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0. ABSTRACT'

In two recent articles, Sims (1988) and Sims and Uhlig (1988) question the value of much of the ongoing
literature on unit roots and stochastic trends. They characterize the seeds of this literature as "sterile ideas,” the
application of nonstationary limit theory as "wronghcaded and unenlightening™ and the use of classical methods
of inference as "unreasonable" and "logically unsound." They advocate in place of classical methods an explicit
Bayesian approach to inference that utilizes a flat prior on the autoregressive coefficient. DeJong and Whiteman
adopt a related Bayesian approach in a group of papers (1989a, b, c) that seek to reevaluate the empirical evi-
dence from historical economic time series. Their results appear to be conclusive in turning around the earlier,
influential conclusions of Nelson and Plosser (1982) that most aggregate economic time series have stochastic
trends. So far, these criticisms of unit root econometrics bave gone unanswered; the assertions about the impro-
priety of classical methods and the superiority of flat prior Bayesian methods have been unchallenged; and the
empirical reevaluation of evidence in support of stochastic trends has been left without comment.

This paper breaks that silence and offers a new perspective. We challenge the methods, the assertions and
the conclusions of these articles on the Bayesian analysis of unit roots. Our approach is also Bayesian but we
employ objective ignorance priors not flat priors in our analysis. Ignorance priors represent a state of ignorance
about the value of a parameter and in many models are very different from flat priors. We demonstrate that
in time series models flat priors do not represent ignorance but are actually informative (sic) precisely because
they neglect generically available information about how autoregressive coefficients influence observed time series
characteristics. Contrary to their apparent intent, flat priors unwittingly bias inferences toward stationary and
iid alternatives where they do represent ignorance, as in the linear regression model. This bias helps to explain
the outcome of the simulation experiments in Sims and Uhlig and the empirical results of DeJong and Whiteman.

Under flat priors and ignorance priors this paper derives posterior distributions for the parameters in auto-
regressive models with a deterministic trend and an arbitrary number of lags. Marginal posterior distributions
are obtained by using the Laplace approximation for multivariate integrals along the lines suggested by the author
(1983) in some carlier work. The bias from the usc of flat priors is shown in our simulations to be substantial;
and we conclude that it is unacceptably large in models with a fitted deterministic trend, for which the expected
posterior probability of a stochastic trend is found to be negligible even though the true data generating mechan-
ism has a unit root. Under ignorance priors, Bayesian inference is shown to accord more closely with the results
of classical methods. An interesting outcome of our simulations and our empirical work is the bimodal Bayesian
posterior, which demonstrates that Bayesian confidence sets can be disjoint, just like classical confidence intervals
that are based on asymptotic theory. The paper concludes with an empirical application of our Bayesian method-
ology to the Nelson-Plosser series. Seven of the fourteen series show evidence of stochastic trends under
ignorance priors, whereas under flat priors on the coefficients all but three of the series appear trend stationary.
The latter result corresponds closely with the conclusion reached by DeJong and Whiteman (1989b) (based on
truncated flat priors) that all but two of the Nelson-Plosser series are trend stationary. We argue that the
DeJong-Whiteman inferences are biased toward trend stationarity through the use of flat priors and that their
inferences are fragile (i.e. not robust) not only to the prior but also to the lag length chosen in the time series

specification.
JEL Classification: 211
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1ﬂm citations in this Abstract are from Sims (1988) and Sims and Uhlig (1988). They are repeated in full in the text of this paper,
where their precise focations in the cited articles are given.



"Readers, even mature readers, are attracted to a writer who is quite sure of himself' T. 8. Eliot
(1961).

1. INTRODUCTION

Since the influential empirical article by Nelson and Plosser (1982) on trends and random walks in economic
time series there has been an explosion of interest in the econometrics of unit roots and stochastic trends, This
interest has brought together theory and application in a way that is unusually productive for a new field.
Together with subsequent developments on cointegration, the theory has given rise to a large and growing
volume of empirical research. Economists that do empirical work with macroeconomic time series have been
excited by the knowledge that regression with nonstationary time series is better understood and, as a result, they
have become more confident in the interpretation of their empirical results. The excitement is understandable
in light of the fact that as little as six years ago there was no theory of regression applicable to nonstationary
series. The recent article by Stock and Watson (1988) well illustrates the empirical relevance of the new regres-
sion theory for nonstationary series and the many ways in which it can assist our understanding of economic time
serics. However, intellectual acceptance of the methods of unit root econometrics has not been universal and
a wave of skepticism of the field, criticism of its methodology and reevaluation of its empirical findings based
on an alternative Bayesian methodology has recently appeared.

Initiating this wave of criticism in a highly skeptical essay, Sims (1988) put forward the view that classical
inference procedures are misleading in models with unit roots and argued that Bayesian methods arc simpler
to use, lead to more reasonable inferences and are largely unaffected by the presence of unit roots. Classical
procedures, he suggested, are to be mistrusted

;) "... precisely because they do differ substantially from Bayesian procedures in this context” (op.cit.,
1 . 474). .
p

(This and all subsequent citations from Sims (1988) will be labeled in the form (5),i =1,...,n.)
In a scquel to that article and using Monte Carlo simulations, Sims and Uhlig (1988) provided a visual
helicopter view of the joint probability density of the unknown autoregressive coefficient p and its least squares

estimate 7 in the simple AR(1)

(1) V= te t=1...,7)



with (e} iid N(0, 0?). Computed under a flat prior for p and with 0% = 1, their figures show the symmetric
conditional distribution of p} 5 and the asymmetric conditional distribution of 3| p, thereby illustrating the opera-
tional differences between Bayesian and classical inference procedures in this context. They also compute the
prior that would be implied by treating classical significance levels as if they were Bayesian posterior
probabilities. They conclude as follows:

"Use of classical statistical tests as measures of the plausibility of hypotheses is
logically unsound. We have shown that in the case of a simple time series model with

a unit roof it amounts to acting as if one had a stronger prior belief in a root at or above
one, the closer to one is the estimated value p of the root” (op. cit., pp. 8-9).

(SUy

Both extracts (S} and (SU,) well represent the skepticism about classical procedures of inference thai is the
central message of these two papers. The ring of confidence with which they are written is, as the quotation by
T. S. Eliot that heads this article suggests, certain to attract other researchers and will do so almost irrespective
of the merits of the case.

Indeed, DeJong and Whiteman have recently launched a series of empirical investigations (1989a, b, ¢) which
seek to recvaluate by Bayesian methods the evidence in support of unit roots and stochastic trends in macro-
economic time series. Their philosophy marries well with that of Sims, their methodology follows the example
of Geweke (1986) in the use of flat priors for the time series coefficients and their empirical results appear to
be conclusive. In reconsidering the historical time series studied originally by Nelson and Plosser (1982), DeJong
and Whiteman (1989b) discover that trend stationarity is much more likely in terms of the Bayesian posteriors
than difference stationarity. Only when zero prior probability is attached to trend stationary alternatives, they
argue, will the AR representation of most macroeconomic time series appeat to contain a unit root. They sum
up their empirical reevaluation by telling us that:

" . . the death of trend stationarity appears to have been greatly exaggerated” (op. cit.,
(DIW) p. 13).

The purpose of the present paper is simple. We seek to challenge the methods, the assertions and the con-
clusions of these articles on the Bayesian analysis of unit roots, and we offer an alternative methodology in its
place. Our own approach is also explicitly Bayesian. But we differ by employing objective ignorance priors
rather than flat priors in our analysis. In so doing we illustrate how the Bayesian approach can lead just as easily
to inferences that are compatible with those of classical procedures as it can to divergent inferences. This shows
the fragility of Bayesian inferences about unit roots and stochastic trends to the specification of the prior. More-

over, objective Bayesian analysis reflects as much uncertainty about the data gencrating mechanism as classical



significance testing. Far from being "logically unsound,” as claimed in (SU,), classical asymmetric sampling dis-
tributions are simply a manifestation of this uncertainty. The analogue of this phenomena in objective Bayesian
inference is the bimodal posterior distribution of p} 3, which is a striking consequence of the use of ignorance
priors in place of flat priors in the analysis.

