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ABSTRACT

This paper introduces a semiparametric method of estimating multinomial
models that imposes extremely weak monotonicity assumptions about a function
of observable characteristics. Previous methods have imposed stronger,
typically parametric, conditions on this function. The only assumptions
made in this paper about the function of characteristics are its
monotonicity, upper-semicontinuity, and uniform boundedness. The method is
applicable, among others, to polychotomous choice models. The estimation
method is shown to be strongly consistent. A technique to calculate the

estimator is provided.



1. INTRODUCTION

A semiparametric estimation method for multinomial models is developed
that requires extremely weak monotonicity assumptions about a function, V,
of characteristics of the outcomes. Weak assumptions lessen the possibility
of specification errors. This is important because even small specification
errors may produce large inconsistencies in estimated parameters (Abramazar
and Schmidt (1982), Hausman and Wise (1978)).

In this paper, we require the nonparametric vector-valued function V

to be only monotone increasing, upper-semicontinuous, and uniformly
bounded; not even its continuity is assumed. The probability of each
outcome is assumed to be a known parametric function of V . Probabilities

with such structures arise frequently in polychotomous choice models when
the distribution of the unobservable random subutilities is parametric.

The assumptions we make about the function V are much weaker than
those made in Matzkin (1989), where a very particular case of multinomial
models - polychotomous choice models - was studied. 1In Matzkin (1989) the
function \Y was required to be monotone, concave, continuous, and to
possess uniformly bounded values and subgradients. Moreover, strong
restrictions were imposed on the dimensionality of v and on the
probabilities of each outcome.

There are at least three reasons why it is important to study the
estimation of the function V  subject to the much weaker monotonicity
restrictions considered in this paper. First, it is of theoretical interest
to determine the extent to which the assumptions can be relaxed while still

obtaining 'strong consistency results. Second, the computation of the



monotonicity-restricted estimator presented in this paper involves solving a
smaller optimization problem than the one required to compute the concavity-
restricted estimator. Hence, the computation of the estimator presented
here is cheaper. Third, when the function V 1is known to satisfy stronger
restrictions than the ones required in this paper, one can employ the
results from Monte Carlo experiments obtained for the monotonicity-
restricted estimator to provide a lower bound on the performance of
estimators that impose the stronger restrictions.

Our estimator is obtained by maximizing the likelihood function over a
set of nonparametric functions and a set of parameter vectors. The
estimator of V belongs to the former set while the estimator of the
parameter, #, belongs to the latter set. The maximum likelihood estimator
of the nonparametric function V and the parameter vector >e is shown to
be strongly consistent.

The estimator proposed in this paper is dual, in a sense, to the
estimator proposed in Cosslett (1983). Both are obtained by maximizing a
likelihood function over a set of nonparametric monotone functions and a set
of parameter vectors. In Cosslett’s model the probability function belongs
to the set of nonparametric functions; here the function of exogenous
variables belongs to this set.

There are, however, some more differences between Cosslett’s model and
ours. First, Cosslett’s estimator has only been developed for the case of
two alternatives; our estimator can be applied to models in which there is
any finite number of alternatives. In particular, our estimator can be
employed to predict choice probabilities when a new alternative becomes

available. Second, Cosslett assumes that the probability function does not



depend directly on the observable exogenous variables; our model does not
require such a restriction. This is an 1important distinction because
neglecting the dependence on r may severely bias the estimators (Hausman
and Wise (1978)). Third, the computation of Cosslett’s estimator requires
the maximization of a discontinuous function; our estimator is calculated by
maximizing a continuous, typically well behaved, function subject to a
finite number of 1inequality constraints. Hence, standard methods of
maximization can be employed. Fourth, in Cosslett’s model, the function V
is real-valued; in our model V is vector-valued. The probabilities of
each outcome may depend on the values of any finite number of coordinate
functions. This is important, for example, in choice models in which the
value of each alternative depends on alternative specific constants.

Besides the estimators of Cosslett (1983) and Matzkin (1989) mentioned
before, there are other semiparametric estimators that have been developed
for either binomial or multinomial models. These include the maximum score
estimator (Manski (1975,1985)), the quasi-maximum likelihood estimator of
Klein and Spady (1988), and the generalized regression models of Stoker
(1986), Han (1987), Ichimura (1988) and Powell, Stock, and Stoker (1990).
These are distribution-free methods; they do not assume that the probability
functions of the outcomes are known. They impose, however, parametric
assumptions about the function V. Hence, these methods are likely to
misspecify V.

Fully-nonparametric methods (Matzkin (1988,1990a,1990b)) avoid
misspecifications of both V and the probability functions. These methods

typically require, however, stronger conditions on \Y and on the



probability functions than the ones required by the method presented in this
paper.

The outline of the paper is as follows: The model and the estimator
are defined in the next section. The identification of the nonparametric
function V of the observable exogenous variables and the parameter § of
the probability functions is analyzed in Section 3; the consistency of the
estimator is studied in Section 4. Section 5 presents and analyzes a method
of computing the estimator; and Section 6 summarizes the main results and

conclusions. The proofs of the theorems are in the Appendix.
2. THE MODEL

In this model, there is a finite set A of J alternative outcomes.

The probability of observing each outcome depends on a vector of observable
*
characteristics, r, the value that a vector-valued function, V , attains at
s - s 3 *
the wvector r, and a finite-dimensional parameter vector g . The
probability of observing outcome jeA when the vector of observable
s . . - . * *

characteristics is r will be denoted by P(j|r;V ,6 ).

* *
The value of each coordinate function Vt of V depends on the value

of subvectors, s and Zt’ of r, and is independent of the other subvectors

of r. The vector r is (s,zl,...,zT), where T is the number of
coordinate functions of V. We denote by S and Z=Hz_1 Zt’ respectively,
the sets to which s and z=(zl,...,zT) belong.

The vector r = (s,z) possesses a probability density g determined by

a probability measure G, whose support is SxZ.



