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We introduce a solution concept intermediate between the cooperative and non-
cooperative solutions of an n-person game in normal form. Consider a partition p of the

players, with each se p a coalition. A joint strategy x = {x5 | s € p } is a hybrid solution
for the partition p if, for each se p, x5 is a core solution of the corresponding parametric
subgame, where this game is played by the players in s and is parameterized by x_g, the
strategies played by all outside players. This assumes that players behave cooperatively within
each coalition and competitively across coalitions. Sufficient conditions are given for a general

n-person game to have hybrid solutions for any partition.

1. INTRODUCTION. The solutions to a general n-person game are of two
kinds: non-cooperative and cooperative. The primary non-cooperative solution concept is
the concept of Nash equilibrium, and the major cooperative solution concept is the core.
The definition of the core most commonly seen in the literature and textbooks is
Aumman's a.-core (1961) for games without sidepayments; its general existence was first
proved by Scarf ( 1967 ). A core solution is obtained if and only if no coalition can
guarantee a higher payoff for each of its members by choosing another strategy. In this

sense, no coalition has any incentive to "block" such an outcome.
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These two solution concepts are shown here to be two special cases of a more general
solution concept---the hybrid solution concept. The hybrid solution concept assumes that
the players are partitioned into coalitions and that they will cooperate within each coalition
but compete (in the Nash sense) between coalitions]. The set of Nash equilibria and the
core are then, respectively, simply the hybrid solutions based on the finest and the coarsest
partitions of players.

One importémt caveat must be kept in mind, however. The hybrid solution concept
takes the partition of the game, the coalitional structure, as given. It is as important to
understand the formation of a particular partition as to explain the behavior once the
partition has been formed. We shall leave this important issue aside, however, and
concentrate only on the mathematical concept and an existence theorem.

In the next section of this paper we shall provide a formal definition of a hybrid
solution to an n-person game. In Section 3 we shall provide sufficient conditions for the
existence of hybrid solutions for any partition of the players in an n-person normal form

game. We shall conclude the paper with some remarks in Section 4.

2. DEFINITION OF THE HYBRID SOLUTIONS. Now we turn to the
definition of hybrid solutions. A general n-person game in normal form is defined as I=
{N, Xi, ui}, where N ={1, 2, ..., n} is the set of players. For each ie N, X is player i's
strategy set, which is assumed to be a nonempty subset in some finite-dimensional
Euclidean space ( X' cR™ ) w: X = HZ_ 1Xi — R is playeri'sreal payoff function.

Let Al denote the set of all nonempty subsets of N. For each coalition s e A,

let/s/ denote the number of elements in s, and R® denote the /s/-dimensional Euclidean

space whose coordinates have as subscripts the members in s. For any x={x1 , o XJEX,
] A . N . . . .
u={u,.,u"}e R*, where x'= {x‘l,x'z - x;ni} e X, let X, = { 2] ie s}e X

=IZ~€in be the strategies of coalition 5; x_; = Xp= {xi/ i€ sjeX ;= niEin be



the strategies of the players not in the coalition s (or in the complementary coalition M),

u.= {u| ie s)eRS and u .=u ={ui/ i & s} eR® be the projections of u on R® and
s 5= Upxe

RS respectively; ug : X — RS be the worst vector payoffs to s and be defined as g

(xg ={ Min ui(xs, x () ies}e RS for each x_e X . Without loss of generality, we can
x'SEX-s s 5

assume %g(xg) >> 0 for all s € AL and xseXs. For any two vectors a,beR", a 2b &
a;2b;, alli; a>b«a 2b anda #b; a> >be a;> by, alli.

Itis customary to define cooperative games in the characteristic form, I'= (N, el 1,
where N={1, 2, ..., n} is the set of players, and V¥ is the set of achievable payoff vectors
for each coalition s € A_. Although this is, in many cases, more general than the normal
form, it does not present players' strategy spaces explicitly. Moreover, the description of a
game is often tedious ----for an n-person game, the achievable payoff vectors need to be
described by 2™ -1 sets. For reasons that will become clear later, we shall introduce the

following notion of a general cooperative game:

Definition 1: A general cooperative game is definedas I'= { N, Xg, ug },
where N = { 1,2, .., n} is the set of players. For each coalition s € N, X is the

strategy set of s ( which is assumed 10 be a nonempty subset in some finite-dimensional

Euclidean space ), and ug: X, — RS is the vector payoff function for coalition s, with

the i-th component equal to the payoff of its i-th member.

