z,,a)lI®
<o for j=1,2,3,4, where P(:,:) denotes the distribution of (Dt’ h(Zt, ao)) .

8
4 8 9 8
(i) BIX, 1 <, EIQIE <o, E“-aah(zt, ao)“ <o, EDU} <o, inflry(a V)

>0, and inf| %3(01 , v)} > € with probability +1for some e> 0, where ¥ denotes the
vey

support of h(Z,, &) -
1/4 _ P 2 1/2_2.. .
(c) T 1(D = )|l e, v)-—-‘n‘jo(ag, v)||“dP(D,v) 0 for j=1,2,4.
(@) (@) {(U,, ¢, X, 2,,Q):t21} areiid and (U, ¢,) is independent of (it, Z,, Q) -

(ii) inf{@(v)| > 0 and sup|p’(v)| <o, where ¢’(-) denotes the derivative of ¢(-).
vE vey

1 T
(e) {VTElDt[‘"'t + 7r10(a'0: h(Zt, ao)) - 11’1(00, h(Zt: ao)) + (. ( ay, h(Z 0))
— Ty gy h(Zy, ag))) B11Q, — my( g W(Z,y, ap))]/ w0, h(Zy, ) T 1} minus  its
mean is stochastically equicontinuous at == =, with 11 defined by (2.2.6).
(D) {-ag,-rt(ﬁ,vr) 1121 satisfies a uniform WLLN over By x II .
(g) () h(z,) and -aah(z,a) are continuous at @, uniformly over zeZ, where 2
denotes the support of Z, . (ii) rgi)(a,v) is uniformly continuous on {(a, v) : v €V}
uniformly over 7€ Il for i=0,1,2 and j=1,2,3,4.
(h) £—24% and & has full rank m.
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Note that in Assumption SSO(f),
'agt_rt(ﬁa"r) = _[Rit(ﬁ:"r) + Rét(ﬁﬂr) + Rét(ﬁ:ﬂ') R&t(ﬁﬂr)]’ , where

th(ﬂ:ﬂ') = Dt[Yt - rl(as h(Zt: )) - (Xt - 7!'2((1, h(Zt:a)))’ 0]

} -ag-,-w4(0, h(Z,,0))/75( e, h(Z,,)) ,

Ry, (6,m) = Dy[Q, — 7,(a, h(Z,,)) [—ag,-vrl(a, h(Z,,a) (3.2.17)
~ 050 my{ e, (Zy,)) | 750, B(Zy,0)
R3t(ﬁ:7r) = Dt[Yt - 1(01 h(zt=a)) - (Xt = 12(0:, h(Ztra)))l J
«[Q, - 74(e, h(Z,, a))]-a%'frs(a, h(Zt,a))/wg(a, h(Z,,e)), and
Ry, (8,7) = D,[Q, — my(a, h(Z,,a))IIX, — my(a, h(Z,,a)]" .
THEOREM S$SO: Suppose Assumption SSO holds for model (3.2.1)—(3.2.10) under the null

: d .2
hypothesis H0 RS 0. Then, SSOT — X -

COMMENTS: 1. Assumption SSO (a) can be verified using results of Andrews (1990a).
2. It is straightforward to extend the result of Theorem SSO to the case where the
underlying rv’s are dependent. This extension, however, requires a more complicated

expression for @ than that given in (3.2.16).

The test SSOT is consistent against most alternative hypotheses H,: T Q.
Suppose #—2» ¥ under H, . Let B:(aé, P')'. (Note that @& and 7 are still con-

sistent for a, and x; respectively under H, .) Then,

EIt(Bawo) = [EDt[Qt_“T.iO(a(}:h(zt!ao))][xt“"rzo(a :h(zt:ao))]'/ﬂ':go(a )h(Zt’ao))](HO_a)

(3.2.18)
+ [EDt[Qt"—ﬂgO(a !h(zt:ao))][Qt_W40(a :h(zt:ao))]’/W30(a0=h(zt$ao)):| 70 :

Under the conditions of Theorem 3, the test SSOT is consistent if the expression in

(3.2.18) is non—zero. The latter holds provided the second term in square brackets is non-

singular, except in the special case where the two summands are exactly offsetting.
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3.2.3. A Test of Heteroskedasticity

Consider the sample selection model in (3.2.1). Suppose we want to test whether
the variance of the error Ut is heteroskedastic conditional on some observed random vari-
able Qt ¢ R™, where elements of Qt may contain those of )"f'it and Zt . (In this
section, we assume that € is homoskedastic and independent of (Xt, Zt’ Qt) . A test of
heteroskedasticity for e, is discussed in Whang and Andrews (1990, Section 3.2.2).) Spe-
cifically, consider a function f(Qt, 'yd) such that £(Q,, 0) =1. Suppose

U, = f(Qt, 'yo)U* , (3.2.19)
where (UY, €) is independent of (f(t, Z, Q,) - The null hypothesis of interest is Hy : 7,
= 0. Note that if T9# 0, the three—step estimator # of 60 may be inconsistent since
E[,ut | Dt =1, Xt’ Zt] is different from zero with positive probability in general.

Since U, cannot be estimated directly given our estimation strategy for 3),. it is
not possible to use the same testing strategy as in the partially linear regression model (see
Section 3.1.3). Here, p, isan "estimable" regression error. Note, however, that the con-
ditional variance of p, given D, =1 and h(Z,, o) is heteroskedastic even under the
null hypothesis Hg: 7, = 0. In particular, under H,, since (Ut’ et) is independent of
Qt under Hy, we have

We note that the above conditional variance of M depends only on the single index
Wz, a5) . If 7,40, however, E[,u%|Dt =1, h(Z,, o), Q,] differs from E[,U.%ID,E
=1,h(Z;, )] and depends on Q, . Therefore, we test for the existence of conditional
heteroskedasticity of fs; that is not attributable to h(Zt, aO) in the following way.

Let ?rj(-,é) , 7rj0(-,-) , B, and ﬁo be as above. We consider as the basis of our
test statistic the sample covariance between ,uf and Qt after projecting these variables

onto the space orthogonal to h(Zt, ao) . Specifically, we define
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r,(6,7) = Dy [[¥, - m (& h(Z,,0)) - (X, — my(e, bz, ) 0
— 7y, 1(Z,,)] [Q, — my(es By @)}yl h(Zyya)

(Ome could set the divisor mg(a, h(Z;, @)) to equal ome. But, by dividing by

(3.2.21)

7a(a, 1(Z, a)) , we make the residuals homoskedastic under H, ) Under Hy:7y=0,
o 2
(U ¢) is independent of Q, and Er,(By, 7g) = ED [ — mq( g, h(Z, op))]
x [Qt - 1|’40(0.’0, h(Zt: ao))]/7r30(a ) h(zt: ao)) = 9 by (3220)
Our test statistic is defined to be

SSHy = |75, Dy — gl bz, )IQ, mex,h(zt,a))1/%3(a,h(zt,a))]’é‘1(3m)

1 «TH 22 & /4 - ~ ra AN /5 (2 -
" [Wzlnt[ﬂt — (& h(Z,, @)][Q, — 7iy(@ h(Z,,8))]/ 754, h(Zt,a))] ,
where i, = [Yt — (& h(Zt,&)) -(X; - o, h(Zt,&))’a] and & is some consis-
tent estimator of &, such as the sample analogue of & . The matrix ¢ is defined as

follows:

¢=%, +R l\fqlslM1 R: , where

2 2
E]_]_ = EDt[Ju't - 1r30(a ? h(zt! ao))] [Qt - 11'40(0! ’ h(zti a[)))]
2
X [Qt - 1|'40(00, h(Zt: ag))]’/"'r:;g(aoi h(Zt, aO)) ] (3'2'23)
2
R, = —ED,[Q, — m,(ag, b(Z,, ap))Irs)(eg, h(Z,, o))
d
x 'Ha_’h(zt’ ao)/'n'30(a ) h(zt! ao)) ’
and M; and §, are as defined in (3.2.16).
We impose that the following assumption under the null hypothesis H0 P = 0.
ASSUMPTION SSH: (a) Assumption SSO (a) holds.
(b) Assumption SSO (b) holds with (0,1,4), (0,2,4), (1,1,2), (1,2,2), (1,4,2), (2,1,4), (2,2,4),
and (2,4,4) replaced by (0,1,8), (0,2,8), (1,1,4), (1,2,4), (1,4,4), (2,1,8), (2,2,8), and (2,4,8),

respectively, and with E]|Xt"4t < o replaced by E||Xt]|8 <wo.

1/4
(©) T1/8U1(D= Dllieg ¥) ~ (g v)[|4dP(D,v)] 2,0 for j=1,2 and
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1/2
T1/4U1(D= il g, v) = miglap, v)l|2dP(D,v)] 2,0 for j=3,4.
(d) Assumption SSO (d) holds with Q, replaced by Q, .
( ) {VTETD [[#’t + Wlo(a ' h(zt:ao)) - W]_(aO: h(zt:ao)) + (7!' (QO: h(Zt,QO))
2 .

- 7"20(0‘3, h(Ztaag)))' 90] - 1!'3(00, h(Zt,ao))] [Qt - 140(00, h(Z £ 0))]/”3(0-'01 ( 0)) :
T> 1} minus its mean is stochastically equicontinuous at 7= =, with i defined by
(2.2.6).
(f) {-agﬂ.‘t(ﬂ,?r) 112 1} satisfies a uniform WLLN over By x II .
(g), (b) Assumptions SSO (g) and (h) hold.