The probability functions described above are encountered, for example,
in polychotomous choice models (McFadden (1973,1981)). 1In these models, an
outcome corresponds to the selection of one of J alternatives by a.consumer.
The vector s denotes socioeconomic characteristics of the consumer and each
vector z, denotes the vector of the observable attributes of alternative
j- The consumer is assumed to select the alternative that maximizes the
value of his utility function. The consumer’s utility for each alternative
j 1is the sum of V;(s,z) and an unobservable random term :j. The vector

£ = (cl,...,s is assumed to possess, for each (s,z), a density

1)
* *
q(e;s,z,8 ), which is known up to the vector g . Hence, in these

polychotomous choice models,

* %k
P(tls,z;V ,0 )

* *
= Prob { Vt(s,z) + £ > Vk(s,z) + €p 7 k=t, k=1,...,J )
(1)
V*-V*+ V*-V*+
® £ 17 A"
*
- J I ... I q(el,zz,...,sj;s,z,e ) dsl « o o ch ,
£ m-® g m=-o £ ==
* *
where Vj - Vj(s,z) (j=1,...,J).

*
In this paper we are concerned with estimating the function V and
* . 3 s .
the parameter vector § in general multinomial models. Instead of assuming
* s . .
that V is known up to a finite dimensional parameter vector, as most

*
econometric methods do, we impose only very weak assumptions about V . We



. * . . . : :
require V to be monotone increasing, upper-semicontinuous, and uniformly

bounded1’2.

To insure the identification of the function V*, additional
conditions are required. These conditions require that for some value, z,
of z and all values seS the value of V*(s,;) is known and constant.

Our estimator is developed for the case in which n independent
observations on the vector of characteristics (s,z) and the corresponding

outcome are available. In this case, the conditional 1log-likelihood

function is

n J i
(2) b % d. log P(j|s,z;v,8)
i=1 j=1 J

. i . . . . . i
where for each i, dj=l if outcome j occurs in observation i and dj=0
otherwise.

To define an appropriate set, W, of nonparametric functions to which

* -
\Y belongs, we let z€Z and o=(a

1,...,aJ)ERK be known, and we let L =

(Ll""’L and U = (Ul,...,U

3/ 5

*
bound of V. We then define the set W to be the set of monotone

denote, respectively, the lower and upper

increasing, upper-semicontinuous functions V: SxZ *RJ such that V {is
bounded below by L, bounded above by U, and V(s,z) = o for all seS. Ve
also let 6 be a compact set which contains 0*. We then define our
semiparametric estimator to be any pair (vn,en) that maximizes (2) over the

set (Wx8).



3. IDENTIFICATION

The pair (V¥,87) will be identified within (Wx8) if (V',47) belongs
to (Wx8) and if any other v,8) that belongs to (Wx8) induces
conditional probabilities that are different from the true conditional
probabilities. Following Manski (1988), we state this formally by saying
that (V',6%) is identified within (Wx8) if for all (V,6)€(Wx8) such that
(V,8) = (V*,ﬂ*) there exists je(l,...,J) and Y(V,8) c SxZ with G(Y(V,8))
> 0 such that for all (s,z)e¥(V,8), P(j|s,z:V,8) = P(j|s,z;v", 67 .3
We will show that (V*,B*) is identified in (Wx8) whenever the

following assumptions are satisfied.

*
ASSUMPTION 8.1: § €8 C RL.

ASSUMPTION W.1: W is a set of monotone increasing, upper-semicontinuous
functions V:S8xZ -+ RT, such that for all (s,z)eSxZ
L < V(s,z) <= U.

ASSUMPTION W.2: V*EW.

ASSUMPTION W.3: vVeW, V(s,z)eSxZ, Vt, and Vk=t Vt(s,z) does not depend on
z,-

ASSUMPTION W.4:  There exists (al,...,aT)eRT and z€Z such that V VeWw

and V seS, V(s,z) = (al,...,aT).



ASSUMPTION G.1: V(s,z)eSxXZ and V¥ § > 0 G[N((s,z),§) nU(s,z)] > 0,
where N(s,z)= ((s',z')| l(s’,2")-(s,2)|| < §) and

U(s,z) = ((s'z’)| (s’,z’)=(s,z) ).

ASSUMPTION P.1: For all jeA there exists a function Fj:Sxe[L,UJxe ~R

such that V(s,z)eSxZ, and VVeW

P(jls,z;v,8) = Ej(s,z;vl(s,z),...,VT(s,z),e).

ASSUMPTION P.2: VjeA, V(s,z)eSxZ, VVvelW, and VeS8, ?J.(s,z;Vl,...,VT,ﬁ) is
continuous at (s,z,Vl,...,VT,G).

ASSUMPTION P.3: vee(l,...,T) there exists jeA such that V(s,z)ESXZ,

VVEW, and VéeB, the value of P(j|s,z;V,6) is either
strictly increasing in the value of Vt(s,z) or strictly
decreasing in the value of Vt(s,z).
ASSUMPTION P.4:  VjeA, V(s,z)eSxZ, VeV, and Vbée8, P(j|s,z;V,8) > 0.
ASSUMPTION P.5: VY #e8 such that 9#0* there exists (s,z)ESXZ and jeA

* X *
such that P(jls,z;V ,0 ) » P(jls,z;V ,8).

Assumption W.l states that each coordinate function Vt of any

function \Y in W is a monotone increasing and upper-semicontinuous

function that is uniformly bounded by Lj and Uj. The number, T, of

coordinate functions is the same for all functions in W, and it does not
necessarily depend on the number, J, of possible outcomes. By Assumption

W.3, each coordinate function, V possesses as an argument a vector z

t’ t’

which does not influence the values of the other coordinate functions. The

3 3 . 3 s * 2 r
identification of each coordinate of V  depends on this condition, as well



as on Assumption W.4, Since, these two assumptions, together with
Assumption W.2, guarantee that for any function V in W that is different
from V*, there exists a vector (s,z) and a coordinate t such that
Vt(s,z) is different fromA V:(s,z) while for all other coordinates k,
Vk(s,z) equals V:(s,z). The strict monotonicity with respect to Vk of
the probability of some outcome (Assumption P.3) implies then, that the
probabilities generated by (V,G*) at (s,z) are different from the
probabilities generated by (V*,B*) at (s,z).4

Assumption P.1 states that the probability function P(j|s,z;V,8) of
each outcome j 1is a function of the observable vectors (s,z), the value
of V at (s,z), and . In particular, this assumption implies that
values of V at points other than (s,z) do not influence the value of
P(jls,z;V,G). Assumption P.,2 states that the wvalue of P(j|s,z;V,6)
depends continuously on s,z,8, and the wvalue of V(s,z). We employ
Assumptions P.1 and P.2 to show the existence of a neighborhood in SxZ at
which the probabilities generated by V* and V differ when V and V*
differ. Assumption G.l guarantees that the probability of this neighborhood
is positive. To insure the identification of ‘0*, we make Assumption P.5.

