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0. ABSTRACT

Using generalized functions of random variables and generalized Taylor series
expansions, we provide almost trivial demonstrations of the asymptotic theory for the LAD
estimator in a regression model setting. The approach is justified by the smoothing that is
delivered in the limit by the asymptotics, whereby the generalized functions are forced to
appear as linear functionals wherein they become real valued. Models with fixed and
random regressors, autoregressions and autoregressions with infinite variance errors are
studied. Some new analytic results are obtained including an asymptotic expansion of the
distribution of the LAD estimator and the results of some earlier simulation studies are

explained.

Keywords.  Autoregression, delta sequence, density estimate, domain of attraction,
generalized function, generalized Taylor series, LAD estimator, stable process.
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"Shall I refuse my dinner because I do not fully understand the
process of digestion." O. Heaviside

1. INTRODUCTION

Classical asymptotic methods such as those given in Cramér (1946, Ch. 33) are
usually thought to apply only in cases of regular estimation. Here smoothness conditions
facilitate the use of Taylor expansions of the objective function and the associated first
order conditions. When supplemented with preliminary consistency arguments, these
expansions then yield the required asymptotic distribution theory in a few simple steps.
With more tiresome algebra and higher order smoothness conditions, they also supply the
formulae for Edgeworth expansions to second and higher orders.

The absence of smoothness in the criterion function that occurs in what are called
non—regular cases is generally thought to prevent the use of this classical approach. Early
studies that dealt with non—regularity complications by direct methods were Daniels
(1961) and Huber (1967). More recently there has been a move towards the use of stochas-
tic equicontinuity arguments and empirical process techniques to address the complications
that are presented by the absence of smoothness and continuity in the criterion function.
These techniques have been successful in accommodating a wide range of non-rtegular
cases, including simulation based optimization estimators such as those that are employed
by McFadden (1989) and Pakes and Pollard (1989). They have also found attractive appli-
cations in the development of asymptotics for semiparametric models (Andrews, 1989).
The work of Pollard (1984, 1985, 1989a, b) has been especially influential in advancing the
use of these techniques in econometric applications. However, as pointed out by Pollard
(1989a), stochastic equicontinuity arguments are less accessible to many potential users
even though they often capture the key technical difficulty in the asymptotics. Partly in
response to this objection, Pollard presents an alternative approach for studying the

asymptotic theory of the least absolute deviation (LAD) estimator in a simple regression



context. Pollard’s alternative approach builds on the convexity of the LAD criterion func-
tion to comstruct a quadratic approximation whose minimand is close enough to the LAD
estimator for the latter to share the same asymptotic normal distribution.

The present note is related closely to Pollard (1989a). However, instead of putting
forward an alternative approach, our objective is to show the serviceability of the classical
approach in non—regular problems like that of the LAD estimator. The idea we put
forward is very simple. If the criterion function has non--regularities like discontinuities in
its derivatives, these may be accommodated directly by the use of generalized functions,
provided the discontinuities are smoothed out asymptotically. First order conditions and
Taylor representations can be written down in the usual way but they take the form of gen-
eralized Taylor series. They may be formally interpreted as linear functionals in terms of
the empirical distribution function. As the sample size n- o, these linear functionals
become well behaved provided some basic smoothness conditions are imposed on the under-
lying probability law of the data. In effect, with this generalization of the classical
approach the asymptotics provide the smoothness that is required to justify the Taylor
development and thereby the resulting asymptotics.

Our approach is heuristic and we do not claim to deal rigorously with all of the
mathematical issues that arise. However, it is hoped that our extended treatment of LAD
asymptotics will serve to illustrate the utility of these ideas and to stimulate the interest of
others in the use of these methods. To continue the theme put forward by Heaviside in the

line that heads this article, we believe there is still good food to enjoy in classical dinners.



2. LAD ASYMPTOTICS: THE HEURISTICS

Suppose ¥, 18 generated by the linear regression
(1) yt=x£ﬁo+ut t=1,...,n),

where the parameter vector ﬂo ¢ RS , the errors u, satisfy (4;) below and (x;) con-

stitutes a bounded, deterministic sequence for which
-— -1 ’

(2) Q=1 Ixx;-Q,

a positive definite limit, as n-w.

