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ABSTRACT. This paper shows how the modern machinery for generating abstract empir-
ical central limit theorems can be applied to arrays of dependent variables. It develops a
bracketing approximation based on a moment inequality for sums of strong mixing arrays,
in an effort to illustrate the sorts of difficulty that need to be overcome when adapting the
empirical process theory for independent variables. Some suggestions for further develop-

ment are offered. The paper is largely self-contained.

Keywords: strong mixing, functional central limit theorem, empirical process



§1 Introduction

Since the landmark paper of Dudley (1978), there have been many generalizations to
abstract settings of Donsker’s theorem for the empirical distribution function. For the most
part, the generalized theory has treated empirical processes for independent summands.
Exceptions have been Leventhal’s (1988, 1989) work on regenerative processes and martin-
gale difference arrays, and the general functional limit theorem of Andrews (1989a). The
closely related theory for sums of random elements in Banach space (as in Dehling (1983),
for example) and the work of Goldie and Greenwood (1986a, b) on set-indexed partial-sum

processes do not translate easily into usable results for empirical processes.

The concentration on independent summands contrasts with the development of the
theory in the one-dimensional case, where results for various types of dependence were
discovered early. For example, Chapter 4 of Billingsley’s (1968) influential book treated

¢-mixing sequences.

In this paper we present an empirical central limit theorem for strong mixing trié.ngular
arrays of random processes. We chose to work with strong mixing, rather than with
the more restrictive ¢-mixing, because of the wider range of possible applications. We
embarked upon the work leading to our theorem in response to the often posed question,
How much of the fheory for independent processes carries over to the dependent case?
Some subtle difficulties made the task less straightforward than expected. As a guide to
others who might want to extend empirical process theory to different types of dependent
variables, we present in Section 5 an outline of general principles and a discussion of why

certain plausible methods failed in our setting.

The formal statement of our limit theorem appears in Section 2. Our results apply to

an empirical process v, indexed by a class of functions JF,
1
vnf = —= ) (f(ni) — Pf(éni) ),

where {{ni 11 £ n,n=1,2,...} is a strong mixing triangular array. The empirical central
limit theorem (Corollary 2.4) gives conditions under which v, converges in distribution,
as a stochastic process indexed by 3, to an appropriate Gaussian process. The proof of
such a theorem consists of the usual two steps: establish convergence of finite-dimensional
distributions; then establish stochastic equicontinuity, a close relative of the familiar uni-
form tightness property. The literature already contains several results that can handle
finite-dimensional convergence. Our Theorem 2.3 gives sufficient conditions for a conve-

nient strengthening of stochastic equicontinuity. With an appropriate seminorm p(-} on F
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and an appropriate L9 norm, it gives for each € > 0 a § > 0 such that

limsup| sup |vnf —vaglllg <€
n—oo  p(f-g)<é

The proof depends upon a moment inequality (Lemma 3.1) for sums of strong mixing

sequences.

Stochastic equicontinuity is a most useful property even apart from its role in the func-
tional central limit theorem. It implies that |vnfn — vngn| — 0 in probability for all
sequences {fn,gn}, possibly random, from F such that p{fa,gn) — 0 in probability. An-
drews (1989b, c) has shown how this form of stochastic equicontinuity is the key to many
semiparametric limit theorems; it was also the main hypothesis in the general central
limit theorem for minimization estimators, established in Section VIIL.1 of Pollard (1984).
We present a typical application in Section 4. By establishing conditions for stochastic
equicontinuity under strong mixing assumptions, we automatically extend the range of

application of all those results.

§2 Definitions and statement of results

Let {{ni it <n,n=1,2,...} be a triangular array of random elements of a measurable
space S. Define A,(m) to be the o-field generated by the variables {,; for : £ m and
B.(m+d) to be the o-field generated by the variables g for i > m+d. We say that {{.:}
is strong mixing if there is a sequence of numbers {a(d)} converging to zero for which

\PAB — PAPB|<a(d) forall A€ Ay(m), all B € Bo(m +d), all m, d, n.