Assumption P.l is always satisfied when the probabilities are generated
by (1), and Assumptions P.2 and P.3 follow, when (1) is satisfied, if for
any (s,z)eSxZ, the set { yeRT | L<y=<U) is strictly included in the
support of q(z;s,z,ﬂ*).

Our main result in this section is the following theorem:

THEOREM 1: Suppose that Assumptions 8.1, W.1-W.4, G.1, and P.1-P.5 are

* %
satisfied. Then (V ,8 ) is identified within (Wx8).



10
4. CONSISTENCY

In this section we show the strong consistency of our estimator. This

result is obtained with respect to the metric d4:(Wx8) x (Wx8) - R defined
by
af(v,8), (v, )] = m(v,v') + [g-6],

where for all V,V'ew
(3) m(V,V’) = J | Vvis,z) - vi(s,z) | exp (|z|) dz ;

the integration is with respect to the Lebesgue measures. Convergence in W
with respect to m 1is equivalent to pointwise convergence at all points of
continuity of the limit function (see Appendix, proofs of Lemmas 2 and 3).

In the Appendix we show that the set of functions W 1is compact with

respect to m (Lemma 1).

To prove the strong consistency result, we use the assumptions stated

in the previous section together with the following assumptions.

ASSUMPTION 68.2: ® is compact with respect to

ASSUMPTION G.2: The support of G is 8xZ .
ASSUMPTION G.3: G is absolutely continuous.

ASSUMPTION G.4: The probability density g is uniformly bounded.



The compactness of Wx8 will allow us to employ an adaptation of the
result of Wald (1949) about the consistency of maximum Jlikelihood
estimators. If the support of G 1is strictly included in the domain of the
functions in W, it will be impossible to estimate the values of V* at
points outside the support of G. Assumption G.2 insures that this is not
the case. To guarantee that the set of points (s,2) at which the
probabilities.are discontinuous will possess zero probability measure, we
require G to be absolutely continuous (Assumption G.3). Assumptions W.1
and P.2 insure that the set of points of discontinuity of the probabilities
possess zero Lebesgue measure. These two latter assumptions also guarantee,
together with Assumption P.1 and the compactness of W, that the
probabilities are measurable in (s,z). In particular, Assumption P.1 allow
us to find, for each (s,z) in 8SxZ and V in W, a function V'’ in W
that is continuous at (s,z) and attains the same value as V does at
(s,z). This guarantees that any sequence of a dense set converging to V'
with respect to m will converge pointwise at (s,z) to V. Finding such
a sequence is a critical step in proving the measurability of the

probability functions.

Our consistency result is stated in the next theorem, which is proved

in the Appendix.

THECREM 2: Suppose that Assumptions 6.1-6.2, W.1-W.4, G.1-G.4, and P.1-P.5

are satisfied. Then,

. * *
Pr{limn_m d [V, 8).(V,0)] = o} - 1

11



We next present an example of a polychotomous choice model satisfying

all the assumptions made above.

EXAMPLE: Suppose that T=J=3. The vector (s,z) possesses a normal density

function. W is the set of all monotone increasing, upper-semicontinuous

3 3

functions V:R”™ = R”, such that for all z=(z 2,23)ER3 the value of Vi

1'%

depends solely on z;, lies in [-1,1], and satisfies V(0) = 0. For some
*

§ < 1, 6=[0,6] , and 0 < f§ < §. And the conditional probabilities of

outcomes 1, 2, and 3 given z, at any VeW and #eB, are:

exp(V,)
1/(1-8)

Ptz v.0) - VIS NEEE

[exp(V)) + [exp(V,) exp(V,)

a| i, exp(vz)l/(l-ﬁ) [(exp(Vz)l/(l'a) + exp(v3)1/(1-0))-9]
d 2 v - , and
[exp(Vl) + [exp(Vz)l/(l-e) + exp(v3)l/(l-ﬁ)](1-€)]
o) 0 exp(v3)1/(1-€) [(exp(Vz)l/(l'e) + exp(‘]3)1/(1-0)]-0]
P z; V, - .
[EXP(Vl) + [exp(Vz)l/(l-ﬁ) + exp(V3)1/(l'9)](1'0)]

where VJ=Vj(z) for j=1,2,3.6

It is then easy to verify that this example satisfies Assumptions 8.1-
8.2, W.1-Ww.4, G.1-G.4, and P.1, P.2, and P.4. Assumption P.3 is satisfied

because when z = 0, the partial derivative of P(llz; V,8) with respect to

12
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V1 is strictly positive and the partial derivatives of P(l|z; V,8) with

respect to V2 and V3 are strictly negative. Finally, since when z =0
*
and 4 = § , the partial derivative of P(l|z; V,8) with respect. to § is

strictly negative7, Assumption P.5 is satisfied.

