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Abstract

The method of simulated scores (MSS) is presented for estimating LDV models with
flexible correlation structure in the unobservables. We propose simulators that are
continuous in the unknown parameter vectors, and hence standard optimization methods
can be used to compute the MSS estimators that employ these simulators. We establish
consistency and asymptotic normality of the MSS estimators and derive suitable rates at
which the number of simulations must rise if biased simulators are used. The estimation
method is applied to analyze a model in which the incidence and the extent of debt
repayments problems of LDC’s are viewed as optimized choices of the central authorities of
the countries in a framework of credit rationing. The econometric implementation of the
resulting multi-period probit and Tobit models avoids the need for high dimensional
integration. Our findings show that the restrictive error structures imposed by past studies
may have led to unreliable econometric results.
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1. Introduction

It has long been known that classical estimation of limited dependent variable
(LDV) models with flexible correlation structure in the unobservables poses formidable
computational problems because of a concomitant need for high dimensional numerical
integration. Examples of such models are multiperiod (panel) probit and Tobit models, as
well as multinomial discrete choice models with varying substitutability between available
alternatives. Recently investigators have shown that simulation estimation methods that
approximate generalized moment conditions by unbiased simulators provide consistent and
asymptotically normal parameter estimates for a finite number of simulations (McFadden
(1989), Pakes and Pollard (1989)).! A common property of the methods of simulating
moment conditions (MSM) is that they yield criterion functions that are discontinuous in
the unknown parameter vectors to be estimated.? As a result, establishing their
asymptotic properties requires the theory of empirical processes.  Moreover, their
implementation poses difficult computational problems, because standard methods for
numerical optimization assume continuity of the optimand (and several also require twice
continuous differentiability of the criterion function).

In this paper, we exposit and operationalize a method of simulated scores (MSS),
which simulates directly the logarithmic derivatives corresponding to maximum likelihood
estimation, and establish its asymptotic properties. We show that the MSS opens up a
broader class of simulation techniques compared to other simulation estimation methods.
In this paper we discuss three simulators to be used in conjunction with MSS estimation.
The first, which is a discontinuous function of the unknown parameters, generalizes

acceptance-rejection methods and provides unbiased simulation of the scores. We can then

1 These methods are in contrast to simulation estimation methods that simulate non-linear expressions in
criterion functions and hence require an unbounded number of simulations to achieve consistency and
asymptotic normality. See, inter alia, Lerman and Manski (1981), van Praag and Hop (1988), Laroque
and Salanie (1989).

2 A leading exception where a smooth simulator is proposed for discrete choice probabilities is the method
of Stern (1988).



prove that the MSS estimator using this simulator is consistent and asymptotically normal
(CAN) for a finite number of simulations. We show that computational problems may be
eased if smooth but biased simulators are used for the MSS estimator. We develop two
such simulation methods. The first employs a recursive triangularization of the normal
multivariate density; it thus provides unbiased simulation for likelihood contributions and
asymptotically unbiased simulation of the scores, and is continuous in the unknown
parameters. We establish that when this method is used to simulate the scores, the
resulting MSS estimator is CAN provided the number of simulations grows faster than the
square root of the number of i.i.d. observations, N. The second smooth and asymptotically
unbiased simulator relies on results about the conditionals of a multivariate normal
distribution and employs Gibbs resampling (Geman and Geman (1984)). It then follows
that for an MSS estimator based on this simulator to be CAN, the number of resamplings
used for each simulation must grow with the sample size at the (much slower) rate logN.3
It should be noted that several investigators in the past have proposed consistent
simulation of the score as a method of estimation. See, inter alia, Lerman and Manski
(1981) and Hop and van Praag (1988). The MSS estimators we discuss here when used in
conjunction with the three simulators developed in this paper have several advantages over
such existing simulation estimation methods. The development in this paper follows on a
suggestion by Ruud (1986) that the score for the general linear exponential model can be
written as conditional expectations, which might be simulated directly. This provides the
first major advantage of MSS in that it is applicable to any LDV model that can be written
as a set of linear inequality constraints on the underlying latent variables, the distribution
of which belongs to the linear exponential class. Hence, the method does not require the
development of ad hoc simulation techniques for each type of LDV model that is under

consideration. Second, since MSS simulates directly the scores, it corresponds to MSM

3 Hajivassiliou, McFadden, and Ruud (1990) discuss alternative simulators and compare their properties to
the ones given here.



where the optimal (for asymptotic efficiency) instruments are used. Hence, the efficiency
of the MSS estimator among the class of simulation estimation methods is guaranteed.4
Third, when simulating functions that are continuous in the parameters are employed,
certain computational complexities of MSM are avoided.

We employ MSS estimation to analyze econometrically the mounting external debt
repayments problems of developing countries. These problems have received much
attention recently, both in academic and policy circles, and in the media. The attention is
well-deserved since even crude measures of external indebtedness and of repayments
difficulties are steadily rising and lie well above historical standards. In this paper we offer
an econometric analysis of the incidence and extent of external debt repayments problems,
and attempt to quantify the impact of various factors that theory and past empirical
findings suggest are precursors to such problems. Though the main modelling approach
here follows McFadden et al. (1985) and Hajivassiliou (1987, 1989a), the method of
simulated scores that we develop allows us for the first time to introduce in the
unobservables of our models a flexible temporal correlation structure, which could not be
accommodated with traditional maximum likelihood estimation methods because of the
concomitant need for high-dimensional numerical integration.

Section 2 discusses the main issues from the theoretical and empirical literature on
external debt and describes the theoretical approach of credit rationing in the market for
international lending. Several econometric problems with the existing literature are also
discussed. In this Section, we describe the data used in this study and some issues specific
to the longitudinal nature of our data set. In particular, the problems of persistent
unobserved heterogeneity and state dependence are discussed, and past empirical evidence
is reviewed. We then present the econometric models that we estimate and explain the
intractability of maximum likelihood estimation methods for our limited dependent

variable models with panel data.

4 This point was also noted by Ruud (1986).



In Section 3 we describe the simulated scores estimation method that is applicable
to LDV models with flexible correlation structures in the unobservables. Such LDV models
include the probit and Tobit models with panel data time-dependence, as well as
multinomial choice models without restrictive assumptions on the substitutability of
different alternatives such as the independence of irrelevant alternatives assumption
(McFadden (1973)).

Section 4 gives a simple illustrative example to highlight the relations between the
MSS estimation method and other simulation methods in the literature. In Section 5 we
discuss the empirical implementation of debt repayments crises models and analyze our
empirical findings. Section 6 concludes with a summary of our results and an evaluation of
the MSS methodology in analyzing the empirical problem of debt repayment crises.

Appendix 1 gives matrix differentiation results required in Section 3. Three
methods for generating draws from a conditional normal distribution are developed in
Appendix 2. The first two methods make the MSS estimator continuous in the unknown
parameter vectors, and are respectively based on a recursive triangularization of the
covariance structure and on Gibbs resampling. The third simulator relies on acceptance-
rejection methods. Appendix 3 establishes the CAN properties of the MSS estimator for
each of the three simulators introduced in this paper. We also show in Appendix 3 that
MSS using the acceptance-rejection simulator is CAN for a finite number of simulations;
that consistency and asymptotic normality of MSS using the continuous recursive
triangularization simulator requires that the number of simulations rise faster than the
square root of the number of observations; and finally, we obtain the result that for
consistency and asymptotic normality, when the simulator based on Gibbs resampling with
on R (finite) simulations is employed for MSS estimation, the number of resamplings used
for each simulation need only grow at a rate faster than logN. Data sources, definitions

and descriptive statistics are relegated to Appendix 4.



9. The Economic and Econometric Issues

The mounting external debt repayment problems in the Third World are very
serious. Figures 1 and 2 suggest that we may now be experiencing a substantial world debt
crisis, since the external debt repayment problems in the Third World have been
accelerating. Figure 1 shows that the gap between obligations and repayments that are
falling into arrears is widening alarmingly; the fraction of debt-servicing obligations that
are in arrears in each year exhibits explosive growth. Figure 2 presents a similarly bleak
picture by showing that the proportion of countries under analysis that are experiencing a
repayments problem of some type (for example, obligations in arrears, or a need to request
IMF assistance or a rescheduling of repayments) exhibits the same deteriorating pattern.
In this paper, we analyze and model the determinants of external debt repayment problems
of the developing countries within a framework of credit rationing and use the method of
simulated scores to estimate the econometric models. We claim that the specific cost
charged to a country by the international bankers (in the form of a "spread" over the
London interbank offer rate (LIBOR)) does not perform the key role of clearing the market
for international loans. Instead the allocation of scarce credit among third world countries
is fundamentally carried out through quantity offers and requests. The hypothesis that the
spreads are exogenously determined is formally tested in Hajivassiliou (1987) using the
approach of Hajivassiliou (1986a), and it is not rejected.5

A number of other studies, e.g., Eaton and Gersovitz (1980, 1981), have proceeded
along disequilibrium lines and applied the standard switching regimes apparatus, which

allows for the separate identification of supply and demand parameters. One of the

5 Empirical evidence (Edwards (1984)) confirms that the spreads perform only a minor role in allocation
of international credit, since they do not respond very significantly to wusual indicators of
creditworthiness. Theoretical reasons explaining why the interest rate cannot function as a pure price in
this context are given in Hajivassiliou (1987). Although here we will not offer a full theoretical
justification for the exogeneity assumption, such an assumption may be motivated by recent game
theoretic work on the bargaining problem with a "shrinking pie” as time goes by (see Binmore and
Herrero (1984) and Shaked and Sutton (1984) for results and references), which implies that the eventual
division will tend to strongly favour the short side of the market.



problems with existing studies is that they neglect information on the classification of
countries as supply constrained or demand constrained that is provided, for example, by
the observation of a rescheduling. To solve this problem we examine models that use the
actual incidence of repayments problems to classify regimes into constrained and
unconstrained periods.

Information about debt obligations in arrears is also valuable in assessing the
severity of a lending constraint. Meeting all obligations promptly so that arrears are zero
implies an absence of credit rationing, as the "notional" demand for new loans by a country
including loans to "roll over" debt is less than the maximal supply of loans by bankers. A
second possibility is a positive level of excess demand, a situation in which the country is
constrained by the maximal new loans the bankers are willing to supply and tries to fill the
excess demand gap for credit by letting its debt obligations fall into arrears. A
rescheduling or IMF conditionality-related programs may also be necessary, depending on
whether the bankers are willing to tolerate the required arrears. In McFadden et al. (1985)
and Hajivassiliou (1987, 1989a), a credit-rationing model with three regimes was introduced
to combine information on arrears, which is valuable in assessing the severity of a lending
constraint, and qualitative information about the incidence of repayments problems, like
requests for reschedulings or involvement of the International Monetary Fund. This 3-
regime model simultaneously exhibits (a) a probit structure, since an indicator variable
identifies the first regime of no debt repayments problems from the repayments problems
regimes 2 and 3; (b) a tobit structure, in that the observed level of arrears can be either 0
or positive; (c) a switching regressions aspect, as the new flow of lending to a country can
be either equal to the notional demand for new funds in regime 1 or to the bankers’
notional supply in regime 2; and finally (d) an endogenously missing data structure since,
when regime 3 is observed no attempts are made to identify the level of arrears and the
new funds flowing to this economy. This model may be derived from a formal model of
optimization subject to credit constraints.

In this paper we offer instead limited information reduced-form models that attempt



to isolate the Probit and the Tobit structures. Econometric analysis of the occurrence of

external debt crises in the developing world using reduced-form models is desirable for
many reasons. First, such analysis can provide a forecasting system which can be used to
judge the creditworthiness of a given country in terms of future repayment problems.
Second, the resolution of recemt policy debates as to the desirability of alternative debt
relief measures should incorporate empirical evidence. Third, the likely impact of newly
developed imstitutions in international capital markets, as for example the recently
established secondary market for external debt, can be evaluated more reliably by the use
of econometric evidence on the determinants and precursors of repayment problems.¢
Consider a sample of N countries, assumed to be random. A country i is observed
over T, periods, t=1,...,T,. A data array (yi,Xi) is observed, where X. is 2 T.xK array of
exogenous variables, and y, is a T,x1 vector of limited dependent variables. For simplicity
we drop the i index. We assume y is an indirect observation on a latent vector y*

according to a many-to-one mapping y = 7{y*), with y* given by a linear model
(Hl) y* =Xﬂ+ €.

We assume the disturbance vector ¢ is multivariate normal, independent of X, with the

structure
(11.2) e=Tn,

where T is a T.lei parametric array of rank T, and nis a Sixl vector of independent
standard normal variates. Let  =T'T".

Define
(IL.3) D(y) = {y*|y = 7(y*)} -
Then the likelihood of the observation is

@) gey)=J npt—x80)y*,
D(y)

6 See Hajivassiliou (1989a) for attempts in this direction.



where 5,4} are functions of a kx1 deep parameter vector 8, and
— —-1/2 1,41
(IL5) n(eQ) = (21 2| Q| ™ 2expl- 5 /07
is the multivariate normal density. The asymptotically optimal parametric Maximum

Likelihood estimator (MLE) would be defined as the argument that solves the score

equations %E si( %yi) = % £¢ ﬁ( %yi) / li(ﬁ,yi) =0, where £ ﬁ(-) are the derivative vectors
i i

of the likelihood contribution £i.
We confine our attention to two specific mappings, the binomial discrete response

model

(IL6) y, = sgn(y})
and the Tobit or censored regression model
(IL.7) y, = max(0,y}) .