A,) The sequence (u,) s #id with zero medien and probability density 1(-) that is
1 t

positive and analytic at zero.

The LAD estimator fin is chosen as a solution of the extremum problem
(3) B = argminfo™ '8} |y, ~x;4]].

This is the standard framework for deriving the consistency and asymptotic normal-
ity of the LAD estimator. The original work is due to Bassett and Koenker (1978). An
extensive study with an analysis of autoregressions as well as the regression model (1) is
provided by the monograph by Bloomfield and Steiger (1983). A recent and novel treat-
ment of the subject that includes an historical overview of research and some additional
references is Pollard (19892). Our condition (4, ) is stronger than Pollard’s "error assump-

tion" on wu, in that we require the density f(-) to be analytic rather than simply

1
continuous at the origin. But there will be gains to making this stronger assumption. Not
only does it help in developing generalized Taylor series but in so doing it facilitates the
subsequent development of higher order asymptotics.

In most cases of interest and certainly under the standard assumptions of the regres-
sion model given above, the consistency of ﬁn is easily established by conventional

arguments that involve the limit of the objective function in (3). Amemiya (1985, pp.



152-153) is a convenient source for the details of this approach. In what follows, we shall
assume this argument has already been made and that Bn “p ﬂo as n-+w.

Qur concern is with the asymptotic distribution of ﬁn . Our approach is to proceed
as if the problem were regular and the objective function were differentiable in J.
Although the derivatives do not exist in the usual sense, they do have a meaning as gener-
alized functions. Moreover, they are real valued and unique when they appear in an
appropriate linear functional form. Since this is precisely how they do arise in the limit as
n-w, it turns out that we may proceed with the usual Taylor series expansion of the first
order conditions to extract the asymptotic theory.

We start with the first order conditions for ﬁn from (3). These are

-

(4) n™'5} sgaly, - x{ B )x, = 0,

where sgn(X)=-1 for X <0 and =1 for X2>0. We now expand (4) in a Taylor
series about its value at ﬂo . Note that d/dX(sgn(X)) = 2§X) where §X) is the delta
(generalized) function (Gelfand and Shilov (1964), hereafter simply GS, p. 4). We denote
successive derivatives of the delta function by 6(k)(X) for k=1,2, .... Proceeding in
a purely formal way by treating sgn(-) as analytic (it is already piecewise analytic) and

its derivatives as ordinary functions, we would have the expansion
-1 -1 ,
(5) 0=n EI; sgn(u, )x, — 2n Exllﬁ(ut)xtxi(ﬁn — ﬂo)
k
— k— s
258~/ ER e, )x, [xi(ﬂn - ﬂo)] .

Let us now suppose that we can ignore all but the first two terms of (5) as n-w. Scaling

by 2l/? and taking the error to be op(l) , we have
~1/2 N J.1/2,
(6) n Erll sgn(u,)x, = 2[11 Etllé(ut)xtxt]n (8, — ﬁo) + op(l) .

Since (sgn(u;)) is iid(0,1), the left side of (6) satisfies a multivariate extension of the

Lindeberg—Lévy theorem, leading to



(1 o /250 sgn(u,)x, -4 N(O.Q) -

On the right hand side of (6) the matrix factor in square brackets satisfies a weak law of
large numbers, viz.
-1 . -1
(8) ™ 5 8(u, )xx; < limy 0 ETE(8(u,))xyx; = £(0)Q -
Putting (6), (7) and (8) together we deduce directly the limit theory for the LAD

estimator, i.e.

©) o/2(p, - 8%+ N[0, /2 102}

3. AN ATTEMPT AT RIGOR

To attach some rigor to this heuristic skeleton, we need to justify three of the steps
just taken. Specifically, (i) the Taylor expansion (5); (i) the op(l) error in (6); and
(iii) the weak law of large numbers (8).