5. COMPUTATION

To calculate the estimator, we transform the maximization over the set
Wx8 into a constrained maximization over a finite dimensional euclidean
spaces. The variables over which the maximization takes place are the

1 1 n n
parameter vector # and the vectors V(s ',z ),...,V(s ,z ). The values of
1 1 n n .
V(s7,z7),...,V(s ,2") need to satisfy properties that characterize the set
of values that any function V in W may attain at each of the observed
pairs (s’ ,z') (i=1,...,n).
1 1 n n

To guarantee that the values of Vt(s , 2 ),...,Vt(s ,Z2 ) belong to a
monotone increasing function, we require that these values be monotone
. . . 1 1 n n .
increasing with respect to the set { (s ,zt),...,(s ,zt) }. That is, we
require that whenever all the coordinates of (sq,zz) are smaller than the

. . r r q _q
corresponding coordinates of (s ,zt), the value of Vt(s ,zt) be smaller
r r
than the value of Vt<s ,zt).
: 1 1 n n

To insure that the values of Vt<s , Z )’”"Vt(s ,Z ) belong to a

function that attains the value a, at any vector (s,zt), we first find

*
vectors s and s that are, respectively, a lower and upper bound of the

*
1 n * — -
set (s ,...,s ). Next, we add the vectors (s ,zt) and (S*’zt) and the
* — -
variables V. (s ectivel to the sets
riab t( ,zt)=at and Vt(s*,zt)=at, respecti y,



{(sl,zi),...,(sn,zz)} and (Vt(sl,zl),...,Vt(sn,zn)}. Finally, we require
that the values of (v (sl zl) v (s, zM,v (s* z ),V (s,,z.)} be
t L] LI ] t 1 1 t L] t L] t * * t
monotone increasing with respect to the set
* — -
((sl,zi),...,(sn,zg),(s ,zt),(s*,zt)}. Doing this guarantees that any

monotone function that interpolates between the so restricted values of

1 1 n _n * - -
s7,27),...,V(s,2),V (s ,2),V (s,,2

c Y} will attain the value a at

(v, ( .

t t

*

any vector (s,Et) for which s, <s =<s

To guarantee that the values of Vt(sl,zl),...,Vt(sn,zn) belong to a

function that is uniformly bounded by L and U_, we augment the sets

t t’
sl,zi),...,(sn,z:)} and (V (sl,zl),...,V (sn,zn)} once more. This time

{( t

t

* %
we add vectors (s ,zt) and (s*,z*t) to the former set and variables

* %
V. (s ,z

¢ and V (

*
t) ¢ S*’z*t) to the latter set. The vectors z, and z

1
t’’

n-— -
RRE S Y

tt}'

are, respectively, an upper and lower bound of the set { z

* %k
The values of Vt(s ,zt) and Vt(s*,z ) are restricted to be Lt and Ut

*t

respectively. By requiring that the values of

(V_(s¥,zh) Vo(s™ 2™V (8T 2V (s, 2 V(5T 2, Vi(s..z.) ) be
t bl ""'t ) ,t ’t’t *’t,t ,t’ t *’ *t

monotone increasing with respect to

1 1 n n * — - * %
{(s ,zt),...,(s ,zt),(s ,zt),(s*,zt),(s ,zt),(s*,z*t)), we guarantee that

the values of any monotone interpolation V_ will lie between Lt and Ut’

*
for any vector (s,z) lying between (s ,z

).

) and (s_‘k,z*t

ot ¥ ct

To state these constraints formally, we next define for each t the

*
augmented set Tt' We let s and S, be such that for all i=1,...,n
i *
S, <s < s
* -
and for all t we let z, and Zer be such that for all i
* i i
<
z, z, = Zye

We then define

14



* - - * %
T, = 0 shzh M 85,765,020, 6T (52,0 )

The sets Tt are the sets of 'points on which we will impose the

monotonicity restrictions.
To avoid imposing redundant monotonicity constraints, however, we
further define some subsets of the Tt sets. For each t and each element

y of Tt’ we define the set Fj(y) of "immediate followers"™ of y by

Fj(y) - { WETj | y <w and for no ze€T, such that z#»w and y <z, z =w }.

3

Employing this notation, we next describe in Theorem 3 the procedure to

calculate the estimator.

THEOREM 3: (V,8) maximizes (2) over the set (W x 8) if and only if the

vector (Vl(sl,zl),...,VT(sl,zl);...;Vl(sn,zn),,..,VT(sn,zn);G) is a solution

to the maximization of

n J . e s s .
(4) T T df log P.(s ,z5;Vvi, ..., vi.e)
il j=1 3 J 1 T
subject to the constraints
5) vi<v v(st,z5)er (st z1) i=1,...,n,n+l,n+2;t=1,...,T,
t t 1 1 1
i ) * ok i ) .
(6) Vt < Ut if (s ,zt)EFl(s ,zl) i=1l,...,n,n+1,n+2;t=1,...,T,
i i i . .
(7) Lt < Vt V(s ,zl)eFl(s*,z*t) i=1,...,n,n+1,n+2;t=1,...,T,
n+l n+l * - n+?2 n+2 -
(8) (s 1z, ) = (s ,zt). (s Z, ) = (s*,zt) t=1,...,T,

15
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+1 +2
(9) vﬁ - v? -a, t=1,...,T,

(10) 6 € 8.

Theorem 3 suggests a procedure to find the set of maximum likelihood

* ok
estimators for (V ,8 ): First find the set of solutions
1 1 n n . <. .
(Vl,...,VT;...,Vl,...,VT;ﬁ) to the constrained maximization problem

described by (4)-(10) and second, find the set of functions V in W

satisfying V(sl,zl) = (Vi,‘..,V;) (i=1l,...,n,n+l,n+2) for some solution
1 1. n n,
vector (Vl,...,VT,...,Vl,...,VT,ﬁ).

If one wishes to obtain a single function in this set of solutions, it
is only necessary to interpolate between the V; values obtained. For

example, one function that belongs to W and interpolates between the

obtained values is the function V(s,z)w(Vl(s,z),...,VT(s,z)) defined by

. i i i .
Vt(s,z) = min{ Vt [ (s,zt) < (s ,zt), i=1,...,n,n+l,n+2}.

We mnext note some computational properties of the maximization problem
described in Theorem 3. First, the number of variables over which the
maximization takes place is n+T plus the dimension of #; in particular,
the number of variables increases with the number of available observations.
Second, the number of constraints is random; it depends on the partial
ordering generated by < on each of the Tt sets. The number of
constraints corresponding to each of these sets is minimal when the domain

*

of Vt is in the real line, in which case the number of these constraints



can not exceed n + 2. Third, Assumption P.2 implies that the function in

(4) is continuous in the variables (Vi,...,V?) and 4. Fourth, when the
probabilities satisfy (1) and di—l the wvalue of the function in (&)
depends on the value of the differences (Vi-Vi,...,Vi-V;) rather than on
the value of (vi,...,vi) for i=1,...,n. Fifth, as it is shown below, it is

possible in certain situations to decrease considerably the number of

variables and constraints over which the maximization takes place.