In view of (II.4) and (IL.5), classical estimation by the method of maximum
likelihood of either the binomial discrete response model (II.6) or the Tobit model (I1.7), is
computationally intractable when the number of time periods per individual, Ti, exceeds 3
or 4, the variancecovariance matrix 2 of the error vector ¢ is left unrestricted, and
conventional numerical integration (e.g., multivariate quadrature) is used. A traditional
approach in obtaining ML estimates is to restrict heavily the structure of  in such a way
as to make the evaluation of (II.4) computationally feasible. One extreme is to assume
that the errors are independent across countries and across time periods for a given

country, i.e.,

/ 2
(11.8) Qup=Eee’ =11

T
where 7? is a variance parameter to be estimated. Despite its computational simplicity,
such an assumption is often very inappropriate for a panel set of data. This issue has been
neglected in most previous work on LDC debt performance, the implicit assumption being

that country-year shocks are all independently and identically distributed.



In a panel model, temporal dependence can arise in at least two ways and can be a
source of serious misspecification. First, heterogeneity that persists over time appears a
priori important since countries differ in terms of colonial history, and political, religious
and financial institutions, all of which may affect a country’s attitude toward borrowing
and defaulting and the lenders’ attitudes toward the borrowing country.  Such
heterogeneity, which introduces serial correlation, seems an inevitable result of modelling
debt performance as a function of a small number of macroeconomic variables. Second,
serial correlation may be induced by learning processes that rely on a history of past
repayments crises as a good predictor of future debt crises; by the role asset accumulation
plays in the problem; or by our failure to address questions about the duration (actual or
anticipated) of debt crises. In the models we estimate in this paper, assuming erroneously
that the error-terms are ii.d. over time for a given country will in general yield
inconsistent parameter estimates because of significant state-dependence found in such
models by previous investigators (McFadden et al. (1985), Hajivassiliou (1987, 1989a)).7

Another commonly used assumption, which allows some temporal dependence, is the

one—factor analytic structure:
. 2 2: ’
(11.9) Qpp = Nlp + N ifg,

where iT is the Tx1 vector of one’s, and 7?, 73 are variance parameters to be estimated.

This implies that the integral in (I1.4) can be written as a univariate integral of a product

7 Note that in case state dependence is not present and therefore only exogenous variables appear as
regressors in our models, then under additional appropriate conditions, an erroneous imposition of this
i..d. structure will give parameter estimates that are consistent up to scale and inefficient. See
Hajivassiliou (1985, 1986b). For example, if the error—components are normally distributed and i.i.d.
across individuals, ¢ will also be normal with Eete’=0 for |t—s| >T, since the only serial correlation in

that case arises because of the persistence of the error components over all periods of obervation for a
given country. This would satisfy the weak dependence conditions of Ruud (1981) and White and
Domovitz (1984) for consistency of misspecified MLE. An alternative consistent and inefficient approach
in such a case would be to follow the conditional ML procedures of Andersen (1970) and Chamberlain
(1980) for distributions that belong to the linear exponential family. A semiparametric alternative
estimation method was given by Manski (1987). But the a priori important state-dependence in
repayment crises models, confirmed in past work, violates the exogenous regressor assumption and makes
correct modelling of the serial correlation structure important for consistency and not just for efficiency.



of cumulative normal distributions, which can be evaluated very efficiently through
Gaussian quadrature methods (see Heckman (1981a), Butler and Moffit (1982), and
Hajivassiliou (1984)). This assumption is made for example in Hajivassiliou (1987, 1989a).

In this paper, we consider a third model for e. This is the natural generalization of
(I1.9) that adds an autoregressive structure:

(I1.10) e=a+§,§{=p§ +vy, t=1..T

2 2y 2_ 2_ 2 2 L
v, ~N(0, 7)) , £, ~ N(0, 0y) » 0y = o = o,/(1— p”) by stationarity.

a~ N(0, 0:";) , @ and § independent.
This one—factor plus AR(1) structure, with a variancecovariance matrix denoted by
Q, p1rg o implies that (I1.4) will involve a T-dimensional integral, thus rendering efficient
classical estimation methods infeasible.2 Hence, we turn to the method of simulated scores,

which avoids the need for multidimensional integration.

8 Computationally tractable but inefficient methods are available under special circumstances that are not
satisfied in this paper — see the previous footnote.
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3. MSS Estimation of LDV Panel Data with Serial Correlation

In this Section we present the method of simulated scores and show that it is
applicable to the class of LDV models that can be written as sets of linear inequality
constraints on the underlying latent variables, the distribution of which belongs to the
linear exponential class. This approach builds on an idea by Ruud (1986). Three
simulation techniques to use in conjunction with MSS estimation are presented in
Appendix 2. Two of those techniques make MSS continuous in the unknown parameters.

Using the matrix differentiation results of Appendix 1 and dropping the subscript i
for simplicity, the derivatives of the likelihood (I1.4) of a typical observation with respect

to the parameters 3, I' can be shown to satisfy

(IIL.1) they) =Xk
| = {8y) X' 9 'E{y* — XB|y* € D(y)}
(I11.2) t(oy) =28

= —(6y) Q" [[ - B{(y* — XB)(y* — XB)’ |y* € D(y)} QY| I.

It will be useful for later analysis to write the derivative of (I1.4) with respect to 8 as

m3)  efey)  =2UEYD) - weyEGy* - x8)ly* e D)),

where h(u) is a vector of terms that are linear or quadratic in u = y*—Xf, and depend on X
and the mapping from the deep parameters fto fand I'. In our case 8 = (8, (vec ry)’
are directly the deep parameters. Then
X 0l
(I11.4) h(w) = [ 071 —ww'0 7Y, |,

-1 ;01
—0 [ —w' @77 T

where I‘l,...,I‘s are the columns of I'.¢

9 More generally, h{u) will be the vector (IIl.4) premultiplied by the array of derivatives of (f, vec I')
with respect to the deep parameters.
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For the general LDV model, the score of a subject is
(mes)  s(ey) = 2BELAY) 4 jo = B{a(y* - XB)|y* € D)} -
The set D(y) in three leading cases of LDV models corresponds to a set of linear inequality
constraints on the elements of the latent vector y*, as follows!0:
Case 1: multiperiod probit
(I11.6) 0<y} <o y,=1
o <y;<0 y,=0.
Case 2: multiperiod Tobit!!
*
- < yt <0 yt=0 .
Case 3: multinomial probit
Consider an independent sample of N individuals, with typical individual i choosing among
J alternatives with observed attributes X;. Alternative j yields the (random) utility
* 1=
¥y = xjﬂ+ € =157 .
Individual i chooses alternative k that satisfies
(I11.8) —m<y;<m,0<y:—y‘;<m.

In this case, the linear restrictions on the elements of y* correspond to the matrix

Ak={--I_\I with column k replaced by a vector of 1’5} .

10 A similar set of linear inequality constraints on the latent dependent vector can also be defined for the
canonical disequilibrium model with T markets, which are observed to be demand- or supply-
constrained:

—-— 3 * *
Yi1 = min(y{;¥iy)

— H * &*
Yi2 = min(y{y¥iy)

-— 3 * *
it /2 = min(yip_p¥ip)

where y‘;j denotes notional demands if j is odd, and notional supplies if j is even.

11 The restrictions on y* in this case are described by {y<y*<y when y>0, —w<y*<0 when y=0} instead of
the more customary way of {y*=y when y>0, —w<y*<0 when y=0} in order to highlight the point that
in the LDV models analyzed here the set D(y) describes a set of linear inequality constraints on y*.
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In view of the assumption that the observations are i.i.d. across countries, the

maximum likelihood estimator is a root of the sum of scores (III.5) over subjects, i.e.,

- 1 _
(1I1.9) Oy solges { ﬁ? [£.,/¢]=0}.

Recall that by (IIL5), at the true parameter vector &* , E{alne & } = E{{,/&} =

E{h(y*-Xp*)|D(y)} =0.
Consider a simulator, h = h(X,5,Q), for the score function h(-), satisfying the set of

restrictions y} € D(y). Also consider a simulator 1:1R = E(Xiﬁ,Q,R) = % z Er, which
r
averages R independent simulations Er. The MSS estimator we propose here replaces hard-

to-compute conditional expectation terms in the logarithmic score with simulators ER: 12

- l = _
(II1.10) Orrss solwées {5 E‘] hy =0 }.

In case 1-'1R is an unbiased simulator of the score, szs is consistent and
asymptotically normal for a finite number of simulations R. Such a simulation method is
discussed in Appendix 2 as simulator (3), and is based on acceptance-rejection arguments
(Devroye (1986)). In practice, we show that one obtains computationally more tractable
MSS estimators by employing biased simulators that are continuous in #. The first such
simulator, simulator (1) in Appendix 2, is based on a recursive triangularization of the
multivariate normal density. A second continuous method, simulator (2), is also presented
in Appendix 2. This simulator employs Gibbs resampling methods, which improves the
rate at which the bias vanishes. As a result, for MSS to be CAN as N — o, if one uses the
first smooth simulator to construct the MSS estimator with R simulations, R must rise at a

rate faster than N, whereas if the simulator based on Gibbs-resampling is employed with

12 1t is important to point out that all the asymptotic properties we will establish will require that the
same underlying random variates, used to simulate the h(-) functions, must be used throughout the
iterative search for the solution to the simulated scores.
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R simulations, then n, the number of resamplings used to generate each simulation, must
grow faster than the (much) slower rate logN.

These features are a marked improvement over the properties of the first simulation
estimation method for LDV models developed by Lerman and Manski (1981). These
authors explored the use of simulation in the context of estimating the classic discrete
choice model and proposed the estimator:

. 1 - R S
0LM=argn;ax 1%, )13 ln{R ? £ir} , such that the log-likelihood contributions ei are

simulated unbiasedly (EZ, =¢,) and consistently with R ( 2 £+ ¢). Lerman and Manski
proposed using the empirical choice probabilities as the simulating function Z. This
estimator is a discontinuous function of the parameters and it is not bounded away from 0
and 1. Hence, because of these problems Lerman and Manski found that their estimator
required a very large number of simulations for satisfactory performance.

The MSS estimators when used in conjunction with the three simulators developed
in this paper have several additional advantages over existing simulation estimation
methods. The fact that MSS relies on the idea in Ruud (1986) that the score for the
general linear exponential model can be written as conditional expectations which might be
simulated directly, implies that MSS is generally applicable to any LDV model that can be
written as a set of linear inequality constrains on the underlying latent variables, the
distribution of which belongs to the linear exponential class. Three illustrations were given
in (III1.6)—(II1.8). Hence, the method does not require the development of ad hoc
simulation techniques for each type of LDV model that is under consideration. This
generality of the MSS estimator improves on existing estimation methods of simulated
moments (MSM) which require specialized arguments for different classes of LDV models.
See for example the MSM approach developed by McFadden (1989) for the special case of
the multinomial probit model. The case of multiperiod binary discrete response can be
thought of as a multinomial probit model over the choice set C = {-1, +1}Ti, with 218

possible patterns of choice over time. The fact that Ti is fairly large in typical
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applications!3, however, renders intractable simple frequency simulators for choice-
probabilities in the moment conditions. Moreover, the standard MSM approach is not
readily applicable to other LDV models that have both discrete and continuous features. 14

A further considerable advantage of MSS estimators is that because they simulate
directly the conditional expectation expressions that appear linearly in the scores, they
implicitly employ the optimal instrument functions in a generalized method of moments
context. This issue is found to be critical in the Monte-Carlo study of Hajivassiliou
(1989b): for satisfactory efficiency, MSM estimation requires good approximations to
optimal instruments, which in general is difficult to achieve.

Let us now describe the three simulation methods we propose in Appendix 2 to use
in conjunction with MSS estimators. The simulator (3) is based on Ruud’s (1986)
suggestion to use an unbiased simulator of the conditional expectation E{h(y*—Xf8|D(y))}
which appears in the logarithmic score, by drawing standard normal vectors 7 sequentially
until R values of y* = XS + I'n € D(y) are observed, where R is fixed in advance, then
forming a sample average of h(y* — Xf) for the y* drawn that are in D(y).#5 Define

=1if y* € D(y), =0 otherwise. If {6;y) =E y*) is small, as should be expected

)
D(y) iy
in realistic cases with a large number of alternative choices or choice patterns over time,

13 For most countries in our sample, the number of time periods with available data is 17.

14 For example, in the multiperiod Tobit or censored regression model, one has Yen = ma.x(O,y‘:n). Define

In = In(yn) = {t'ytn =0,t=1,.,T}

Jn = Jn(yn) = {tlytn >0,t=1,.,T}.

The likelihood for a respondent is
— * _ _ *
L0)= [ at—x8,y,— X8, My},
y1<0
where y}‘ is the subvector of y* with components in I. But n(y; - xlﬂ, y;— XJﬂ,Q)
-— —_— . * __ 1 = * = *

The log—likelihood for a respondent then consists of a term that has a closed form expression and a
second term which is a multinomial probability that all components of y’i are non~positive.

15 See Ruud (1990) for combining these ideas with the EM algorithm.
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then a large simulation sample is required to obtain the simulator. Simulator (3) is an
alternative method based on acceptance-rejection arguments that is computationally much
more efficient. (See Press et al. (1986) and Devroye (1986) for using the acceptance-
rejection method to generate non-uniform random variates.) These approaches also yield
discontinuous estimators but have the advantage that a finite number of terminal
simulations, R, is needed for MSS to be CAN.