The message of this study, like its purpose, is simple: when Bayesian and classical procedures lead to diver-
gent conclusions we should seek first to find the answer in the prior rather than rush out to announce the failure
of classical methods. What seems to have obscured this natural answer in the present case is the mistaken
supposition that flat priors are uninformative and representative of ignorance. In a time series sctting they
certainly are not and, in consequence, they need to be used with more care and more qualifications in inference
than the articles cited above demonstrate.

The plan of the paper is as follows. In Section 2 we confront the skepticism articulated in Sims (1988) about
the methodology of unit root econometrics and we deal seriatim with each of his eriticisms. In every case we
find his grounds for doubt to be unfounded. In our view, his assertions about the impropriety of classical
methods of inference are ex cathedra, unjustified and, in some cases that we make explicit, plain wrong. His
claims about the superiority of Bayesian methods under flat priors are unwarranted. Indeed, we regard neither
classical nor Bayesian approaches to be inherently *unreasonable.” But, somewhat ironically in view of Sims’
claims about its superiority, we show that the mechanical use of a flat prior Bayesian analysis is itself unreason-
able because, contrary to apparent intent, such priors are informative in autoregressions and they unwittingly
downweight the possibility of unit root and explosive alternatives. Section 3 introduces an alternative Bayesian
approach based on ignorance priors that seek to represent the notion that a parameter is completely unknown.
Such an approach is said to be objective, as distinct from subjective, Bayesian and it goes back to early work by
Jeffreys (1946) and Perks (1947). We develop ignorance priors for the autoregressive coefficient p in model (1)
and similar autoregressive models with trends and more general transient dynamics. The joint posterior for p
and the other parameters is given under a Gaussian likelihood and the marginal posterior for p is obtained
analytically by using a Laplace approximation to reduce the multidimensional integral. Sections 3.2-3.4 report
simulations which evaluate the new procedure against the flat prior Bayesian approach. The bias toward station-
ary and trend stationary alternatives in posteriors obtained from flat priors is found to be substantial in every
case. Indeed, in a model such as (1) with a fitted trend, a flat prior on p and T = 50, we would expect, on aver-

age, when the true data generating mechanism has a unit root to find the posterior probability of nonstationarity,



viz. P{» # 1), io be less than 5%. This degree of bias scems unacceptable by most standards. Section 4 reports

the rosults of an cmpirical illustration of our methods to the Nelson-Plosser time series.

2. SKEPTICISM CONFRONTED

In his (1988) paper Sims questions the value of much of the ongoing work on unit root inference in econo-
metrics and claims that the secds of this work "are essentially sterile ideas” (op. cit., p. 463). If one were to
interpret sterility literally as an incapacity to produce offspring, then the fecundity of the research in the field
would itself belie that claim. Notwithstanding this irony, several explicit "grounds for doubt” about the value of
classical inferzntial procedures and arguments in support of the assertion about sterility are given by Sims,
although the arguments that are offered are only brief and are largely nontechnical. The central argument is the
divergence of Bayesian and classical inference expressed in (8;) and this we shall address in Sections 3 and 4.
However, since we wish to be complete in this critique, since some of the attendant issues are themselves of
interest, and since the Sims’ prescriptions and skepticisms are being taken seriously by other researchers, we
shall look here explicitly at the stated grounds for doubt. We shall deal with them individually and in the order

in which they appear in the cited paper.

(a) Tenuous connections between the unit root hypothesis and economic theory.

The efficient markets hypothesis for asset prices is one of the main behavioral economic theories that lead
to models with unit roots. Sims argues that this model is at best just an approximation that applies for small
time intervals. Similarly, Lo present his case here, Hall's (1978) martingale model for consumption strictly applies
only under rigid conditions on utility and under assumptions like constant real interest rates which hardly seem
tenable except over short time periods. Likewise, models that incorporate technological change via stochastic
processes with unit roots have only tenuous connections with economic theory.

There is validity in each of these 6bjections. Yet similar objections of specificity and approximation can
be raised against most economic theory, more especially macroeconomic theory that is based on representative
agent paradigms. Models like the permanent income hypothesis and the efficient markets hypothesis, it should
be remembered, are powerful in their predictions and usefu! in terms of their interpretative content precisely
because of their simplicity. Moreover, in spite of a long history of objections, these models, as distinct from

innumerable others, have survived and evolved as theoretical constructs. The efficient markets hypothesis, in



particular, has continued to perform well empirically against all competitors. Few theory models can claim a
comparable degree of success and longevity. Were it not for these empirical successes and for the underpinning
in efficient markets theory, it would surely be unlikely that a root of unity would be selected as the leading prior
mean in so many Bayesian VAR exercises.

To the extent that both behavioral and empirical models are approximations to an evolving time series real-
ity we can expect that any model will retain its relevance only over finite spans of data. As morc data are
brought to bear, it is common to find that the variance of the prediction CI;I’OI' increases linearly over time. In
other words, the superposition of new shocks over time leads to stochastic drift away from a given model and
its best predictions. Such stochastic drift constitutes strong empirical evidence in favor of the unit root hypoth-
esis. It can be incorporated by direct reasoning in modeling as in the efficient markets theory or indirectly as
in real business cycle models where the ultimate engine of change in the economy is taken to be the demo-
graphic and technological supply side shocks that affect the economy’s productive capacity. In either case the
effect is the same and, in consequence, the unit root hypothesis is about as well connected to the behavioral
economic theory that appears in time series models as any other justifiable empirical feature of those models.

Some of the latest perspectives in macroeconomic thinking have actually strengthened the links between
unit roots and behavioral economic theory. In particular, work by Durlauf (1989, 1990) has shown that coordin-
ation failure models with incomplete markets and multiple equilibria can generate unit roots from shocks that
enter the system period by period, irrespective of their origin in demand or supply side disturbances. More-
over, unit roots can occur in these models even when technical change is deterministic.

Thus, the Sims objections to unit roots on this ground have some validity as generic criticisms of economic
theory and they are comparable to the earlier criticisms voiced in Sims (1982) of representative agent rational
expectations modeling as a "revolution [that] itself has had its excesses, destroying or discarding much that was of
valie in the name of utopian ideology” (op.cit., p. 107). However, the Sims’ objections ignore the longevity and
the successes of the efficient markets theory, they overlook the importance of sophisticated simplicity in model-
ing (as argued, for instance, by Friedman (1953) and Zellner (1988)), they fail to take into account the latest
thinking in macroeconomic modeling and they are inconsistent with the pervasive use of unit root priors in VAR

empirical models.



(b) Mistaken perspectives on the effects of unit roots on classical inference.

It is by now well understood that the presence of unit roots docs affect asymptotic distribution theory and
classical procedures of inference. Indeed, much of the ongoing literature has beern concerned with the many
different consequences of this fact. Sims recognizes this but then tells us that:

S "The attempt to apply asymptotic distribution theory allowing for nonstationarity has been in
52 post instances wrongheaded and unenlightening” (op.cit., p. 464).

No examples or citations to support this view of community-wide bungling are given. The reader is instead
referred to Sims, Stock and Watson (1990) for a demonstration of the fact that in linear VAR’s conventional JT
normal asymptotics apply, albeit with some degeneracies depending on the number of unit roots in the system.
This description of lowest level normal asymptotics is perfectly accurate when there are stationary or cointegrated
regressors and it applies much more generally to misspecified systems, as shown by Park and Phillips (1989).
However, this is far from being the whole story and Sims errs when he concludes that:

".. . any hypothesis which can be tested after the model is transformed [to stationary form], can

be tested with exactly the same distribution theory using the untransformed model. There is no
(S;)  Jjustification for preliminary differencing or application of cointegration transformations in the belief

that these sieps are necessary to allow use of the usual statistical tests" (op.cit.. p. 465; my insertion

in parentheses [. . .] for purposes of clarification).
A major counterexample to this statement is given in my paper (1988) on optimal inference in cointegrated sys-
tems. As argued there, linear VAR's in levels or log levels implicitly estimate whatever roots, including unit
roots, therc may be in the system. This means that estimates of any cointegrating relationships in the system
have a limit theory that depends on the limit distributions that apply for the estimated unit roots. On the other
hand, when the model is transformed to its stationary error correction model (ECM) representation, this prob-
lem does not appear because the unit roots are no longer estimated when the model is in this format. Instead,
estimates of cointegrating vectors from ECM formulations follow a mixed normal limit theory. As a result, tests
of hypotheses about the cointegration space can be conducted validly with usual asymptotic chi-squared criteria.
This is not possible for the untransformed VAR in levels formulation. Thus, (S,) is simply wrong on this point.