When the domain of one of the functions Vt is in the real line, it

i

may be possible to group the wvariables Vt (i=1,...,n), reducing
considerably the number of wvariables and constraints. Suppose, for
example,that T = J, V1 is defined on the real line, and for each }j Pj

is strictly increasing on the value of V and strictly decreasing on the

3

value of Vk for k=3j. 1In this situation, we will be able to group the

variables Vi.

at any optimal solution of the constrained maximization problem, and hence

All variables in the same group will attain the same value

can be considered as one variable. The monotonicity constraints need then

only be imposed between consecutive groups.

To determine the groups of the set { Vi,....,V?,V$+l,V2+2 }  of the

. i i .
above example, first order the vectors (sl,z (i=1,...,n+2) from smaller

1)

to larger. Next, include all variables to the right of any variable in the

same group until the first Vi for which di-O, di-l, and
r r i i i .

(s ,zl)eFl(s ,zl). The group ends at such Vl and a new group begins at

V;. To see why all the variables included in these groups will attain the

same values at any optimal solution, note that the assumption that Pj is

strictly increasing in Vj and strictly decreasing in V (k=}) 1implies

k
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i=
1
value of V; . Hence, the optimal value of Vi will be the upper (lower)

bound determined by the constraints. Since V1 is defined on the real

that if d.=1 (di=0) the value of (4) will increase the bigger (smaller) the

s

1,21) possesses a uﬁique immediate follower, say (sr,zi), and it is

line, (s

the immediate follower of exactly one point, say (st,z;). Hence, if di-l

(di=0), the constraint Vi < V; ( VI < Vi ) will be binding at any optimal
solution. We can then include Vi and Vi (V; and Vi) in the same group.

The solution to the original optimization problem is identical then to the
solution of the optimization problem in which all the variables in a same
group are constrained to possess the same <value; the monotonicity
constraints need then be imposed only between one of the variables in each

group.

Several methods exist for solving linearly constrained optimization
problems of the kind described in Theorem 3. When the problem involves a
large number of constraints, however, penalty methods seem to be the most
appropriate, since they require less computer memory than other methods.
Penalty methods transform a constrained maximization problem into a sequence
of unconstrained maximization problems. The objective function in each of
the wunconstrained problems depends on the objective function of the
constrained problem and on the constraint functions. The value of the
objective function of the unconstrained problem is directly related to the
value of the objective function of the constrained problem and indirectly
related to the values of the constraint functions that do not satisfy the
constraint. The penalty for being outside the constraint set increases the

further away in the sequence of unconstrained problems the objective

18



function is. Formally, to find by a penalty method a solution to the
problem:

Maximizex f(x)

subject to h(x) <0

where f:RL -+ R, h:RL -+ RN, and x € RL, we solve the sequence, indexed by

t, of unconstrained maximization problems:
(15) Maximizex f(x) - Kt P(x)

where Kt > 0, Kt + o, and P(x) is a continuous function that satisfies

P(x) > 0, for all x € RL, and P(x) = 0 if and only if h(x) =< 0.

For small enough K the maximum of (15) will be relatively close to

0’
the unconstrained maximum of £(+). As Kt + o, the point at which (15) is
maximized approaches a point in the constraint set. The point at which the
t-th problem is maximized is employed as the starting point for the
maximization of the t+l-th problem. If f(¢) 1is continuous, any limit
point of the sequence of solutions of the unconstrained problems will be a

solution to the constrained problem (see Fiacco and McCormick (1968) for

more details about the theory and practice of this procedure.)
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9. CONCLUSION

We have presented an estimation method that requires weak monotonicity
assumptions about a nonparametric function, V. The vector-valued function

V was only required to be monotone increasing, upper-semicontinuous, and

uniformly bounded. The estimation method was developed for multinomial
models. The probability of each outcome was assumed to be known up to a
finite dimensional parameter vector and to be a function of V.

Polychotomous choice models are among the models to which the new estimation
method can be applied.

We have given conditions under which both the function V and the
parameter of the probability functions are identified. A maximum likelihood
method to obtain an estimator for V and the parameter of the probability
functions was described and the consistency of the estimator was
established.

We have described a method of implementing the computation of these
estimators. This method proceeded by transforming the problem of maximizing
the likelihood function over a function set into the problem of maximizing
the likelihood function over a finite number of variables subject to linear
inequalities. We have shown that the number of variables and constraints
~can be decreased considerably in certain situations. The use of penalty
function methods to solve constrained optimization problems of the kind
described in this paper was discussed.

Comparison of our theoretical results with those obtained in Matzkin

(1989), for polychotomous choice models, implies that it is possible to

20



21
impose weaker assumptions about the subutility function than those imposed
in Matzkin (1989) and still be able to identify the model. The consistency
of the new estimator, however, 1s only obtained with respect to a metric
that is weaker than the one employed in Matzkin (1989).

Our results also show that it is possible to "invert" the parametric
restrictions in the distribution of the random term and the systematic
subutility, which were made in the binary choice model of Cosslett (1983).
That is, instead of assuming that the subutility function is parametric and
the distribution of the random terms is monotone increasing, it is possible
to assume that the distribution of the random terms is parametric and the
subutility function is monotone increasing. This new specification allows
us to estimate semiparametric choice models in which the number of
alternatives is larger than two and the distribution of the random terms
depends on the exogenous variables. Moreover, the new estimators are
obtained by maximizing a continuous, typically well behaved, function,

instead of a discontinuous function.
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APPENDIX

*  *
PROOF OF THEOREM 1: Let (V,6)e(Wx8) be such that (V,8)=(V ,6 ). We will
* %
show that then, for some j € (1,...,J} and some (s ,z )ESXZ

* % * * % %
(1.1)  P{ls ,z ;V,8) = P(ils ,z2 ;V ,6).