We define a uniform analogue of the £? norm by p(f) = sup, ; [|f(ri)ll2- [In general, we
write ||Z||, for the LP norm (IP|Z|P)!/P of a random variable Z.]

Results for triangular arrays are more powerful than their analogues for a single strong
mixing sequence. For example, local power calculations and asymptotic minimax theorems

require triangular arrays.

Our main result is a maximal inequality for the empirical process indexed by a class of
functions ¥, with a bound involving a measure of complexity for 3 based on the concept
of bracketing.

(2.1) Definition: The bracketing number N(§) = N(6,F) equals the smallest value of N
for which there exist functions f;,..., fv in Fand b,,...,bx with p(;) < 6 for each ¢ such
that: for each f in F there exists an ¢ for which |f — fi} < b;.
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Useful bounds on bracketing numbers can be obtained, for example, if F is a parametric
family, F = {f(-,6) : § € O}, with © a bounded subset of some Euclidean space RF and
the functions subject to the condition: for some constants C < oo and A > 0, and all 7

small enough,
(2.2) sup P sup |f(€ni,8') — f(£ni,0)]* < C*r**  for all §
n, B(é,r)

where B(8,r) is the ball of radius r around 8. For example, such an inequality would
follow from a Lipschitz condition,

|f(z,8) — f(z,8')| < L(=z)|6 - 6",

if sup,, ; [|L{£ni)ll2 = C < oo. If (2.2) holds, one takes the f; in Definition 2.1 to correspond
to the centers of the O(r*) many balls of radius r = (§/C)!/* that are needed to cover
the bounded set ©. This gives bracketing numbers of order O(6~%/*), which is the sort of
geometric bound needed for our theorem.

(2.3) Theorem: Let {£n;} be a strong mixing triangular array whose mixing coeflicients
satisfy

idQ—2a(d)7/(Q+‘r) < 00

d=1
for some even integer @ > 2 and some v > 0, and let F be a uniformly bounded class of
real-valued functions whose bracketing numbers satisfy

1
/ 2= N9 < 0o
0
for the same Q and v. Then for each € > 0 there exists a § > 0 such that

limsup|| sup |vaf —wnglllo <e
n—oo  p(f-g)<é

(2.4) Corollary (Functional Central Limit Theorem): If the conditions of Theo-
rem 2.3 are satisfied and if (vn f1,...,vn fi) has an asymptotic normal distribution for all
choices of fi,..., fx from 3, then {v.f : f € F} converges in distribution to a Gaussian
process indexed by ¥ with p-continuous sample paths.

The formal meaning of the Corollary and the general concept of convergence in distribu-
tion are explained in Sections 9 and 10 of Pollard (1990)—see Theorem 10.2 in particular.

The conditions of Theorem 2.3 require a balance between the rate of decrease in the

mixing coefficients and the rate of growth in the bracketing numbers. For example, if
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N(z) = O(z~*) and a(d) = O(d™*) for some 8 > 0 and A > 0, then the requirements
would be satisfied with () equal to the smallest even integer greater than 28 and v = 2, if
A > (Q-1)1+Q/2). (These are not the best choices possible.) We have required Q to be
an even integer merely to simplify the calculations in the Appendix. It is possible that the
condition could be relaxed, to allow fractional €}, at the cost of a more delicate argument
analogous to that of Yokoyama (1980). We have not included explicit conditions for the
finite-dimensional convergence as part of the Corollary, because there many possiblities
(Philipp 1969; McLeish 1977, Corollary 2.11; Herrndorf 1984, Corollary 1).

§3 Proof of Theorem 2.3

The proof depends upon a moment inequality applied to the increments v, f — vpg of
the empirical process. For independent summands the inequality is well known. For strong
mixing arrays it extends results of Sen (1974) and Yokoyama (1980). It corresponds to
Theorem 4 of Doukhan and Portal (1984) and Theorem 10 of Doukhan and Portal (1983).
Because the last two papers offer only sketch proofs, and because typographical errors make
the statement of their inequalities shghtly confusing, we give a complete, self-contained

proof of our inequality in the Appendix.