Note that A game in characteristic form can be transformed to a general cooperative

game easily. To see this, letX; = V¥ be the strategy set for each coalition s; and let Ug :

X, — R® be defined by uy(xg)= r* x; for each x; € X, where * = max{t/ eV},
Compared to the definition of a normal form game, our definition of a general

cooperative game is still very cuambersome----2" -1 sets and functions need to be described.

But our new definition is more explicit about the players' strategies, and it is more general



than the characteristic form in the following respect. For each coalition s € A in our

general cooperative game, We put no restrictions on the dimension of X; or on the
properties of u;. We impose no requirements of the form: For 5;, 5, € A, § = 5; Us,€
A, Xg,UXs,C X, (U, Us,) < tg. Thus cooperation does not necessarily increase
welfare. Players who cooperate might be better off or worse off depending on the particular
features of the game.

A sufficient condition for the existence of the core is that the game should be

balanced. Lete ={1,1, ..., I}e R" be a vector of one's. For each coalition s € N, s/

is the number of elements in 5. Let xs denote the characteristic vector for s, and let hs

denote the vector in R” whose i component is 1/ /s/ if ies and 0 otherwise. Clearly
xs= /s/ hg , and xN= e={1,1,..1)}. Asubsetof Alora collection of coalitions 6 = {s;,

Sy ..., 5} is balanced if and only if there are nonnegative numbers w, for each s € 6

such that Zse VWX = Zl{; ] WsiXs; =e. Then a balanced game is defined as:

Definition 2: A general cooperative game I'= (N, X, ug} is balanced if for

any yéR" and any balanced collection of coalitions 0 such that for each s € 0, there exist

x; €X¢ satisfying ug(xg) 2yg, then there exist xe Xy =X such that u(x) 2 y.
Here, for simplicity, we have written xy, X, and upy(xy) from the grand coalition

respectively as x, X and u(x).

Let the general cooperative game derived from an n-person normal form game I =
{N, X}, '} begivenas I'* = (N, X, Ug }, where X =IT;_ X', the strategy set of

coalition s, and ug; : X — RS, the worst vector payoff function for s, have been defined

earlier. It has been verified by Scarf(1971) that I'™* is balanced if each X' is a closed

nonempty convex subsetin R7% and each #(x) is continuous and quasiconcave in x.



We are now ready to define the solutions to a game. We shall define the cooperative
solution in Definition 3, the noncooperative solution in Definition 4 and the hybrid

solution in Definition 5.

Definition 3: A joint strategy X € Xy, = X is a core solution of the general

cooperative game I'= { N, X, ug } if for each coalition s € N, $24(%) = [xs €Xg/

Ug(xg) >>ux)g } = (3

Similarly, a vector y € R" is in the core of I if it is feasible and if for each
coalition seN, £(y) = {xs €X; [ ugxg) >> yg } = &. By feasible we mean that there

exist x € X such that u(x) = up(x) >y. Thus a joint strategy x is a core solution if and
only if u(x) is in the core.
Definition 3*: A joint strategy X = {71, 72, ..., X*}e X is an a-core solution

of a normal form game I'= (N, X',ul}, if x is a core solution of the corresponding

general cooperative game rr ={N, X;, U}, where the strategy set Xs and the worst

vector payoff ug have been defined earlier for each coalition se .

Definition 4: A joint strategy X ={x’, X2, .., X"}e X is a Nash equilibrium
of the normal form game I'= (N, X, ul}, if each % is a best response of player i to X_;

in the sense that ui(J‘c) = ui(Ii, x_;) 2 ui(xi, X _;) for all ¥ e X',
i i

For each partition p = {s), 5, ..., §;} of players in a normal form game, let /p/ = k

denote the number of coalitions in p. Then p will induce /p/ = k parametric subgames:
Txsp=ts;, X, W)= {s;, (¥, W (x5, x5,)] j€ 5}, i =1, ..., Ip|. Each I'x.g) has/s;/

players and is parameterized by the complementary strategies X5 Thus for the fixed X5

I (x.5;) isa normal form game.



Definition 5: For each partition p ={s}, 5,, ..., 5} of players in a normal form
game, the corresponding hybrid solution is a joint strategy X = { Xsp Xsp s Xs, } =
{ x!, %2, ., X"} such that each X5; € X s; is a best response to all other coalitions’

strategy X.s; in the sense that Xs; is an o-core solution of It (%5;).