Simulator (1) in Appendix 2 is based on the observation that the conditional
expectation expression that appears in (III.5) can be written as:

SR(*XB)by 1 (5*) n(y*-Xp,2)dy*
(MLi1)  E(a(y* - XA)|D(y)) = =4/t
fﬁp(y)(y*) n(y* - Xg,Q)dy*

Then the numerator of this expression can be simulated in an unbiased fashion.

Appropriate simulators can then be used for the conditioning probability in the

denominator. Hence, another MSS estimator can be defined by:

- 1 - b _
(111.12) HFMss=solges { ﬁiz [§5r / );" t£]=0},

such that Eg = £,, EZ =, and £ 2+ £ with R.

A method in the literature that works along these lines is due to van Praag and Hop
(1988). Their method employs independent simulators of the numerator and denominator
of (II1.12). Unfortunately, such an approach suffers from two drawbacks, when it uses a
frequency simulator for the denominator expression. First, since the frequency simulator is
not bounded away from 0, the number of simulations used for approximating the
denominator probability must be very large for satisfactory performance. Second, the
approach yields discontinuous optimization problems. Both shortcomings can be overcome
using the recursive triangularization simulator (1) discussed in Appendix 2, which is

smooth and bounded away from 0 and 1.1 Appendix 3 proves that the MSS estimator

16 Another simulator of LDV probabilities which is smooth and bounded away from 0 and 1 is due to
Stern (1988). Extensive Monte Carlo evidence in Hajivassiliou (1989b) shows that simulator (1) strictly
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based on simulator (1) is CAN provided R rises faster than y¥.

Finally, introducing the Markovian updating scheme known as Gibbs resampling we
obtain simulator (2) which estimates the complete score function. An MSS estimator
based on simulator (2) using a finite number R of terminal simulations is CAN, provided n,
the number of Gibbs resamplings used for each simulation, grows faster than logN. This is

a very satisfactory rate, given the smoothness and the computational simplicity of this

simulator.

4. An Nlustrative Example of Alternative Simulation Estimation Methods

To illustrate the method of simulated scores and contrast it to other simulation
estimation methods that have been proposed in the literature, consider the simple binary
probit model for an independent cross-section of individuals, i=1,...,N, for which classical

estimation is of course computationally very straightforward.

(Iv.1) vt =x{B+e ¢ ~N(0,1)
y, =1 d=1ifyt>0 ( y=2d-1)
=-1 =0if y’;‘ <0.
Define
(IV.2a) Int = In &(y;-x; f)
(IV.2b) =d.-In &(x{f) + (1-d,)-In(1-2(x f))
and

¢(yi'x;ﬂ) .

(IV.3a) 5,=¢ li =X - V=X - E(e. | y* € D(y.)
o/ e S
#(x:5)
(IV.3b) =X L1610 1634:)) (dl—@(x:ﬂ)) = Wi(0)°(di—§’(x;ﬂ))

In this case, #=f . Then maximum likelihood estimator solves the first order conditions

dominates the Stern simulator in terms of simulation MSE.
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Ly (0) =§?si(b) = 0.

Equation (IV.3b) for the score of observation i highlights a method-of-moments
interpretation of maximum likelihood estimation when the optimal instruments wi(ﬂ),
defined in (IV.3b), are used. Simulating the conditional expectation expressions in
equation (IV.3a) corresponds to the method of scoring. It should be noted that the basic
consistency requirement that E(s.l(y.l;F")Ix.l) =0 is satisfied; in equation (IV.3a) it is
satisfied because  P(y,|#*.x) = <I>(yi-x;0") and in equation (IV.3b) because
E(d,| #*x,) = &(x{ ).

The original method of simulated moments (McFadden (1989) and Pakes and
Pollard (1989)) proposed substituting an unbiased simulator, é(x; B), for Q(x; f) and
exploiting the linearity of the score expression (IV.3b) in (di—<I>(-)). For high efficiency
this method requires that consistent estimators for the optimal instruments, wi(R"), be
used. The method of simulated scores we discuss in this paper, follows Ruud (1986) and
simulates instead directly the expression E( e’;‘ | y’;‘ € D(yi)) which implies that the optimal
instruments are now available automatically in the form of X.. In other words, MSS uses
simulators for the expression E(e} | y} € D(y,)), say E(e’; | y$ € D(y,)). To see the

¢(y;-x16)
relation of MSS to MLE, recall that x.-E(e} | yt € D(y,)) =x, - W = 5(y,,6x,) .

1

The Lerman and Manski (1981) method uses unbiased and consistent frequency simulators
of &(x{f) directly in the likelihood function (IV.2a);'? vanPraag and Hop (1988) use
independent simulations of the numerator and denominator expressions in (IV.3a).
Hajivassiliou (1989b) contrasts the method of simulated scores to the other
simulation estimation methods available in the literature via Monte-Carlo. The results in
that study support the following conclusions: first, the choice of instrument functions in

the methods that simulate generalized moment conditions can be critical. Employing the

17 A similar method has recently been proposed by Laroque and Salanie (1989) to tackle the numerical
integration problems in multimarket disequilibrium problems.
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ideal instrument function w(.) in (IV.3b) (which of course in more realistic cases is
intractable to calculate) yields considerable mean-square-error advantages over the simpler
choice X, which choice also satisfies the theoretical requirements for consistency and
asymptotic normality. Second, the simulated MLE method of Lerman and Manski (1981)
offers satisfactory performance only when the number of simulations employed is large, if
frequency simulators are used. This number grows faster than linearly with the complexity
of the LDV model under analysis. As theory suggests, the Lerman and Manski method is
improved significantly by maintaining the same set of underlying random variates while
iterating the optimization algorithm to convergence. The method that simulated
separately the denominator of the scores by frequency methods performed unsatisfactorily,
and it was easily dominated by all the other methods tried, primarily because frequency
simulators are not bounded away from 0 and 1. Before barely satisfactory performance was
achieved, a huge number of simulations for the denominator expressions had to be
employed. These problems were significantly alleviated once a smooth simulator, bounded
away from 0, like simulator (1) of Appendix 2, was used for the denominator expression.
In all the cases investigated, the method of simulated scores based on simulator (1)
performed impressively; it approached the (optimal) performance of MLE with even 2
simulations per dimension of the underlying latent variable vector. Moreover, the method

was found to be numerically stable, which was to be expected given its continuity in the

underlying parameters.
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5. Empirical Implementation of Debt Crises Models

The dependent variables for the models we estimate are as follows: for the probit
case, a dummy variable for a repayments problem was defined to take the value 1 if IMF
support was requested (either in the form of a standby agreement of second or higher
tranche or use of the IMF Extended Fund Facility), if the bankers were approached to
organize a rescheduling (including Paris Club, commercial banks, and aid-consortia
renegotiations), or if a country let its external debt obligations (in principal or interest
repayments) fall in arrears. This information was compiled from our own country-by-
country investigations and from published and unpublished IMF sources. The date of
rescheduling was selected to reflect the key economic developments precipitating it. In the
Tobit model, the dependent variable was the total external debt obligations of a country in
arrears. Figures were obtained from confidential files at the World Bank.18 See the Data
Appendix for data sources and variable definitions.

We employed exogenous variables, already identified in the literature as possible
determinants of the incidence and extent of repayments problems. See Feder and Just
(1977), Feder, Just and Ross (1981), Cline (1983), McFadden et al. (1985), and
Hajivassiliou (1987, 1989a).1° Since we estimate reduced form models of excess credit
demand, the signs of the coefficients are difficult to predict. We begin with factors that are
important in determining the creditworthiness of a country and hence the supply of
lending, such as the ratio of outstanding debt to exports. This measures the extent to
which exports, the main source of foreign exchange, can cover the external indebtedness of
the country.

The ratio of reserves to imports is a measure of how long an economy can finance its

imports by using its stock of reserves without seeking refuge in higher levels of external

18 Arrears on principal of smaller than 1 percent of disbursed debt, and interest arrears of less than 0.1
percent of debt were treated as "cosmetic" and hence set to sero.

19 To alleviate possible endogeneity issues, we lagged all explanatory variables by one year. If significant
serial correlation exists in the unobservables, this procedure will not be sufficient to overcome the
endogeneity problem.
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borrowing. This ratio may both indicate high creditworthiness and low demand for new
loans, ceteris paribus, since existing stocks of reserves can be used to do such financing.

The ratio of debt service due over exports is considered as a further creditworthiness
indicator, since it describes the ability of an economy to finance its yearly interest and
principal obligations that are a pressing short run concern. Separation of interest from
principal repayments is undertaken because the on-going "liquidity vs. solvency"
controversy predicts different impact of principal and interest obligations in precipitating
debt crises. 20

Real GNP per capita reflects both aid motivations by the suppliers of new lending
and the degree of financial well-being of a country. As a measure of openness of the
economy we employ the ratio of the current account balance relative to GNP. A high
exports/GNP ratio may be viewed as an undesirable characteristic by international
bankers, because it reflects vulnerability to price shocks and to falling demand for its
exported goods. On the other hand, the planners of a country with a highly open economy
are more likely to be disciplined in their international financial dealings and less likely to
repudiate, recognizing the severe losses from a drying-up of international credit.

Past repayments problems reflected in IMF arrangements, reschedulings or
significant arrears outstanding could be strong indicators of a lack of creditworthiness. It
is important to attempt to identify whether the significance of such past problems
manifests learning by creditors in the face of uncertainty or whether they spuriously appear
statistically significant if one fails to model satisfactorily temporal dependence in the
unobservables. Alternative measures based on the number of all past problems beginning
from 1971 were tried to examine whether bankers have "long memories."

The method of simulated scores was employed to estimate multiperiod binary probit

20 According to the first view, the international capital markets are not frictionless, so that a debt crisis
might be induced by a lack of liquidity to a financially sound borrower. The "solvency" view maintains
that credit crises are manifestations of insolvency. Presumably, prompt receipt of interest payments from
a country reflects solvency.



and Tobit models under the three correlation structures described by equations
(11.8)—(I1.10) respectively. The results are contrasted with maximum likelihood estimation
for (I1.8) and (I1.9), in which cases the numerical integration problems involved are
manageable. Table 1 presents probit MLE and MSS results for three different versions,
each of which includes different independent variables.2! As already explained, the signs of
the coefficients are difficult to predict a priori, since they correspond to reduced form
models of excess credit demand. Our first finding is that, ceteris paribus, a country is more
likely to request a rescheduling of its debt obligations, let its obligations go in arrears, or
ask for IMF assistance, the greater the number of similar problems it has encountered in
the previous year and the higher its outstanding stock of debt relative to its exports. We
also find that countries with high foreign reserves relative to imports are less likely to get
into debt repayments problems. Bankers are seen to have "short memories" in the sense
that the incidence of a debt problem in the immediately preceding period is a stronger
predictor of similar problems in the future, compared to the cumulated number of problems
in the whole observed past history. In general, we confirm results in past studies
(McFadden et al. (1985), Hajivassiliou (1987, 1989a)), that there is strong evidence of
persistent unobservable country heterogeneity, which is attenuated but not eliminated by
the inclusion of variables measuring the occurrence of problems in the preceding year.

Proceeding to Table 2, we present similar results that measure the severity and
extent of credit constraints through the use of the multiperiod Tobit model. The
coefficient estimates are somewhat better determined than in the probit case, presumably
confirming the high informational content of the confidential arrears variable. Note in
particular the statistically strong, negative sign of the coefficient of the current account to
GNP ratio. The cumulated number of past problems is now statistically significant,
suggesting stronger temporal dependence in the the severity of crises.