*
If 6»§ , this follows by Assumption P.5.
*
If 6= then it must be that for some (s,z)eSxZ and te{l,...,T}

* * * * -
Vt(s,z) > Vt(s,z). Let =z be such that z,~z, and z, =z, (k=t), where

z 1is as given by Assumption W.4. Then, it follows that for all kst
V*(s,z*) = V*(s,z) and V (s,z*) =V (s,z)
k k k k
by Assumption W.3; and
V*(s,z) =V (s,E) = Q
k k k

by Assumption W.4. From Assumption W.3 it also follows that

v * v a v * v
t(s,z ) = t(s,Z) an t(s,z ) = t(s,Z)-

* * * * * *
Hence, V _(s,z ) = V_(s,z ) and for all k=j V.(s,z ) =V, (s,2 ).
t t k k
By Assumption P.3 it then follows that for some j€A

* % %

* % *
P(jls ,z ;V,6) = P(3ls ,z ;V ,6 ).

Hence, (1.1) follows.
From Assumptions P.1 and P.2 it now follows that there exists some u >
0 such that
* % * %
(1.2) |(s,z) - (s .z <u, |V(s,z) - V(s ,z )| <p, and
* * k%
”V (s,z) -V (s ,z )” < pu
imply that

(1.3)  P(i|s,z;V,8) = B(j|s,z;v",67).



The proof of Theorem 1 will then be completed if we show that for some
' * %
subset Y(V,§) of the p-neighborhood of (s ,z ), Y(V,§) possesses positive
probability and for all (s,z)eY(V,8), (1.3) is satisfied.
To show the existence of such set Y(V,f), we will prove that the upper
*
semicontinuity of V implies that there exist neighborhoods N (V) and
* _* * % *
N (V) of (s ,z ) such that for all (s,z)e(N (V)NN(V)) and all
te{l,...,T}
* % * * % ok
(1.4) V. (s,z) <V (s ,2 ) +p and V. (s,z) <V (s ,z ) + u.
t t t t
. * %
Suppose that V 6n > 0 there exists (sn,zn) such that ”(sn,zn)-(s ,2Z )" <
5 a4 v v (s*, 2 L 0. Th ¥z
n an t(sn,zn) > t(s ,Z2 )+ u. et 6n - 0. en, (sn,zn) -+ (s ,z )
* ok
and for all n, V(Sn’zn> < V(s ,z ) + pu. Since V is upper-semicontinuous,
* % * %
this implies that V(s ,z ) = V(s ,z ) + pu, which is a contradiction.
* * * %
Hence, there exists N (V) such that V(s,z)eN (V) Vt(s,z) < Vt(s ,Z ) + op
*
Employing a similar argument for V , we can conclude that there exists a
. * _* * % * % *
neighborhood N (V') of (s ,z ) such that for all (s,z)eN (V) V (s,z) <
* % %
V(s ,z )+ p. Hence, (1.4) is proved.
Let
* * % * % * %
Y(V,0) =N (V) NN (V) n ((s,2) | (s,2) < (s ,2) ) nN{s ,z),n),
* % * %
where N((s ,z ),n) 1is a n-neighborhood of (s ,z ). Then, the monotonicity
*
of V and V (Assumption W.1) and the definition of Y(V,6#) imply that
for all (s,z) € Y(V,8) and all t

* % * * %
0 < Vt(s,z) - Vt(s 2 ) = pu, 0= Vt(s,z) - V(s ,z ) < pu , and "(s,z)

¢
* %
(s ,z )| < p . Hence, for all (s,z) € Y(V,8§)

* %
P(j[s,z;V,G) » P(jls,z;V 0 )

This completes the proof of Theorem 1.
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To prove Theorem 2, we follow Matzkin (1989) and let £(x;V,§) denote
* %
the probability density of x when (V ,6 ) = (V,6). Hence,
J d.
J

£f(x;V,8) = g(s,z) N [P(j|s,z;V,8)]
J=1

* % *
The probability measure of f(x;V ,§ ) will be denoted by P , the set {

J
(dl""’dt) | dte[O,l}, Ej-l dt = 1 } will be denoted by D, and the set

DxSxZ will be denoted by X. We next prove some lemmas.

LEMMA 1: [(Wx8),d] is a compact metric space.

PROOF: We first show that (W,m) 1is a metric space. It is clear that for
all v,v*',V € W, m(V,V)=m(V',V), m(V,V') < m(V,V) + m(V,V), and V=V’
implies m(V,V') = 0. Suppose that m(V,V') = 0 and V » V’'. Then, there
exists a subset C C SxZ possessing positive Lebesgue measure and such that
for all reC, V(r) = V'(xr). Since the set of points that are points of
discontinuity of either V' or V possesses Lebesgue measure zero (see, e.g.
Matzkin and Meyers (1986)), there exists r‘eC at which both V and V' are
continuous. Hence, since V(r’)=V’'(r'), there exists a neighborhood N of
r’ such that V reN, V(r)»V'(r). But this implies that m(V,V’) > 0, which
is a contradiction. Hence, m(V,V')=0 implies that V=V’, We have then shown
that (W,m) is metric space.

We next show that (W,m) is compact. Since it is a metric space, it
suffices to show that (W,m) is sequentially compact. Let then {Vi} be a
sequence in W. By the standard diagonalization principle (see, e.g. the
proof of Helly's Theorem), there exists a countable dense subset Q of

SxXZ, a subsequence {Vk) of (Vi}, and a function V:Q - RT such that for
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all q&qQ, Vk(q> -+ V(gq). Let V': SxZ - RT be defined by V' (r) = inf (

V(q) | r<gq, q€&€ Q). Then, V' is monotone increasing, for all reSxZ L

< V'(r) = U, and (V converges to V' at all points of continuity of V',

k)
Define V: SxZ -RY by V(r) = lim__ sup( V'(r') | fx-x]| < (1/n) }. Then,
V is upper-semicontinuous, monotone increasing, and for all reSxZ L <
V(r) < U. Hence, VeW.

It only remains to show that m(Vk,V) - 0.