Note that in Assumption SSH(f),

agﬂt(ﬁ,‘fr) = —{R{,(6,7) + Ray(B,m) + R, (Bym) : 2Ry, (Bm)] , where
Ry, () = D,[Q, - 74( B(Zy o)l [20Y, — m( b(Zy,0)) — (X, = my(a; h(Z,)))" 1

- [-a%wl(a,h(zt,a))—B'B%ﬁz(a,h(Zt,a))] T my(eh(Zy,0)| /rg(ah(Zy,a)),
Ry,(87) = D, [[Yt — (0 b(Zy,0)) — (X, — mof e, B(Z,,0)))" O — ml e, h(Zt,a))]

« 50-m,(, b(Z,,0))/ 75(a, h(Z,,0)), (3.2.24)

Rst(ﬁ:"r) = Dt [[Yt - Wl(a: h(ztza)) - (Xt - W]_(a) h(zt:a)))' 8]2 - 7r3(a1 h(zt:a))}
x [Qt — my(a, h(Zt,a))]-a%w?,(a, h(Zt,a))/m'g(a, h(Zt,a)), and

R, (A7) = D,IY, — 7 h(Z,,0)) — (X, — my(a, 1(Z,,0)))" A[Q, — 7, h(Z,0)]
* [Xt - 7"2( a, h(Zt,a))]’/:trs(a, h(Zt:a)) .
THEOREM SSH: Suppose Assumption SSH holds for the model (3.2.1)—(3.2.19) under the

P d 2
null hypothesis HO ‘Y= 0. Then, SS]E[T — X -

Next we consider the consistency properties of the test SSH. against the fixed
alternative hypothesis H1 % $0. If ﬂ_E. B=(ap, P’)' and ¥ 7
= (1r10, Tag Ta 7rj40)’ under H;, then the test SSHr, generally is consistent against
H1 . This follows because
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Er,(B,7) = ED,Ky,[Q, — my( g, h(Zy, o))/ g g, h(Zy, ap))
+ 2[EDtK2t[Qt — maq(a B(Zy, ap)))
x [X, — Tog( h(Z,, o))’ /72, h(Z,, ao))](eo =) (3.2.25)
+ ED,[X, — my(ag, h(Z,, ag))’ (4 - Nk
x [Q, — my0( e MZy, ap))]/T5( g, h(Zy, @)

is not equal to zero generally, where

Klt = fz(Qt:’YO)E[UtQIDt =1, h(zt:ao)] "E[P(Qtﬂg)U:let =1, h(Zt:O‘U)]
9 o (3.2.26)
+ (Bl U710, = 1, 8Zag)l] = [1(QuapBIVEID, = 1, hZy )]

K,, = 1Q,7)E[U} 1D, = 1, h(Ze,a0)] - BIHQyu1)UF D, = 1, h(Z,e)] - (3.2.27)

Note that K,, and K, arezeroa.s. if f(Qy, 7,) is a function of h(Z, ) -

4. TESTS OF PARAMETRIC VERSUS SEMIPARAMETRIC MODELS

4.1. First—=Order Conditions Based Tests

In this section, we consider a class of specification tests that test parametric
assumptions in parametric models against semiparametric alternatives. The method is as
follows: Suppose we have a parametric model that is nested in a semiparametric model.
We base a test of the parametric assumptions on the vector of first—order conditions
(FOC) that define a semiparametric estimator J evaluated at a parametric estimator g.
That is, we take rt(ﬂ,vr) to equal the defining equation of the semiparametric estimator B
and evaluate [ at the parametric estimator B . If the parametric assumptions used to
obtain the consistency of ﬁ are true, then the FOC evaluated at g will be close to zero
and the test will reject with probability a in large samples. If these parametric assump-

tions are violated, however, the FOC evaluated at ﬂ will not be close to zero and the test

will reject with high probability in large samples.
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The idea of an FOC test is similar to that of the LM test because we can regard
and J# as "restricted" and "unrestricted" estimators of ‘60 respectively. Ruud (1984),
Newey (1985b.), and Pagan and Vella (1989) discuss FOC tests when both B and B are
parametric estimators. Pagan and Vella (1989) also discuss FOC tests when B is a semi-
parametric estimator. They do not provide asymptotic distribution theory for such tests,
however, when infinite dimensional nuisance .pa,rameters are present in the first—order con-
ditions and/or the first—order conditions are not differentiable with respect to f. Our
results cover these cases.

The FOC test is also similar to the Hausman test (see Hausman (1978)) that is
based on the difference between B and B. Whang and Andrews (1990) discuss conditions
under which the latter two tests are asymptotically equivalent both under the null and
local alternative hypotheses.

The semiparametric estimators [ that we consider are called MINPIN estimators
(see Andrews (1990a)). These estimators MINimize a criterion funcﬁion that may depend

on a Preliminary Infinite dimensional Nuisance parameter estimator.

DEFINITION: A sequence of MINPIN estimators {B} = {#:T 21} is any sequence of

rv’s such that
d(zp(B7), 7) = }32% d(Tp(6,7), 7) (4.1.1)

with probability -+ 1, where fT(ﬁ,'?r) = %Erfrt(ﬁ,ir) , % is a random element of T' (and #
depends on T in general), T' is a pseudo—metric space, and d(-,-) is a non-random, real

valued function (which does not depend on T ).

Let 3 be a yT—consistent and asymptotically normal estimator of ﬁo under the
parametric assumptions we want to test. We define the FOC test statistic FOCT to be
the statistic G of equation (2.1.4) with r,(-,-) as in the definition of a MINPIN
estimator, ¢ defined by (2.2.16), and g defined as above.
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In the examples given below, we consider FOC tests based on semiparametric esti-
mators for censored regression {Section 4.2), partially linear regression (Section 4.3), and

sample selection (Section 4.4) models.

4.2. A Test of Parametric Assumptions in a Censored Regression Model
In this section, we consider a test of normality and homoskedasticity of the errors in

a censored regression model. The model is

Y, = max{0, X;f§, + U} for t=1,..., T, (4.2.1)

where Yt is an observed dependent variable, Xt is an observed gq—vector of regressors,
and Ut is an unobserved error.

Under the normality of Ut and some additional regularity conditions, Amemiya
(1973) shows that the tobit MLE B of ﬁO is 4/ T—consistent and asymptotically normal.
It is well known, however, that the tobit MLE usually is inconsistent if the assumption of
normality or homoskedasticity of the errors is violated (see Goldberger (1983) and
Arabmazar and Schmidt (1982)).

Powell (1984)’s censored least absolute deviations (CLAD) estimator J of By isa
semiparametric estimator that is y/T—consistent and asymptotically normal for a wide class
of error distributions with a zero median (conditional on X, ) and is robust to heteroske-
dasticity of the errors. The latter fact suggests that we can use the FOC of the CLAD
estimator f evaluated at the tobit MLE B as the basis of our test statistic. We expect
the resulting test to exhibit power when the errors are non—normal or heteroskedastic.

The CLAD estimator B of B, is defined to minimize
51|, —max{0, X; f}| (4.2.2)
over feB( RY . Under suitable assumptions, it also solves the FOC:

0=37[1/2-1(%, - X;8 < 0)] 1(X(8> 0)X, (4.2.3)
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with probability -+ 1.
Define W, = (Y,, X %) . Then we can write our criterion function as follows:
1(W,, f) = 1,(8) = [1/2 —1(Y, - Xjf < 0)] 1(X;6> 0)X, . (4.2.4)

Note that under the null hypothesis H, : U, - N(0, ag) , wehave Er,(f))=0.

0
QOur test statistic is defined to be:

= maa=ll
CLADy = TTp(A) ¢ "Tp(H) , (4.2.5)
where Tp(f) = %é)?rt(ﬁ) , B is the tobit MLE defined below, and & is defined below.
To define 3 and &, we re—write the model (4.2.1) as
Y, =X{8,+ U, and D, = 1(X{f,+ U, >0), (4.2.6)

where (Y,,D,, X,) = (?tD;G, D,, X,) areobservedfor t =1, ..., T. Let

f(u, o%) = [mra?] Y 2exp[—(u/a)2/2] ,F(), 0%) = JA (o, 09du

o = {(X{fps 0p) » and Fo, = FX{y, op) -

The tobit MLE (3, 5°) of (f, o) is defined to minimize the loglikelihood function:
£1(1-D, Jlogl1 — F(X:6,6%)] — (51D, /2)n 210° ~B1D,(Y, - X; f)%/(2¢%) .  (4.2.8)
The asymptotic covariance matrix & of T “r'T(Zi) is defined as follows:
U B 9
® = M/4—ng[Iq LOUTHI, £ o), where ) =100, o) = 1/iral
—_ - 1 T ’ ’
M= Lim g3 BU(X {6y > OXX{
m
STEa X, X; ETEb X
o 1:e. 1 179 177
T-w '| 5]EbX; 1B,

1]

(4.2.9)
By = - [XiﬁofOt - obfgy/ (1 — Fgy) FOt]/ %

by = (X tye/ o + ety = 20Kiffoe/ 1~ Fop) (20, and

¢, = - [(X{ﬁo)%t/ ag + X{Byfos — (Xiﬂof()t)z [(1=Fg,) - 2F0t] /(403) _
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We define the estimator & of & as follows:

N N - . ..__1 N ’ ,\2 1/ 2
&= Fija—M1 ;o (o] /[m ] , (4.2.10)
where M = %ETI(XE[J > O)thi; and J is defined to equal the sample analogue of J
with ([)’0, a%) replaced by the tobit MLE (ﬁ, &2) everywhere they appear.
We now introduce conditions under which CLADT has the desired asymptotic null

distribution. These conditions are sufficient for Assumption 1*.

ASSUMPTION CLAD: (a) {Ut} are iid normal rv’s with mean zero and variance o% :
{Ut} and {Xt} are independent. {Xt} are rv’s with sup E”Xt”3 <w. M and 7T,
t>1

defined in (4.2.9), exist.
~ 11 ot (Ao _ 2
(b) vT(8— ﬁg) = [Iq - 0[J 71‘21 + Op(l) , Wwhere "pth(ﬁo) = Xt[DtUt/UO
Yori(Bp)
- (1 - Dt)f[)t/(l - FOt)] and ¢2Tt(ﬁ0) = [(1 - Dt)xiﬁof()t/(l - FOt)
-D, + DtU%/ag]ﬂag .
(c) sup E[1(|X;4] ¢ |1xt|1-z)1|xt||‘] is o(z) as z-0 forall feBy and r=1,2.
£21
(@) lim ATEHX (8- By), 021X B> 0)X X exists uniformly over f€ By .
(¢) JL+J and & hasfull rank q.