The ratio of interest service due to exports has a significant and positive effect on

21 All MSS results reported in the Tables employed simulator (1), which operationally seemed to offer the
best compromise in terms of speed and accuracy.



the propensity to encounter debt repayments problems, while the ratio of principal service
due to exports, even though generally less significant, has a negative sign. This evidence
mildly favours the "solvency" hypothesis. Since the ratio of total outstanding debt relative
to exports appears strongly significant, the liquidity hypothesis would predict positive
coefficients for both interest and principal due, because of the implied deleterious effect of
shortening average maturities. That we typically find a negative effect of principal due
lends weak support to the "solvency" view by rejecting the liquidity view. It is interesting
to note that attempting to pool interest and principal repayments due into a single debt-
service—due variable is statistically very strongly rejected; debt service due appears to be
insignificant.22

The last three columns of each table are obtained through the MSS methodology.
The first two are given as a benchmark comparison to MLE, since in the first two cases,
i.i.d. errors and factor—analytic correlation structure, ML estimation is computationally
tractable. The results are quite reassuring since the MSS estimates are very close to the
MLE ones with slightly lower accuracy, as predicted by asymptotic theory. The main
novelty is the fifth column of each table, since in that case, the random-effects plus AR(1)
error structure (II.10) renders infeasible estimation by classical ML methods. Note the
significant positive autocorrelation in the error (significant in both models, more strongly

so in the Tobit case). Moreover, some of the variables that were found statistically not

22 Hajivassiliou (1989b) examines other issues that have important policy implications: For example, is an
overvalued exchange rate one of the fundamental causes of external financing problems, or is
overvaluation a very costly distortion that arises from very high levels of external indebtedness?
Measures of overvaluation were comstructed to investigate this issue, based on a discrepancy between
official and black market exchange rates. Another issue analyzed in that study is the importance of
world economic factors, which are exogenous to a developing country, in explaining the occurrence of
external debt repayments problems. Such factors include the volume of import demand by industrialized
countries, inflation in the OECD nations, and world interest rates. The findings have important policy
implications on LDC "adjustment efforts" to stave off external financing crises. Finally, the models were
investigated for the possibility of structural breaks occurring in the processes determining repayment
problems over time. One popular view attributes part of the blame for the LDC repayments problems to
the glut of "petrodollars" after the first 1973 major oil-shock. Only very weak evidence that such
structural breaks occurred in the estimated relationships was found. Another possible structural break
occurred after the much greater institutional involvement that followed the onset of defaults beginning in
1982. Some evidence that the probabilities of repayments problems worsened after 1981 was found.
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significant with the more restrictive correlated structures (e.g., CA/GNP), now become
very important. The statistical significance of observed history of problems is in most
cases considerably reduced, whereas the random effects hardly loose their significance.
This suggests that the persistence arises more from the unobservables of the model (e.g.,
the magnitude of excess demand for credit in the previous period) rather than the observed
incidence of a repayments problem. Note that these estimates suffer from the long-
standing problem of initial conditions in dynamic limited dependent variable models (see
Heckman (1981b)). The reported results were obtained using Heckman’s approximate
solution, which assumes the same functional form for the distribution of the initial
condition. Given that our date set is a "long" panel with approximately 14 years of
observation per country, we do not expect the treatment of the initial conditions to make a

substantial difference in estimation. 23

6. Conclusion

In this paper we presented the method of simulated scores (MSS) and developed
three simulators to use for the likelihood scores. In contrast to most simulation estimation
methods proposed in the literature, the MSS estimators based on simulators (1) and (2) are
continuous in the unknown parameter vectors and hence standard optimization methods
can be employed. Furthermore, we showed that the MSS estimator based on simulator (1)
is CAN when the number of simulations used rises at the square root of the number of
observations available. Using simulator (2) for MSS estimation with a finite number of
simulations requires instead that the number of Gibbs resamplings used for each simulation

rise only as the logarithm of the number of observations. Use of simulator (3) guarantees

23 In a geparate line of research, we are currently analysing this issue and show that it can be addressed by
adapting flexible functional form and semiparametric estimation methods, recently developed by Gallant
and Nychka (1987). Simple tests of the adequacy of the distributional assumption for the initial
condition can be devised by employing non-parametric density estimation methods.
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that MSS will be CAN for a finite number of simulations.

We offered an econometric analysis of the incidence and extent of external debt
repayments problems using MSS estimation. This allowed us for the first time to introduce
a flexible correlation structure over time in the unobservables of our LDV models, which
can not be handled by traditional maximum likelihood estimation methods because of high-
dimensional integrals.

The main theoretical approach adopted was one of credit rationing in the market for
international lending. Several econometric problems with the existing literature were
discussed, in particular the issues of persistent unobserved heterogeneity and state
dependence which are specific to the longitudinal nature of our data set. This analysis
attempted to quantify the impact of various factors that because of theoretical arguments
and past empirical findings are believed to act as precursors to such problems. We have
shown that the restrictive correlation structures imposed by past studies, necessary to
render feasible the classical method of MLE, was giving unreliable econometric results.

We conclude that the simulation estimation techniques are likely to prove very
useful in carrying out econometric analyses of limited dependent variables models with

theoretically more appropriate correlation structures.
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Table 1

Probit MLE and MSS Results

Dependent variable: PARIF (1 if IMF involvement, rescheduling, or sign. arrears).
Asymptotic t-statistics in brackets.
1338 available observations (91 countries, observed for the 17 years 1971—1987)

Method MLE MLE MSS MSS MSS
Probit Probit Probit Probit Probit
with RE with RE with RE
and AR1
(QIID) (QRE) (QIID) (QRE) (QARIRE)
constant -1.16 -1.23 -1.34 -1.35 -2.31
—10.17] [-11.27] [~10.01] [-11.18] [~10.27]
Debt to 1.46e—3 1.59e-3 1.49e—3 1.53e-3 1.37e-3
Exports [2.76] [2.33] [2.87] [2.47] [2.95)
Reserves —7.92e—2 —7.81e—2 —-7.63e—2 —7.45e—2 —3.21e2
to Imports [—4.21] [-3.88] [4.43] [-3.25] [-5.75]
Interest 6.94e—2 5.77e-2 6.47e—-2 5.28e—2 3.57e—2
Service Due [4.43] [4.99] [4.71] [4.38] [3.21]
Principal —2.37e=2 —2.52e—2 —2.37e-2 —2.18e-2 —3.44e-2
Service Due [—2.35] [-2.59] [-2.35] [-2.26] [-3.92]
Per Capita —5.39e4 —5.57e4 —4.38e—4 —4.88e—4 —1.22e4
GDP (80 8) [-1.45e-2] [-1.27e-2] —1.31e-2) [-1.27e-2] [-1.57e-3]
Curr. Acc. 4.40e—2 4.56e—2 3.84e—2 3.82e-2 7.68e—2
to GNP [0.11] [0.29] [0.22] [0.32] [2.59]
Past Signif. 1.91 1.95 1.78 1.93 2.01
Int Arrears [7.02] [7.59] [6.22] [7.38] [6.47)
Past Signif. 1.59 1.21 1.47 1.32 2.14
Pr Arrears [5.34] [5.27] [4.78] [5.13] [3.53]
Past Resch. 1.45 1.01 1.36 1.21 0.67
or IMF inv. [12.05] [10.11] 11.64] [9.57] [8.78]
Cumulated 3.00e-2 2.77e-2 3.27e-2 2.46e—-2 3.61e-2
Signf I Arr 0.62] [0.53] 0.48] [0.32] [0.46]
Cumulated 6.12e-2 6.55e=2 6.26e—2 6.51e—2 3.29e--2
Signf P Arr [0.79] [0.88] [0.69]7 [0.38] [0.32]
Cumulated 4.27e-2 4.01e-2 4.17e—2 4.35e—2 2.98e-2
Resc or IMF [1.73] [1.12] [1.47] [1.47] [1.59)
Y (RE) _ 0.32 _— 0.33 0.22
[3.26] [2.98] [2.03]
p _ —_— e .203
[2.47]
loglikelihood
at optimum —498.54 —497.61 —_ _ e
constrained —927.43 —027.43 —_— —_— —
Pseudo R2 0.463 0.469 0.463 0.469 0.496
% corr. prd 84.60 84.70 84.60 84.70 89.42
Notes:

1. 79 = st. dev. of i.i.d. error (=1), 75 = st. dev. of random effect, p = AR1 coefficient
2. Simulator (1) with 20 simulations was used for the MSS estimations
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Table 2
Tobit MLE Results
Dependent variable: SARF (Significant Arrears deflated by exports).
Asymptotic t—statistics in brackets.
1338 available observations (91 countries, observed for the 17 years 1971—1987)

Method MLE MLE MSS MSS MSS
Tobit Tobit Tobit Tobit Tobit
with RE with RE with RE
and AR1
(@p) (Rzg) (Qpp) (Rge) (2 r1rE)
constant —2.40e—-2 —2.53e—2 —2.24e-2 —2.36e—2 —3.21e—2
[~11.99] [-8.08] [-10.35) [-7.42] [-6.83]
Debt to 6.65e—6 8.53e—6 6.36e—6 8.15e—6 4.53e4
Exports [1.56] [1.73] [1.74] [1.27] [2.49]
Reserves —3.35e—4 —2.99¢4 —3.18¢4 —2.64e4 —2.43e4
to Imports [-1.64] [—1.35] [-1.83] [-1.39] [2.92]
Interest 2.05e—4 2.53e4 2.27e4 2.36e—4 2.42e—4
Service Due [1.56) [1.61) [1.93] [1.92] [2.31]
Principal —2.90e-5 —~1.80e—5 —2.53e~5 —1.64e—5 -2.04e—5
Service Due [-0.26] [-0.16] [-0.35] [—0.28] [-1.83)]
Per Capita 8.0l1e4 9.70e—4 8.26e—4 9.85e4 7.24c4
GDP (80 $) [1.64] [1.69] [1.42] [1.93] [1.44]
Curr. Acc. —1.46e—2 —1.39e—2 -1.18e—2 —1.49e-2 —2.04e-2
to GNP [—2.86] [—2.03] [-2.36] [—2.49] [-3.25]
Past Signif. 1.04e—2 8.98e—3 1.23e-2 8.53e—3 7.42e-3
Int Arrears [5.41] [5.12] [5.27)] [5.43] [4.21]
Past Signif. 8.82e—3 8.24e-3 8.73e—-3 8.34e-3 5.82e—3
Pr Arrears [4.02] [3.83] [4.37) [3.48] [2.47]
Past Resch. 1.76e—-3 1.24e-3 1.17e-3 1.26e—3 1.69e—3
or IMF inv. [1.25] [0.81] [1.58] [0.36] [1.81]
Cumulated 1.06e—-3 9.33e—4 1.24e-3 9.39e4 6.28¢—4
Signf I Arr [3.25) [2.89] [3.37) [2.47] [2.37]
Cumulated —08.57e+4 —1.27e-3 -9.26e—4 —1.53e—3 —0.25e-3
Signf P Arr [—1.54] [-2.03] [-1.11) [—2.39] [-2.04]
Cumulated 9.93e—4 1.31e-3 9.27¢4 1.43e-3 2.63e-3
Resc or IMF [3.81] [4.16] [3.23] [4.27) [3.45]
Signif Past 1.68 1.82 1.35 1.59 1.52
I Arrears [3.14] [3.13] [3.56] [3.45] [2.63]
Signif Past 0.84 0.80 0.81 0.67 0.47
P Arrears [8.80] [8-32] [7.31] [8.32] [6.92]
N 1.26e—2 1.20e-2 1.18e-2 1.12e-2 1.01e—2
[93.00] [14.96] [95.21] [13.42] [7.42)
Yo _— 3.96e-3 — 3.54e-3 2.36e-3
[4.37] [4.74] [3.73]
p _— —_— _— 0.289
[2.93]
loglikelihood:
at optimum 554.880 556.399 —_ e _—
constrained 227.560 227.560 —_— _— —_
Notes: 1. 7, = st. dev. of i.i.d. error, Yy = st. dev. of random effect, p = AR1 coefficient

2. Simulator (1) with 20 simulations was used for the MSS estimations
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Appendix 1
Matrix Differentiation Results

For the purposes of Section 3, we give the following formulas for matrix

differentiation. If A is a nxn square matrix, not necessarily symmetric, with determinant

|A|, then24

(AL.1) An Al _ a1yt
—1

(AL.2) S =ATte ™

s A=l
(A1.3) W =—A"tzr AT

Using these formulas, the derivatives of a multivariate normal density n(z — u, ), with

variance-covariance matrix 2 = I'T"’, are

(A1.4) An n(gﬂ— ) _ gl _p)
(AL.5) A n(z —p O _ ot +la? @-pe-pa.
Also,
/ —1
(A1.6) QZ?%_Z) =20l 07ir
and
(ALT) 9] s q7'r,
implying
(A1.8) Ao 1z — ) - 071 4 07Nz —p)(z—p) Q7T

24 Note that we use -g%&, with typical element -gi-(ﬁ, to denote the partial derivatives of a function g(-)
i)

with respect to element aij’ without regard to possible symmetry of mairiz A. In other words, for the

purposes of differentiation, we let giiél denote the partial derivative of g(A), holding constant all other
elements of A, even though for a symmetric A we have, of course, aji=aij' This is to prevent double-

counting when we apply the matrix chain rule of differentiation in (A1.1—8) below.
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Appendix 2
Methods for Generating Draws from Conditional Normal Distributions

In this Appendix we present three simulation techniques to use with MSS
estimators. The first two are continuous in the unknown parameters, and provide
asymptotically unbiased simulators of the score. Asymptotic unbiasedness of simulator (1)
requires the number of simulations employed to grow without bound, while simulator (2),
which uses a finite number of simulations, is asymptotically unbiased as the number of
resamplings used to generate each simulation rises without bound. The third simulator is
an unbiased estimator for the score for a finite number of simulations, and is a
discontinuous function of the unknown parameters. The consistency and asymptotic
normality of MSS estimators based on any of these three simulation methods is established
in Appendix 3.

We illustrate our methods for the leading distributional case of multivariate

normality. Consider the general normal LDV model:
(A2.1) y, = T(Y’:) , Y’:‘ ~ N(Xiﬂ,ﬂ), i=1,...,N.

The MSS estimator requires simulating the h(Y’;) functions that appear in the scores,
conditional on Y’;‘ € D(yi). Hence, our general objective is to obtain random draws from
the distribution Y? subject to y, = 'r(Y’i"). Then we see from Section 3 that three types of

functions need to be simulated. The first function is the likelihood contribution !i :

(A2.2) £. = Prob(D(y.)) = f n(z—X.6,0) dz .
‘ Tob(y)

1

The second is the likelihood derivative ew :

(A2.3) l.gsf h(z,X,6,0) n(z-X,4,0) dz .
Yon(y) !