(3.1) Lemma: Let Z(1),Z(2),... be a strong mixing sequence of random variables with
mixing coefficients {a(d)}. For some T > 0, ¥ > 0, and even integer Q > 2, suppose:

(i) |12(:)| <1, PZ(3) =0, and PZ(i)® < 7*F7 for every i;

(i) 52, d92a(d)/ @+ < .
Then
i Q
IP|Z Z(i)l SC((nr2)+---+(nTZ)Q/2) for all n,

=]

for some constant C' that depends only on @ and the mixing coefficients. O

For empirical processes it will be most convenient to work with a new seminorm, 7(h) =
p(hY*/+7) because then

Ph(Eni) — Ph(€ni)]* < r(h)*H7 for every 1 and n.

Without loss of generality we assume that 0 < f < 1/ for every f in . All the
bracketing bounds b; and all the differences |f — f;| that appear in Definition 2.1 can then
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be assumed less than 1/, and the moment bound from Lemma 3.1 will apply directly
without the intrusion of extra scaling constants. Indeed, if |h| < /2 we may apply the
lemma for each fixed n to the random variables Z(z) = h({,i) — PPh{{,:) to get

Pivah|2 < n=92C ((nr) + -+ (n7?)%?)  where T = 7(h).

When 7(k) is bigger than 1/4/n the (nr?)9/? term dominates. Putting C' = (CQ/2)'/?
we deduce

1
(3.2) |lvnk]lo € C' max (Tﬁ,r(h)) .
We must be precise here with the form of the inequality, because usually we will assume
only an upper bound for 7(h); the actual value might not satisfy the inequality nr(h)? > 1.

For k = 1,2,... invoke the definition of bracketing numbers with § = 2~* to find ap-
proximating subclasses Fx and their corresponding bounding classes By with the property
that to each f in F there is an fi in F; and a corresponding by in By for which |f — fi| < bi
and p(b;) < 27F. If we define 7, = 2-2k/(2+7) then 7(b) < 7. The class F; need contain
no more than Ny = N(2~%, F) functions.

In outline, the proof of the Theorem goes as follows. We first show that v, f is uniformly
well approximated by vy, fi(n) if k(n) diverges to infinity at a suitable rate. More precisely,

we will choose k(n) to ensure that
(3.3) [ sup [vnf ~ vafrm)l il < 2¢ eventually.
F

We then apply a chaining argument to show that, for some fixed m and n large enough,

Vn fk(n) 18 uniformly well approximated by vy, fm for some fi, € Fp, in the sense that
(3.4) I I}la;s |vn fi(n) — Vnfm||l@ <2¢  eventually.

€
Here we write max instead of snp, to emphasize that fi(,) and f, range over only finitely

many functions, even when J - infinite. The choice of f,, depends on n, but that does

not disturb the subsequent steps i1 the proof. Together inequalities (3.3) and (3.4) imply
(3.5) Hsup [vnf — vnfm|llo < 4¢  eventually.
F

Finally, using (3.5) and a subtle argument from Ledoux and Talagrand (1990), we reduce

the comparisons between pairs f, ¢ from F to comparisons between at most N2 pairs.

Throughout the proof we rely on a simple maximal inequality due to Pisier (1983): for
random variables Z;,...,2Zxn,

| max |Zi] lg < N/ max||Zilq,
i<N i<N
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which is a consequence of the trivial bound
Pmax|Z;|® < Z P|Z;19.
<N i<N
When specialized to the empirical process evaluated at functions k1,..., hxy with |h;| < 1/,
Pisier’s inequality together with the bound (3.2) gives
1
3.6 max |vg b SC'N”Qma.x(—,ma.xT h,-).
(3.6) I mex lvakil g T maxr(h)

For all applications, the 1/1/n term will be the smaller of the two terms in the max.