More generally, it is important to récognizc that the likelihood ratio is not locally asymptotically normal in
the sense of LeCam (1960) when there are unit roots to be fitted. In fact, the likelihood ratio is not even locally
asymptotically quadratic in this case, as shown in Proposition 4.1 in my (1989) paper. The reason is that the

information (in the sense of R. A. Fisher) that is carried by the data about the unit root is both random and

variable (i.e. sensitive to local departures from unity) and this uncertainty persists even in asymptotic samples.



Thus, for the Gaussian AR(1) model (1) with o = 1and with a parameter sequence p = pg + T 1% adjacent

to pp = 1 we have the log-likelihood ratio

A(h) = In{pdf(y; p)/pdf(y; po)}
= ~1/2=T0y, - o) + /D20, - pye-r)’
= h(T =y, €) - /DRATEDLY)

Under gy = 1 we have
hg(h) ~g h([ WdW) = (/203 W) = Alw)

while under p = py + T 'h we have

Ag{h) ~ R T, dW) - /2R T3 |

where J,(r) = Iée(""y'dW(s) and W(r) is standard Brownian motion. Observe that under the local alternative
sequence
2 T2%52 4 [ 2,
a random limit which itself depends on 4 through the diffusion process J,(r). In this sense the Fisher informa-
tion is both random and variable (i.e. dependent on local departures) in the limit. The usual local asymptotic
quadratic approximation does not apply. Because of this complication, the optimal asymptotic theory of infer-
ence of LeCam (1960, 1986) and Jeganathan (1980) is inapplicable in models with fitted unit roots. However,
as shown in my (1988) paper, these objections do not apply to models that are transformed to stationary form
by differencing and cointegrating transformations,

Thus, in contrast to the assertion (S;) there is substantial justification in terms of asymptotic distribution
theory and optimality theory for working with transformed specifications such as ECM formulations rather than

untransformed VAR’s.

(c) The discontinuity in the classical as_;!mpraﬁc theory at p = 1 generates confidence regions of "disconcerting
topology.”
The argument is as follows. If a fitted value 5 < 1 with t-ratio £,(3) = (3 — 1)/s; leads to acceptance of a
unit root null under the unit root limit theory for #(3) but rejection under conventional normal asymptotics,
then classical confidence regions can be disconnected because of the exclusion of some values of p close to unity

from the confidence set since the corresponding t-ratio 1 () = (5 — p)/s; would reject them. The phenomenon



arises because the asymptotic critical values under a unit root null are further out in the left tail than those of
a stationary null for p close to but less than unity. Sims finds this featurc of the classical approach disconcerting
and argues that Bayesian inference encounters no such difficulties because
"The likelihood, and hence the posterior p.d.f. for a flat prior, is Gaussian in shape regardless
of whether or not there are unit (or even explosive) roots. This simple flat-prior Bayesian theory
(S4)  isboth amore convenient and a logically sounder starting place for inference than classical hypoth-
esis testing."

This is a strong and confident assertion. Yet the flat prior condition under which it is given is nowhere
near as innocent as it appears. In fact, Bayesian inference in time series models under flat priors for the coeffi-
cients is formally identical (o that of the lincar regression model in which the regressors are fixed and non
random. No consideration is given to the time series nature of the data. Of course, Bayesian inference typically
pays little attention to the sample space, gives maximum attention to the parameter space and proceeds by con-
ditioning on the observed data? Flat priors are especially convenient to use, they have established precedent
in earlicr work (e.g. Zellner (1971)) and in the normal linear regression model they lead to Bayesian confidence
sets that are equivalent to the corresponding sampling theory (e.g. Malinvaud (1980), pp. 239-240).

Why is the situation so grossly different in a time series setting? The reason is that in the normal linear
regression model the coefficients influence enly the mean of the data and conditioning on fixed regressors is
innocuous. In a time series model, on the other hand, the coefficients influence the mean, the variance and the
entire autocorrelation structure of the data and conditioning on the random sample moment matrices of time
series data is not always innocuous. Flat priors do not, in this context, represent ignorance in any meaningful
sense. In fact, as we will demonstrate in the next section, they are highly informative, they lcad to inferences
about the presence of stochastic trends and unit roots that are often severely biased against these possibilities,
and they can give a misleading impression of precision in inferences. By contrast, as we illustrate in Sections
3 and 4, if due consideration is given to the time series naturc of the data by the use of ignorance priors in place
of flat priors, then Bayesian posteriors for the autoregressive coefficient p |5 are frequently bimodal and lead
to disjoint confidence sets, just as those iJased on classical sampling theory asymptotics. This is a possibility not
recognized by Sims. Far from being "logically unsound,” we find that classical procedures lead to inferences that

are very close to their Bayesian counterparts under appropriate ignorance priors. There is no fatal flaw in either

2I’his characterization of Bayesian procedures is by no means simply a personal view. It is recurrent in many discussions of Bayesian
theory. For a recent example, the reader is referred to the discussion of Lindiey (1990) and, in particular, to the comments of Lehmann
(1990).



approach to inference, simply human error in accepting conclusions too readily from fragile and informative
priors. The uncertainty about the data generating mechanism that manifests itself in disjoint confidence sets and
low power in unit root tests is itself present in Bayesian inference when due allowance is made for the time series
nature of the data in the construction of an uninformative prior. Moreover, the fragility of Bayesian inferences
to the specification of the prior should itself be taken as a signal of this uncertainty, as indeed it is by some

Bayesians such as Leamer (1983, 1988).

(d) The classical approach ignores useful evidence against p = 1.

Sims puts forward the following explanation of his position:

"One of the unreasonable aspects of the classical approach to this problem is that likelihood
(S5) ratio fests make no use of our knowledge that a large o, in a large sample is evidence against p = 1
even if the t-statistic for p = 1 is fairly small” (op.cit., p. 471).

Here, g, = a{Eyf_l}_U 2 is a "standard error” for 3. Its asymptotic behavior depends on the value of p.
Thus, when |p| < 1 we have g, = OP(T'V 2) and when p = 1 we have g, = OP(TI), leading us to expect
smaller "standard errors” for 5 in large samples in models with a unit root. Thus, we agree with the latter part
of (8;) describing our knowledge about o,. But we dispute the claim in (S5} concerning the unreasonable aspect
of the classical approach. Indeed, it is the Bayesian approach under flat priors not classical methods that ignore

this generic information about g, in time series models like (1). We make the following points.

(i) Under the null hypothesis that p = 1 we may estimate 03 by 63 where

(3) 782 = 50, =y ) /D -

This statistic is the Von Neumann ratio of the Gaussian random walk. Its use as a statistic for testing for the
presence of a unit root and for testing the specification of a regression equation in levels or differences (where
regression residuals are employed in place of y, in (3)) was considered by Dickey and Fuller (1981), Berenblut
and Webb (1973), Sargan (1979), and Sargan and Bhargava (1983). Indeed, the statistic may be interpreted as
the likelihood ratio test of the null of serial dependence against the alternative of a random walk and, as discuss-
ed by Sargan and Bhargava (1983), it is known to be a most powerful test in a neighborhood of the alternative.
A closely related version of this statistic has recently been obtained as an LM test for a unit root in Schmidt and
Phillips (1989). Thus, to argue as in (S;) that the classical approach ignores evidence based on g, is simply to

fly in the face of the facts.
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(ii) Sims claims that ". . . when p = 1, g, behaves asymptotically like a constant times 1/T " (op.cit., p. 470).
In fact, when p = 1, o, behaves like a random variable times 1/T. The difference is non trivial and has important
conscquences. First, it causes a breakdown in the local asymptotic quadratic property of the likelihood, as dis-
cussed under (b) above. Second, since the limit random variable carries information about p, as seen from (2),
onc might well expect that conditioning on the sample moment T'zwf_l would involve a loss of information.
Actually, Bayesian conditioning on the data does just this under flat priors, i.e. it treats time series data like data
from a linear model with fixed regressors whereas, depending on the value of p, the sample moments of the data
may have radically different behavior. It is for this very reason that {lat priors in time series models are inform-
ative. They suggest that we believe all values of p to be equally likely when, in fact, we know that large values
of p are much more likely when scale parameters or standard errors like o, arc very small. The ignorance priors
we use in the following section explicitly take this balance into account. Priors like flat priors do not and,
thereby, are unwittingly informative in time series models.