Finally, the third function is the logarithmic score -glvgi :
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n(z—X.6,Q)
(A2.4) 5 = lw/li = I.)[(y.)h(z,xi,ﬂ,ﬂ) ——l—i—— dz .
i
For simplicity, we will drop the i index whenever no ambiguity would arise.

Our general objective will be to develop unbiased simulators for these functions,
that are computationally very fast; and simulators that though only asymptotically
unbiased, their bias vanishes at sufficiently fast rates as to guarantee consistency and
asymptotic normality of MSS estimators that employ them.28 The first continuous
simulator is based on the idea of employing a Choleski triangularization so as to make the
constraints Y* € D(y) recursive.26 This will make simulator (1) unbiased for the likelihood
contributions and asymptotically unbiased for the logarithmic scores. The second
continuous simulator employs repeated drawings from univariate truncated conditional
normal distributions and applies Gibbs resampling methods (Geman and Geman (1984),
Gelfand and Smith (1988)) to ensure that the joint distribution we are simulating from
converges to the appropriate multivariate truncated normal distribution. Hence,
simulation method (2) will provide unbiased drawings of likelihood contributions and scores
for a finite number of terminal simulations, as the number of Gibbs resamplings rises to
infinity. Finally, we describe a third simulator based on acceptance-rejection arguments,
which though a discontinuous function of the underlying model parameters, provides
unbiased drawings of likelihood contributions and scores for a finite number of terminal
simulations used.

We first give the following preliminary result for the univariate case.

25 Unbiased and consistent simulators for the integrals appearing in expressions (A2.2)—(A2.3) can also be
obtained through importance sampling and other methods (see Moran (1984, 1985, 1986), Deak (1980),
McFadden(1989), Stern (1988)). These methods cannot be used for direct unbiased simulation of the
logarithmic score (A2.4), unless an infinite number of simulations is averaged.

28 Geweke (1989) uses this triangularization in a Bayesian context and Keane (1990) employs it in the
special case of estimating by simulation a multiperiod (panel-data) binary probit model.
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Proposition 1:

Suppose that the random wvariable U has a uniform (0,1) distribution, and &(-) is the
standard normal N(0,1) cumulative distribution function. Define the random wvariable
Q = o }((®(b) — #(a))- U + &(a)). Then Q will be distributed N(0,1) conditional on
a<Q<h.

Proof:

Since U is distributed uniformly on (0,1), V = (®(b) — ®())-U + ®(a) will be distributed
uniformly on (&(a),®(b)). It then follows by the probability integral transform result (see
Feller (1971)) that Q = (V) will be distributed as N(0,1) conditional on a ¢ Q < b, since
the implied c.d.f. for Q is G(q) = %{-&H{% . Note that this result yields random

variates that are continuous functions of the parameters of the distribution, a and b. o

For a vector of indices (1,...,J), we use the notation "<j" to denote the subvector
(1,...,}-1), "<j" to denote the subvector (1,...,j), and "—j" to denote the subvector that
excludes component j. Thus, for a matrix L, Lj < denotes a vector containing the first 31

elements of row j, and L_j = denotes the subarray excluding row j and column j. For a

vector e, € is the subvector of the first }-1 components, and € is the subvector
excluding component j. Employing this notation and Proposition 1, we can now establish

the following:

Proposition 2:

Consider the Jx1 random wvariate vector Y* distributed as N (Xf4,Q) conditional on
a* < MY* < b*, where — € a* < 40, —o < b* € 4o, a* < b*, the matriz M is non-singular,
and the matriz Q is positive definite. Define aza*-MXfF, bzb*-MXp, EEM—la*,
BEM_lb*, and let L be the (lowertriangular) Choleski decomposition of
Sz=MOM’ = LL’ . The density of this random vector Y* is
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b _ _
(A25) n(y*“xﬂan1£’5) E n(y*—Xﬂ,Q)/P, where P = J_ n(z——Xﬂ,Q) dz, a < y* <b.
a
Then the following results hold:

(a) The conditional density of Y’J!‘ from n(y’;; Xp5,0,a,b) given Y:j=y:j € (E_j,l—)_j), is

univariate truncated normal, with density.

(A2.6) —¢((y =)/ o) [&((bw)/ o=2((25w)/ 7)),
where 51 <y t_)
_x ﬁ) e _J)'1 (v*AXB)_), and
= [0, ( )T Jl* :
(b) Draw  sequentially e ~N(0O,1) st a,< 1,06, b, ey N(0,1) s.t
a,<1, -e, +1,,ce,<by , ..., and €~ N(0,1) s.t. ay <1y ce, + ... +1jy-e; <y Let

es (el,...,eJ) . Then the joint probability density function of the vector e is given by

(A2.7) fle) = H ¢(ej)/Qj(e1"“’ej—1) ontheset a<L-e<b,
0

otherwise,

where Q, = Px:ob(al/I11 <e <b /111),

Qj(el,...,ej_l) = Prob((aJ.—L € )/1 <e¢ (b L eq)/l | € 3—1)'

Define ¥=M1L.e + XA4. Then y has a distribution conditional on
a+MXpF = a* < M ¥ < b* = b+MXS, which in general is different from the distribution of
Y* conditional on a* < MY* < b*.

Proof:
(a) Write n(y*-Xg,Q)/P = n(y’;‘—p o’ ) n(y* —(Xﬂ) _,—j)/P’ and divide this joint
probability distribution function by its integral in yJ. over aj < y’J!‘ < Bj to get the result.

(b) Consider Y* ~ N(XB,Q) conditional on a* < MY* < b* and define
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vE L_lM(Y*—Xﬂ). Then the event a* < MY* < b* is equivalent to a*~-MXf=za {L-v<

b= b*~MXS. Since L is lower triangular, the implied constraints on v are recursive,

A

v, £ b, /1

(A2.8) a, /1, :

11

(aj—LJ.,q.-u(j) /1jj <y ¢ (bJ.—Lj’ <V <J.)/1jj , j=2,...,n .

Though recursive, these constraints on v are interdependent, and therefore there is no
convenient way of generating v vectors with the distribution v~ N(0,I) conditional on the

constraints (A2.8).

Consider instead the random vector e defined by the following sequential procedure,

satisfying constraints exactly analogous to (A2.8):

(A2.8") a /1,

IA

e < bl/l

1 11

— -e_.)/l.. <e. ~L. j=2,...,0 .
(aJ L e<J)lln <e (b—L 2,...,0

i< 3 < Lol
Draw first an e, ~ N(0,1) satisfying constraint (A2.8’,j=1); then, given the value of e,,
draw e2~N(O,1) satisfying constraint (A2.8’,j=2); ... ; finally, given the values of

e draw e; ~ N(0,1) satisfying constraint (A2.8’,j=J). In other words, we draw

o€y
sequentially e, e2|e1, ealel,ez, ey eJIel,...,eJ_1 satisfying (A2.8). It should then be
clear that the p.d.f. of this sequentially drawn e vector is given by (A2.7).

Finally, define y= Ml.L-e+ XA . Since the distribution of e satisfying
constraints (A2.8’) sequentially is not the same as the distribution of v satisfying
constraints (A2.8) jointly, neither is the distribution of ¥ the same as the distribution of Y*

conditional on a* < MY* < b*. ©O

It is important to reiterate that y’s implied by the sequential scheme of Proposition
2 are not distributed according to the multivariate truncate normal distribution
Y* ~ N(X4,Q) conditional on a* < My < b* because the recursive constraints defined by

the Choleski decomposition are not independent. The main point here is that while
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Y* ~ N(X3,Q) conditional on a* < M:Y* < b* is a linear transformation of v~ N(0,I)
conditional on a { L-v < b, the distribution of v is not the same as the distribution of the
sequentially drawn e. Therefore, neither is the distribution of ¥ defined on a* ¢ M-y < b*
the same as the distribution of Y* defined on a* < MY* < b*. This fact should be evident
from a simple two-dimensional example. Suppose b1=b2=m as is the case in the probit
model, and 1,, >0, corresponding to a positive correlation between Y’{ and Y’; Draws of e
according to the inequality in (A2.8’,j=1) will ignore the constraint in (A2.8",j=2), hence
will be too small on average. Given an e too small, €y obeying the second constraint
(A2.8,j=2), will be too large on average.

Despite this fact, we can show that combining Proposition 2 together with
importance-sampling arguments we can define smooth, unbiased, and direct simulators for
the likelihood contributions li and their derivatives £ & and a smooth, asymptotically
unbiased simulator of the score function, termed simulator (1). The results in Appendix 3
will establish that MSS estimators based on simulator (1) will be CAN provided the

number of simulations used grows at rate yN .

Simulator (1):
A Smooth, Direct Simulator for Likelihood Scores and Contributions

The likelihood contribution of the general LDV model examined in this paper is

given by (A2.2), which we can rewrite as

(A2.27) {(y.X; ) = J n(*-xp0)dy*
a*(y) < M(y)-Y* < b*(y)

= Prob] 2*(y) < M(y)-Y* ¢ b¥(y); Y* ~ N(XA0) ]
But
Prob[ a*(y) < M(y)- Y* < b*(y); Y* ~ N(X5,9) ]
= Prob[ a(y,X,4,2) < L(y,Q)-v < b(y,X,5,Q); v~ N(0,]) ],

with a, L, and b as defined in Proposition 2. Hence, the likelihood contribution becomes
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(A2.9) £(y.X; B,9) = Prob| a(y,X,5,2) < L(y,Q)-v < b(y,X,4,0); v~ N(0,]) ]

J
= f n ¢(uj) duj .
a(y,X.6,9) < L(y,0)-v < b(y,X,80) ="
Now consider a Jx1 vector e drawn according to the sequential scheme described in

equations (A2.8’), with p.d.f. given by (A2.7). Obtain R such vectors e ’s and define the
likelihood contribution simulator #(e; y,X; 8,8; R)

R J
3 1
(A2.10) e y,X; B, R) = K 2 H Qj(elr"“’ej—-l,r) ,
r=1 j=1
where Q, = Prob(a, /1, e, & (b,/1,,), and
= — . -] . 27
Qj(el,...,ej_l) = Prob((aj LJ.’<J. e<j)/ljj <e¢ (bj Lj,<j e<j)/ljj | el,...,ej_l).

Lemma:
The simulator £(e; y,X; B,; R) defined by (A2.10) is an unbiased estimator of £(yX; B,) .

Proof:
It is sufficient to show the Lemma for R=1. The expected value of Z is
Ef = fZ(e) i(e) de,
where f(e) denotes the demsity (A2.7) that generates the (biased) sequential truncated
draws e . By (A2.10), the definition of Z, and result (A2.9),

J
QJ)'( _1¢(9J)/QJ) del-'-deJ

R
EZ= [ (I
- j=1 j=

J
= f n ¢(ej) dej =Prob(a<L-v<b)= £y X; 50). ©
a<L-e <bi=}

27 Recall that since e~ N(0,1), Prob(kl < 2 < k2) = (I)(kz)-q)(kl).
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The combination of the Geweke recursive conditioning method, the above Lemma,
and the smooth univariate truncated variate generation algorithm produces an unbiased
(for any value of R) multivariate probability simulator for the likelihood contribution
(A2.2) that is smooth, i.e., a continuous and differentiable function of the model
parameters 4 and . Moreover, apart from an initial Choleski decomposition and several
matrix multiplications, most computational effort is in drawing the univariate truncated
normal variates according to the steps in (A2.8”). This effort is linear in J, the dimension
of the probability integral, which is an extremely convenient feature of simulator (1). The
results of Hajivassiliou (1989b) and Borsch-Supan and Hajivassilion (1990), confirm the
excellent computational efficiency of simulator (1). Hajivassiliou (1989b) shows that
generating 1000 simulations Z_according to this algorithm from the 10 dimensional
distribution Y*~N(g,Z) with E={ajj=1, aij=.5 for i#j} subject to Y’;.‘>0 if j even and <0 if
j odd, required 14.3 seconds on a NEC 386/16MHz Personal Computer, and 34.4 seconds
for 20 dimensional Y* vectors. In contrast, a sophisticated (discontinuous) acceptance-
rejection algorithm required 40 minutes for the 10 dimensional case and in excess of 3 hours
for the 20 dimensional one.

To obtain a smooth and asymptotically unbiased simulator for s, , the logarithmic

score (A2.4), recall that 5, = £, ,/¢. = E[h(Y*-Xf)| Y*eD(y)]. Hence, we define

(A2.11) 15,

Z HR/ZR ,

where 7 or = %Zj { h(M—lLer) . ?Qj(ej—l,r) }, and ZR 5%? IjIQJ.(ej_l’s) . From the
Lemma given above, EZR = { ; given the linear form of the likelihood derivative h(-)
function, an exactly analogous importance sampling argument as the one used in the proof
of the Lemma establishes that EZ, = £, Given these facts, a standard law of large
numbers then implies that, as R — s, the simulator for the denominator, ZR, converges to
¢=E{1(Y%eD(y,))}, the probability of the event Yt € D(y,), and the simulator for the
converges to £ =E{h(Y})-1(Y¥eD(y,))}. Hence, LS B¢,/ =s,. In

~

numerator, ¢ R’
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Monte-Carlo experiments we found that R=100 was large enough for satisfactory sampling
performance even with n=64 dimensions. The proportional bias in the parameter estimates
remained below 10%. Moreover, the continuity in & and the unknown parameters makes
this simulator extremely fast. Hence, one can afford quite high R values, because the
necessary time is approximately linear in the dimension of Y* and is independent of the
magnitude of Prob(Y* € D(y)), in sharp contrast to discontinuous simulators. A further
feature of this simulator that apparently causes its distinctly superior performance when
used for estimation compared to (discontinuous) frequency simulators, is that, unlike the
latter, the smooth, recursive-conditioning simulator presented here is bounded away from 0
and 1. For details on the comparative performance of simulator (1), see Bérsch-Supan and

Hajivassiliou (1990).