THEOREM CLAD: Suppose HO is true and Assumption CLAD holds for the model

(42.1). Then, CLAD, - Xf;'

s

COMMENTS: 1. The expression [wth(ﬁO)’, Yori(fy)l  in Assumption CLAD (b)
equals the score function evaluated at (ﬁO, aﬁ) corresponding to the log—likelihood
function (4.2.8). J equals the information matrix. Under maximum likelihood regularity
conditions, Assumption CLAD (b) can be verified. (For example, Amemiya (1973) gives

regularity conditions for Assumption CLAD (b) when {X,} are fixed constants.)
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2. Assumption CLAD (c) is the same as Assumption R.2. of Powell (1984, p. 310).
For a discussion of this assumption, see the latter paper.

3. It is straightforward to extend the result of Theorem CLAD to the case where
{Xt} are m—dependent. The corresponding result where {Xt} are more generally depen-
dent requires different arguments from those used in the proof of Theorem CLAD to verify

the stochastic equicontinuity condition of Assumption 1*.

Consider a sequence of local alternatives under which JT(8— ﬁT) has a mean zero
limit distribution, where ﬁT = ﬁo + n/J/T for some g€ RY. Then, the noncentrality

parameter of the limit distribution of CLADT is

2 2 el
bopap = fp7’Me "Mn, (4.2.11)

where fy, M, and & areas defined in (4.2.9).
Next, suppose‘ H—L» B+ ﬁo when {Ut} are not normally distributed or are

heteroskedastic. The test CLADT usually is consistent against such alternatives because

lim TE1EL (B) = Lim T31E [% ~1(u, < X;(B- ﬁo))] XA > 00X,  (4212)

is usually non—zero for B¢ f, .

4.8. A Test of Linearity in the Linear Regression Model
In this section, we consider a test of the linearity assumption in the linear regression
model. The test has power directed towards semiparametric alternatives. Specifically, we
consider the partially linear regression (PLR) model of Section 3.1 as the alternative model.
Consider the PLR model given in equation (3.1.1). We suppose the underlying 1v’s
{w,}={(Y,, X{, Z ,E)’} are identically distributed. The null hypothesis of interest is:

H, : P((Z,) = Z","yo) =1 for some 7, eRP. (4.3.1)

Define wlo(-) and 1r20(-) as in (3.1.2). Let
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1a0(2,) = E(US|Z,) . (4.3.2)

s

Let frj(-) denote an estimator of 7rj0(-) for j=1,2,3. Let 7= (m, 75, m3)
We consider the defining equation for the semiparametric weighted least squares

(WLS) estimator for the PLR model (see Andrews (1990a}) as our criterion function, i.e.,
r(Bm) = [Y, - 1,(2,) — (X, - (Z)) X, — 1o(Z )}/ mfZ,) . (4.33)
Under Hy, Er(f,, 7)) = EU,[X, —- 1r20(Zt)]/1r30(Zt) =0 since E(U,|X,,Z,)=0 as.
Let 4 be the OLS estimator of ﬁ'o for the null model, i.e.
p= L ojQ ey, (4.3.4)
where Q = (Qi, very Q,i,)’ , Qt = (Xi, Zé)l , and Y = (Yl’ ceny YT)'. QOur test statis-

tic is based on:
- N oA 1 T ~ A - - a
IT(ﬁ;"r) = TS]_ [Yt - "Tl(zt) - (Xt - Wg(zt)),ﬁ][xt - WQ(Zt)]/Wg(Zt) . (4.3.5)
The test statistic is defined to be
- o A—]__ S
LPLy = TrT(ﬁ,'ir)’@ rT(ﬁ,w) , (4.3.6)

where & is defined below.

We now define ¢ and & . Let
& = [Iq R]E[Iq R}’ , where

R = —E[X; — myq(Z)I[X; — myq(Z))" /730(Z) »

> EX,X; EX,Z
po| T B2 | EREOPRE g o
Yo Zo EZX{ EZ,Z{ (4.3.7)
1T T ,
By = LimgBy g BU U mag( Xy Bl (mg 2y )mao(20))
5. =[1im 18T 3T EUU[X, — 1) (Z,)]|Q/ Tan(Z )]J—l[l L 0], and
127 T—'mthl s=1""¢ st~ "20V7t/ s T30V q- ’

T Tl * o,
Es=1EUtUthQS]J o).

e 1o 16T
Rl [,},LI:TEL—J q°
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Let $ be some estimator of ¥, asin Section 2.2.3, and let

. PP o 1.T . . ‘i

¢ = [Iq . R]E[Iq : R]”, where R =—8[X, - T(ZINX, — 7o(Z,)] [75(Z,) . (4.3.8)
If the errors Ut and Us are uncorrelated conditional on (Xt, Zt’ XS, Zs) Yi#s

and E(Uflxt, Z,)= E(Uf | Zt) = crg a.s., then the above expression for ® simplifies to

2 = [M-MI'UM)/o?, where
M = E[X, — moo(Z )X, — Too(Zy)]” , and (4.3.9)
11 _ . . A1
3= [EXtXt — (EX,2;)(EZ,2;) (B2 xt)]
In this case, the estimators ¥ and & can be simplified correspondingly.

To establish the asymptotic null distribution of LPLT we assume:

ASSUMPTION LPL: (a) {(U X, Zt) t>1} is a sequence of iid rv’s or identically
distributed, strong mixing rv’s with mixing numbers that satisfy E‘:=1a(s)5/ (2+5)

for some 6> 0 such that E|U, |20 <u, EIX |0 <u, and Bjz*T¥ <

(b) Q)N c{r:m=(my, 75, m3)", ;lelé|ﬂ'3(z)| >¢} for some e>0 and P(rell)-1

where Z denotes the support of Z, . (ii) EU? <o, E[|Xt||8 <o.
(iii) Ju z) - ﬂjO(z)]|4dP(z) -B,0 for j=1,2,3, where P(-) denotes the distribution
of Zt . /

1/2
() TV 4U|Ifrj(z) - wjo(z)szP(z)] 2.0 for j=1,2.
(d) T, defined in (4.3.7), exists.
(© {wzlw + 1) = 7 (2) + (my(B) — 1oy (Z)) BglIX, — (2 )]/ m5(2))  T21)
minus its mean is stochastically equicontinuous at # = L) with 11 defined by (2.2.6).
() {[X; — m(ZIX, - 1o(2,)]" [74(Z,) : 1 2 1} satisfies a uniform WLLN over 7€ 1II.
(g) $-2+% and & has full rank q.

THEOREM LPL: Suppose Assumption LPL holds for the model (3.1.1)—(4.3.1) under Hy .

d, .2
Then, LPLT — X
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Now suppose f—5 B # B, under the fixed alternative hypothesis
Hy: P({(2,) #2{7) >0 Vye RP. (4.3.10)
If R is nonsingular, the test LPLT is consistent against such alternatives, since

1(B, n) = Ex,(B, ) = R(6y ~ ). (4:3.11)

4.4. A Test of Parametric Assumptions in a Sample Selection Model
Consider the sample selection model given in (3.2.1) of Section 3.2. Here, we con-

sider a test of bivariate normality of the errors (U, €,) :

Ut 0
HO: ~ N

0

["11 %12
3

] , where wlog oo = 1. (4.4.1)
912 %22

4
The test is based on the FOC of the semiparametric three—step estimator of Andrews
(1990a) evaluated at the parametric two-step estimator of Heckman (1979). Since the

latter estimator usually is inconsistent if the bivariate normality assumption is violated,

the test has power against such violations.

Let & be the probit estimator of a, € qu and let @ be Heckman’s two—step
estimator of 60 € Rq2 . Let B= (&, b’)’ and ﬁo = (a(’), 06)' € qu x qu =RY. By
definition, & maximizes the log—likelihood function

log L{a) = E}‘ [Dt log[1 — &(h(Z,, ao))] + (1 —D,)log &(h(Z,, ao))] , (4.4.2)

where &(-) denotes the standard normal distribution function.

Heckman’s two—step estimator # is defined by

1
T T T .
. CoeIxox wTax | PEIxy| . ¢
b=11, 1 0] o t SN R ,z\t=—é—,and A = s (4.4.3)
o |51 X; EDA2| |51AY, 1-4, ¢

where I q denotes the qq x gy identity matrix, ¢(-) denotes the standard normal
2
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density  function, (:bt = ¢(h(2,, &), &, = &(-h(Z,, &) = 1 - 2(W(Z,, &),
¢’t = ¢(h(Zt: ag)) ) and ‘I’t = ‘I’(—h(Zt, ao)) *
Let wjo(a,v) be as defined in (3.2.3) for j=1,2,3, andlet

T40(eg v) = P(D, = 1{WZ,, ay) =v) for veR. - (444)

Let -)=my5(ay ) and ¢ = w(h(Zy, o)) . Let n(+,») be as defined in (3.2.7) or
(3.2.8). The FOC of Andrews’ (1990a) three—step estimator of f,; yield the following cri-

terion function:

134(a, 7y)

I (ﬁ’ "T) =
K t0, (B, )

(4.4.5)
ﬂ'(Dt: 7!'4( a:h( Zt ’ a)))-gavr4(a,h(zt sa))

Dt[Yt-vrl(a,h(Zt,a) HX ~m9(a,h(Z;, a)))’ O[X 7o ah(Z, @)}/ 74(a,h(Z,,0))
where Wt = (Yt’ Dt’ X{,‘, Z,E) , T= (7r1, 73y Mg, 7r4)’ , and 7’ denotes the derivative of
n  with respect to its second argument. Note that Ert(ﬂo, 1r0) =0  since
E[n'(D,, 0)|Z;) =0 as. and E[p|D, =1, X, Z,]=0 as.