Comparing Definitions 3*, 4 and 5, one can see that the Nash equilibrium and the
core are two special hybrid solutions. The hybrid solution for the finest partition is a Nash
equilibrium; and our hybrid solution is the a-core for the coarsest partition that consists of
the grand coalition alone. The hybrid solutions are more general because of the coexistence
of competition and cooperation, which captures the omnipresent situation in which a group

of people behave collectively to compete with other groups.

3. THE EXISTENCE THEOREM. We shall first restate the Scarf core

existence theorem (1967) for our general cooperative game. This is stated as:

Theorem 1(Scarf 1967a): An n-person general cooperative game I'={N, X _, ug}
has at least one core solution if: (1) I is balanced, and (2) for each coalition se N, Ug is

continuous and quasiconcave on X, and X is a convex and compact subset in some

finite-dimensional Euclidean space.

Note that the cooperative game derived from a normal form game is balanced if the
payoffs are continuous and quasiconcave, and each X! is a nonempty convex and compact
subset (Scarf 1971). In our general cooperative game, the quasi—concavity and continuity

of payoff functions does not suffice for balancedness. Thus both conditions (1) and (2) are



imposed to guarantee the existence of a core solution. Though it may be possible to weaken
condition (2), I do not consider it here since it is not our major concemn.
Proof of Theorem 1. This is a direct consequence of Theorem 3.

Many alternative proofs of the Scarf core existence theorem, or alternative methods of
proving it, have appeared in the literature (Shapley, 1973; Ichiishi, 1981; Keiding and
Thorlund-Pertersen, 1987; Vohra, 1987; Vohra and Shapley, 1988). All these share two
common features: the game is given in characteristic form, and the proofs employ a
particular version of the fixed point theorem. ( Our proof in Theorem 3 is no exception.)
For example, Scarf's original proof utilizes an extension of the Sperner theorem(1928) due
to Scarf(1967b), Shapley's uses the K-K-M-S theorem that is a generalization of the K-K-
M theorem(1929) due to Shapley(1973), Keiding and Thorlund-Pertersen's uses the K-K-
M theorem directly, Vohra's uses the more familiar Kakutani (1941) fixed point theorem,
and Ichiishi(1981) and Vohra and Shapley(1988) both apply the Fan coincidence theorem
(1969). As a result, these proofs end up with a fixed point (or an intersection point) that is
a core payoff vector. Since the general cooperative game contains strategies, our proof

derived from Theorem 3 provides both a core payoff vector and a core solution.

Theorem 2: For a general n-person game in normal form I = { N, X‘ o 7,
the set of hybrid solutions corresponding to a given partition p ={s;, Sp, .., i} of N
is nonempty if I' satisfies: (1) for each player i, X! is a closed bounded convex

subset in Rm", ( 2 ) for each coalition 5; € p, ui(x) forall je s; are continuous in x

= (xsi, x.si) and quasiconcave in Xs;-

That is, if all the strategy sets are closed, bounded and convex, the payoffs of each

coalition are quasiconcave in the coalition's own strategies and are continuous in all



strategies, then there exists at least one joint strategy X = {Xg5, X5, , ..., X5, such that
gl r Te2 k

each X, is an a-core solution of I{ Xs5;)-

Proof of Theorem 2. This is also a consequence of Theorem 3. This theorem
can also be proved by applying the subtle technique of Ichiishi (1981). To do this, one
needs to define the space of societies, the corresponding strategy set and payoff functions
for each coalition s, step by step, in the Ichiishi context2. Under the conditions of our
Theorem 2, one can verify that the conditions of the Ichiishi Lemma are met, and thus the
conclusion holds.

Next we shall state and prove a more general theorem that leads to Theorem 1 and
Theorem 2 directly. Before we describe the general model, let us consider first a special
case where only two games are involved. Let A, B be two sets of players, 4 and B be the
sets of all non-empty subsets of A and B respectively, and for eachs €4 and each ¢ € B,
X s and Yt be the strategy sets of s and t respectively. Let the first general cooperative
game be given as: FA()’B) = {A, Xs’ us(xs »Yg)}, Yg € YB’ where for each coalition s €
4, its vector payoff function u s(x = yg) depends on its strategy X and is parameterized
by the strategies of the grand coalition B. Similarly, the second game is given as I g(x,) =
{ B, Yt’ vt(yt, x4)} for each x € X A’ which is parameterized by the strategies of the

grand coalition A. The hybrid solution for a partition with two coalitions is involved

exactly in two such intertwined games.