Next, we show that by employing Gibbs resampling techniques (Geman and Geman
(1984)) we can devise another smooth simulator, simulator (2), which has the correct
truncated multivariate density Y* ~ N(X5,Q2) conditional on a* < MY* <b*
asymptotically with the Gibbs resampling rounds. Though the Gibbs-based simulator (2)
only guarantees drawing from the correct multivariate truncated normal distribution as the
number of Gibbs resamplings rises without bound, Monte-Carlo experience in Hajivassiliou
(1989b) suggests that the convergence rate of this method is very rapid. This finding
confirms the result in Appendix 3 that MSS estimators using the Gibbs-resampling-based
simulator are consistent and asymptotically normal for a finite number of terminal

simulations, R, as the number of Gibbs resamplings used, n, grows at rate log N.
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Simulator (2):
An Infinite Algorithm for Generating Truncated Multivariate Normal Variates,

Based on Gibbs Resampli
The Gibbs sampler was developed for and has been applied to the problems of

complex, large scale stochastic models, such as image reconstruction, neural networks and
expert systems.28 In these cases, direct specification of a joint distribution is typically not
feasible. Instead, the full set of conditionals is specified. Consider a Jx1 variate random

vector Y and let
(A2.12) [Yj|Y_j] j=1,...,J,

denote the distribution of the variable Yj conditional on all the random variables
constituting Y excluding YJ..

For the purposes of this section, we further assume that the truncation region (a,b)
of the multivariate normal distribution in (A2.1) is compact, which is equivalent to
assuming —w < a < b < 4w . This does not entail any loss of empirical generality, since
we can consider a large compact rectangle defined by the limits of computing machine
representation of floating point numbers. We let B denote the (compact) rectangle [a,b].

Gibbs sampling is a Markovian updating scheme which proceeds as follows. Given
an arbitrary starting set of values Yl(o),Yz(o),...,YJ(o), we draw Y1(1)~[Y1IYZ(O),...,YJ(O)],
then Y,y | Y, (v, @y O vy .y, Iy, Dy, My Oy @ and 50 on,
up to YJ(1)~[YJ|Y1(1),...,YJ_1(1)]. Thus each variable is "visited" in the "natural" order
and a cycle in this scheme requires J random variate generations. After n such iterations
we would arrive at Y® = (Yl(n),...,YJ(")). Proposition 3 will establish that Y® will
asymptotically have the true joint distribution of Y as n grows without bound. In our case,
we let Y describe the distribution of Y* ~ N(Xf,Q) conditional on a* ¢ M- Y* < b*, and let
an) be a vector drawn according to the Gibbs scheme after n resamplings. By (A2.4), the

28 The relevance of Gibbs resampling methods to our problem was suggested to us by John Geweke.
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logarithmic score, §,, equals the expectation of h(Y,X,5,2) over the distribution of Y. It

then follows trivially that E h(YE“),X,ﬁ,Q) converges to § as the number of Gibbs

resamplings, n, grows to infinity. Hence, we define simulator (2) by Ei(Y(n),y,X,ﬁ,Q,n,R)

= % z h(an),y,X,B,Q), where R is the (finite) number of terminal simulations drawn, and
r

n the number of Gibbs resamplings used for each simulation. Though Ei is unbiased for the
true s, only asymptotically with n, we prove in Appendix 3 that the MSS estimator using
simulator (2) is CAN provided n rises at a rate at least as fast as logN.

Geman and Geman (1984) establish various convergence results of the Gibbs
resampling scheme under mild regularity conditions for a finite sites and states problem.
Given our interest in the normality case, which is continuous, the Geman and Geman
(1984) results are not directly applicable. We are able, however, to establish analogous
results for the continuous case, by exploiting results in Orey (1971) about the behavior of
Markov chains. Consider a set A with positive Lebesgue measure. We give five definitions
from Orey (1971): (i) A Markov process is irreducible if the probability that the process,
starting from any x, ever visits the set A is positive; (ii) a Markov process is recurrent if
the probability that it ever visits the set A is 1, starting from any point x; (iii) a Markov
process is aperiodic if with positive probability it goes from x to set A in one move; (iv) a
Markov process is uniformly recurrent if the probability of reaching state A within n
transitions is bounded below by a positive number, uniformly in the starting point x; (v) a
density f(x) is an invariant of the Markov process if it describes the distribution of the
outcomes of the process irrespective of the number of transitions.

In the Gibbs sampler application, one transition corresponds to one updating cycle:
start from (Y(o),...,Ygo)), draw ?1 from [?llYgo),...,Ygo)], draw ’3'(2 from
[Yzl?l,Ygo),...,Ygo)], ..., draw ?j from [‘?J.I?1,...,?j_1,Y§_?_;,...,Y§0)], .., draw ?J from
[¥;1¥,,...,¥;_,], where the ¥’s are drawn from the correct univariate conditional normal
truncated density, as described in Proposition 2, part (a). These drawings are done

according to the scheme of Proposition 1. Specifically, let [?j|?_j] denote the conditional
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distribution of ?j conditional on the (J—1)x1 vector excluding the j-th random variable.

From Proposition 2(a), ?J.D?_j ~ N(ujl_j,EjI_j) conditional on a* < M-Y < b*, where

- ol (v - = =Q. - N I I
I R A UNELLEE R (Y sy m=(X0)y, and &y =0,=0Q; 0, 0
Then it follows that the truncated multivariate normal distribution Y* conditional on the
compact region a* < MY*<b* will be an invariant of this process, since the
R - (0) () TR . . .
[leYl""’Yj—l'Yj PR & ] distributions are by construction the one-dimensional
conditionals of that joint distribution.

Proposition 8 (Convergence at a Geometric rate):
For compact support B=[ab], -wm<a<b<w, the joint density of (Yl(n),..., YJ(n))

converges in L  norm to the true joint density, n(y*-Xg,Q,a,b) at a geometric rate in n.

Proof:

Define p(n,x,y) for (x,y) € B to be the density of y(®) starting from Y(°)=x; this is given
constructively by the Gibbs updating scheme we described. Also by comstruction, p is
continuous on B, p(l,x,y) >0, and p(n,xy) = J p(n—-1,x,z)-p(1,z,y)dz >0 for n > 1.
Since by assumption B is compact, p(1,x,y) is bounded positive on B. This implies in turn
that the process is uniformly recurrent, since the probability of never reaching a set A of
positive measure in n rounds is bounded above by [1 — qu(A)])", from any starting point,
where 7 is the positive lower bound on p(1,x,y) for (x,y) € B, and u(a) is the Lebesgue
measure of A. One can verify by substitution that the truncated multivariate normal with
density n(y*~Xg,Q,a,b) is an invariant of the Gibbs process. Then, Theorem 7.2 in Orey
(1971) implies that the L, distance [|p(n,Y(0),y)—n(y*—Xﬁ,Q,i,B)[l converges to 0 as
n— o at a geometric rate; in other words, there exists M > 0 and X € (0,1) such that

from any initial Y(%, one has J]p(n,Y(o),y) —n(y*-X,0,3,5)| dy < MA®. &

It should be noted that, like simulator (1) above, simulator (2) is by construction

continuous in the distributional parameters, §, 2, a*, M, and b*. As found in Hajivassiliou
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(1989b), it is computationally tractable and the convergence rate of the Gibbs resamplings
is very fast. Hence, the MSS estimator based on it possesses desirable properties in terms
of computational performance. These findings confirm the result of Appendix 3 that
consistency and asymptotic normality of the MSS estimator based on simulator (2) using a
finite number of terminal simulations, requires that the number of Gibbs resamplings used

to generate each draw rises only at the rate logN.

We finally present a third simulation method, which generates draws ?r directly
from multivariate normal distributions conditional on linear inequality regions, based on
acceptance-rejection arguments. Then, a direct simulator of the score defined by
£ S h(¥ —Xf) will be unbiased for any number of terminal simulations, R. We are
therefore able to prove in Appendix 3 that the MSS estimator that uses simulator (3) will
be CAN for any (finite or infinite) number of simulations. Though this method is not
continuous in the parameters of the underlying distribution, the results in Hajivassiliou
(1989b) suggest that simulator (3) exhibits quite satisfactory performance in practice when
an optimization method is used that does not require differentiability of the optimand, such

as the nonlinear simplex algorithm of Nelder and Mead (1964).

Simulator (3):
An Acceptance—Rejection Algorithm for Generating Truncated Multivariate

Normal Variates
The idea for this algorithm is based on the following:

Proposition 4 (Theorem 3.8 in Devroye (pp.47—48)):
In order to generate draws from a density

f(z)=c-g(z).4(z), wherec>1, g is a convenient density, and ¥ is [0,1] valued,
generate Z from g and U uniform [0,1). Accept Z only if U < ¥(Z) ; otherwise, continue
trying with new pairs of Z and U. An accepted Z will have density {(z).
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Proof:

For illustrative purposes, we give a proof from first principles. Let X be drawn from g(x)

with support D, and 1 from uniform [0,1). Consider the c.d.f. of the truncated r.v. Y where
X if 1< ¢x)

(A2.13) Y= .

not observed otherwise

The random variable Y describes the distribution of an accepted draw according to the

acceptance-rejection scheme of this Theorem. Then,

(A2.14) Fy(y) = Prob(?csyh":' accepted) = Prob(X<y,ug¥(X))/Prob(u<¢(x))

Iy L
o P 69 &x L W0 89 & Ty S L) ax.

p Prob( (u<¥(x)) g(x) dx f Y(x) g(x) dx

Hence, the p.d.f. of Yis fy(y) =1(y) / ./; f(z) dz as required. Note that in this procedure
the expected number of trials before the first acceptance is equal toc. O

In our case, let f(z) denote the p.d.f. of the vector Y* ~ N(X4,Q1) conditional on
D(y) = {a* < M-Y* <b* } . This density is given by

A2.15 f(z) = n(zXp,0) if z € D(y),
i o = Ao o)
a*< Mz < b*

=0 otherwise.

Hence, the objective will be to devise convenient densities g(z) to draw from, satisfying
f(z)=c-g(z)- ¢(z), with implied large expected acceptance rates, 1/c. We propose two such

choices of convenient densities g(-):
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Acceptance—Rejection Method (a):

Consider the independent truncated normal density
(A2.16) Z ~N(XBA) conditional on D(y) = { M(y) a*(y) < Z < M(3)"'b¥(y) },

where A is a diagonal positive definite matrix, with diagonal elements ’\j' This is a
"convenient" density for simulation, with p.d.f. denoted by g(z), because sequential
sampling from it is straightforward using the method of Proposition 1 to generate
univariate normal truncated random variates, and because, given the independence of the
elements of Z, the probability of the conditioning event D(y) is also simple to calculate,

since it is equal to

(A2.17) Prob(ZeD(y))
J

= Prob(Mla* ¢ Z < M 1b%) = H{Q[(M_Ib*)j/,\j]—@[(M—la*)j/,\j]} .
=1
Hence, the density of Z conditional on D(y) is

(A2.18) g(z) =n(z—Xp,A) [/ Prob(ZeD(y)).

Choose A so that A—Q is positive definite.2? Then [A| > |f2]|, and

(A2.19) maxzzzx D - |A|§/|Q|*572 1.
z )

Draw a variate z according to the g(z) density and a i from uniform (0,1), and accept % if
and only if

(A2.20) 1< n(z=Xp0) . ¥z) < 1.

~N

By simple inspection, we then see that we have written f(2z) as c-g(z)- ¢(z), where

J
29 For example, choose A so that AJ? > |st|, implying that A—Q? has a weakly dominant positive
s=1

diagonal.
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g(z) is given in (A2.18), ¥(z) in (A2.20), and the constant c determining the expected

number of draws before the first acceptance is

= ~.Prob(ZeD
(A2.21) cs 'y-p%a;{yt?%}) )

where Prob(ZeD(y)) is given by (A2.17). Hence, by Theorem 3.3 the accepted 2's will
have density (A2.15) as required. The acceptance rate 1/c can be maximized given £ by

choosing A suitably.