Since for all reSxZ at which V' is continuous, V'(r) = V(r), and since

the sequence Vk converges pointwise to V' at all points of continuity of

V', it follows that Vk converges pointwise to V at all points of

continuity of V’'. Then, since the set of points of continuity of V'’ has

Lebesgue measure zero, Vk converges to V a.e. That m(Vk,V) -+ 0 then

follows by the uniform boundedness of V and the Vi functions, the
k

definition of m, and Lebesgue Dominated Convergence Theorem. This concludes

the proof that W 1is sequentially compact with respect to m.

That ((Wx8),d) is a compact metric space now follows from the above

result and the assumption that (8, ) is a compact metric space.

LEMMA 2 (continuity of probability densities on (Wx8):) Except perhaps for
a subset of X possessing zero probability, f(x;V,8) is continuous on (Wx8).
PROOF: It suffices to show that for all jeA P(j|s,z;V,6) is continuous in
(V.6) a.s. (G). Let then ((V",6M))° ,
that lim_ af(v", 6™ ,(v,8)]=0. Then, m(V",V) - 0 and [6"-6] - O.

Cc (Wx8) and (V,08)e(Wx8) be such

Suppose that m(Vn,V) + 0 implies that vt converges pointwise to V at
all points of continuity of V. Then, by Assumption P.2, P(j|s,z;V,0) is

continuous at (V,8) 1if (s,z) is a point a continuity of V. Since the set
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of points of discontinuity of V has zero Lebesgue measure, and G is
absolutely continuous, it follows that except perhaps for a set that
possesses zero probability, P(jls,z;V,G) is continuous on (Wx8). Hence, the
lemma will be shown if we prove that m(Vn,V) -+ 0 implies that for all
(s,z)ESXZ at which V is continuous and all ¢t, V:(s,z) - Vt(s,z). Ve
proceed to show this claim. Suppose that V is continuous at (s,z) but for
some t, some p > 0, and some subsequence (Vt} of (V:}, fvt(s,z)-
Vt(s,z)| > p o, Divide the sequence {Vt} into the subsequences (Vt+} and
(Vt'} such that for all k+ and all k-

Vt+(s,z) > Vt(s,z) + p  and Vt-(s,z) < Vt(s,z) + u.
Since V is continuous at (s,z) and the Vk functions are monotone increasing,
there exists § > 0 such that for all (s’,z’) in the §-neighborhood,
N((s,z),8), of (s,z), |V(s',z') - V(s,z)| < (u/2). Let A = {
(s',z')eN((s,z),6)| (s',2')2(s,z)} and let B = (s’,z')EN((s,z),6)|
(s",z2')=<(s,z)). Then, by the monotonicity of the Vk functions,

k+

Vt (s',z2'") = V§+(s,z) > Vt(s,z) + p = Vt(s’,z') + (u/2)

if (s',z')eA and

VET(s',2') < VET(s,2) <V (s,2) - m SV (s*,20) - (w/2)

if (s’',z')eB. Since the sets A and B possesses positive Lebesgue measure,
the above implies that m(Vk+,V) and m(Vk-,V) are both uniformly bounded
away from zero, which is impossible since m(Vk,V) -+ 0. Hence, if V is
continuous at (s,z), Vn(s,z) - V(s,2z). This completes the proof of the

lemma.



LEMMA 3 (measurability:) Define the function f’:(XxWxBxR++) - R by
£/(X,V,6,6) = SUP . 41y uxe) (£¢x,V’,6°)|d[(V,6),(V',8')) < ¢). Then, for

all (V, 6) and for small enough ¢ > 0, f’ is measurable in x.

PROOF: Since by Lemma 1 ((Wx8),d) 1is a compact metric space, there exists
a countable dense subset (W'x8') of (Wx8). For any x€X define
t = sup{f(x;V’',8') | A[(V',8'),(V,8)] < e, (V',6') € (W xB8 ) ) and

r=sup(£(;V 0 ) | a[(V ,6),(V.0)] <&, (V;,0,) € (Wx8') ).

i

We will show that r = t. Since (W'x8’') C (Wx8), r < t., Suppose that r < t.

Then, there exists (V,§)e(Wx8) such that

(3.1 f(x;v,8)) > f(x;Vi,ﬂi) for all (vi,ai)e (W'x8').

Let n > 0 be sufficiently small and for each te(l,...,T}, let L denote

the vector (s,zt) - (n,...,7). Consider the function V' defined by
Vé(s',zé) - Vt(s',zé) if Vt(s',zé) > Vt(s,z ),

’ ! r - s [ ] ’ ’
V' (s ,zt) Vt(s ,zt) if Vt(s ,zt) < Vt(s’zt) and w,_ < (s ,zt), and

t t
’ r ’ - ! ! 3
Vt(s ,zt) Vt(s ,zt) otherwise.
Then, V'eW, V' is continuous at (s,z), and since (Vl(s,z),...,VT(s,z) =
(Vi(s,z),...,V%(s,z)), f(x;v',8') = £(x;V,8). Since W' is dense in W,

since V'

’

there exists a sequence {Vi) Cc W' such that ’m(Vi,V’) - 0. But
is continuous at (s,z), this implies, by the argument given in the proof of

Lemma 2, that Vi(s,z) -+ V(s,z). The continuity of f(j,s,z;v ,VT,G) in

10
(Vl,...,VT,H) (Assumption P.2) implies then that f(x;Vi,Gi) - f(x;V',§) =
f(x;V,68), which contradicts (3.1). It then follows that £f(x;V,8) is
measurable in x if for each i=1,2,... f(x;Vi,ei) is measurable in x. But
this follows easily because g(¢) is measurable, (Vl(s,z),...,VT(s,z)) is

measurable in (s,z), and for each jea P(jls,z;V,G) is continuous in (s,z)

and the vector (Vl(s,z),...,VT(s,z)).
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* * *
: og f(x; , x) < @
LEMMA 40 [, |log £(x; V', ¢ )| dP (%)

PROOF: See the proof of Lemma 6 in Matzkin (1989).

*
LEMMA 5: Define the function f :(XXWXBXR++) -+ R by

f"(x,vV,8,e) if f'(x,V,6,e) = 1
A (x,V,0,e) =
1 otherwise.