Let us start with (i). Obviously, (5) has no meaning as an ordinary equation or as
an ordinary Taylor series expansion. But it can be interpreted in terms of generalized func-
tions and as a generalized Taylor series. Thus, suppose ¢ is a suitable test function for
linear functionals of a generalized function g. Suppose, for instance, that ¢ belongs to

the space S of entire functions which, together with their derivatives, approach zero more

rapidly than any power of 1/|u| as |u| - (e.g. e " ) and that the linear functional
(10) (8(u+h), ) = | gluth)p(u)dn = | gls)els-t)i

is an ordinary analytic function of h in some neighborhood of h =0 for all ¢. Then,
gh(u) = g(u+h) is a generalized analytic function of h (GS, pp. 149-150). Indeed, by
expanding  ¢(s—h)  about its value at h=0 in (10) and mnoting that
&9, o) = (g, -1/l , we obtain

(glu+b), ) = 22_ (/-0 e, o) = 33_(1/i0b¥e), o)



which we can write in formal terms as
_ 1o ()1
&h = 2"‘3']=0(1/J!)Sh b

- 7]
Setting gy (u) = sgn(u+h), h=x{(f - ﬁo ) and noting that J sgn(u-+h)p(u)du is
o

analyticin h forall p €S, we deduce the expansion given in (5) above.

Next consider (iii). The limit given on the right of (8) is well defined because the
generalized function &(-) arises only through the linear functional E(§(u)) = J&(u)f(u)du
= f(0) . Note that this last expression remains true even though the demsity f(-) may
exist only in a neighborhood of zero. This is because generalized functions like §(-) may
be defined locally in terms of their operation on test functions with support in arbitrarily
small given neighborhoods of every point (see GS, p. 140).

To be more complete in deducing (8) we may replace é(-) with its inverse Fourier
transform representation, which we signify by " F-l(-) ", le.

&u,) = F(1) = (20) r e Vo,
-
Again, the integral is formal and the correspondence produces the Fourier transform pair of
generalized functions (&(+), 1) (GS, p. 168). In place of (8), we may now show that

T L Y ) . 1 -yo
(11) n 21119 XXt ~p im EIIIE(e Jxxi = cfu(—a)Q :

-iuta —iuta
But this follows immediately because (e - E(e )) is iid with zero mean and

m
finite variance. Upon inversion of (11) we get (8), since f(0) = (1 /21r)J cf (¢)do. In
-

fact, (11) may be regarded as the appropriate way to interpret (8) as a weak law for gener-
alized random variables.

This leaves us with (ii). Working from (5) we have

(12) n—1/22111 sgn(ut)xt = 2Annl/2(ﬁll - ﬂo) ,



where
-1 — . ]
Ay = 1836 xxg + By (NG e 1050 u x x [ x;(B, - 50)]
and we have to show that the second term of A is o p(1) as n-o.
As with (8) we have
n_lzlllé(k)(ut)xtxi “p im [n_lElllE(ﬁ(k)(ut))xtxi] = (—l)kf(k)(O)Q ,
where we use the fact that
@, 0= Fuiua =6 040 = 240,
(GS, p. 26). Moreover, since f(-) is analytic at zero, power series such as

k -1
52_,(1/k){E)0) ek = (8(e) - £(0) - 1 (0)e)/e
are convergent and of O(e) for all e in the vicinity of zero. However, Bn " ﬂg and

xt(ﬁ . ﬁo ) “p 0 uniformly in t. It follows that the second term of A11 converges in

probability to zero as required.