Finally we give
Acceptance—Rejection Method (b):
We have shown that by defining a, b, and L as in Proposition 2, the density f(z) in

(A2.15) can be written over its support as

(A2.22) fz) =n(z)/ [ a()d.
a<lz<b

Draw a vector & using the sequential scheme of Proposition 2, which has the

(convenient) density
J
(A2.23) gle) =n(el)/ I Qj(ej-l) with support {a < L-e<b }.
=1

Consider a bound B such that B Prob(Y*€D(y)) = [  n(z1)dz and

a<lz<b
J
B>Prob(asL-e<b)=1I Qj(ej_l) .30 The acceptance-rejection scheme (b) is then to
=1
compare the sequentially drawn & to a uniform (0,1) variate 1 and accept € if and only if

(A2.24) 1< jrzlle('éj_l) /B=¥E)<1

Thus, we have written density f(z) in (A2.22) as c-g(z)- ¢(z), where (A2.23) gives

30 Such a bound can be constructed as the probability of L-s lying in the smallest rectangular region
containing the support { a { L+s { b }, where ¢ ~ N(0,I). This bound is easy to calculate given that the
region defining it is rectangular and £ is i.i.d. N(0,1).
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g(z), (A2.24) gives 9f{z), and c =B / Prob(Y*eD(y)) . Therefore, by Theorem 3.3,
acceptance-rejection method (b) generates accepted €’s with density (A2.22), which is
equivalent to the desired density (A2.15). The method will have an expected acceptance
rate of 1/c = Prob(Y*eD(y)) / B , which is larger the closer the bound is to the true
conditioning probability. This bound is tight for positively correlated elements of Y*, and
becomes less so for negatively correlated Y’J!"s. This is confirmed by the Monte-Carlo

results in Hajivassiliou, McFadden, and Ruud (1990).
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Appendix 3
Asymptotic Distribution of MSS Estimators

Let 5.(6) = £, (6)/¢,(6) denote the score for observation i, and let §,(f) denote the
simulated value of si(e), for a sample of independently, identically distributed observations

i=1,...,N. Define a simulation bias,

N
(A3.1) B(6) =2 Y [E5(6)-5(0)],
Al i=1

where E_  denotes an expectation with respect to the simulation process, given the

observation. Define a simulation residual process,
N
(432 G0 =— Y &(0), with £(6) =[5,(0) —E,8,(6) = 5;,(F*) + E5,(/)].
i=1

Following the method of McFadden (1989) and Pakes and Pollard (1989), we show that

assumptions on the simulation bias and simulation residual process, plus regularity
. N
assumptions, are sufficient for the MSS estimation g that solves I §(6,) =0 to be
i=1

consistent and asymptotically normal.

Theorem. Assume that the parameter 0 is contained in a compact set © , and that
the true value @ is in the interior of '© . Assume that the score 5.(0) is continvously
differentiable on © . Assume that the score and its derivatives, and the simulated score, are
dominated by a function independent of 6 with finite first and second order moments.
Assume that Eisi( 6)=0 ifand onlyif 6=06*, and that J = —Eisw( ¢*) 1s positive
definite, where E. denotes ezpectation with respect to the distribution of the observations.
Assume that the observations and simulators are independently identically distributed across

observations. Assume that (i) the simulation bias converges to zero in probability, uniformly
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in 0, and (i) the simulation residual process is stochastically equicontinuous.3! Assume

N .
that a MSS estimator solving 0= ¥ §i( HN) erists for each N.32 Then, the estimator
i=1

satisfies

bN £, ¢ and

(b, — %) 520 #(0I+I7QITY,

where Q = E[5,(6*) — E_5,(6*)][5,(¢*) — E,5,(6*)]" .

Proof: The defining equations for the estimator can be written, by adding and

subtracting terms, as,

31 The functions {(N()} are stochastically equicontinuous at 91 C © if for each €>0 and A>0, there
exists 6 > 0 and No such that for N 2 No’

Prob(  sup | ¢o(0) — (o (8)] > €e) <A,
l6 — 6/ |<s N N
0'€0, 060,

If CN is stochastically equicontinuous at ©, with © compact and convex, and (N(Go ) is stochastically
bounded for some 6° €O, then CN is uniformly stochastically bounded on ©. This follows by noting that

at most 2M/§ points less than a distance é apart are required on a line segment between ¢° and any
6€0©, where M bounds the diameter of ©. Then,

sup | (o(8) — ¢u(6)] < (2M/8)  sup | ¢ (0) = (8" )

60O |6'-0’" | <85
implying that given €,A>0, there exists §>0 such that

Prob(sup | ¢(\(6) —(, (6°)| > 2Me/8) < A .
’ eeglN Nl > 2e

This works for the simulation residual process in this Appendix with 6° = 8* since (N(o*)=0.

32 It is sufficient to define 3N to be an approximate solution satisfying

N .
o) = 'E si(ﬂN) ;
i=1
such an estimator always exists.
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(A3.3) 0= 2 5,(8) = Ay + Cy(B) + ¢(By) + By(By)

N
A
N 3

with,

N N
N=?i1_zs(m fv'z [5,(0) —E5,(6%)],

]_:

N
o) = }:1 ,6) — 5,(4)] .

The i.i.d. assumption on the observations and simulation, the dominance condition that
implies the existence of moments, and the condition Es(6*) =0, imply by the Lindberg-
Levy central limit theorem that AN is'asymptotica.lly normal with mean zero and
covariance matrix J+ Q. Then A /W= ap(l). The stochastic equicontinuity
assumption (ii) implies that (y is uniformly stochastically bounded, and hence that
¢l ?N)/ﬁ = ap(l) , and assumption (i) on the simulation bias implies that
By (6y) = ap(l) . The continuous differentiability of s, on © and the moment conditions
imply that Cy(6)/VN satisfies a Uniform Law of Large Numbers, converging to a
continuously differentiable function (#) that is bounded away from zero when 6# &* ,
with 9,(6*) = —J .33 From (A3.3), one then has 0 = Cy(By)/vN + «(1)
=y(b,) + (1) , implying that B B 0% .

Next, ¢N(fy— 0*) is shown to be stochastically bounded. The asymptotic

normality of A, and assumptions (i) and (ii), imply,

Z

91) = Cp(By) = (X2 15,0 + 0(0-0)] IR (30,

with the second equality following from a Taylor’s expansion of si(@N) about & using

33 A U.L.L.N. states that given ¢, § > 0, there exists N_ such that for N > N,
Prob( max ICN(B) —YO| >6)<e.
9€o



—51—

the differentiability and dominance assumptions. Then, Es, of*) non-singular and
by - ¢ imply VN (by— ) = g,(1) . Note that this result and assumption (ii) imply
that ¢ (fy) = ap(l) :

To establish asymptotic normality, use the Taylor’s expansion above of CN(HN)

and assumptions (i) and (ii) in (A3.3) to obtain,
N . -
0=Ay+ [%izl [s,,(6%) + O(B — a*)]] VR (B = ) + a(1).

But,

£y
N.
i

I M=

VG Rt

implying N (B — 0*) =T Ay + <(1) 4 Z0 H0I7I+QI Y. o

This paper is concerned with the special case of LDV models formed from a vector
of exogenous variables x, a parameter 6, and a standard normal latent vector v € R™. A
finite series of hyperplanes, of the form {v € Ilev-pk(x,G) = ¢ (x,6)}, with p, a normal
vector of unit length, partition R™ into regions d = 1,...,M. There may also be a linear
mapping from v to a continuous vector y that depends on x,0 and d:
y = a(x,6,d) + B(x,4,d)v. Let D(x,0,d) denote the set of v that map into d. Then, the
score of observation i from an independently, identically distributed sample of size N can

be written
(A3.4) 5.(6) = E_(h(v,6x,d,.y,)| veD(x;,,0,d))) ,

where h is a vector of polynomials in v. To avoid technical difficulties, we assume for the
special case (without any essential loss of empirical gemerality) that the multivariate

normal distribution v is truncated to a large compact rectangle.3¢ We make the regularity

34 For example, the density of v is multivariate normal, truncated to the square defined by the limits of
computing machine representation of floating-point numbers.
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assumptions that the functions p,(x,f), ¢, (x,6), a(x,f), and B(x,6) are all continuously

differentiable in 6, and that these functions and their derivatives are dominated by a

square-integrable function m(x). The simulator #(6) will be formed for the special case

by one of the following methods, corresponding to simulators (1)—(3) in Appendix 2:

(A3.5)

(1) Simulate independently the numerator and denominator of

E (b(v,0,x,,d, 3,)-1(veD(x,,6,d,))
5,(6) = E_I(veD(x,, 7,4, 7) )

employing fixed sequences of random generators v. An unbiased simulator with one
or more draws is used for the numerator. An unbiased simulator with Ry
independent draws that is uniformly bounded positive, with RN/JFI — w, is used
for the denominator. (For example, simulators based on (A2.10) and (A2.11) meet

these requirements.)

(2) Carry out Gibbs resampling for ny rounds, employing a fixed sequence of
random generators v, with ny/(log N) — o . Form the simulator by averaging h

over a fixed number of terminal draws, R.
(3) Average h over draws of v from its conditional distribution, where these draws
are obtained by acceptance-rejection methods that employ a fixed sequence of

random generators v.

We give some general sufficient conditions for assumption (i) of asymptotic

unbiasedness and assumption (ii) of stochastic equicontinuity in the Theorem. We show

that these sufficient conditions are satisfied in the special case for each of the simulation

methods (1)—(3). The hypotheses of the Theorem other than (i) and (ii) are assumed to

continue to hold in the following corollaries.
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Corollary 1. If the simulation process is unbiased, or if the bias in an observation is
dominated by a positive function independent of 6 whose expectation is of order «(1//N),
then the simulation bias converges to zero. In the special case, this result holds for the
simulator (8) that is unbiased, and holds for simulators (1) or (2) with the stated sampling

rates.

Proof: The result holds trivially for unbiased simulators such as simulator (3).
When the simulation bias in an observation is dominated by a function with expectation of

order «(1/yN), the result follows from Markov’s inequality:
P(sup |B(6)| > ¢€)
-
L T E sup |E_5(6) - ()]
< — . Sup 5.(0) —s.
JNei=1 ‘g0 "~ !
= Ei,/ﬁ ?928 |E~§i(0) —si(ﬂ)lle—-o 0.
For simulation method (1), one has
|E~§i( 0) - sl(ﬂ)l = Ieigl ' |E~(1/zl) - l/eil ’
< Iligl'E,.,Il/Zi—I/lil )

< |l19| 'ENIZi—eil/zi”’w

where = is a positive lower bound on the simulator of li . But the dominance conditions
and the assumption that the simulator in the denominator uses R
EE |£.-¢| = op(l/,/‘R_N) ,and Ry /yN— o gives the result.

For simulation method (2), one has

N draws implies that
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|B,5,(6) ~5,(0)
= |EV(hIVED(yi)’ Ve iﬂ) - Ev(hlvED(yi), v~ i)
<M ||f* — 1] ¢ Me™®,

where f* denotes the distribution of the Gibbs sampler after n rounds, f denotes the true
distribution of the latent variable, M’, M, and ) are positive constants, and | -|| is the L
norm. The first inequality follows from the compactness of the support of v, the second
from proposition 3 which states that when the support is compact, [|f® —f|| converges to

zero at a geometric rate. Then, taking n > (log N)/2X yields the result. o

To obtain a sufficient condition for stochastic equicontinuity, we employ a theorem
of Ossiander (1987) that extends results of Dudley (1978). Some preliminary definitions
and assumptions are necessary. Let (H,V,x) denote a probability space, © a compact subset
of B, and £(v,0) a measurable function on Hx® . Assume that ¢ is dominated by a square-
integrable function v on M. Assume that E£(V,6) = 0, and let o = E/V)%. Consider a
sequence of nested partitions of © into N.i regions, for j=1,2,.... Let ej be a finite set
containing one point from each region of partition j, and define 05( 6) to be the mapping

from 6 to the point in ej that is in the same partition region. Define

)

1/2
(A3.6) 6j = lggé [ E* sup{a, | 9=gj(9/)} [€(V,8) - §(V,0)|2:l
j

where E* denotes outer expectation. Then, éj is a measure of the accuracy with which ¢

can be approximated above and below by region-wise constant functions. Assume on — 0.
N

Let v, for i = 1,2,... denote independent realizations of V, and form (N( 6) = :fﬁ-l— z §(vi, 6).
i=1

Ossiander establishes that (N(H) is stochastically equicontinuous, provided an integral

measuring the rate at which N.i increases as 63. falls is finite; an upper bound on this integral
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18
o]

(A3.7) 22 [logNj]1/2(6j —6 ) <+e.
J:

We next introduce a regularity condition on simulators that is sufficient to satisfy
(A3.7). The simulator 5.(6) is probably Lipschitz on © if there exists § >0 and an
integrable function m2>1 with a finite third moment such that |.(6)] ¢m, and for
0<é< 6 and almost all f € ©, there exists a probability Q, (6) satisfying Q;(f) ¢m.6
and the condition that |5,(6") — 5( 6)| <m.|6’ — 6| for |6’ — 8| < 6 with probability at
least 1-Q, 6( 6). This condition allows the simulator to have discontinuities, but requires
that the probability of a discontinuity within a small neighborhood of most # be small, and
that the simulator be moderately smooth except at discontinuities. A continuously

differentiable simulator will clearly satisfy the condition.

Corollary 2. Assume that the simulator ‘s'i(ﬂ) is probably Lipschitz on ©. Then, the
simulation residual process is stochastically equicontinuous. In the special case, simulators
(1) and (2) are continuously differentiable, while simulator (8) is probably Lipschitz, so that

stochastic equicontinuity holds for all of the simulators.

Proof: Without loss of generality, assume © C [0,1]1‘. For any integer j, partition
this cube into 2 small cubes with sides of length 273, Let ej be a set containing one point
selected from each cube that intersects ©. These points can be selected so that
Q 6( 6) < K67 for fe G)j. Define 03.( f) to be the mapping from @ into the point in ej that is
in the same region of the partition; then |8 —ﬂj( f| <27 = ﬁj <1.