In general we shall consider k general cooperative games (I, I, ..., I} thatare
intertwined together similarly as above. For eachi =1, ... k, I;=T; (x‘Ni )={N, X,

u S(xs, x_Ni )} is parameterized by x_Ni = {xNJ’ ves xNi_ 7 xNi+ ;o xNk } through the
payoff functions. There are /V;/ players in I: ; foreach coalition s € A (A is the set
of non-empty subsets of N; )in I{x N; ), the joint strategies of s are x € X o and its

vector payoff is U (X, X N ), which depends on the joint strategies X, and the parameters



x__Ni. Let X = H{F:IXN,-': XNIX xXNk, and foreachi =1,2,..,k, let X‘Ni= XNI

X ..o XXy XXy X .. XXy =TT Xy .
Ny~ “Nyj N = TJ#ON;

Theorem 3: Consider a collection of general cooperative games as above.
Suppose the intertwined games satisfy: (1) each I'; = I'(x N, ) is balanced for any fixed

parameters x‘Ni’ and (2) for all coalitions s € X i all N, i=1, .., K, U (xs, x_Ni)is
continuous in (xy X N; ) and quasiconcave in x, and X is a nonempty convex and
compact subset in some finite-dimensional Euclidean space. Then there exist X = {XN],

XN, , ..., XN, } Such that each Xy, is a core solution of I'; (X ).
2 k i i i

Since there is no partition of players considered here, this theorem might be

considered a coexistence or coincidence theorem. If k=1, Theorem 3 becomes the Scarf
core existence theorem(Theorem 1); if /Ni/ =1 forall i =1, ..., k, our theorem becomes the

Existence theorem of Nash Equilibrium; and if for all i, N; equals the coalition s; in

Theorem 2, and I"i(x N; ) is the general cooperative game derived from the sub-parametric

normal form game {5, Xj , u’ (xsl,, x“i )}, then Theorem 3 becomes Theorem 2.

Our proof appeals to the Kakutani fixed point theorem, and the solution of Theorem 3
emerges as the fixed point. This approach is elementary in that it suggests an algorithm for
obtaining a core solution of a normal form game. To see this, let the game in the following
Lemmas 1-3 be derived from a normal form game. By working through the mathematical -
programming problems in (1) and (4), we can easily define a map satisfying the conditions
of the Kakutani fixed point theorem. Then with the available algorithms for finding a fixed
point, one can approximate a core solution. On the other hand, if the game is transformed

into characteristic form, defining the same map will require additional steps.



Before we start to prove the theorem, we shall first prove three Lemmas involving a
parametric game. If we omit the parameters, the three Lemmas will form a proof for the
Scarf core existence ( Theorem 1).

Consider a parametric general cooperative game I'(y) = (N, X 5 us(x S,y) ], where y €

X? are the parameters and X’ is a closed bounded nonempty set in some finite-
dimensional Euclidean space. For each se A, U X §% X’— RS is coalition s' vector

payoff function, with the i-th component equal to the payoff of its i-th member. Without
loss of generality, we can assume that there is a constant ¢ such that 0 << us(xs, y) <<ceg

for all se A, x;¢ Xgandye X, whereeg=(1, I, ..., 1}€ R’ Let R,= {xe R'[ x;

20,alli} denote the nonnegative quadrant in K", A= A" =A", ={ Ae R", [5] 4; =I)

denote the n-1 closed simplex.

To relate this to the proof of Theorem 3, we can take I{y) as T Jx, ), the first

parametric game in the collection of general cooperative games in our theorem, assuming

/N 4/ > 1. The set of players in I'{y) is then replaced by N;, and XNy =Ny 0 s AN
the product of the joint strategies of {I', ..., I';} in the collection, are the corresponding
parameter y.

Now let us return to our parametric game I (y). For each coalition se A{, define a

function f;: AXX’ - R by

1 t, =t(ay)= Max t
) s =ts(@) st t>0; x€Xg
(2) us(xs,y) -t og 20
3 ceg-10 g0

for each (a,y)e AXX); where a=(a,, o) e A, e=(eg,eg)=(1,1,..,1)eR", ce R

is a constant such that 0 < Js(xs, y) < ¢ forall je s, x € Xs, y € X, and all sex .