We define our test statistic as follows:

= iy, A=l fm s
SSDp = TI'.T(ﬁ,TF)’Q’ Tp(B.7) , (4.4.6)
where fT(,B,ir) = ,:l[fﬂrfrt(ﬁ,'?r) , @ = [Iq f{]ﬁ[Iq : R]" is an estimator of & (defined
below), and R and § are sample analogues of R and ¥ (defined below). Under
sufficient conditions for Theorem 1 for the model (3.2.1)—4.4.1) (see Whang and Andrews

(1990)), the test statistic SSD converges in distribution to a x(zl rv under Hj .
We now define & . Let
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@ =[L, : RIS, : R]", where

5y 0 By Iy
R, 0 0 %, 0 %
ro | B 5o 22 2|
R, R, B, 0 gy Ty
RV TR ’344_

R, = En'(D,, 3,)¢% Jh(Z,, ag)ga(Zy, o)

Ry = ED,[X, — mog(eq, B(Z, o) f5m5e) (e, h(Zy.eq)) — 13 (eq, bz, eq)]

5o (Zy,00) 7o g, H(Zyag)

R, =-ED[X, - wzo(ao,h(Zt,ao))][Xt - wzo(ao,h(Zt,aO))]’/rgo(ao,h(Zt,ao))
=Yg,
E11 = E[’?'(D )¢'t] ( ) ag)'a_‘h( ; 0‘0) » (4.4.7)

213 = [E?? ( )(D - ‘I’t)(ﬁ (Ztr ao)'a——h(zt: ao)/ét(l )] ‘]_1 )

Yoy = [EDt[Xt — myp( (22X - ”20(“0’h(zt’a0))]'] A

_ 11, a1 Dol =71
5., =37 B’A [qu.o] , B, =53080,, Bgg=1
1|1 X X Xy 11
Byq = [y 1 OJAT |BITB” + Emg(aph(Zyep))| 2 :
2 Xt/\t Dt)\t 0

11 . -1 .
AV ={_~-0]A 7L -0
{q2.01 Ly, 500"

J= E¢ ( t? ag)'a_h(zt: ao)/(pt(l - )

EX.X: EX.A
A= | 00 T
Exi)‘t EDt)‘t
i)
Be o EDt)\t(At + h(Zt, c:zo)))(fa Wh(zt’ aO)
- 712 2 ’
ED,C)\t()\t + h(Zt, ao))'ﬂa_'h(zt’ ao)
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Here, wgg)(-,-) [7"(-,-)] denotes the derivative of wjo(-,-) [77(-,-)] with respect to its
second argument for j=1,2. The above expression for & uses the fact that under the
null  hypothesis Hy: (Ut’ Et) is bivariate normal, v, = P, and
9 ryolag B(Z,, o)) = Fo2(-h(Z, o)) = —4 I 4(z,, o)

If the bivariate normality assumption of (Ut’ et) is violated and f§ = (&, B')'
2, 3= (a, l—?')l # .[3’0 , then the test usually is consistent, because

Erlt(c'x, 1r40)

(B, ;) = Ex,(B, m) = (4.4.8)
0 ¢ 0 EIZt(E: 7"0)
usually is not equal to zero, where
Er (aymy) = En(my0{ g, WZ,,00)); m40(@ h(Zt,a)))-gavrm(a,h(Zt,&)) and
Er2t(ﬁa7r0) = E[”rlg(ao:h(ztnao)) - Wlo(a:h(zt:a)) + (Xt_ﬂ-zo(ao:h(ztaao)))I
(4.4.9)

* (90 —-9) + (7[-20(&: h(Zt,a)) - 1r20(a ’ h(ztaa{))))’?]

* [X, — mpg(@, W(Z,,a))]/7g0(2, W(Zy,8)) .

5. A TEST OF SEMIPARAMETRIC VERSUS NONPARAMETRIC MODELS

In this section, we consider a specification test for the functional form of the regres-
sion function. The null model of interest is the partially linear regression (PLR) model and
the alternative model is the nonparametric regression (NR) model. The PLR model and

the NR model can be written as
Y, = wlo(Zt) + (Xt - 7!'20(Zt))’ﬁ0 + Ut and E(Utlxt’ Zt) =0 a.s. and (5.1)
Y, = Tag(Xy Zy) + ¢, and E(e | X, 2,) =0 as., (5.2)
respectively, for t =1, ..., 2T, where Yt’ Ut’ € € R, X, ﬁo e RY, Z, € RP

T10(Zy) = B(Y,1Z,) , moq(Z,) = E(X,1Z,) , and 7q(X,,2,) = B(Y, |X,2,) . (5.3)
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We note that Yatchew (1988) has recently proposed a specification test of a linear
regression model against a nonparametric regression model. Consistency of Yatchew’s
(1988) test is proved by Wooldridge (1989). Below we extend the results of Yatchew
(1988) and Wooldridge (1989) to the case where the null model is semiparametric rather
than parametric. As in Yatchew (1988), our test statistic is based on the difference
between the sums of squared residuals from the "restricted" and "unrestricted" models.
Qur testing procedure also requires a sample splitting {described below) to prevent degen-
eracy of the limit distribution of the test statistic.

Suppose we have an iid sample {(Yt’ X0 Zi)' :t=1, ..., 2T} and we split the
sample into two independent sub—samples of size T. Let {(Yt’ X’E’ Zt) :

’

t=1, ..., T} and {(Y%, X’;’, Z’E’) :t=1, ..., T} denote the first and the second
sub—samples. We estimate the null model (5.1) using the first sub—sample and the altern-
ative model (5.2) using the second sub—sample.

Let W, = (Yt’ X{ 2, Y:, X:’, Z;") and 7= (1r1, 5, 13) . Define

rp(BR) = 57 |[¥, - 7y (B) — (X, — Ap(B)) B - Y] - m(XE 20|, (5.9)

T\ = T 1 1V t 2\t 1 3V Tt ! '
where [ is as defined in equation (3.1.3) and ?rj denotes a nonparametric estimator of
50 for j=1,2,3. Note that the expression in (5.4) is the difference (scaled by 1/T )
between the sums of square residuals from the null and alternative models. Note also that
if the PLR model is correctly specified, then Ert(ﬁo, 1r0) = EU% - EUI2 = (0, where

Ut =Y X%, ZY)

— 730l

Let % be an estimator of 7, = Var U%. For example, # could be %Etl[‘ﬁ%
2 2

T2 1 T‘*d: 1 T“*2 T o _ - -

- Tzlut] or AELUH - [TE1Ut ] , whete U, =Y, —#,(2,) — (X, - 7,(2,))' 5

=Y} — 1,(X}, Z}) . Our test statistic is defined as follows:

RN

PLNy = /T 1(B9)/(27) /2. (5.5)

Under assumptions given below PLNT is asymptotically standard normal.
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. ' -1
ASSUMPTION PLN: (a) yT(3—f,) = [E[Xt— 2ol EIX, - wzo(zt)]'}
x VlTxrf(xt — mg(Z)U, + 0 (1) .
(b) () P(reM)-1. (i) j|l'7rj(z)-7rj0(z)||4dP(z) 2.0 for j=1,2 and
J||5r3(x,z)-7r30(x,z)|]4dP(x,z)—R~0 , where P(-) and P(-,-) denote the distributions

of Z, and (Xt' Zt) respectively.
1/2
(c) T1/4U||§rj(z)—ﬁjO(z)IlzdP(z)] 2,0 for j=1,2 and

1/2
/4 [Iry(x2) - myy(xPaPxa)] " a0
(d) {(U,, X, 2;, UL, X3, 22) 1421} areiid (U, Xj,2;) and (U¥ X}, 2%)
are independent and have the same distribution.
1 T PRY:
(e) {VTEI [(Ut + ng(zt) - '”1(Zt) + ('”2(Zt) - Wgo(zt)) ﬁg) - (UI + W30(XI:Z=€)
- 'rra()(f,Z’i';‘))2 T2 1} minus its mean is stochastically equicontinuous at 7= =, with
pp asin (2.2.6).
() {10, + m3(Z,) — 7y(Z) + (X, — 7(Z)" By — (X, — my(Z)) ALK, — mp(Z,)] : 42 1}
satisfies a uniform WLLN over By = II.
(8) EV} <w and E|X,I® <o.
(h) 2 Ty -

THEOREM PLN: Suppose Assumption PLN holds. If the PLR model (5.1) is correctly
specified, then PLNT 4, N(0,1) .

COMMENT: If the null model is the linear regression model, then Yatchew’s (1988) test
fits into our general framework by taking (X{,Z{)=Q;, (X}",2{')=Q}", my(Q})
=E(Y}|Q}), # equals to the OLS estimator of f, in the model Y, = Q;f; + U, and
E(U,|Q,) =0 as.,2nd r,(fm) = (Y, - Q;f)% - (Y - Q).

If the regression function of the PLR model is not correctly specified, the test

PLNT is consistent, since under suitable assumptions



Ny ssgm i Bmy(2) - (X, - Tog(Z,))" B — Tag(X,, Z,))° and

TT(B:'}) £ Ert(ﬁaﬂb) = E[‘}rw(Zt) - (Xt = ng(zt))'ﬁ - 7r30(Xt’ Zt)]z

> 0.

53

(5.6)

(5.7)



APPENDIX

Throughout the Appendix, welet A j denote the j—th row of A for any matrix A .

PROOF OF LEMMA 1: The proof consists of three parts corresponding to Assumptions 1,

1*, and 1** respectively.
(1) Suppose Assumption 1 holds. Element by element mean value expansions of
J’I‘fT(ﬁ,%) about f; give: Vi=1, ..., m,
JT T (B7) = VTTEg By, 1) — E4(Bgy ] + T (6, B)
1 T a n ~ (A.l)
+ [T gon 8% M|VIG- 5y,

where S* is a rv that depends on j and lies on the line segment joining 4 and ﬁo , and
hence, f* 2= B, by Assumptions 1(a) and (d). (See Jennrich (1969) Lemma 3 for the
mean value theorem for random functions.)