To sum up, we submit that Sims errs on two counts in (S;): first, many classical statistics take the scale
effects g, into account and some like the Von Neumann ratio (3) are constructed directly from it; second, neither
classical nor Bayesian approaches are inherently "unrcasonable,” but, somewhat ironically in view of the claim
in (S;), the mechanical use of flat priors in time serics models is unreasonable because, contrary to apparent
intent, such priors are informative and can thereby seriously and unwittingly bias inferences. We shall give

examples in Section 3.

3. OBJECTIVE IGNORANCE PRIORS AND UNIT ROOTS

3.1. The Justification of Ignorance Priors

In a subjectivist approach to Bayesian inference the role of a prior distribution is to represent the degree
of subjective belief of the person who makes the inference. Partly because of the difficultics associated with prior
elicitation, and partly because there is a need in many applications to proceed under conditions that approximate
ignorance, many Bayesian writers have sought to establish an objective basis for the choice of the prior. In an
objective theory, the prior seeks to represent the notion that a parameter is completely unknown, thereby giving

rise to the term "ignorance prior.”
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Jeffreys (1946) was the first to suggest a method for inducing ignorance priors in a given probability model.
Earlier researchers had followed Bayes and assumed that ignorance could be represented by a uniform
distribution (i.e. a diffuse or flat prior) over the parameter space. Yet, as is now well known, flat priors on
different versions of the parameter space yield different posteriors, i.c. the posterior is not invariant to 1:1
transformations of the parameter space. Jeffreys’ idea was to base the selection of the objective prior on certain
invariance properties of the family of probability densities f(x|8), indexed by the parameter # € 8, from which
the data were drawn. The prior so selected would then inherit those invariance properties and thereby avoid any
arbitrariness in the choice of parameters since it would assign the same prior probability to equivalent
propositions (i.e. irrespective of their parameterization). If we set I,y = ~E {(8%/3638" Ylog(f(x| #))} then

Jeffreys’ general suggestion was the prior
@ n(8) & [gg"/? = J(6), say.

This prior is invariant in the above-mentioned sense to smooth transformations of the parameters ¢ = @(¢)

because of the equivalence of the corresponding probability elements
o120 = |1, de,

(c.g. Jeffreys (1961, p. 180), Zellner (1971, p. 48)).

Hartigan (1964) showed that the Jeffreys prior (4) has other useful invariance properties of which the most
important are its invariance under (i) smooth data transformations (e.g. changes in the units of measurement),
(ii) restrictions in the parameter space, (iii} replication of the sample space and (iv) replacement of the data by
a sufficient set of statistics. Subsequently, Hartigan (1965) showed that (4) is an asymptotically unbiased prior
distribution under a Jeffreys loss function in the sense that the prior density (4) minimizes the asymptotic bias
of the corresponding Bayes estimator (i.e. the estimator that minimizes expected loss).

An alternative justification for the Jeffreys prior was given by Lindley (1961). Lindley argued that knowledge
of # means knowing f(x|#) and that the amount by which ¢ differs from ¢ + §(¢) on some mesh of size §(f)
can, in turn, be measured by how much f(x|8) differs from f(x|4 + §(6)). Using Shannon’s information criterion
as the metric for this distance between the densities and assigning a uniform prior on the interval [6, 8 + 6(8)]
to represent ignorance (as distinct from the knowledge of ¢), Lindley obtained the Jeffreys prior (4).

Another early suggestion for the generation of ignorance priors was made by Perks (1947), who argued

that the prior distribution should reflect the anticipated asymptotic volume of confidence regions. Under general



regularity conditions, the confidence region around ¢ has volume that is asymptotically proportional to oyl
So if 8, is the true value we anticipate a tight confidence region near 8 if J(#) is large. The Jeffreys prior (4)
assigns a density to 4 that reflects this expectation. Welch and Peers (1963) made this confidence region
argument more explicit by showing that, asymptotically, one-sided Bayes confidence sets generated from Jeffreys’
prior are closer to classical confidence intervals than those of any other prior.

As far as our own application to time series models is concerned, the Perks justification of (4) is highly
relevant. Thus, when {g| = 1 in model (1) we anticipate confidence regions for the true value p, to be tighter,
indeed much tighter, than when |p] < 1. This expectation turns out to be properly represented in an ignorance
prior on the autoregressive coefficient p. Thus, the true cocfficient g is completely unknown, but the ignorance
prior still reflects the knowledge we have about the AR(1) model that were |p| to be large, the data would be
much more informative about p. This generic model characteristic that confidence sets will be tighter when | p|
is large is totally neglected in a flat prior. In treating all values of p as equally likely, the flat prior unwittingly
carrics information that downweights large values of p. In so doing, Bayesian inference under a flat prior on p
will be distorted by information that will bias the posterior towards stationary alternatives. Simply put, flat priors
are informative in time series models that permit nonstationarity and they inform by effectively downplaying the
possibility of unit root and explosive alternatives. In time series models with deterministic trends it is therefore

hardly surprising that Bayesian inference under flat priors strongly favor trend stationary alternatives.

32. A New Look at Bayesian Inference in the AR(1)
We start by considering the simple AR(1) model (1). Conditioning on the initial value y,, the Gaussian like-

Lihood follows from the density

frle, 0, y0) = ()P0 Texp{~(1/2)07 2], - £¥,-1)}-
Assuming a flat prior for (p, log o) leads to the usual purported "uninformative” prior for (p, o), viz.
(5) x(p, o) x 1/a,

and Bayesian analysis of (1) under this prior is identical to that of the linear regression model. The joint

posterior distribution is

(6) p(p, aly, yg) « o™ exp{~(1/26%)m(@) + (o - B},



where 5 = 2y, ¥, /&f_l, m{y) = )}'f_l, m) = mf and &, = y, — Ay,-;- The marginal posteriors are:

™ pr(ely ¥ & [m(@) + (o = Yo T,

® PHoY yo) = o Texp{~(1/2 ePym(@)}.

Note that the marginal posterior for p is a univariate ¢, distribution, p is symmetrically distributed about the
OLS estimate 5 and the variance of p is m()/(T-3)m(y), which decreases as m(y) increases.

Thornber (1967) and Zellner (1971, Ch. VII) both used this framework and emphasized its applicability
for stationary and nonstationary cases. Geweke (1986) used the same approach in a cross country applied study
but used a restricted domain in addition to the flat prior. Sims (1988) and Sims and Uhlig (1988) also use this
framework, although in the latter paper the model is even simpler because ¢ is assumed to be known for
computational convenience.

In place of (5) we now consider a Jeffreys prior. Setting § = (p, o) we find, after a little calculation, that

g = Lo 0 ’
0 i,

with

T 1 1-,7 [yo]21-p”

- + =l — 5,071
_ 1-p° 1-p° 1-p° 9} 1-p g
oo 2
m + T[XQ] P = 1
2 o
and
1,, = 2T/

The Jeffreys prior (4) is therefore given by
©)  nlp, o) = (1),

which is continuous in p for —o < p < . The prior is graphed and displayed as curve (a) in Figure 1(i) for the
caseyy = 0, T = 100 and o = 1; the log density is graphed as curve (a) in Figure 1(iii) and shows the density
over a wider range of p values. Figure 1(i) shows how the prior increases slowly to the value {T(7T-1) /2}1/ 2al

¢ = 1and then increases exponentially at the rate O(p*T™% for p > 1. The higher density for p > 1 reflects the
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prior knowledge we always have from the model that when the true value of the autoregressive coefficient py > 0
the data will carry more information about p;. Aside from carrying this generic feature of the model, the prior
is totally uninformative about p. As discussed in the preceding section, a flat prior on p is informative precisely
because it neglects this generic characteristic of the model and the time series nature of the data.