Define a function 7 AxX’ = R by
4) T=T(ay)= Mz 1(a)y).
s EN

The following three lemmas will be based on Assumption I defined by

10



Assumption I: (1) For each se A, X s is a closed, bounded, nonempty and

convex set, (2) for each se A/, us(xs,y) is quasi-concave in X and continuous in (xs,y).

Lemma 1: If the parametric game I(y)= (N, X e us(x s,y)} satisfies Assumption I,

then the following three claims hold:
(I). The function f; AxX’ - R defined by
()] flay)=Ta=T(oy a

is continuous in (a,y).

(IT). The map 6: AxX — 2 defined by
(6) oy) ={s€ N/ t(ay)= T(ay) )}
is nonempty and has a closed graph.

(1. For each value {f}, f5 ..., f,J of the function f defined in (5), let
0 If)={ieN/f=Toy=0), J)={jeNf=Tay=c)
where ¢ is the constant such that 0 < nfs(xs, y)<c forallie s, x€ X, ye X, and
s€ N. Then I(f) # & implies J(f) = &.

Proof of Lemma 1. (I)3> We focus on the particular parametric mathematical
programming problem (1), where s e A, (a,y)e AxX” are fixed. Since all the constraint
functions are concave in (x,, 7) and are continuous in both (xg,#) and (oy), the feasible
choice set is a closed bounded convex set, the objective function is concave and continuous
in (x, t), it follows, by standard results regarding the stability of mathematical
programming ( For example, see Fiacco, 1983 ), that the extreme value function 7g =

is continuous. Since the product of

ts(a,y) is continuous. Thus 7 =7(ay)= Max 1,
seN

two continuous functions are continuous, f(ay) = 7 & = T(a,y)a is also continuous.
(II). The definition 7 =7 (¢,y)= Max{ ’s/ seN} leads directly to the nonemptiness of

6(a,y). To show that it has a closed graph, consider any sequence {@,, y,/c Ax X Y,

{s}c N, satisfying s,€ (@, y,), (@, y}— (y)€ AxX?, and {s)— T€ N as n

— oo, Since the range of 8 is finite, there exists an 7 > 0 such that for all n > 7, 5, = 5 is

11



constant. Thus 7(a,, y,)= &(a,,y,) forall n>7n . The continuity of 7(c,y) and & (a,y)
leadsto 7(@,y) = (@, y). Hence s € &, y) and 6 has a closed graph.

(TII). Assume, by way of contradiction, that J(f) = {je N/ﬁ: T o= c)=C Lets=
If) = {ieN/fi =T o; =0} €. Itis apparent that o = {q/ ie s}= 0 since our choice of
the constant ¢ can guarantee 7 > 0. Thus for the mathematical grogramming problem (1)
defined by this particular s, the constraints (2) and (3) become: i S(xs, y) 20, forall i€ s;
c—tog 20,forallies. ThenJ(f) = & impliesthat c-Foy >0 foralli e s. This in

turn implies that ¢¢ >7, which is absurd. Thus J(f) is nonempty, and we have proved

Lemma 1. Q.E.D.

For each se AL, hy is the vector of R" whose ith component is /%v/-if ie sand 0

otherwise. Clearly 5 € A. It is easy to verify that 6= {sl-/ s;eN} € 29\5 is balanced if

and only if there exists a positive number b > 0 such that
(8) bey =b (1, 1, .., 1) Co{ hs[s € 6)
where Co{A) is the convex hull for any set A.
Define a continuous function g: AxA—A by
o+ B - %)* a,+H B - %)* a,+ B, - f;)* }
1+i:;1(ﬁi '1;)+ 1+j:1-1(ﬁi ‘lﬁ)+ """ 1"’2721(ﬁi‘1;)+

©® g(ap) ={

for each (a,) € AxA, where ri= max{r,0} for any real number. Define also a map O :
AxXY 522 by
(10) o(a,y) = Cof hg [s € (ay))
where & a,y) is defined in (6).
Lemma 2 [ Vohra, 1987 J: Under Assumption I, the map &: A xA xXY —
28X4 gefined by
(11) 7 (a.By) = { g(a,B) }x O(ay)
satisfies:

(). It has a closed bounded nonempty convex value and has a closed graph.