Then, for any (V,0)e(Wx8) and for sufficiently small e > 0

Jy log £(x,V,6,e) dP (x) is finite.

PROOF: See the proof of Lemma 7 in Matzkin (1989).

* %
LEMMA 6 (identification:) If (V,8)e(Wx8) and (V,8) = (V ,6 ) then for

* * *
some set E C X with P (E) >0, fE £(x;V,8) dx = fE £(x;V ,6 ) dx .

PROOF: By Theorem 1, there exists jeA and Y(V,0§)cSXZ such that G(Y(V,6)) >
and for all (s,z)eY(V,6)

* %
P(j|s,z;V,8) = P(j|s,z;V ,6 ).
Let E = { (d,s,z)eDxSxZ | d_ = 1, (s,z)eN }. Since by Assumption P.4
* * *
P(j|s,z;V ,8 ) >0 for all (s,z)eY(V,8), P (E) > 0. Hence,

Jp £(x; V, ) ax = P(jls,z,v,8) dG(s,z)

fN N (SxZ))

= JE £(x;V7,67) ax = J

. * %
N N (Sx2)) P(jls,z,Vv ,6") dG(s,z)

PROOF OF THEOREM 2: The result follows from Lemmas 1-6 by the argument

given in Matzkin (1989).

28



PROOF OF THECREM 3: We first show that the set of vectors
1 1 n n, . <
(Vl,...,VT;...;Vl,...,VT) for which there exists some vew with
V(si,zi)-(Vi,...,V;) (i=1,...,n) is  the set  of . vectors

1 1 n 1 .
(Vl,...,VT;...;Vl,...,VT) that satisfy (5)-(9): It is clear that if
1 1 1 1
(V,8)e(wxa), the vector (Vl(s V2 ),...,VT(s 220 )
n n n n . e
;Vl(s VZ ),...,VT(s ,2 )3 8) satisfies (5)-(10). Suppose then that
1 1 n n .
(Vl,. .,VT;...;Vl,...,VT) satisfies (5)-(9). For each t, define the

* %
function Vt on the set of all (s,zt) < (s ,zt) by

. i i i
V. (s,z) = min ( V_ | (s,z.) < (s7,z) i-1,...,m#1,n42 ) (t-1,....T).

Then, by (5) Vt is monotone, by definition Vt is upper-

semicontinuous, and by (6) and (7) Vt is uniformly bounded by Lt and Ut'

* -
To show that for all te(l,...,T}) and all s < s , Vt(s,zt) - at; we note
* -
that the definitions of s, s, z., and Vt imply that for all s such
that s < S, Vt(s'zt) - Vt(s*,zt) -a, and for all s such that s, <s
* - - * —
<s , a = Vt(s*,zt) < Vt(s,zt) =< Vt(s ,zt) =-a..

Extend now the function Vt to all of Sth by letting

1A
N |

i . . * %
Vt(s,zt) = o if (s,zt) is not bigger than (s ,zt) and z, ¢

and

- 3 * *
Vt(s,zt) - Ut if (s,zt) is not bigger than (s ,zt) and

z, is not smaller than Et’
Then, the function V whose coordinates are the functions Vt so defined
i i

belongs to the set W and its wvalue at (sl,zl) is (Vl,... T

(i=1,...,n).

We have then shown that the set of vectors whose coordinates are the

values of a function in W at the observed points can be characterized by
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the set of vectors satisfying (5)-(9). Since, by Assumption P.1, (2)

depends only on the values of V at the observed points, maximization of

(2) over W 1is then equivalent to maximization of (4) over the set of

vectors satisfying (5)-(9).
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A function V:RK -+ RT is monotone increasing if for all x,yeRK such

that x =y, (k=1,..,K), V(@ = V. (y) (t=1,....D); v:RK o R is

upper-semicontinuocus if for all aeRT the set {xERK | Vt(x) > a for
t=1,...,T} is a closed set; V:RK -+ RT is continuous if for all aeRT
the sets (xeRK | V.(x) 2 a_ for t-1,..,T) and [xeRK |
for t-1,...,T) are closed; V:RN = R® is uniformly bounded if there

Vt(x) < a,

exist a,ﬂERT such that for all xERK and all t=1,...,T a, < Vt(x) <

Be-

The estimation of monotone density, distribution, median, and mean
functions has been extensively studied in the statistics literature.
(For surveys of this literature, see, Barlow, Bartholomew, Bremner, and
Brunk (1972), Prakasa Rao (1983), and Robertson, Wright, and Dykstra

(1988).)

We say that V=V’ whenever V and V' are equal at every point except,

perhaps, for a set of Lebesgue measure zero.

In the particular case in which T = J and the probabilities of the

outcomes are generated according to (1), it is possible to weaken



Assumptions W.3 and W.4 at the cost or strengthening Assumption F.J5

(see Matzkin (1989)).

The metric m is weaker than the essential supremum metric employed in
Matzkin (1989).

These probabilities can be generated by a polychotomous choice model in
which the random vector £-(£i’€;'€§) possesses a Generalized Extreme
Value distribution of the form

Pr(e<y)=exp [ -[y + (y21/(1-0) + y31/(1'9))(1'0)] ]
where n-(nl,qz,n3), ¥y = exp(-ql), Yo = exp(-nz), and ¥y = eXP('ﬂ3)-
( w21/(1-9) +

To see this, let v, - exp(Vi) (i=1,2,3) and c =

w31/(1'9)) (1-0) " Yhen z = o0, wo =1 (i-1,2,3) and c = 2. For
any two differentiable functions f(x) and g(x), the derivative of
f(x)g(x) with respect to x is
£x)8X) ' '

(%) [ g'(x) In(f(x)) + g(x) (£'(x)/f(x)) ],
where f'(x) and g'(x) denote, respectively, the derivative of f

and g with respect to X. Hence, the derivative of P(llz; v,8)

with respect to # 1is given by

v, c(l-a) { ) In(c) 1 [ w21/(1—9) ln(wz) + w31/(1-9) 1n(w3) ] }

T8 |2 + =

w, + C C

and it equals

1n(2) 9(1-6)

[ 1+ 28 42

<0 for all #€B, when z = O,