Below we show that

vp{(#) = VT[Eqy{Bg, 7) — T3(fgs 7] = vp(mg) + 0p(1) (A2)
and

= 1T @ o

Rp(B* 7) = 2 ggrty(F 7) = R (B, o) + 0,(1) - (A.3)

Since the second term on the right—hand side (rhs) of (A.1) is op(l) by Assump-
tion 1(c), equations (A.1)—(A.3) and Assumptions 1(a) and (d) give the following result by

stacking terms for j=1, ..., m:
JTEq(BA) = VTEq(Bgsm) = T (Bymg)) + R(BymWTTipBg) — (8] + 0, (1)
= [T, R(Bg: 7)VT BBy, 7o) + 0, (1) 4
where the first equality uses Assumptions 1(a) and (d) and gT(-,-) is as defined in

Assumption 1{d). Now from equation (A.4) and Assumption 1(d), the result of Lemma 1
follows directly.



Equation (A.2) follows from Assumptions 1(b) and (e) because: Ve >0 and >0
36 > 0 such that
TT_i? P(j VTj(%) - VTJ'(""Q)I > 1)
< E P(|VTj(5r) - VTj(TO)l > n, € I, ppy(7, 7p) < 6)
+ TTm P(7 ¢ Il or py(7, 7y) > 6) (A.5)

Tewo

¢ Tim PX( sup  |upi(m) = vpi(mo)| > )
T-w mell:ppy(m, my)<6 Tj o

< €.

Equation (A.3) follows because

IR(6%, 3 = Ry(Bp, )
<R (B, 7) — BB Pl + IR4(8%, 3) — Ry(6*, )] (A.6)
+ ”R(ﬁ*: W) - R(ﬁo: 0)” _P-' 0 H
where RT (8,7) TEIE'BH_I (8,7) and the convergence to zero uses Assumptions 1{a),

(b), (d), and (f).

(2) Suppose Assumption 1* holds. By adding and subtracting terms, we have

JTEg(B5) = vg(BA) + VT 15(B) (A7)
Below we show that
u(B.3) = w8y ) + 0p(1) (4.8)
and
VT TH(B,3) = Ry, WT(B— Bg) + 0,(1) (19)

Now equations (A.7)—{A.9) and Assumptions 1*(a} and (d) yield the following result by a

similar argument to that of (A.4):



T 5 q(BA) = (L, & R(Bg, mIVT BBy 1) + 0,(1) (4.10)
The result of Lemma 1 follows directly from equation {A.10) and Assumption 1*(d).

Note that (A.8) follows from Assumptions 1*(b) and (e) by a similar argument to

that of (A.5). To show (A.9), consider element by element mean value expansions of
YT TH(B,7) about fy: Vj=1, ..., m, |
=% [\ _ =¥ ~ ]. T a -~ .

JT T(B) = VT 48 ) + [T5] 3978161 o T~ 0) (A1)

where [(* is a rv that depends on j and lies on the line segment joining 8 and ﬁo , and

hence, f* - [30 by Assumptions 1*(a) and (d). Note that the first term on the RHS of

(A11)is o (1) by Assumption 1*(c). Define R3(47) = e -BB—Ert(ﬁ,w) . Then, by
Assumptions 1*(a), (b), (d), and (f),

<IRG(8*, 7) = R{B DI + [R{(8*7) = Ry(Bpm)ll 2 0.

This establishes (A.9) since T(f — By) = Op(l) by Assumptions 1¥(a) and (d).

(A.12)

(3) Suppose Assumption 1** holds. The difference between Assumptions 1 and 1** is that
the latter specifies II t{o be finite dimensional and it replaces Assumption 1{c) by
Assumption 1**(c) and stochastic equicontinuity of {vp(-)} at m; (Assumption 1(e)) by
Assumption 1**(e). Stochastic equicontinuity of {wp(-)} is used in the proof only to
show that

vp(#) — vp(mg) £ 0. (A.13)

Thus, it suffices to show that Assumptions 1*¥(c} and (e) imply Assumption 1(c) and
(A.13).
To show that Assumption 1(c) holds, consider element by element mean value

expansions of J'I‘f*(ﬁo, 7) about Tyt ¥Vi=1, ..., m,

JT £3(Bg ) = VT 158y, 70) + |12] goBry By VTG — 7). (A1)



A4

where 7* lies on the line segment joining * and T and hence, 7* £ Ty byAssump-
tion 1**¥(b). Define

QT(ﬁ: E'a_rt(ﬂ:w) (A15)

Note that by the moment condition in Assumption 1**(e),

E%Ertj(ﬁﬂ’ ) I = .n-r tJ(ﬁO’ 7")| Vi21. (A.16)

Thus, the term in square brackets in (A.14) is equal to QTj(ﬂO, 7*) . Since

1Qp (B> ) = Q4B Rl = 0 (A.17)
by a similar argument to that of (A.12) under Assumptions 1**(b) and (e) and
Qj(ﬁo, my) =0, we have QTj(ﬂﬂ’ 7¥) _E,g . This result, T(7—1y)= Op(l)
(Assumption 1**(e)), Assumption 1**(c), and equation (A.14) establish Assumption 1(c).

To show (A.13), consider element by element mean value expansions of vy ()

about Ty Vi=1, ..., m,

() = () = [ Fp garvny(e)| VI = mp) (4.18)

where 7* lies on the line segment joining 7 and ;. The rhs of (A.18)is o© p(1) under

ol

Assumption 1**(e), since yT(7—my) = Op(l) and
HVT E_VTJ(W*)” uTST [BTr 1B ) = EB“tJ By )

< jr‘éﬁ”’%s? [a?rrtj(ﬁo’ - Eaa‘r’tj(ﬁo’ 7’)] " o0,

where the first equality in (A.19) holds by (A.16). o

(A.19)

PROOF OF THEOREM 1: The proof of Theorem 1 follows by the results of Lemma 1,
Assumption 3, and the continuous mapping theorem if we show that & -2+ & . Since

¥ B+ T under Assumption 2, it suffices to prove that R 2 R(ﬁo, 1r0) .



First, suppose either Assumption 1 or 1** holds. Then R (defined in (2.2.12)) is
consistent for R(f), ;) (defined in part (f) of Assumptions 1 and 1**) by a similar argu-
ment to that of (A.6) under either Assumptions 1(a), (b), (d), and (f) or Assumptions
1**(a), (b), (d), and (f).

Next, suppose Assumptions 1* and 2* hold. Below we show that R £+ R(BO, 1r0)
=R, where R and R(8,; wo) are defined in (2.2.13) and Assumption 1*(f) respectively.
Let Ert(B,ir) denote Er (f,x) evaluated at (B,7) = (B,7) . We have

IR~ Ryl < ”ﬁ. ~ P T (B (B + eqe; ) — Bry (B eqe;, 7)) /(2ET)|[

+ [ FET (B (B + eqe; 1) —Exy(B - eqe;, )/(2ep) - Tzlert(ﬁ,fr)
(A.20)

+ 253 afger ) - R0 + IR gB - Ry

Since

A1T=Q$T(VT(B+eTej,ar) vp(By 7)) — Wr( (B-epey®) —vp(Bpmg)) , (A21)

Assumptions 1*(e), 2*(a), and 2*(c) combine to yield AlT_E' 0. Assumptions 1%(a),
1¥(b), 1%(d), 2*(a), and 2¥(b) imply Ayp—B+0. Assumption 1*(f) implies A,y —E40
and A AT P, 0. Hence, R -2+ R as desired. o

PROOF OF THEOREM 2: First, we prove that under Assumption 1—-fp, 1*—fp, or 1¥*—fp
the following result holds:

JT £(B1) —4 N(¢ + R(By, )7, @) (A22)

Then, Theorem 2 holds by a similar argument to that of the proof of Theorem 1.
To show (A.22), suppose Assumption 1—£p holds. Then

VT fT(Ba:"}) = [Im R(ﬁoa Wo)]\/T ET(ﬁO’ Wo) + &+ R(ﬁoy 7"0)"7 + Op(l) (A-23)
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by a similar argument to that of the proof of Lemma 1, using the fact that § —E» By »
JT(B - By) = JT(B - fr)+n, and VT f,}j(ﬁo, #)~Es ¢ . Equation (A.22) follows from
Assumption 1-fp(d) and (A.23). Equation (A.22) holds under Assumption 1*—fp or

1¥*—fp by a similar argument to that given above. o

PROOF OF THEOREM 3: We show that

Iz (A7) — (BRI R 0. (A.24)
Then, Theorem 3 follows since

|2p(Bi) €7 T p(B) ~ x(B7) & 1(B)| B0, (A.25)

|lx(B,7}l| > 0, and $7L is nonsingular (Assumption 4(d)).
Equation (A .24) holds because

e (B,3) - sBP)

(A.26)
where the convergence to zero uses Assumptions 4(a), (b), and (¢). o

PROOF OF THEOREM PLO: Below we show that Assumption PLO (hereafter PLO)
implies Assumption 1 (hereafter As. 1). Since PLO(g) and (h) imply Assumptions 2 and 3
respectively, the result of Theorem PLO follows from Theorem 1. We note that As. 1(a) is
implied by PLO(a). The first part of As. 1(b). and As. 1(e) are implied by PLO (b)—(i)
and (e) respectively. The second part of As. 1(b) holds by PLO (b) and (d) using the

pseudo—metric pp; defined in (2.2.6) because



PH(%’ Wg) = [E”ft + WIO(Zt) - Wl(Zt) + (T2(Zt) - Wzo(zt))'ﬁol[qt - WS(Zt)]

1/2
= et[Qt - 7"30(21;)]”21 1|-=ﬁ-:|

1/4 1/4
s[{Jl%l(Z)—vrlo(Z)l4dP(Z)]/ + [[igte) — mga)1*aP(2)] IIﬁOH} (B.1)

x [U o)~ mglarta] -+ 2fpieyi] 1/4]

. 1/4

il i) — ma0(2)] 4P (2)
]

As. 1(c) follows from PLO(c) and (d), because

VT T3, T

+[Eet L,0.