12



(I). For a fixed y, the map 7 . AxAny—)ZAXA is reduced to a map T :
AxA—)ZAXA by % (a,B) = ®w(a,B,y). Then 7' has a fixed point (T, B) (that is,
there exist (@, B)e AxA such that (@, B)e &'(%, B) = T (T, By)); and at this fixed

point, &%,y) ={se9\[/ ts= T(@,y)} is a balanced set; where ¢, T and 6(@,y) are

given by (1), (4) and (6) respectively.

Proof of Lemma 2. (I) For each (a,B,y), g(a,B) is continuous, O(a,y) is
certainly a closed bounded nonempty convex set by properties of the convex hull and by
the nonemptiness of 6(a,y). Thus (¢, B,y) has a closed bounded nonempty convex
value. To show that (e, By) = {g(a.B)}x O(a,y) has a closed graph, we need only

to show the closedness of O{¢,y), since g is continuous. Now consider any sequence

{op,y}c AxXX?, {z,}C A, satisfying 2, € O(0,Y,), (0p,y,)— (B, ) € AxXX?,
and {z,} >Z €4 & n — = Since 29‘5, the range of 6, is finite, there exista & € 2’(
and a subsequence {anl,, yni} of (0,,y,) suchthat@ = O(Gni, yn,-)° Letting n;— s,
we get 8 cO(@, y) by the closedness of 8 (see Lemma 1, (II)). Since Zp; €

O(0p,n) = Cof hglse8(atn,yy )} = Cofhg/se B}, {25}~ asnj— e and

Co {hs/ se 0} isclosed, we get Z € Cof hs/ se@}) cCof hs/ se 6(a, y)} =
o(®, y). Thus G has a closed graph.

(ID). It is now clear that for a fixed y, the map 7 : AxA—>2AXA given by (11) is
nonempty, closed, bounded and convex valued, and has a closed graph. Thus by the
Kakutani fixed point theorem, there exists a fixed point (@, E )em'(a, E )=Tm(a, E,y )

such that

- a1+(Bl" -’1;).’. a2+(32’%)+ dn+(Bn'-’1;)+
(12) @ =g(a, p) ={ }

— — . -
45 By I+EL( Bt I4EL (B

13



aru

(13) B = Eseo(a,y) {A’Shs} :

2 =1, (12)i i
where Ag 20 and Z:;e G(a,y){ls} (12) is equivalent to
a4 o {x, Birlty= Bt

forj=1,2,..,n. We shall prove that

b T Y

1s)  Bj=
for j=1, 2, ..., n. For (15) to hold, it suffices to show that (Bi-% )t =0 for all j. Since
"(Bi- % )F= 0 for all j” if and only if " BJ < ;11- for all /", the equality follows from

n—

1=Zf=1 Bj < 5,11 ! 1. Assume by way of contradiction that J**={je N/ Bj >rlr} =0

Then from (14) we get

(16) I"(@)={ieN/w;=0j={ieN/ PB;s’jand
J¥(m)={je N/w;>0}={jeN| Bj>;’};f**.

It follows from (7), (16) and T >0 that I(f) =I"(@) for f=f(®.y) = T &. By ZJ’L Bj=

Z;L,% = 1 we getI(f)= I*(t) = &. Since for every je J*(@), Ej >;1, and by (1)

and (13), we can find se &a,y) and X, € X, such that je 5 and 0< fJ(Z'z, y)=T ¥

< i g(x,y) < c. This implies J(f) = @ and contradicts part (IIT) of Lemma 1. Thus

J** = @ and (15) holds. Now rewriting (13) as (%, L,

1 1._
- ""ﬂ)—z.:veo(a,y){ls hg}, and

letting e = en= 1,1, .., I)eRn, we have

14



(17) Tey=10,1,...1)=%

se 6(m.y) {Ashs).

It follows from (8) that &@,y) is a balanced set. This proves Lemma 2. Q.E.D.

Lemma 3: Letx = xy € Xy = X be the joint strategies of all n players; u =
un(xy) = {uI, ..., ' }e R" be their payoffs, and ty = ty(o,y) be given by (1).
Then under Assumption I, the map &: AxX?Y — 2X defined by
(18) S(a,y) ={x €X | uxy) - ty(a,y)a 20}
for each (a,y) € AxX? satisfies:

(D. It has a closed bounded nonempty convex value and has a closed graph.

(ID). If 6(c,y) is a balanced family and I{y) is a balanced game for each y, then
each x € & a,y) is a core solution of I(y).