The shape of the prior (9) as a function of p sheds light on the simulation exercise performed in Sims and
Uhlig (1988) whose outcome is summarized in the extract (SU;). The implicit priors computed by Sims and
Uhlig are purported to represeat the prior under which classical p-values would correspond to Bayesian posterior
probabilities conditional on 5. Although there is erratic sampling behaviour in the priors they compute, although
their calculations are truncated just beyond unity and although, as they put it, their approach is
(5Uy "not formally justified by either a Bayesian or a classical argument” (op.cit., p. 2),
it is apparent that their simulation results (Figures 8 and 9, op.cit.) provide a very crude approximation {o the
Jeffreys prior (9), at least over the domain they consider. Sims and Uhlig take this imputed prior as strong
evidence of the unreasonableness of classical significance testing. Their assessment is based on comparison with
a flat prior which they mistakenly regard as uninformative, and on the subjective proposition that

SU,) "Everyone should agree that, on observing p = 1, our uncertainty about p is symmetric
(U, about p = 1" {op.cit., p. 6). .

However, as our calculations below show, posteriors computed under the Jeffreys prior are not symmetric,
especially for values of 5 in the interval 5 < 1. Thus, we see no reason to accept the subjective proposition
(SUy), and we are surprised that it should be put forward as a universal belief. In our view, the proposition
arises from a faulty intuition, one that comes from treating time series models such as (1) like the linear
regression model.

Under the Jeffreys prior (9), the joint posterior is
(10) p(p, oy, y0) = 677 texp{~(1/2 H)m(@) + (o — DY mOINE,
and integration over o gives the following marginal posterior for p wheny, = 0
(11) AP = Pp, oly.yp = 0) « I2Im(a) + (o — pYm)] 7.

Using the methods of Section 3.3 below it can be shown that (11) is an asymptotic approximation to the marginal

posterior for p when y, = 0.

The marginal posterior (11) has a shape that can be very different from that of (8). Its main propertics are:



(i) ps(p|y) has Pareto tails of order O(|p|™) as |p| + =. Thus, upon standardization, (11) is a proper
density. But its tails are like those of a Cauchy distribution and it has no finite integer moments.

(ii) Unlike (8), the density (11} is not symmetric about 5. It has one mode close to 7 and, depending on
the values of m(@) and m(y), it often has a significant sccond mode for some |p| > 1.

(ili) When the true coefficient py = 1in (1), the asymptotic behavior of the density based on (11) depends

on that of

220+ 1o - a2 WA T
which we see to be of O(T) for p = 1, of O(T'(T'n/ 2) for0 < p < 1andof O(T'T/z) for p > 1. Thus, Bayes
estimators that are based on (11) are consistent but at a faster rate for p > 1 than for p < 1.

(iv) Figures 2a and 2b illustrate typical shapes of the posterior (11) for data generated from a random
walk with initialization y, = 0 and T = 50. The figures graph the normalized posterior density (11) based on
a Jeffreys prior against that of the posterior (8) based on a flat prior. Each figure displays the posteriors for two
different data sets simulated from the model (1) with p = 1, and these are designated (a) and (b), respectively.

The results are choscn because they are representative of the typical posterior shapes that emerge from a large

number of simulations. The sample data characteristics for the two figures are as follows:

Table 1: Typical Simulation Outcomes, T = 50

P m() m(y) Phez10) Pep=z10)
(a) curves | 0.804 33.62 78.49 05494 0.0209
Figure 2a
(b) curves | 0.990 5899 200271 0.5250 03626
________ I___.________.____.____...._
(a) curves | 0.925 43.23 252.88 0.4382 0.1072
Figure 2b
(b) curves| 1.012 4029  5131.17 0.9027 0.8564

The flat prior posteriors (hereafter, F-posteriors) have symmetric bell shapes centered on the regression
estimate 5. Take Figure 2a first. In the case of the curves designated (a), the estimated regression coefficient
# = 0.804 is low and the F-posterior is so seriously biased downwards that the posterior probabilty, of p = 1, i.e.

Pi{p = 1) = 0.02, is ncgligible. By contrast, the Jeffreys prior posterior (hereafter, J-posterior) is bimodal in
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case (a). The principal mode is located slightly to the right of 5 and there is a second mode around the value
1.25. The posterior probability P{p = 1) = 0.54 is appreciable. Thus, while the F-posterior effectively rules out
a true p of unity, the J-posterior indicates considerable uncertainty about p and a true p of unity would definitely
not be ruled out. Note that because of the bimodality of the J-posterior, Bayes confidence sets of shortest length
would be disjoint and are therefore formally analogous to those that are generated by classical methods as
discusscd under 2(c) above. There is no "disconcerting topology” here, simply genuine uncertainty about the
gencrating mechanism, given the observed time series. The J-posteriors manifest this uncertainty, the F-
posteriors do not. Complaints about the disconcerting shape of confidence sets are as easily levelled against
Baycs methods in practice as they are against classical theory. But this is a diversion from the real issue of the
inherent uncertainty in time scries estimation that results from the serial dependence of the data. Flat priors
mask this uncertainty because they focus the posterior solely on the value of the fitted regression coefficient g,
just as if the data came from an independent sample with fixed regressors. In so doing they neglect the fact that
we know a priori that the true value of p influences the autocorrelation structure of the time series and hence
the anticipated amount of information that is carried by the data about p. By ignoring this generic information,
flat priors are informative (sic) and, in consequence, they bias the posterior towards stationary, or more specif-
ically, independent data alternatives.

Similar comments apply to the curves (a) in Figure 2(b). Here, 7 = 0.925 and the sample outcome is less
extreme. Nevertheless, the F-posterior ascribes only a 10% probability to the set {p = 1}. The J-posterior is
skewed to the right and gives an appreciable probability, viz. 43%, to the nonstationary set {p = 1}. Again, the
J-posterior indicates greater uncertainty about p than the F-posterior and puts greater weight on the possibility
that the series is nonstationary.

The second set of curves, which are designated "(b)" in Figures 2(a) and 2(b), represent another typical
outcome, in this case where the fitted regression coefficient 3 is close to unity. From Table 1, we bave 7 = 0.99
for Figure 2(a) and p = 1.01 for Figure 2(b). Both posteriors now attach an appreciable probability to the set
{p = 1} and thereby generally confirm the data generating mechanism in both cases, although Py(p = 1) is still
higher than Pg{p = 1). The J-posterior is also unimodal, like the F-posterior and the two densities are close in
location as well as shape. Thus, for the sample outcomes given in (b) there is no great difference between the

posteriors and Bayesian methods as well as classical tests confirm the presence of a unit root.
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(v) As indicated above, the flat prior has a tendency to bias the posterior towards the iid alternative (ie.
p = 0in (1)). By centering the posterior on p, it will in any event inherit the downward bias of the regression
estimator. But even when 5 is close to unity, there may still be a non negligible downward bias in the F-
posterior probabilities. For instance, in case (b) of Figure 2(a) in Table 1 we have a fitted coefficient 3 = 0.99
and yet Pe(p > 1.0) = 0.3626 which is substantially less than 50%.

The extent of the bias that is on average transmitted to the F-posterior can be measured by computing the
expected posterior probability of the nonstationary set {p = 1}. This is easily done by simulation and we found

the following estimates of these expected probabilities for the case T = 50 from 20,000 replications:
(12) E{PHp = 1)} = 0389, E{P{p 2 1)} = 0.625,

which confirm the downward bias of the F-posterior.

3.3. The AR(1) with Fitted Intercept and Trend
The methods of the previous section that employ ignorance priors may be used in much more complicated
time series models. We shall illustrate the ideas first by extending the analysis to a model with a fitted intercept
and trend, i.e.
(13) V2 B+ B+ py + e, £, =iid N(O, a?).
Solving for y,, we have
Yo = T e+ w1 = 2)/(L-p) + B{t/(1 = p) = p(1= BY/(1 = p)?} + Ay,
and when y, = 0,
2 2
EQA) = o*(1- B/ = ) + 8 {1 = D/t - oY + B/(1 = p) = p(1 = P)/(1 - #)'}

+ 2uB{(1 - p)/(1 = PYHI/(1 - p) = p(1 = /(1 = )}

oag(e) + ey lu, B), say.
Summing over ¢ we have
FIEG) = oagle) + oy, m B),

where

(14) ag = ay(p) = Zjagy = T(1 - ot - - a- N,
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(15) o = oo ) = Slayy = S (A - oYL 6 + B{A - oY - p(1- pY 1= ST,
and then the diagonal element corresponding to p of the information matrix for the model (13) is

o 2ZEG.) = agle) + ay(p, m, B)/0%.
The diagonal elements of the information matrix corresponding to u, 8 and o? are, respectively, a'zT(T +1)/2,
o 3T(T+1)(2T+1)/6 and o~22T. Rather than work with the determinantal form of the Jeffreys prior (4), it is
most convenient here to use the product of the diagonal elements of the information matrix. This leads to the

following form of the ignorance prior for the model (13):

(16) w(p, 0, 1y B) % 0 {ag(p) + ay(p, s, BY/PH".
The prior (16) is graphed in Figures 1(i)-(ii) for o = 1 and for various values of p and 8; and the log density is
grapbed in Figures 1(iii)-(iv) for a wider range of p values. These graphs display the same characteristics as
those of the earlier ignorance prior (9) for the simple AR(1). As yu and 8 depart from zero, the prior (16)
obviously increases, However, as shown in Figures 1(iii)-(iv) the proportional increase in the prior is greater for
p < 1thanitis for p = 1. Thus, we anticipate that the introductior. of deterministic components in the model
puts, relatively speaking, more additional weight on stationary p than it does on nonstationary p.