Proof of inequality (3.3). Let k(n) be the smallest value of k for which 2,/n27* < e.
For each f in J, |

1
vaf = vn i ] < 7= 3 {Bum (Ens) + Phign)(6ni))

<n
2
< nb n = Pb n)\eont )-
S Vnlg(n) + \/1—1'.; k(n) (ni)
The last sum is less than 2/np(by(n)), which is less than e by the choice of k(n). The
defining inequality for k(n) also ensures that

Tk(n) = (6/4\f5)2/(2+7) )

which is greater than 1/\/n for n large enough, say n > n(e). Invoking inequality (3.6),
we deduce that
lisuplvnf — vnfimllle < || max |unblllg +e€
¥ bEBs ()
< C'N;(/f) Tin) + € for n > n(e)

g~k(n)
<cC f g YCEIN(z, )9z + e
Q0

The integral condition of the Theorem ensures that the last bound is eventually less than 2¢,
as asserted by (3.3).

Proof of inequality (3.4). The integer m will soon be fixed at a value depending
only on €. Eventually k(n) will be larger than m. To bridge the gap between m and k(n)
we argue recursively, relating the approximation via F; to the cruder approximation via
Fr_y,for k=m+1,...,k(n). A subtle difficulty now arises. If f and f' are functions in F
for which fr = fi, there is no guarantee that fi_1 = fi_,. Potentially fx — fx_1 could
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range over as many as Ny Ni_; differences as f ranges over F. To reduce the number of
differences to Ny we recycle notation by redefining fx— inductively, for k¥ < k(n), to be
the function from JF_; that best approximates the function fi in Fi, in the sense of the

T distance. Certainly

T(fe = fr-1) € Tk,
and 1y > 1/3/nif k¥ < k(n) and n > n(e). Invoking inequality (3.6) again we get
| max [vafx — vafecalllg < C'NY/ ey,
feF

As before, the max emphasizes that the differences range over only finitely many functions,

Ny of them, as f ranges over JF. It follows that, for n large enough,

k(n)
I max [ve frgn) = Vafmllle € D llmax|vefi — vafi-illle
fe3 k=m-+1 ¥

o0
< z C'N;/Q'Tk-—l
k=m+1

= Y C@HeIN@eE gye,
k=m+1

For some constant C.,, the sum is bounded by
c, f T = N (4, 5,
0

With m fixed so that the last bound is less than 2¢, we have (3.4). Notice that f,, depends

on n, because it is the last function in a chain leading from fi(n).

Comparison of pairs. Define an equivalence relation on I by: f ~ f' if f,, = f! . The
relation serves to partition J into N,, equivalence classes £[1],...,&[N,,]. (The partition

actually depends on n, because of the way f, depends on fy(n).) From (3.5) applied twice,

(3.7) | sup |vnf —vaf'|lg £ 8¢  eventually.
g

Define a distance between the classes by
d(&[i], €5]) = inf{p(f - f'): f € &[]}, f' € E[4]}.
For a fixed 6 > 0 choose functions ¢;; in £[i] and ¢;; in €[y} such that
p(dij — ;i) < d(E[i], E[s]) + &.
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If f € &i] and f' € E[j} and p(f — f') < 6, then p(¢i; — ¢ji) < 26 and
lvnf = vnf'| <2 sup [ung — vng'| + max{lvndij — vndjil : p(¢i; — 4ii) < 26}.
g~g'
Notice that the last maximum runs over at most N2, pairs. Taking norms of both sides,
we deduce via (3.6) and (3.7) that

I sup |vnf—vaf|llQ < 166+ C'N2/Q(26)2/C+7)  eventually.
(f-f1)<é
We have already fixed the value of m. We can therefore choose é small enough to make
the right-hand side less than 17e. O

§4 An application of stochastic equicontinuity

We will sketch a typical example of how stochastic equicontinuity can be used to simplify

asymptotic arguments.

Suppose F = {f(-,6) : § € O} is a class of R*-valued functions indexed by a subset
of R*. The p seminorm defines a new distance on © by
d(ﬂ’ﬂ') =p (f(’e) - f(agl)) .
An m-estimator én might be chosen to make the random function
1

Fa(8) = = ; f(£nir )
close to zero, in the sense that
(4.1) Fu(6,) = 05(1/v/).
The true 8y might be identified as the root of the corresponding expected value,

1
Ma(8) = PFa(6) = = > Pf(ni,6),
i<n

in the sense that

Mu(8)=0 for all n.