Proof of Lemma 3. (I) is obvious by the continuity of u(x,y) and tpy(o,y)o
and by the concavity of #(x,y) in x. To prove part (II), we shall show first that f\{a,y)
= T(a,y), if & ey) is a balanced family and if I'(y) is balanced.

To see this, recall that 6(a,y) ={se9\[/ tg= T} and for each s€ 6(a,y), there
exists Xg € Xs such that us(x S,y) 2T o Since our game is balanced and & a.y) is
a balanced family, by Deﬁniﬁon 1 there exists x € Xy = X such that u(x,y) 3f(a,y)=
T(a,y)o. Thus tN(a,y)z T(a,y). The equality follows from (4).

Next we claim that f{a,y) =T(a,y)a is in the core of I(y). Assuming by way
of contradiction that f = f{,y) is not in the core, then there exists s € A(, xge X s

such that

(19) us(xs, )>>T o

By our choice of the constant ¢ and the fact that u(x, y) 2 fla, y) = T(a, y) a for
some x € X,y = X (shown above ), we have

(20) ceg>>ulxy) 2T ag
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Then for this particular s, the corresponding ¢ defined by (1) satisfies 7. >7, which is

impossible. Thus f{a,y) =T(c.y)a must be in the core of I{y).

Now for eachx € &(a, y), U(x, y) 2ty a = T(a, y)a . Since fla, y) =
T(e,y)e is in the core, u(x,y) is also in the core and x is a core solution of Ity).
Lemma 3 is then proved. Q.E.D.

With Lemmas 1-3, we are now ready to prove our main theorem.

Proof of Theorem 3. Recall that we have & parametric cooperative games
I (x'Ni ), which are intertwined together by the joint strategies of each component game.

For each F(xwi) ={N, X us(xs_, x‘Ni))’ i =1,2, ..k, the number of players is /N;/ For
each coalition se A; n I'(x ¥ ), its strategy set is X, and its vector payoff is ufx , x ¥; )s
which is parameterized by x-Ni = {xN], xNi-I’ xNi+1’ - xNk}'

Foreachi =I,2, ...,k let X'Ni = XNIX e XXy, IXXN‘-H
i i

Now applying our Lemmas 1-3 to each F(x_Ni), i=1, 2, ..., k, we can define the

following maps, which are the counterparts of (9), (10), (11) and (18) respectively:
(21) 8;’ A/N"/XJNJ - L{Ni/
me o N xx,y o AN
and
S;: AN x X y; - XN
Where n'i( o;, B,-,x_Nl.) = {gi( o, B)} xai( a,-,x_Ni) for each ( oy, B, x'Ni) €

AW i/de i x X'Ni . Obviously (21) satisfy all the assumptions made through Lemmas 1-3.

Define a set £2 by
(22) Q= {AWI/xA{NI/] x{zﬂ/Nz/ XA,NZ/} x--‘-x{[ﬂvk/xJNk/}xX,

where X = ]7,:; X N, is the product of the joint strategy sets for all I (x N ). Define a

map ¢ :Q—)Z‘Q by
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(23) ¢ (a]’ 161, az, &’ "y ak: ﬂk, x) =
ﬂ,(apﬁz,x.NI) XX 1 (04, B X.N,) X {5,(a1,x.N1) x-~-x5k(ak,xN_k))
for each (o, B;) € A/Ivi/xJNi/, i=1,2, ..,k and x={xN1, - xNk}e X. Clearly ¢ is

defined on a closed bounded convex set, has a nonempty closed convex value and has a

closed graph. Thus by the Kakutani fixed point theorem, @ has at least one fixed point
(v.B;), i=1,2, .., k,and X ={J‘CN1, N, - Xy J, such that (o, ) € m(®@;.B, ic'_Ni),
fNi € 5{6{,—, T_Nl_) for i=1, 2, ..., k. It follows from our Lemmas 2 and 3 that each ‘JTtNi

is a core solution of I{X N ). Our theorem is finally proved. Q.E.D.