Let v = (s, B), §° = (p, 7" ) and use y_;, X and Z to represent the observation matrices of (y,_,), (1, 1)
and (y,_;, 1, f), respectively. Under a Gaussian likelihood, the joint posterior for (p, 0, 7} is
(an P(p, o, 1y) = x(p, 0, Mo Texp{~(1/2M)T 0, ~ 1 - Bt = oy -
We decompose the exponent sum of squares as

210~ 4= Bt = pyy) = m(@) + (6 -8y 22 2(5 - §)
(18) = m(@) + (p = PY'my0) + (v = 7' X" X(x - 9),
where m(2) = =102, 9, = y,— fi = pt — py,_, are the OLS residuals and
m(y) = y1Qxy-p Qx = 1 - XX X)X’
F=3+ XXXy (- ).
The component form (18) is especially useful in marginalizing the joint posterior (17). Although the prior

m(+) is an awkward functior of the parameters, the posterior (17) may be easily marginalized using the Laplace
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approximation for multivariate integrals. This approach was used by the author (1983) in earlier related work
and has recently received a good deal of attention in the Bayesian literature (see, especially, Ticrncy and Kadanc
(1986) and Tierney, Kass and Kadane (1989)). It provides a convenient and effective alternative to simulation
based numerical integration. In the present case we use the method to integrate out v from (17) as follows,

noting that the major contribution to the integral arises from a neighborhood of v = ¥,
DL WG Vo Texp{-(1/20)m(@) + (p — Yoy }exp{-(1/26*)(y ~ 7Y’ X’ X(v = 7)}d~

19) ~ @n)|X* X|V2r(p, 0, 7)o" T 2exp{~(1/26D)[m(@) + (p — pymx()1}.

Since the elements of X” X are at least O(T), the approximation (19) has a relative error of O(T 1y, For our
purposes this will generally be quite adequate.

It remains to marginalize (19) with respect to . We shall write
x(p, 0, %) = 07 ag(p) + ayle, /oY = 0N ay + 8y/0)
and the required marginal posterior is
ploly) & [2aq + & /00 T expl-(1/20)lm(@) + (p = pYmy)]}do .
Letz = 1/0% n = &, /ay and then
p(ely) « o1 + ) /22T exp{~/2)Im(@) + (o = BY'my()]}dz

= ol TR (1 + VAT exp{~(v/20)m(@) + (p = BY'mx)]}dv

1l

M2 TRE(T /20T /2, (T+3)/2; (1/20)[m(@) + (p = BYmx))s
where T'(+) is the gamma function and ¥(+, +; *) is a confluent hypergeometric function of the second kind (see

Erdelyi (1953), p. 255). Taking out the constant of proportionality and noting that n = &, /oy = n(p) since o

= ay(p) and &, = a,(p, 7) = a,(p, ¥(p)) are functions of p, we obtain the following marginal posterior for p:

(20) Ao 1Y) = ag0) 2 n(eY T2U(T /2, (T+3)/2; (1/20(p))lm(@) + (p — BY’mx))).

This is a useful but complicated analytic formula for the posterior density. It may be simplified considerably
when the order of magnitude of the final argument of the ¥ function is known, In the illustration we shall con-
sider below, the true valucs of the coefficients in (13) are 8 = 0, p = 0 and py = 1. The model then delivers a

stochastic trend with drift and the quadratic form my{y) = OP(TQ). For a range of values of p we find that



(21) (1/2n(p)m(@) + (o = ) ’my)]

is very large relative to the other arguments and the following approximation applies (see Erdelyi, op.cit., p. 278):

@2) T2, (T+3)/2; (1/20)[m(@) + (p - BYmx»)]) ~ {(1/20)[m(@) + (o - Yy} T

Using (21) in (20), we deduce a very simple approximation to the posterior:

@3) pAply) = ag(p)Hm@) + (p = BPmxO) -
Although this approximation to (20) does not hold uniformly in p, computations show that it is quite satisfactory
for our present purposes.

We make the following observations.

(i) Formula (23) is the direct analogue of our earlier formula (11) for the posterior density of p in the
AR(1). All that differs is that the regression from which 5 and @ arise now involves an intercept and trend as
in (13) and the sample sum of squares m(y) in (11) is replaced by the sum of squares, my(y), of the detrended
data.

(i) In view of this correspondence, the remarks we have already made in Section 3.2 regarding the proper-
ties of (11) also apply to (23). In particular, the posterior density (23) is asymmetric, it can be bimodal and the
confidence sets that it generates display considerable uncertainty about the true coefficient py. In each of these
respects it differs from the posterior density obtained from a flat prior. The latter, like (5), bas the form

x(p, 0, ¥) « 1/0 and we may therefore integrate out both -y and ¢ directly leading to the posterior density

(24) pply) x Im(@) + (p - 3)’m x{y)]-( -2

This density, like (7), is symmetric about the regression estimate 3. As before, it inherits the bias of 2. But this
bias is more severe in models with a fitted trend such as (13) than it is for the simple AR(1). We can therefore
expect confidence sets that are based on (24) to exhibit a stronger downward bias than similar confidence sets
from models with no fitted trend.

(iti) Figure 3 illustrates typical shapes for the posterior densities p{ply) and p(¢|y) for data generated
from (13) with u = 0.025, 8 = 0.0, 0? =1, p = 1and T = 50. Two different data scts are used and the sample

characteristics are given in Table 2.
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Table 2: Data for Figure 3

Regression Outcomes Posterior Probabilities

B B m@ m) |PAr=10) Pxp=10)

O

(a) curves| 0801 0228 0026 3925 94.75 0.4658 0.0203
(b) curves| 0974 0274 00175 4579 463.60 0.6348 0.269

The (a) curves in Figure 3 show a typical outcome where 5 = 0.801 is low. The J-posterior is bimodal and gives
a posterior probability, Py{(p = 1), to the nonstationary set of 46%. The F-posterior is centered on / and gives
only a 2% probability to a stochastic nonstationary process. The (b) curves show a typical cutcome where 5
(= 0.974) is close to unity. In this case, both posteriors give an appreciable probability to the presence of a
stochastic trend, although Py(p = 1.0} is substantially greater than Pg(p = 1).

(iv) Expected posterior probabilities of the nonstationary set {p = 1} were computed by simulation. From

20,000 replications using the model (13) with 4 = 0.025, 8 = 0.0, o =1p=1and T = 50, we found:
(25) E{PHp = 1)} = 0.0456, E{P}(p = 1)} = 0.2975.

Compared with the corresponding figures given in (12) for the simple AR(1) model, both expected posterior
probabilities are smaller. But the J-posterior still gives an appreciable probability on average to {p > 1}, whereas
the expected F-posterior probability is so small that inferences are certain to be biased away from finding
evidence in support of a unit root. Indeed, in using the model (13) and flat priors for its coefficients, we must
expect to find little evidence from the posterior distribution in support of a stochastic trend when such a trend

is, in fact, present.

3.4. Models with Fitted Trends and Transient Dynamics

Empirical models typically employ a richer dynamic structurc than (13). So, as a final illustration, we shall
consider the following autoregressive model with fitted intercept and trend
(26) Vo= B+ B YL, + €, £ =i N(O, 0%,

where Y(L) = 2’1‘1,'5,-Li. This formulation includes the empirical specifications used in Nelson and Plosser (1982),

where k < 6, and the model used in the exercises conducted by DeJong and Whiteman (1989), where k = 3.