With a preliminary argument (often based on a uniform law of large numbers) one might be
able to establish consistency, 8, — ; in probability. With mild continuity and domination

conditions on the f(-,8) functions, this can usually be reinterpreted as
(4.2) - d(6,,80) — 0 in probability.

With such preliminaries, asymptotic normality of v/7(6, — 6o) can then be deduced from
the following three requirements on the processes.
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(i) Uniform differentiability of the M,, functions at 6;: for some nonsingular matrix D,
Mn(g) = D(B - 90) + O(IB - Ggl),

with the o(-) term uniform in n. Notice that this requirement is weaker than point-
wise differentiability of the f(z, -} functions, which can be useful in such applications

as least absolute deviations estimation.
(ii) Asymptotic normality of v, f(-,6).

(iii) Stochastic equicontinuity of v, at : for each € > 0 and n > 0 there exists 2.6 > 0
such that
limsupl’P{ sup |unf(18) — vaf(-,00)| > n} < e

n—o0 d(8,80)<6

When reduced to assertions about each of the components of the vector processes,
requirement (iii) is weaker than the stochastic equicontinuity property delivered by Theo-
rem 2.3. Together with (4.2) it implies that

(43) an(‘:én) = an('vgﬂ) +op(1)'
In addition, from (i) we get
(4.4) M,(6,) = D8, — 60) + 0|8 — 60)).

Substitution into (4.1) then gives

(4.5) 0p(1/+/n) = Fu(6,)
1

= Mn(én) + _\/ﬁvnf('sén)

= D(Bu — o) + o{[f = bo) + = f (-, 00) + 031/ V)

First deduce from the nonsingularity of D that |8, — 8| = Op(1/+/n):
1 N -
S 160) + o1/ V)| = |[D@n — 80) + o(16 — 6ol)|  from (4.5)
2 (5 = 0p(1)}1fn — o

for some positive constant k. The left-hand side is of order O,(1/+/n) by (ii). Next
consolidate the error terms in (4.5) to get

V(b — 60) = D7 wn f(-, 8) + 0,(1).

The random vector on the right-hand side has an asymptotic normal distribution.
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§5 Some strategies

The main lesson that we learned from our efforts to develop empirical central limit
theorems for dependent variables was: everything depends on the existence of good prob-

abilistic bounds for the increments of the empirical process. Let us explain.

There have been two major lines of development in the literature on abstract empirical
central limit theorems. One line, which starts from a symmetrization argument, has evolved
from the method of Vapnik and Cervonenkis (1971). It depends on the following two

requirements.

(i) In the sense of either tail probability bounds or moment bounds, the quantity
supqg |vn f| is less variable than

(5.1) sgp% > (F(&ni) — F(ER))|-

i<n

The new variables {£1;} are typically an independent copy of the {£,:}.

(ii) Conditional on certain information symmetric in both {£,:} and {£%;}, the process

of sums appearing in (5.1) has a tractable distribution.

Requirement (ii) is analogous to the property that justifies the calculations with per-
mutation distributions for experimental designs with randomization, as in Box and An-
dersen (1955). In practice it has required independence of {£,:} from {£),;}. For then the
quantity in (5.1) has the same distribution as