Define the function

m. 8. if §. is Lipschitz on the cube containing 4.(6)
Bij(o) = - 1 :

2 m, otherwise

and note that this function is region-wise constant on partition j. Using the Lipschitz



hypothesis, one has |5,(6) — &,( Bj( 0)] < Bij( 6). Also, for jlarge enough so that ﬁj <é,
2 2 52 2
BB(0° CE{(1~Qy (@) m 4] + Qp ()2}
2 52 3 3_,2
Define 62 = 2Em.> for B.2 6 . Then,
] 11 J o

¢ 1] [ 1]
z[logNj]l/z(ﬁj_l —6)= Z[kj 10g2]"/%(2 ) - 579).3Em 3 < 4o .
j=2 j=2

Then, the condition for the Ossiander result holds, and stochastic equicontinuity follows.

Consider the special case. The simulators (1) and (2) are continuously differentiable
on ©, s0 they are Lipschitz with probability one, and the result follows.

Now consider simulator (3). Given a fixed sequence of random generators v, for
r=1,2,.., the acceptance-rejection procedure can be described as one in which trials are
rejected until the criterion v € D(xi,ﬂ,di) is met, then Ei(()) = h(v:'o'xi’di’yi) for the
accepted v. Given 6€6© and §>0, let N f) denote a é-neighborhood of 6. Let
R(x,,6,d,) denote the probability that a trial will lead to rejection for all 6’ € N 5(0), equal
to the integral of the truncated standard normal density over the intersection of
D(x,,6’ ,di)c for ¢’ in the neighborhood. Let A (x,6,d.) denote the probability that a trial
will lead to acceptance for all ' € N 5(0), equal to the integral of the truncated standard
normal density over the intersection of D(xi, o ’di) for ¢’ in the neighborhood. The
probability of acceptance on the same trial for all 6 €N 6(0) is then
A6(1L1,0,¢l)/(1 - Rs(xi,a,di)).

Suppose that pk(x,ﬂ)-v < ck(x,a) for k=1,..,K defines the set D(x,0,d). The
compactness of the support of v, the continuous differentiability of P, and c in 4, and the

dominance assumption, implies by Taylor’s expansions that

{pk(x,0’)-v —pk(x,0)-v| < m(x)' I 6 - 0' < m(x)'6 ’
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le(x,6’) — c(x,6)] <m(x)-]|8 — 6| <m(x)-d.

Then,
A(x,6,d) =P({v|] sup (p,(x,0")-v—c(x,6))<0, k=1,..K})
8 €N (6)
2 P({v|p,(x,0)-v - ck(x,ﬂ) <-2m(x)-6, k=1,..K}).
Similarly,

X = v] i x,0")-v—c (x,6 , k=1, K
R,(x,6,d) = P({v] 9,161;7.6(0) (p(x,60")-v—c,(x,67)) > 0 )

> P({v|p,(x,0)-v—c,(x,0) > 2m(x)-§, k=1,..K}),
and

Rﬁ(x,ﬂ,d) < P({v|pk(x,0)-v— ck(x,ﬂ) >0, k=1,.,K}).

Then, the probability that the simulator has a discontinuity in N 6( 6) satisfies

Qi6( 6) =1- A&(xi) 6’di)/(1 - R&(xi) 0,di))

) P({v| p (x,0)-v = (x,0)| < 2m(x)- 6, k=1,...,K})
P({vlp (x,0)-v-c¢ (x,6) < 0, k =1,...,K})

But pk(x, 6)-v is standard normal, implying

K
£ [#(c,(x,0) + 2m(x,)8) - #(c,(x,6) — 2m(x)- &}
Q0 ¢ =

K
I &(c,(x,6))
k=1

The denominator of this ratio is bounded positive, and the numerator is bounded by

4Km(x.)é. This fact, together with the observation that the simulator is continuously

differentiable, with a dominated derivative, when it does not have a discontinuity on N A 8),

establishes that the simulator is probably Lipschitz. This argument is unchanged if the

sense of some of the inequalities defining the sets D(xl,(),di) is reversed. Therefore, the

corollary is proved for all cases of simulator (3). o
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Appendix 4
Data Sources, Description of Variab iptive Statistics

PART 1:  Data Sources

Abbreviations for Data Sources (Computer Tapes)

BOP World Bank, World Tables, economic data sheet 2, balance of payments (1987)
ERP U.S. Council of Economic Advisers, 1985 Economic Report of the President
IMF IMF Annual Reports of the Director, various issues.

IFS International Monetary Fund, International Financial Statistics (1987)

WB World Bank, World Tables, economic data sheet 1 (1987)

WDT World Bank, World Debt Tables (1987)

WCY World Currency Yearbook, various issues.

All series consist of 1853 country-year observations, on 109 countries over the 1970—1986
period. All conversions between dollar and local currency values employed the period
average exchange rate from IFS. :

PART 2: Construction of Variables and Descriptive Statistics

Indicators of Repayments Problems mean standard deviation
PSArl (0.126) §°‘354
Presence of "Significant" Arrears in Interest, 1970—1986, WB. "Significant" defined as

greater than .001 of Total External Debt.

PSArP 0.069) 0.262)
Presence of "Significant" Arrears in Principal, 1970-1986, WB. "Significant” defined as
greater than .01 of Total External Debt.

PRSSIMF (0.293 (0.541)
Occurrence of a Reschedulin§ Arrangement and/or IMF involvement, 1970—-1986, IMF.
IMF involvement defined as IMF support. IMF support is defined by an IMF standby
agreement of second or higher tranche or use of the IMF Extended Fund Facility.
Reschedulings include Paris Club, commercial banks, and aid-consortia renegotiations.
This information was compiled from our own country-by-country investigations, and
from published and unpublished IMF sources. The date of rescheduling was selected to
reflect the key economic developments precipitating the rescheduling.

SA1l (0.0003 (0.0011)
Level of "Significant" Arrears in Interest, 1970—1986, WB. "Significant" defined as
greater than .001 of Total External Debt.

SArP (0.0008) (0.0050
Level of "Significant" Arrears in Principal, 1970-1986, WB. "Significant" defined as
greater than .01 of Total External Debt.

SAr (0.0011) (0.006)
"Significant" Total Arrears in Principal and Interest, 1970—1986, WB. See above.
Crigis3F (0.723) (1.154)

"Severity of Crisis" Indicator: 0=no repayments problem, 1=significant arrears only,
2=IMF or RSS, 1971-1987.
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PArIF (0.419) (0.647)
Binary Indicator, 0=no repayments problem, 1=significant arrears, IMF involvement, or
rescheduling agreement, 1971-1987.

SATF (0.002) (0.008)
"Significant" Total Arrears in Principal and Interest, 19711987, WB. See above.
CumPSArl (0.7127) (2.096)
Cumulated number of past years with significant arrears in interest present.
CumPSArP (0.315) (1.064)
Cumulated number of past years with significant arrears in principal present.
CumRorl 1.960) (3.204)

Cumulated number of past years with a rescheduling or an IMF agreement in effect.

Explanatory Variables

PCGDP80 (1.261) (1.848)
Per Capita GDP, 1980 US$, 1970-1986, WB.
DbttoExp (176.991 (232.814)

Total External Debt Relative to Exports, 1970—-1986, WDT, IFS. Total debt includes
public and private debt outstanding and disbursed, short—term debt, and use of IMF
credit.

REStolmp (3.343) (4.585)
International Reserves (Excl. Gold) Relative to Imports, 1970—1986, WDT.
DSDtoExp (11.994) (15.403)

Total Debt Service Due Relative to Exports, 1970—1986, WDT, WB. Debt service due
defined as interest and principal paid (TDS from WDT) plus outstanding interest and
principal arrears.

ISDtoExp (4.871 (6.763)
Interest Service Due Relative to Exports, 1970—1986, WDT, WB. Interest service due
defined as interest paid (INT from WDT) plus outstanding interest arrears.

PSDtoExp (7.123) (9.421
Principal Service Due Relative to Exports, 19701986, WDT, WB. Principal service due
defined as principal paid plus outstanding principal arrears.

DSPTOEXP (11.989) (15.396)
Total Debt Service Paid Relative to Exports, 1970—1986, WDT.

ISPtoExp (4.870) (6.762)
Total Interest Service Paid Relative to Exports, 1970—1986, WDT.

PSPtoExp (7.118) (9.415)
Total Principal Service Paid Relative to Exports, 1970—1986, WDT.

CAtoGNP (—0.103) (0.159)

Current Account Balance (Exports — Imports) Relative to GNP, 1970—-1986, WDT.
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PART 3: Panel Summary Statistics
Means of variables over individuals in a given year ( % T x;,)
i

1971 1972 1973 1974 1975 1976 1977 1978 1979
Number of Countries with available Data
91 90 89 89 89 88 85 82 81
PSArl
0.044 0.067 0.090 0.101 0.090 0.091 0.071 0.085 0.111
PSArP

0.022 0.022 0.034 0.034 0.022 0.034 0.047 0.024 0.049
PRSSIMF

0.231 0.233 0.202 0.191 0.135 0.125 0.152 0.182 0.173
SArl

6.73e—5 3.17e—5 4.64e—5 6.32e—=5 5.76e—5 7.21e—5 7.23e—5 9.92e—5 1.46e—4
SArP

5.85e—5 6.92e—5 9.8le—5 1.11e—4 1.28¢e—4 1.12e—4 3.24e—4 1.54e—4 4.54e—4
SAr

1.25e—4 1.07e4 1.44e4 1.74e4 1.84e—4 1.84e—4 3.96e—4 2.53e—4 5.96e—4
Crisis3F

0.538 0.489 0.472 0.348 0.360 0.410 0.435 0.463 0.593
PAsIF

0.297 0.289 0.281 0.213 0.236 0.261 0.259 0.293 0.346
SArF

1.43e—4 2.43e—4 1.74e—4 1.84e—4 2.83e4 4.02e4 2.44e4 589%e—4 0.92e4
CumPSArl

0.055 0.111 0.169 0.270 0.360 0.432 0.471 0.573 0.691
CumPSArP

0.022 0.044 0.079 0.112 0.135 0.159 0.212 0.244 0.296
CumRorl

0.341 0.511 0.708 0.899 1.034 1.114 1.247 1.451 1.593
PCGDPS80

1.032 1.066 1.119 1.151 1.197 1.228 1.300 1.312 1.341

DbttoExp
111.730 123.420 124.590 113.710 109.670 117.490 126.250 161.470 185.860
RestoImp
3.056 3.200 3.710 4.025 3.929 3.285 3.565 3.689 3.512
DSDtoExp
7.589 8.150 8.614 8.936 8.145 9.309 9.611 10.259 13.290
ISDtoExp
2.427 2.641 2.677 2.817 2.787 3.333 3.490 3.635 4.508
PSDtoExp
5.162 5.509 5.938 6.119 5.358 5.975 6.121 6.624 8.782
ISPtoExp
2.426 2.641 2.676 2.817 2.786 3.333 3.489 3.634 4.507
PSPtoExp
5.160 5.507 5.936 6.117 5.356 5.974 6.119 6.622 8.778
CAtoGNP

—0.078 —0.093 -0.092 - -0.090 —0.095 —0.118 —0.100 —0.104 —0.123
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Panel Summary Statistics (continued)

1980 1981 1982 1983 1984 1985 1086 1087
Number of Countries with available Data
78 77 74 72 69 68 65 51
PSArl

0.103 0.104 0.135 0.167 0.203 0.280 0.277 0.275

PSArP

0.039 0.054 0.125 0.029 0.059 0.185 0.569 0.051
PRSSIMF

0.377 0.446 0.472 0.580 0.515 0.554 0.471 0.243

SArl
9.92e—5 2.02e—4 4.68e—4 4.63e—4 8.48¢—4 1.27e—3 8.27e—3 1.43e+4
SArP
1.78e—4 8.04e—4 1.06e—3 2.25e—4 5.54e—4 2.3%-3 1.0le—2 4.23¢e+4
SAr

2.77¢e—4 1.01e-3 1.53e—3 6.88e—4 1.40e-3 3.66e—3 1.09e—2 5.63e—4
Crisis3F

0.909 1.041 1.236 1.174 1.191 1.308 1.255 0.808
PArIF

0.481 0.581 0.681 0.652 0.647 0.815 0.784 0.436

SArF

9.67e—4 1.69e—4 9.34e—4 1.47e—=3 3.50e—3 1.39e—3 1.09e—2 5.27e4
CumPSArl

0.831 1.000 1.194 1.406 1.662 2.015 1.560 0.821
CumPSArP

0.364 0.432 0.556 0.507 0.574 0.785 1.137 0.346
CumRorl

2.078 2.595 3.139 3.855 4.324 4.831 5.314 1.744
PCGDP80

1.433 1.462 1.405 1.269 1.274 1.217 1.430 1.390

DbttoExp
186.850 207.730  257.240 277.880 273.120 311.100 282.520  186.500
RestoImp
3.512 2.834 2.613 2.700 2.619 2.797 3.465 3.827
DSDtoExp
12.53 14.03 15.617 16.23 16.27 19.31 21.774 13.65
ISDtoExp
5.332 6.251 7.692 8.326 8.106 9.141 10.397 5.024
PSDtoExp
7.200 7.777 7.925 7.902 8.163 10.164 11.377 8.630
ISPtoExp
5.331 6.250 7.690 8.323 8.101 9.134 10.394 5.023
PSPtoExp
7.197 7.772 7.917 7.893 8.151 10.146 11.347 8.626
CAtoGNP

-0.118 -0.127 -0.127 —0.110 —0.086 —0.094 —0.078 =0.112
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