= ”\/TE[ft + ng(zt) - ':Tl(Zt) + (Wg(zt) - ng(zt))'ﬁ(}][qt - 7"3(Zt)]”

=T

(B.2)
1/2 1/2
g{T1/4U|?rl(z)—vrlo(z)lzdp(z)]/ + T4 [Iy(a)-myg(2)Pap(a)| Ilﬁoll}

1/2
1 - 2
< T4 [Iry(a) - g’ Reo.
As. 1(d) is satisfied by Corollary 1 of Herrndorf (1984) and PLO(d), because

Lol (Q, - 7q0(2,))
VT 2q(Bg, 7o) = 71'1‘2%‘]“1(; > Zt ME
JT'1 ¢ ~ Too(Zy))e;

The uniform WLLN condition of As. 1(f) follows from PLO(f). Continuity of

(B.3)

R(B,7) at (ﬁo, 7r0) , which is required by As. 1{f), holds using the pseudo—metric p* of
(2.2.5) by PLO (b) and (d):

ﬂ*((a,%); (ﬂo: WO))

= EJ(Q, — m(Z))(X, — ()" —(Q — mag(Z)X, — mag(Z) .

<[t - 30(z)||2d1,(z)]llzluwz)_ 20(2)!|2d1°(z)]1 2

1/2 (B4)
/ +2[E]|Xt|[2] /]
+2[sl0 ] [Iigta) - ryg(0era)] % 2.0 g
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PROOF OF THEOREM PLH: First we verify As.1. As. 1(a) follows from (Assumption)
PLH (a). The first part of As. 1(b), As. 1{e), and the uniform WLLN assumption of As.
1(f) follow directly from PLO (b)—’(i), (e), and (f} respectively. The second part of As. 1(b)
holds by PLO (b) and (d) using the pseudo—-metric ppy defined in (2.2.6), because

o, 7) = [BlIQyImyo(Z,) = my(2) + (my(2,) — 7 (2,)) 8]
« rygly) = my(2) + (ny(2) = mg(2) 0 + 2¢JI°| 7
< [EQy) v 4[U| iy (e) — my(e) 84 (o) v
S| PXORE MO0 Y suaou]
. lz[Eeﬂl/ ° ) Uﬁrl(z) -—1r10(z)|8dP(z)] /8

1/8
+ Ullv“rz(z)-w20(z)||8dP(z)] / ||90||] P9,

(C.1)

As. 1(c) is implied by PLH (b), (c),and (d), since

VT 236, B

= [rEQ, (e, + myoE) - 1y(2) + () =m0 0 g5 ||

= |VTEQ g2 — 7y () + (ny(2) — mag(z ) 6] | (c2)
]1/4

a 1/2
B0,

(Fa

4| [17y(0) - myla) faP(@)

2
1/4
+ /4 qurz(z) - 1r20(z)[|4dP(z)] ||90||] B,
As. 1(d) is verified by Corollary 1 of Herrndorf (1984) and PLH (b} and (d), since
1 2T[‘Ez - U'g]Qt

VT g8y 7) = VTE‘{‘J‘l(x - mo(Z ey |- (c.3)

711' 1(6 —0'2)



To verify continuity of R{f4,7) at (ﬁo, 770) of As. 1(f), note that
R(m) = ~[2BQ,IY, - 7(2,) - (X, = my(Z) A%, ~ m(Z)" Q.  (C4)
With the pseudonetric p* defined in (2.2.5), it suffices to show that
(B3, By 75))

= E”Qt[Yt — 7 (Z,) = (X, = 7(Zy)) AlIXy — mo(Zy)] — €, QX — ”20(Zt)]'l” 0=7
F=7 (C.5)
2,0.

Note that (C.5) holds by PLH (a), (b), and (d), since the left—hand side (lhs) of (C.5) is

less than or equal to

o1 1/2
[B10,1%) [[Enwm(zt) =1 (2,) + (1y(Z,) — 79g(Z,)) (20— 0)

1/4 1/4
+ (Xy = 190(2y)) " (g = 0)"4] / {[Ellfg(zt) - 7’20(Zt)"4] /

+ [E”Xt - ﬁzo(zt)”ﬂ 1/4} + [Eeﬂ 1/4[E|]1r2(zt) _ ”20(Zt)[!4] 1/4}

9=10

=T

1/2 1/4 ]
< [Elthllz] [{Ulirl(z)—wlo(z)]4dP(z)] / + (16— 6,1 + 11650 (C.6)

x

H

gts)— ragtolar] " + 10— gyt e, 4}
: {]u%z(z) —aar@) '+ [ 4} + [

. 1/4
”'7"2(2) = 20(2)”4(1})(2)] / ] 250,

x

[

Now the result of Theorem follows by PLH (g) and (h) and Theorem 1 by noting that
R(By ) =[0 1 —EQ] . ©
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PROOF OF THEOREM PLA: First we verify As. 1. As. 1(a), the first part of As. 1(b),
As. 1(e), the uniform WLLN of As. 1(f) are verified using similar arguments to those given
in the proof of Theorem PLO. The second part of As. 1(b) follows from (Assumption) PLA

(b) and (d) using the pseudo—metric pp; defined in (2.2.6), because
PH(';"» 770)
= [E”[ft + 7y0(Zg) — 1y (Zy) + (my(Zy) = mo(Zy)) Bylley_y + 7102y y)

9 1/2
— “l(zt—l) + (Wz(zt_l) - Wzo(zt_l))'ﬁo] - Etet-]." ‘wz'fr] (D.1)
2

<

[17,(2) - m(2)| 4P (a)| s [[130) - mgtonerca)] 4nﬁ0n]

1/4
16,

1/4 1/4
+ 2[Eeﬂ / U| ?rl(z)wvrlo(z)|4dP(z)] U||fr2(z)—7r20(z)|[4dP(z)}
2,9.
As. 1{c) follows from PLA (c¢) and (d), since
IWT 485, 7

= VT E[ft + WIO(Zt) - Wl(Zt) + (1!'2(Zt) - Wgo(zt))'ﬁo][ft_l + WIU(Zt—l)

- Wl(Zt_l) + ('”g(zt._.l) - W20(Zt—1))’ﬁ0]” | =7 (D.2)

1/2
< T2 13y(2) — myola) | PeP(@) + 28T A 17y (2) = y(0) PP ()]

1/2
4y~ g @] T 1P [hife) - PR
-£0.

As. 1(d) follows from PLA (b) and (d) and Corollary 1 of Herrndorf (1984), because
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1 T
TT1 € 1
JT 2yJ (Xt - sz(Zt))et
f (D.3)
% 0
%=

0 oPE(X, — Tyg(Z))(X, — Tog(Z,))’
To verify continuity of R(B,7) at (B, 7g) of As. 1(f), note that
o (Bm) = ey + myo(B) = 7y (B) + (X, = 7mag(2))" By — (X, = 1(2,))" ]
* [Xy g =72y " —le g + myp(Zg_g) —m (24 ) (D-4)
+ (X g —mog(Zy_1)) By — (X _y = mylZy_1)) AlIXy = mo(2y)]" -

1t suffices to show that p*({B,7), (ﬁo, 1r0)) —P,0, where p*(-,-) is as defined in (2.2.5).
The latter result holds since under PLA (a), (b), and (d),

E [ft + WIQ(Zt) - Wl(Zt) + X{(ﬂo—ﬁ) + Wg(zt)'ﬁ— W2O(Zt)’ﬁ0][xt—1 - W2(Zt—1)]
(D.5)
- Xy =@ | B
=7

and likewise with the roles of (et, X, Zt) ‘and (10 Xi_po Zt-—l) reversed.
Note that R = R(ﬁo, 11'0) = 0. Therefore the result of Theorem PLA follows by

Theorem 1 and PLA (g), since & =[1 01 0]’ = ag .0

PROOF OF THEOREM SSO: First we show that Assumption SSO (hereafter SSO)
implies As. 1. Below we verify only As. 1(b)—{d) and 1{f). The remaining arguments are
similar to those given above (see, for example, the proof of Theorem PLO).

With pp; defined by (2.2.6), the second part of As. 1(b) holds by SSO (b) and (d),

since
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P, m)
= (1D = DJlw + 710) = By () + (ry¥) = 7wy () Gplla = Ty (W) ()
— tla = 7o/ 759w dP(D,0,v)
= J.l(D = 1)
+ ulgg(v) = &y (W) 7g(¥) + bl — g (W)lmgq(¥) — g(v)]
[(irg(v)mag(¥))

where ?rj(v) and 7rj0(v) abbreviate irj(ao, v) and "TjO(O‘O’ v) respectively for j=1, 2,

(E.1)
173(5) =7 (9) + (iglv) = mgg ()" Bglla = Ty (W)} ()

2
dP(1,D,q,v) £ 0,

3,4 and P(-,-,,) denotes the distribution of (g, D,, Q;, h(Z,, ap)) .
As. 1(c) holds by SSO (b), (c), and (d), since
IVT 48y, 7l
= IWTED, [y, + 7 4(ag, b(Z,, ag)) — 71 (ag, h(Zy, ap)) + (7o ag, B(Z,, ap))
~ Tgq( e B(Zy, o)) pHQ; — myl e, h(Zy, ap))l/ ma(ag, h(Zy, el | ,—5
< T1/4U1(D =1)|#(v) - 1r10(v)|2dP(D,v)]1/2 (E.2)
]1/2

4+ i/ UI(D = Dlligf(v) — mpg(IZaB(DY)| 16

N
] T1/4U1(D = 1)||7,(v) = 7, (V)| %dP(D v)]1/2/e +o (1) 20,
4 40 ; p
Let

VT &p(By 7o) = 81 By 1) ¥ypy(ag)” o))’
i (E.3)

p [Q — 7y (g, B(Z,, a))l/ 7gq(ay,h(Z,, a))
""MIIW' (Dt’ Py )Ht
| MMM (D, g B M X -y (a,h(Z 0] gl )

The summands in (E.3) are square integrable by the following arguments. First,
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E[lrt(ﬁo, 7r0)||2 <o by SSO (b){(iii), the Cauchy—Schwarz inequality, and Jensen’s

inequality, since

1
Eyt = ED,[U, — (U, ¢, > —h(Z,, o))

4
1/4 1/4
< [EDtUﬂ ", [E[E(DtUtlet>—h(Zt, ao))]4] / ] (E.4)

dory vid
¢2"ED,U < o

and, similerly, EJ|Q, — 74q(aq. h(Z,, ap)lI* < 2°EIQ,I* <. Second, El|gypy(ag)l®
<o by SSO (b)(iii) and (d)—{ii), since |7’(D,, ¢)| is bounded and EJH,|°

5C-E”gah(zt, on)H2 <o for some C<w by a similar argument to that of (E.4).
Finally, note that E”¢2Tt(ﬁ0)”2 <o by the same arguments as those used to show
Ellry(fp )% < o and Eflgyq,(fp)I® <o . Therefore, As. 1(d) holds by a multivariate
CLT for iid rv’s and hence T gp(fy, ) 4, N(0,£) , where I is as defined in (3.2.16).
Note that the expression given for ¥ uses the fact that E(,uf|h(Zt, ay), X;, Q;, Dy = 1)
= E(42|N(Z,, ag), D, = 1) = my(ay, h(Z,, ap)) .