(52) swp 7z [ (f(end) = S161)|

where the {o;} are independent Rademacher variables (+1 and —1, each with probability
1/2). The conditional distribution, given {{a;} and {¢/;}, of this expression is amenable
to various types of chaining argument (cf. Section 3), because good bounds exist for the
increments of the underlying process: the Hoeffding inequalities give exponential bounds
on tail probabilities and moments up to exponential order. It is largely a matter of taste
whether one applies the chaining argument to moment quantities (as in Pollard 1990) or to
tail probabilities (as in Pollard 1984). The moment bounds require slightly less machinery
(one fewer sequence of constants to adjust correctly), at the slight cost of results not
quite as refined as those for tail probabailities (Alexander 1984, Massart 1986). For other
related applications, however, such as the U-processes of Nolan and Pollard (1987, 1988),
only moment bounds seem to work.
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Dependence between the {£n:} variables severely complicates the second requirement.
Leventhal (1988) was able to extend the method to regenerative processes, in which excur-
sions between renewal times are independent, by replacing the {£,,;} by the whole excur-
sion; he symmetrized over whole blocks of variables. Further progress with symmetrization
applied to dependent variables seems unlikely, except in special cases that allow reduction

to independence.

The second major line of development of abstract empirical central limit theorems has
involved the use of bracketing arguments. These appear more promising for dependent
variables because they work directly with the empirical process. Again one needs some
sort of probabilistic bounds for the increments of the process in order to invoke a chaining
argument. For the classical one-dimensional empirical central limit theorem in the inde-
pendent case, a Tchebychev bound based on fourth moments of the binomial distribution
suffices— for example, see pages 262-266 of Parthasarathy (1967).

For his abstract empirical central limit theorem (for independent summands) under a
bracketing condition, Dudley (1978, 1981) applied the Bernstein exponential tail bound to
the increments of the empirical process indexed by classes of sets and uniformly bounded
classes of functions. The Bernstein inequality requires bounded summands. Ossian-
der (1987) combined the same bound with a delicate truncation argument to remove the
boundedness assumption from the class of functions. Pollard (1991) has shown that a first

moment version of Ossiander’s method slightly simplifies the argument.

The main difficulty in Dudley’s form of the bracketing method arises because the Bern-
stein bounds lose their power for increments with small variance—compare with the 1//n
that appears on the right-hand side of (3.6). A separate argument is needed to handle the

contributons from such increments, as in our proof of (3.3).

Analogues of the Bernstein bound do exist for dependent summands, such as martin-
gale difference arrays. Leventhal (1989) invoked such a bound, but was left with an un-
palatable uniformity assumption involving the small increments. For ¢-mixing sequences
Collomb’s (1984) Lemma 4.1 would support a chaining argument— Yukich (1986) has ap-
plied it with a simpler form of bracketing argument to derive uniform rates of convergence,
but not for functional central limit theorems. For strong mixing arrays modified forms
of Carbon’s (1983) inequality (I) would seem to offer some promise. As it stands, that
inequality is not suitable because it does not take advantage of small variances of the
summands—the factor &(k) in the coefficient of a® does not decrease with D. By modify-
ing the argument leading to the second moment bound at the top of Collomb’s page 451,
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we were able to replace Carbon’s a(k) by a factor involving the square root of an £ norm.
Unfortunately, we were not able to find an appropriate substitute for the last term in
his exponential bound; we still do not have an appropriate exponential bound that could

support a chaining argument for strong mixing arrays.

Without an adequate exponential bound for tail probabilities of increments, the Ossian-
der truncation method fails. That forces one to impose uniform boundedness on the class
of functions, a requirement that limits the possible applications of the empirical central
limit theorem. The basic chaining argument, however, can still be invoked even with much
weaker control over the increments of the process, as in our Section 3, where moment

bounds handled geometric rates of increase in bracketing numbers.

In summary, for strong mixing arrays we were only able to find moment bounds on
the increments of the empirical process, which placed a constraint on the possible rate of
increase in the bracketing numbers. With a better bound for the increments we might
have a obtained a better theorem. That is the obvious place to start for anyone seeking to

improve upon our results.

Appendix: Proof of Lemma 3.1

We will make repeated use of the following standard strong mixing inequality for random
variables (Hall and Heyde 1980, Corollary A.2). For fixed n, m, and d, suppose X is
An(m)-measurable, ¥ is Bn(m + d)-measurable. Let s, p, and ¢ be positive numbers
whose reciprocals sum to 1. Then

(A1) |PXY — PXPY| < 8a(d)**|| X ||| Y Hl5-

If X happens to be a product X :--X,,, Holder’s inequality bounds the factor || X,

by
1/mp
(H IPIX,-]"‘P) .