It is convenient to employ the following alternative parameterization of (26)

(27 y=pt Bt oyt 2’1"1<p,-Ay‘ St g,
where p = Ziy; is interpreted as the long run autoregressive impact coefficient and ¢; = - Py +1%;
i =1,...,k-1) are parameters of the transient dynamics. If y(L) = 0 has a unit root, then p = 1 and (27)

is the parametric specification used by Nelson and Plosser in conducting classical augmented Dickey-Fuller tests
for the presence of a unit root.

As an approximation to a Jeffreys prior for the parameter of (27), we shall use

(28) (0, 0, b, B, 9) % ¥ Hag(0) + ayle, b, B)/o Y},

where ¢* = (g - . - » 94_y)- This may be interpreted as an approximation to the square root of the product of

the diagonal elements of the information matrix for ¢ = (p, o, p, 8, ¥)" . The approximation is based on the
value of this product when ¢ = 0. Moreover, when k = 1, (28) reduces to the earlier expression (16) for the
ignorance prior in the model (13). However, since it fails to take into account the time series effects of the
parameters ¢ and their impact on the information matrix, the prior (28) is not a true ignorance prior except
when o = 0. For values of ¢ very different from zero, we would expect this to lead to bias to the extent that (28)
is based on generic prior information concerning a model in which ¢ = 0. Thus, like the flat prior for the coeffi-
cient p in model (1), the prior (28) will be an “informative” prior in model (27) when the transient dynamics
play a major role in explaining the data. An adequate methodology for dealing with this extra degree of compli-
cation will be developed in subsequent work.

Let ¥(0) = (Vg - - - » Y-g41) De the vector of initial values for (26), let V be the matrix of observations of
(L6, 8% 428y, 4,q)and let & = (u, B, 01, .. ., 0p)” = (7', 9 )’ be the corresponding vector of param-

cters. Then the joint posterior density for (p, o, §) is:
(0, 0, 61y, YO) & 7(p, 7, 8 Texp{~(1/267)EN(y, = 1 = Bt = pyey — 25 Yoy, ' }
(29) = n(p, o, 6)a Texp{~(1/26%)m@) + (p - pYomy()]}exp{~(1/20%)(8 — 8)" V" V(6 - §)},
where
E=8+(@WWVy, -0
myy) = y210py, Oy = I -V VYV,

A wTa?
m(d) = Ty,



and 8, = y,— = Bt — By,.q — = '@, are the OLS residuals.
We now marginalize (29) with respect to é using the Laplace approximation described in the previous

section and subsequently marginalize with respect to o, leading to the following marginal posterior for p:

(30) 2AplY) = ag(p) (Y TPUT /2, (T+3)/2: (1/20(e))m@) + (p — BYmy)))

which may be approximated by

(31) AP D) « ag(p)Am@) + (o — BYmy

when the third argument of ¥ is large.

We note the following:

(i) The marginal density (31) has the same form as our earlier formulae (23) and (11) for simpler models.
It has the convenience of being applicable for an arbitrary choice of autoregressive order k in (27).

(i) The posterior density for p corresponding to the flat prior n(p, 6, o) x 1/0 is

pAply) = [m@) + (p - 5)2mvo,)]-(T—k—1)/z

and this density has properties analogous to those of (24).

(iv) Figure 4 gives the posterior densities p/{( |y) and pe(¢|y) for the same data generated from (13} that
was used to construct the densities given in Figure 2. For Figure 4, however, model (27) is fitted with lag length
k = 3 and this is the regression that is used to construct the posterior densities. The regression outcomes and

posterior probabilities of {¢ = 1} are given in Table 3.

Table 3: Data for Figure 4

Regression Outcomes Posterior Probabilities
F B ﬁ 6’1 ‘;’2 m@)  myy) Plpz1) Pe(p = 1)
(a) curves| 0.738 0275 0049 0453 0028 33773 74275 0.184 0.011

(b) curves| 0928 0324 0060 -0364 0018 38104 358832 0.206 0.080
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The outcomes are similar to those in Table 2 and Figure 3. However, the  regression coefficient is smaller, due
to the extra regressors, and the posterior probabilities of {p = 1} are reduced. Note from Figure 4 that p/(p|y)
is still bimodal for case (a).

(ili) An interesting extension of this comparison is to data with a richer time series structure, We suppose

that the errors on (13) follow an MA(1) leading to the revised model
13y’ V=Bt B Yyt €, e, =€+ be e miid N, oF)

and we use this model to generate data for various values of §, while the more convenient AR model (27) is
used for inference. We use p = 1.0, p = 0.025, 8 = 0.0 and 4 € {-0.2, 0.2} in (13)" to illustrate the effects of
this extension. More extensive simulations will be conducted in later work.

Figures 5 and 6 show the posterior densities p{p|y) and p(p|y) for two typical data sets corresponding
to § = -0.2 and § = 0.2, respectively. The data characteristics are shown in Table 4. Again we have evidence
of bimodal J-posteriors (the unbroken curves (a) in both Figures 5 and 6) and the F-posteriors continue to attach
less probability to nonstationary processes corresponding to { g2 1}. Note, however, that for § = 0.2 the differ-
ences in shape between the posteriors seem less pronounced, although the actual numerical differences between

the posterior probabilities of a stochastic nonstationary process are still large.

Table 4; Data for Figures 5 and 6

i Regression Outcomes Posterior Probabilities

boooh B e e mey) mO) | PlezD) PHez1)
Figme s @ curves| 072 0914 0040 0011 0131 9859 22271 0.198 0.000
=02 () curves| 0975 0290 0004 -0030 -0098 90.44 104627 0,691 0.221

_______ PP R
Figwes () curves| 0780 0581 0005 0459 0149 6812 19736 0.021 0.000
0 =02 )curves| 0944 0249 -0005 025 -0094 8793 76592 0.350 0.063

(iv) Table 5 provides simulation results for the expected posterior probabilities of {p = 1} from 20,000

replications when T = 100 for different values of 6.



Table §

T =100 EPH{pz1)] E[Pfpz 1)]
08 0.000 0.999
.6 0.012 0.993
0.4 0.033 0.914
0.2 0.044 0.678
0.0 0.046 0.395
0.2 0.049 0.242
04 0.054 0.192
0.6 0.063 0.183
0.8 0.072 0.138

In all cases the F-posterior probability leads to inferences that are biased away from models with stochastic
trends. The expected J-posterior probability of { = 1} is more consonant with the true data generating mechan-
ism for each value of §: We notice that its value is sensitive to #, especially as § becomes large and negative.
Indeed, for ¢ = -0.8 the posterior probability of p = 1 is on average unity. This outcome is the result of the bias,
discussed earlier in connection with the prior {28), that results from the fact that (28) is no longer an ignorance
prior when @ = 0. As 6 in (13) approaches the value -1.0, the true data gencrating process when 8 = 0.0 and

p = 1.0 tends to
(13)~ V= te.

In this case, the prior (28), which is flat for ¢, effectively downweights trend stationary alternatives such as (13)”
in favor of difference stationarity. A true ignorance prior would take into account that confidence sets for p are
substantially different for MA coefficients § around -1.00 compared with those around ¢ = 0.0. Indeed, in a

classical setting with p = 1.0 and p = -1.0 the coefficients p and ¢ are strictly unidentified in an ARMA(1,1).

4, EMPIRICAL APPLICATION TO THE NELSON-PLOSSER SERIES

We apply the methodology of the previous section to the historical time series studied by Nelson and Plosser
(1982). For each of the 14 series we obtain the F-posterior and J-posterior for p from a fitted model of the form
(27). Nelson and Plosser chose values of & in the range 1 < k < 6 and DeJong and Whiteman (1989b) in their
reconsideration of these data chose k = 3 for all series. We shall report results for both k = 1 and k = 3 to

illustrate the impact of different time series specifications on Bayesian inference.