With p*(-,-) defined by (2.2.5), the last part of As. 1(f) holds immediately from
the following results:

BJIRy(8:m) — Ry (B | gy 200 for §=1,2,3,4. (E5)
=T

To show (E.5) holds when j=1, let ’irgi)(z), %gi)(z), and wgé)(z) abbreviate
a;g‘)(a, h(z,3)) , 'Trgl)(a  h(z,ay)), and wga)(ao, h(z,ep) for i=0,1,2 and j=1,2,
3,4 . Then,
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BlIRyy(8:m) — Ry (B 7o)l | pop

=

= [UD = 1)|lmyqa) — 7y (&) + (rye) = mog(a))* B + (ryle) = x) (B 4)
y [Fr(l)(z) + %(2)(2)-66—,h(z,&)] [io(2) + u[ﬁgl)(z) ~n{z) (E.6)

(

+ 7 e goh(m,) — n{5(2) gl )| 2y(a) + g (o)

+ 7 @) gEh(mag)] [rgg(a) - Ta(@/(ry(a)mg()]dP(Dx2) 20,

where P(-,-,-,-) denotes the distribution of (,ut, D,, X, Zt)‘ The convergence to zero in
(E.6) uses the fact that

51611; ‘-gah(z,&) —gah(z, ag)" 2,0 and (E.7)
z

: . 1/k
1(D = 1)#)z) - 7 (@)|[*aP(D2)
J J

: . . 1/k
<[J10 = 13a) - ¥ apco.)]

. . 1/k
+[Jup = 1w - dPwikapo )| (E8)
< sup sup||7r( )(a h(z,&)) — ()(a , h(z, ap))l
mell zeZ

1/k
+ [[up = 015w - enkaro.m)| L 0,(1) 20,

for i=0,1,2 and j=1,2,3,4 and for some k>0 (as assumed in SSO (b)), where

P(D,z) and P(D,v) denote the distributions of (D, Z,) and (D, h(Z,, o)) respec-

Tt
tively and '?rgl)(v) and wgé)(v) abbreviate '?rgl)(ao, v) and wgo)(ao, v) respectively.

The proof of (E.5) for j=2, 3, 4 is similar. 0

PROOF OF THEOREM SSH: The proof of Theorem SSH is similar to that of Theorem
SSO. Here we also verify As. 1(b)—{d) and 1(f}. The notation used below is same as in the
proof of Theorem SSO. The second part of As. 1(b) holds by SSH (b) and (d) with pp
defined by (2.2.6), since
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PI?I(‘?B Wo) |
= (10 = Dl + 7myg¥) = 1y(7) + (Rp3) = myg () )° = 2
+ 7"30(") - A3(V)}[q - i‘7-4("_)]/“""3(") + -[ﬂ'z - W30(V)][7r40(") - %4(")]/';"3(") (F.1)

2
+ 4% — mag()la — g (MMmgq(¥) — g/ (ig(¥)mgg()] aP(Ds0,v)
0.

As. 1(c) holds by SSH (c) and (d), since
VT (6, D
- 1/2
¢ TA[[io = Iy - 7y WIPaPE )|

1/2
T/ UI(D = 1)|y(v) - 30(v)|2dP(D,v)]

+Tl/4 [.Il(D =1)|#y(v) - “10(V)|4 4P (D,v)] 1/2

+ T30 = liyls) - gl apom] gy (F2)
+ 21100 = )iy - g a0,

« 71/ UI(D = 1)l|y(v) - 1r20(v)||4dP(D,v)] Y 4“50” Je+o(1)

20.

As. 1(d) is verified as in the proof of Theorem SSO except that r,(fy, m,) is now
defined by

It(ﬁoaﬂ'o).z Dt{#‘% - W30(a0:h(zt:ao))][qt - T40(ao:h(zt:ag))]/730(a :h(ztaao)) . (F.3)

Therefore, T gT(ﬂO, 1r0) 4, N(0,Z), where
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Zp 0 Iy
T={0 %. I . =MAs. M7, 5. = MAs M ivmd
99 Tog|» Zgg =M S My7, Bog =-M, "5\ M;"MsM, ",

53 Bz a3

3y =~ BP0, = 149(a Wy aNIX, — myglag, BZy0p))
I7g0(a B(Zyaq)| Mz

-1 Lo v—tar vl
233 =M, (S2 + M3M1 SlM1 M3)1\/I4 , and

M;, M,, M4 , S1 , and 82 are as defined in (3.2.16). Note that the above expression
2 2
for T uses the fact that E(u{|D, =1, Z,, Q) = E(pID; = 1, h{Z,, o)) -
If As. 1(f) holds, then we have R = Eag,—rt(ﬁo, n) =R, 0]. Therefore, we have
: ey g a-ln, .
¢=[I_:RJEI_:R}"=%;;+RM"SM"R{ asrequired.
Now the last part of As. 1(f) can be verified using similar arguments to those given

in (E.6)~(E.8). O

PROOF OF THEOREM CLAD: First we show that Assumption CLAD (hereafter CLAD)
implies Assumption 1* (hereafter As. 1*). As. 1*(a) holds by CLAD (a) and (b). Note
that  Eyyp,(f)) =0 and E¢pri(fp) =0  because  E(D;|X,)=Fy as,
2 2 ) )
E(DtUtlxt)= aofyy -5, and E(D,Ui|X,) = O(FOt_XtﬁOfOt) a.s.
To verify As. 1*(b), consider the pseudo—metric of (2.2.8) with =, and =, elim-

inated. Using CLAD (a) and (c), we have
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o305, 89) = sup R Bl (8) —ry (I | pp

- s ¥YE|[3- 1w, < X (BB 10648 > 00X, - [ - 10, < 0]

2
« 1(X(f, > o)xt”

= sup {9 B[[1(U, < 0) - 1(0, < X;B-FX{8> O)X,

2
+ [% — (U, < 0)] [1(X;6 > 0) — (X1, > 0)]th| (G.1)

< sup NENE”[l(U < 0) - 1(U, < X;(8-H,)) ]th|2| p=p
2
*’1%‘;‘1’ INEILX 8 > 0) - 1(X;8y > O] 5_p
2N 2 "
< sap RNE 1010, <118 - A7 -
1 (N , g 20|, -
+ s9m B [1(1Xif) < 1118 DI 1 p=p-
The first term on the rhs of the last inequality in (G.1) is op(l) because it equals
30 NEVE{[2FX -1 ol o) - %% pop
= 51 §%) Ye[txy, opx,®| B - gl (6:2)
< Clllﬂ— foll £ 0

by CLAD (a) and the facts that -+, and (X}, o2 is bounded a.s. uniformly in t,
where X} is a rv lying between 0 and ||Xt||-||f3-—ﬂ0|| and C, is some finite constant.

The second term in (G.1) is op(l) by CLAD (a) and (c) and the fact that
B—Es gy :
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1N 2 '
s up {2 B1(1X{8] < 1%, 18- BIX7] | gz
N>1 N“1 1 Ol ” t | 0")" t" B=p
1oN 2 1N 2 Yy
< supgPYE[1(1Xg) < I, 2MIX, ] + [ suogsYEIX,IZ] 103401 2 2) (G.3)
N>1 N>1
< Klz + Kgl(”B‘“ ﬁg” > z)
for some finite constants K; and K, . The rhs of (G.3) can be made arbitrarily small by

choosing z sufficiently small and then T sufficiently large.
As. 1*(c) holds because

JTEA(8,) = 71,[,2'{E 5= 1Y, —X;f, < 0)] 1(X;6, > 0)X,
1 oTn[l
= JT1E[} - Umax{-X{By, U} < 0)] 1(X{6, > 0)X, (G.4)
= R[5 - 1(v, < 0)] 1(X;6, > X, = 0.
Let
1
[Q - 1(Y, - X{h, < 0)] 1(X{6, > 0)X,
VT Bp(6y) = 775, . (@s)
: o]t ¥11i(Ag)
! Yori(Bo)
As. 1*(d) holds by CLAD (a) because T gp(4,) R N(0,%) by Liapounov’s CLT, where
)
g=| M 25 =M/, 5y =1 P01 i 0], and
D> q- q-
12 %22

— . -1 . ’
T = fOM[Iq - 0]J [Iq - 0] .
The stochastic equicontinuity of

{711*3? [% - 1Y, - X{h< 0)] I(X{f>0)X,: T> 1} (G.6)

minus its mean at f; (As. 1*(e)) using the pseudo—metric defined in equation (G.1) holds
by an application of Theorems IL.1-II.3 of Andrews (1990b). This is because
{%—— I{y—x'8<0):f¢ Rq} , {{x'>0):8¢ Rq} , and {g:g(x)=x} are typel
classes and {Xt : t > 1} satisfies the envelope condition by CLAD (a).
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To verify As. 1*(f), note that
Bry(6) = B[~ F(Xy (8- A, )| 10X;8 > 0)X, . (6.7
Er,(f) is differentiablein f¢ By ¥t under CLAD (c) with
SR7Er () = —EA(X{(B - By), oL (X{f > O)X(X; (G.8)
Equation (G.8) holds since: Vj=1, ..., q, ¥, Vi€ B0 ,

(B + ze) — Er(f)
e e

, N N

¢ lim E[F(Xt(ﬂ—ﬁo):ag)_F(xt(ﬂ_ﬁg'i'zii)"70)]1(Xt(ﬁ+zej)>O)Xt —Hg-El't(ﬁ)H

z~0 . J

¢ 1P 7 PO K (P112)>0) - I(Xgﬁ>0)]Xt{ o)

z-0
. E|1(X{(h+ze;)>0) — UX{F>0)[IX,]

<lim Z]

z-0
Clim E1(} X B1<IX =2 DIEX, I _

z—0 1z ]

The second inequality in (G.9) holds by a mean value expansion and the dominated

convergence theorem.