4. CONCLUDING REMARKS. We have proved an existence theorem for
hybrid solutions for games without sidepayments. For an n-person game with
sidepayments that satisfies the conditions of our theorem, it is easy to verify the existence

of hybrid solutions without using the subtle techniques developed earlier. Consider each of

the k subgames I ( x.si) induced by a partition p = {53, 55, ..., 5;/ . Because each of the
I x-5;) is played with sidepayments and satisfies the conditions of our theorem, the set
of its core solutions 51' ( xs; ) is nonempty, closed and convex, and has a closed graph

with xs;- Thus the map { 51 (X5 )x-~-x5k( X, ) fromX to zX satisfies the conditions of

Kakutani's fixed point theorem and has a fixed point which is a hybrid solution.

For readers who have persisted to the end of our proof, it should be clear that
Theorem 2 can be extended to generalized normal form games. By replacing each strategy
set X i by Xl (x.sl. ) and imposing some other mild conditions in addition to the conditions
of our theorem, we can guarantee that all the maps defined through Lemmas 1-3 have the
same properties, and thus the same proof will apply.

The hybrid solution concept can also be used in Multiple Objective Games (Zhao

1989). A multiple objective game (MOG) differs from a normal form game only in that

each player has a vector payoff. The partition p = {5, 5,, ..., 5;J of a scalar normal form
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game can be associated with a k-person MOG I (x.si ) (the same notation is used both for a
game and for a MOG), where each player i has a vector payoff Ug; (xg) ={ u’ (xsl., X.s; )/
je s;}. A hybrid solution corresponding to the partition p is then a particular non-
cooperative solution for the k-person MOG.

There are many fields in which the hybrid solution concept may find applications. In
sociology people are commonly partitioned into groups such as the family, a village, a
state, a club or religious groups; in political science members of legislative bodies are often
divided into two or more parties; in labor economics the owners, managers and employees
of a firm are usually three separate interest groups; and in industrial economics firms
selling a homogeneous product may be divided into a variety of competing groups, thus
allowing for a much wider set of alliances and rivalries than in the Cournot and
monopolistic equilibrium models. All of these cases imply the coexistence of cooperation
and competition, thus the resulting outcome should be close to that implied by the hybrid
solution concept.

Judging from the widespread applications of the Nash equilibrium and the core
solution concepts, we can imagine a much wider range of applications for the hybrid
solution concept. Wherever there exist conflicting interests among groups of individuals,

the hybrid solutions should be able to find a niche.
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1, Itis common to see such coalitional structures in economic and social life. The ruling game between
NATO and WTO (North Atlantic Treaty Organization, Warsaw Treaty Organization) is an example with
two coalitions. Good examples rarely exist in industrial organization because of antitrust regulation, but
many industries are close to the hybrid structure. For example, the auto industry is close to a two-
coalition-structure, where the American car makers, in searching for protective polices and strategies, are
competing with the Japanese car makers.

Theoretically, our hybrid solution concept shows that in a simple one-period-one-commodity market,
an array of intermediate solutions exist between the cooperative and non-cooperative division. This is
different from other intermediate solutions such as Chamberlin's monopolistic competition(1950),
Robinson's inperfect competition(1950), and the semi-cooperation in Shubik and Thompson's game of
economic survival(1959). For more discussions, see Chapter 2 in Shubik (1959).

2, To see this, let F = {p} = {{s}, 55, ..., 5}} contain the single partition p  given in our theorem.
For each se(, X = JIX' is the strategy set of s (it is a constant in the Ichiishi context.). If s c ;
ies
for some i, let
ug = ﬁs(xs x.si) ={ Min ui(xls. X\ x_st)/ ie s}eRy
T X
be the vector payoffs of s, where X5 = (xg xs;\r) and Xg= IT xs. If there is no s; in the partition such
J*i
that s c s;(or equivalenty, there exist s5;and 5 i #j such that sns; # D, snsjat D), let ug € R be

defined as ug = {-es, ..., -e2}. Then under the conditions of our Theorem 2, one can verify that

Assumptions 1-5 in the Ichiishi Lemma(1981) are satisfied.

3, For those who prefer the game in characteristic form and who are familiar with the techniques
involved, it can be seen that the same function f(c,y) is defined both in the present case and in the
characteristic form. As suggested by Professor Ichiishi, let

Vy)=v {ue R%/ Vies, uiSui(s)(x » Y},
Xg §
Wy)={ue SLéM V)| VjeN, u; £g.

Then the function f: 4xXY— K defined by flay) € W(y).fla,y)=t a( t>0) is the same as that
in (5), where c is the constant given earlierand W(y) is the boundary of Wiy} See Ichiishi (1988b) and
Vohra (1987).
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