Figures 7(i)-(xiv) give the posterior densities of p for the series. In each figure the two solid lines represent
the J-posterior computed from ignorance priors using the AR(3) and AR(1) models, coded "(a)" and "(b)",
respectively; the dashed line gives the F posterior computed for the AR(3) model--it may be regarded as a
smooth and untruncated approximation to the posterior of the largest autoregressive root given by DeJong and
Whiteman. Table 6 reports the posterior probabilities of nonstationarity (p 2 1) and ncar nonstationarity

(p = 0.975) for each series and for each fitted model.

Table 6: Posterior Probabilities of Stochastic Nonstationarity

Model AR(1) + trend AR(3) + trend

Series Pi(p 21) Pelp 21) | P(p 20975) Prlp 20975) | Pyl 21) Pelp 21) | Fy(p 20.975) Frlp 20.975) | Fpyls 20975)!
Reat GNP 0193 0023 0.242 0.054 001z 0.002 0.019 0.005 0.003
Nominal GNP 0361  0.092 0485 0.203 0074  0.021 0.141 0.063 0.020
Real per capila

GNP 0163 0018 0.206 0.044 0010  ©.001 0.016 0.004 0.003
Industrial

Production 0124 0001 0.133 0.005 0188  0.000 0.192 0.003 0.001
Employment 019  6.016 0.240 0.047 0040  0.004 0.060 0.014 0.004
Unemploymeat ™ | 0126  0.000 0.129 0.001 008  0.000 0.087 0.000 0.002
GNP Deflator 0162  0.03% 0.288 0.125 0.020  0.005 0.062 0.029 0.010
Consumer Prices | 0.601 0272 0.880 0.713 017 0082 0.652 0528 0.19%
Nominal Wages | 0319  0.075 0452 0.1%0 0045 0012 0.100 0.046 0.018
Real Wages 0103  0.011 0.140 0.031 0014 0001 0.021 0.005 0.003
Money Stock 0315 0.080 0.484 0.230 0008  0.003 0.044 0.025 0.005
Velocity 0353 0051 0.483 0.168 0537 007 0.642 0.204 0592
Bond Yiclds 0999 0968 0.999 0.992 09%  0.764 0.998 0.852 0.617
Stock Prices 0.301  0.028 0.385 0.092 0215 0017 0278 0.059 0.040

‘Ihe penultimate four columns are based on an AR(4) + trend for this serics, following Nelson and Plosser (1982).
YFrom Table 2 of DeJong and Whiteman (1989).

The observed differences in the posterior distributions are major, especially between the use of the AR(1)
and AR(3) models, showing that time series specifications have an important influence on posterior probabilitics.
For all series, the J-posterior is located to the right of the F-posterior and attributes a greater probability to the
nonstationary set {p 2 1}. The J-posteriors are skewed to the right and for four series, notably industrial produc-
tion (iv), the unemployment rate (vi), velocity (xii) and stock prices (xiv), they are bimodal. In the case of
industrial production and the unemployment rate the bimodality arises in such a way that the main body of the
distribution is located to the left of unity around the first mode and the density declines almost to zero between
the modes. These two cases are very similar to the typical simulation outcomes given carlier in Figure 2a. Like
those cases, the bimodality here leads to disjoint shortest confidence sets and indicates substantial uncertainty

about p. The bimodal posterior for velocity and stock prices takes a different form in that the density is substan-
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tial between the modes and confidence sets for p would not be disjoint. For these series, there is less uncertainty
about p and the posterior probability of nonstationarity is substantial in each case.

Table 6 allows us to compare the postetior probabilities of nonstationarity for different model specifications
and for flat prior and ignorance prior approaches. For the AR(1) + trend model with an ignorance prior, we
have P{p = 1) = 0.30 for seven scries (nominal GNP, consumer prices, nominal wages, money stock, velocity,
bond vields and stock prices) whereas for the same model with a flat prior, Pp(p = 1) 2 0.30 for only a single
series (bond yields). For the AR(3) + trend model with our approximate ignorance prior { ), we have
P/(p = 1) = 0.15 for five scries (industrial production, consumer prices, velocity, bond yields and stock prices),
whereas for the same model with a flat prior, we have P{p 1) 2 0.15 again for only one series (bond yields).

It seems reasonable to conclude that, under conditions that approximate ignorance about p, there is substan-
tially more evidence in support of stochastic trends than there is under an informative flat prior on p. Moreover,
this conclusion appears robust to model specification.

Our empirical results under a flat prior on p arc very similar to those reported in DeJong and Whiteman
(1989b) for the dominant root in the AR(3) characteristic equation. Their results, which were obtained by simu-
lation based numerical integration of the joint posterior, arc based on the posterior probability of the near
nonstationary set {A > 0.975} for the largest root parameter A of the AR(3). The final column of Table 6 reports
this probability as Pp{A = 0.975) and is taken from Table 2 of Delong and Whiteman (1989). DcJong and
Whiteman infer from their results that evidence in support of a stochastic trend is present for only two series:
velocity and bond yields. An inspection of the penultimate column of Table 6, which reports our P{(A 2 0.975),
shows that our data support a similar inference. We differ by including also consumer prices, for which
Pi{(p = 0.975) = 0.528. Only for these three series, viz. velocity, bond yields and consumer prices, are the
posterior probabilitics of {p = 0.975} and {A 2 0.975} appreciable. For all other scries the posterior probability
of a near nonstationary set is negligible: less than 6% for Pr(p 2 0.975) and less than 4% for Ppmke z 0.975).

Using flat priors, therefore, the evidence from the Nelson-Plosser time series is that stochastic trends are
unlikely for most of the series. Our results with ignorance priors, on the other hand, show that these inferences
based on flat priors are fragile and they are biased away from stochastic trend alternatives. The DeJong and

Whiteman conclusions should be interpreted with these qualifications in mind.



5. CONCLUSION

This paper set out to criticize recent Bayesian critiques of unit root econometrics. In so doing we have put
forward an alternative Bayesian methodology based on the notion of ignorance priors and shown how it can be
used in quite general autoregressive models with fitted trends. Our simulation exercises and our empirical
application of these methods both indicate divergences that can be substantial from the results of a flat prior
Bayesian analysis. This alone should be sufficient to alert us to the possibility of fragilc inferences. But, as we
have shown in addition, flat priors on the autoregressive cocfficients are informativé in time series models, con-
trary to their apparent intent, and they typically downweight unit root and explosive alternatives in the posterior
distribution. Moreover, as our illustrations also demonstrate, Bayesian inferences are by no means robust to
different time series specifications and in some cases choice of lag length in an autoregression can have a major
impact on inference. Finally, our simulation exercises and empirical results lead us to expect that an objective
Bayesian analysis of stochastic trends will sometimes produce outcomes that are quite ambiguous due to a widely
dispersed bimodality in the posterior distribution. In these cases, Bayesian methods reproduce in their own way
a type of uncertainty that we normally associate with low discriminatory power in classical statistical tests. Each
of these factors should be borne in mind when interpreting Bayesian analyses of time series models.

In the light of these conclusions, we submit that a Bayesian analysis of stochastic trends is by no means
unequivocally superior to classical alternatives. Bayesian methods bring convenience and simplicity but also a
host of issues that complicate inference in time series models and that go unmentioned in the Sims and Sims-
Uhlig critiques. When these issues are ignored, as they most certainly are in the mechanical use of flat prior
Bayesian analysis, the risk of misleadingly precise and biased inferences about stochastic trends is unacceptably
large. Potential users of Bayesian methods need to be alerted to these shortcomings. In our view, one of the
roles of scientific criticism is to do just this. To echo in the present context the sentiments that T. S. Eliot
expressed about literary criticism in his Convocation Address to the University of Leeds, one would like to hope
that one’s

"... critical writings may be less fired by enthusiasm but informed by wider interest and, one hopes,
by greater wisdom and humility” (op.cit., p. 26).

In criticizing the critics of unit root econometrics this essay has attempted to put forward a wider and more
objective perspective on Bayesian inference in time series models. We make no bones about the fact that we

disagree with the deconstructionism of Sims (1988) and Sims-Uhlig (1988), we find their arguments about
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classical methods to be in error and their prescription of flat prior Bayesian methodology to be flawed. But we
do see value in a Bayesian approach to inference that properly acknowledges the limitations of the approach.
And we see no reason why empirical researchers should not judiciously pursue this approach as well as ¢lassical
methods. If these perspectives on unit root econometrics are found by others to be of interest then this essay

will have served its purpose.
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