By CLAD (&), R() = ~Lim TETEI(X{(8 = By), oR)L(X;f > 0)X,X; exists uni-
=+@m

formly over B . To verify continuity of R(f) at f= ﬂO , consider the pseudo-metric in

(2.2.11) with 7, and =, eliminated. It suffices to show that p*(5, ﬁo) B, 0. The

1 2
latter holds by CLAD (a) and (c) using the following arguments. Let f(:) abbreviate

i(-, ag) :
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(B, ) = ENHEB‘ (0) - 552x60)| | o=

—NlmN-EN”Ef( {(B-B)LX; > X, X; — E(0)1(X; 6, > 0)X, X u1 bei
< Tim §2hE | [1(X; 1(0)-|IX . (G.10)
T B[ 10X (3-4)) —10) |- 1%,1P] | g

1oN 2
+£(0) Tim NEIE[H(Xiﬁ > 0) = 1(X{8, > 0)] - IX, | ] ‘ﬁ=ﬁ.
N-w
The second term on the rhs of (G.10) is op(l) by the same argument as in (G.3). The
first term on the rhs of (G.10) is also op(l) since it is bounded by
Cy | Tim REYEIX, I 1B - Bl = 0,(1) (G.11)
2 Na N-1 1 ol — ¥p\/e )
[11]
using a mean value expansion, where C, is some finite constant.
Finally, note that

v 1 T ’ ¥, ’ 1 T ’ ’
M-M]| < ”TEI 1(X{B> 0)X,X; — 51 1(X;5, > O)tht|

(G.12)
+ ”%2'{1(}({;90 > OXX; - Lim 3sTEI(X 8, > 00X X; l .
1}
The second term above is op(l) by the WLLN. The first term is op(l) , since
N /
”T)Jl[l(xtﬂ > 0) — 1(X;f, > O)IX,X;
(G.13)

1T % 2
<EE X8| < IXN-18 = Byll)- IX ) = 0
using a similar argument to that used in (G.3). The result of Theorem CLAD now follows

from Theorem 1. 0

PROOF OF THEOREM LPL: Assumption LPL (hereafter LPL) (g) implies Assumptions
2 and 3. LPL (b)—(i), (e), and (f) imply the first part of As. 1(b), As. 1(e), and the
uniform WLLN of As. 1(f) respectively. If we verify the remaining parts of As. 1, then the
result of Theorem LPL holds by Theorem 1.
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As. 1(a) holds with ¢y (Wopy, B) = [T 0[7'Q,U, because LPL (a) and (i)
imply that J = (87Q,Q;)/T-2+J, J is nonsingular, 7.11,}3'fr..gtut =0,(1), and
E'qut(WTt, ﬁo) =0, where the consistency of J for J under LPL (a) holds by Theorem
2 of Andrews (1988).

The second part of As. 1(b) holds by LPL (a) and (b) using the pseudo—metric pp
defined in (2.2.6), because

i, 7p) =[BT, + m3q(Z)) = 1y(Z,) + (n3(B)) — my0(2,)) ) y
x [Xt" 2(Zt)]/7r3(zt)—Ut[Xt-11’20(Zt)]/1r30(Zt)|| ,r=;r]
‘ 1/4 1/4
s{uwrl(z)—wm(z)ﬁdl)(z)] + [[Iryf) = gl *ep(2)] ||ﬁ0u}

Jefem )" + [isyte) - mgtonter ] Y 4} e+ eo]
]1/4

—

x

- 1 4
[EXOREMOTZ0] " [EULIX, - my0(2)
- 1/4

. _J|ar3(z) - 1r30(z)|4dP(z)] /€ +0(1)Rs0.

As. 1(c) holds by LPL (a), (b)—(i), and (c), because

IVT £4(8,, Bl

1/2 1/2
<4 [17y@) - my(@) %P @] T [Iry(e) - mg@aP@)] e (12)
+ 18T [rgte) - myg(2)IPdP () € + 0 (1) 2 0.

As. 1(d) holds by LPL (a) and (d) and Corollary 1 of Herrndorf (1984), since

U X — Ton l Z TanlZ
VT BBy 1) = zT ! "’“( Wrsol®| (H.3)

JT 1[ - 0] QtU

The last part of As. 1(f) holds by LPL (a) and (b) using the pseudo—metric g*
defined in (2.2.5), because |
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(B, (By 7)) = ENIX, — mo(ZIIK, — o2 [75(2,)

= Xy = myg(ZIIX, = T (Z)1 732 | e
1/2
<[ [ryto) - mpg(lPap(@)] 1€ + 4 EIX, 7] (H.4)
1/2
o [ [iyta) — mogaaP(@)] /e

1/2 1/2
+ 4[E|[xt|1_4] U| 'Frs(z)—wr30(z)|2dP(z)] / /€ +0,(1) 2400

PROOF OF THEOREM PLN: First we show that Assumption PLN (hereafter PLN)
implies As. 1. Below we verify only the second part of As. 1(b), As. 1(c), As. 1(d), and the
last part of As. 1{f). The remaining parts of As. 1 are implied directly by PLN.

The second part of As. 1(b) holds with py; defined by (2.2.6) by PLN (b)—(ii), (d),

and (g), since

MCENE [E]![Ut + 7g(2) = 1y (Zy) + (ny(2)) — 7y (B)) Byl

0 1/2
—[U* + 7 (XY, 23) — my(XE, 2P — (U2 - UF) Lz%]
1/4 1/4]2
<|[[1y) - mple)1 e (a)] 1 g0 - gt ap(a)] ]
1/4 1/4
+ 2[EU5§] / [Uﬁrl(z) - wlo(z)|4dP(z)] (L1)

1/4
VA [EXORENG: O] ]

+ U| rg(x,2) — g (x,2)] 4dP(x,z)] 12
+ 2 [EU%] e U] wq(x,2) — g (x,2) |4dP(x,z)] 1 2,0.

As. 1(c) holds by PLN (c) and (d), because
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|vT fr}\(ﬂo, ™| = "JTE[[Ut + '”10(Zt) "Wl(zt) + (7r (Z ) 7"20( ) ﬂo]

* *x 7% % ¥
—[UF + ma(X2, ZF) — my(XY, 2] ]l _

<2 {11 (2) = my(2)| %P (a) + 18121 ry(a) - myg(a))aP )

1/2 (1.2)
+ 28I T4 [13,2) - my ()1 *eP(2)]

1/2
" T1/4U"?irz(z)—wzg(z)”zdP(z)] ey 2Jl1‘r:,,(x,z)—7r30(x,Z)I2dP(x,Z)
2,9,

As. 1(d) holds by a multivariate CLT for iid rv’s using PLN (d) and (g), because
2T (Uz U*z)

VTET —l(x - rzo(zt))ut} '

The last part of As. 1(f) holds by PLN (a), (b), (d), and (g) using the pseudo-metric

p* defined in (2.2.5), because

N 1/2
(B, (By, 7)) € [UI iy (2) = m0(2)1 24P (2)] /
1/2

VT gp(Byy 1) = (1.3)

) . 1/2
+ 2= Bol[EIXIZ) " + 18— gl [Iy(a) — myg () 7aP2)]

1/2
1l JU3te) - mglePape) } (14)

- e - sgnores] * + [y ]

1/2 1/2

2 - 2

+ [EUt] U|[7r2(z)—1r20(z)]| dP(z)] 2,¢.
Lemma 1 and PLN (h) now give the desired result noting that R(By, 7,)
d

= Eggot,(By o) = —2BU[X, — my(Z,)] = 0. ©



FOOTNOTES

1. The first and second authors gratefully acknowledge the research support of the Cowles
Foundation via the Carl Arvid Anderson Prize Fellowship and the National Science
Foundation via grant number SES—8821021 respectively.

2. We say that {ag,—rt(ﬂ,vr) :t21} satisfies a uniform WLLN over B,«II if
i} : 1oT[ &
E'HB—'I (B,7) exists VYfeB,, Vxell, Vi>1 and sup X ['Bﬁ_’r (8,7)

| -B,0. We say that R(f,7) = lim %2']1:'E-557rt(ﬁ,1r) exists uniformly
T=wo

- Bgpr ()]

over B0 x IT if sup
(ﬁ,'Ir)EBOxH

|%E¥E~dg,—rt(ﬂ,1r) R(B7)| —0.

3. It appears that Koenker’s (1981) result is not correct as stated in his Theorem because
the covariance matrix of the limit distribution of n & does not equal ¢D_1 in general,

where & is defined in his equation (2.8), ¢ = Var(fz) , and D=1lim %Exllzizi . This
n—+m

occurs because \/1_1(Z'Z)_'1Z'v4 is not op(l) . This term affects the limit distribution of

J0 & and hence the asymptotic expansion given in his equation (2.9) is not justified in
general. In fact, one can show that h -4, N(a,, V), where V= gf)[D'—1

- D_lAA'D_l] and A=1lim %XIllzi . The latter result implies that nR? has an asymp-

N-w
totic x2 distribution with p degrees of freedom, where p is the dimension of z; and

2

R® is the coefficient of determination from a regression of fJ? against unity and z .
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