I |Xi| € 1and PX? < 127 < 1 for every i, and if mp > 2, the product is less than
7@+0/P, H Y has a similar decomposition into a product of (k — m) factors, ||Y]|, is
similarly bounded by 7(>*7)/4. Choosing s = (@ +7)/v and mp = (k—m)q = k/(1—1/s),
then decreasing the resulting exponent of 7 from (2 + 4)Q/(Q + ) to 2, we arrive at our
working inequality,

(A2)  |PX;- - XpYi- Yicm| < |[PX1 X PYi - Yiom| 4 8a(d)/ (@72,

Here the choice of p and ¢ is not critical; we need only ensure that mp > 2 and (k—m)g > 2.
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For positive integers k¥ and n, with 7 fixed, define a bounding function
Bo(k) =nr? + (nt?)? 4 ... 4 (nr?) /2

where |k/2| stands for the integer part of k/2. We will establish the existence of constants
Cr,fork=1,...,Q, such that

(A.3) S IPZ(ih)- - Z(ix)l < CiBa(k)  foralln,

where the sum runs over all choices of i = (z1,...,%x) such that 1 < 3; < ... € 43 < n.
With k = @ the left-hand side of (A.3) is greater than 1/Q! times the Q** moment quantity

that we are seeking to bound.

Inequality (A.3) holds for k = 1, since the Z(7) have zero expected values. We will a.rgué
inductively to establish it for a k > 1, assuming that it holds for all values less than k.

For a given i = (21,...,%), let G(i) denote the largest of the differences i;4; — ¢;, and
let m(i) be the smallest j for which the difference equals G(i). To simplify the notation,
write B(d) for a(d)?/(9+", Apply the inequality (A.2) to each term on the left-hand side
of (A.3) to bound the sum by

k-1
(49) 3 SmG) = m} (JP2G0) + Zlim) P2(imen) - Za)| + 878(GE) )

Consider first the contribution from the product of expectations. Fm =lorm =k -1,
one of the expectations is zero. For other values of m we invoke the inductive hypothesis.
Fixing m and :y,...,%,, and letting i;541,...,%x range from 1 to n instead of just from i,,

to n, we bound the contribution by

k-2
> >0 I1PZ(i) - Z(im)|ChomBa(k — m),

m=2 11,..,5m
which, by a second appeal to the inductive hypothesis, is less than

k-2
Y CnCiomBa(m)Bo(k — m).

m=2

The product B,(m)Bn(k — m) is a polynomial in n7? of degree
m k—m k
= ML B Dl I
3]+ 157 <[]
Thus the product of expectations contributes to (A.4) at most a constant multiple of B, (k).

For the contribution to (A.4) from the mixing coefficients we further decompose the

sum over i according to the location and size of the largest gap G(i). The contribution
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equals

k-1 n n
Y200 0D Am(i) = myim = £,G(i) = g}87°B(g).
m=1{=1g=1 i

Given m(i) = m and t,, = £ and G(i) = ¢, the indices 7),...,i,—1 are subject to the

constraints

1< <+ S Sim=e,
ti+1 — 1 < g forj=1,...,m—1.

Summing first over iy, for fixed is,...,iy, and then over i, and so on, we constrain each
index to a range of 1+ g or fewer integers. There are at most (1 + g)™ ! choices for the
first m — 1 indices. Similarly, because the two equalities i, = £ and G(i) = g fix im41 at
the value £ + g, there are at most (1 + ¢g)*~™~! choices for ipm41,...,ix. Thus the mixing
coefficients contribute to (A.4) at most

k=1 n

8r* Y ZZ (1+9)" 7 (1 +9)* ™" B(g) < 87%kn Z(l +9)"2A(9).

m=1 {=1 g=1
Assumption (i1) ensures finiteness of the sum over g; the whole contribution to (A.4) is
less than a constant multiple of n7%, which can be absorbed into By, (k). O
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