4. AN ASYMPTOTIC EXPANSION
One advantage of the above approach is that it lends itself to the development of

higher order asymptotic expansions. To see how to proceed we set q, = n1/ 2(Bn - ﬂo ),
-1/2 1/2

L=n / )3111 sgn(u, )x /

scale the expansion (5) by n™/“ and write it in the form

t }

_ ~1/2 -1 -1
(13) 0=y + bijij+ 0 oo T ¥ Yijknnkom 0 )

where we use the summation convention. Inverting (13), we have up to Op(n_l/ 2)

(19 i = G+ P (G )5 ) + 067

Next observe that the distribution of sgn(u,) is symmetric, that the distribution of ¢
will admit a valid Edgeworth expansion and that, because of the symmetry of the distribu-

tion of sgn(u,), there will be no skewness term in this expansion. Thus, we may write



symbolically
_ -1, _ -1
4L =4 N(0,Q) + Op(n y=4 + Op(n }, say
The second term of (14) is Op(n-'l/ 2) and
-1 ’ ’ —_—
by =1 T8 (o)x Xy (COE Oy = by 52y,

where

I5tx, x

Tike= =lm, 3 1547t

Thus (14) would appear to yield a conventional Edgeworth expansion for the distribution
of q 0 However, there is an additional complication that arises from the components LZij
and the elements l;j of its inverse. We have
a1
‘2ij = 2n E?&(ut)x 6~ 2f(0 LZ]J

Similarly, define g;j =(1/2 f(O))ql-’ . Then (14) may be written as

_j ij A —1/2,ij m m ~1/2
(15) oy =g+ (G- Bt P (B G ) + 0y
The order of magnitude of the second term of (15) depends on that of
-1
tZij - £2ij = 2n E?(ﬁ(ut) — £(0))x,x; + o(1) .
This term is much more difficult to analyze and is larger than O p(n_l/ 2) .

To see what is involved, set x, = 1 and consider

t
(16) 15 (H(ny) ~ €0) = | w)a(F,(0) - Flw)),

where F s the empirical distribution function of u, and F is the cdf of u, . In

general, we have the weak convergence (Billingsley, 1968, p. 141)

(17) VB(F,_ () - F(w)) 44 Y(u) ,
where Y(-) is a Gaussian process with covariance kernel F(u)(1—F(u)), ugdv.

However, we cannot employ (17) in (16) because the implied limit variate, viz.



J 5(u)dY(u) , does not exist. For instance, if u, were uniformly distributed then Y(u)
R
would be a Brownian bridge process and Jnﬁ(u)dY(u) would be its "derivative," which,

like the derivative of Brownian motion, does not exist as an ordinary random variable.

There is another way to proceed. Note that (16) is the derivative at s = 0 of

v} ((1/2)sgn(u,+5) — F(5)) — 1 B1(1/2)sn(u,) — F(0))
= {F_(0) - F ()} - JqdF .

-1/3

For s = —tn this expression is

~{F (7% = F_(0) - 10}t 1/3 — (1/2)6 (0P 3} + o(n~2/3)
=-X_(t) + o(n—2/3) , say.

Now Kim and Pollard (1990, theorem 4.7 and example 6.5, p. 216) show that
(18) o2/34F_ (1713 F _(0) - 50)ta 3} 44 (1720420 (0) + £(0)!/2w(1)
with W(t) a two—sided Brownian motion. Thus,
2/3 1/2
n2/3%_(t) 4, 10}/ 2w (1) .

Define { (0} to be the left derivative of the concave majorant of F (i.e. the smallest
concave function on [0,0) that is everywhere greater than or equal to F ). Kim and
Poliard further show that nll 3(fn(O) —1(0)) has a limit distribution given by that of the
slope at the origin of the concave majorant of Brownian motion with quadratic drift, a
result that is originally due to Prakasa Rao (1969). Treating fn(O) = n“l)lrllﬁ(ut) as an
estimate of f(0), these results suggest that (16) and, hence, £2ij _£2ij are both
Op(n_ll 3) . But the second term in the expansion (15) involves the product
(L;J — QJ)Q i where £ = d N(0,Q) . Because gl has zero mean this term will contribute
to the asymptotic expansion of the distribution of q, only through the variance of fl
and, hence, will produce an adjustment of O(n_z/ 3) . It follows that only the first and

third members on the right side of (15) contribute to the expansion up to O(n—1/ 2) . In
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particular, setting § = ¢ =4 N(0,Q) we have
(19)  ag; = (1/250))a%; ~n 7 21/2 5008 (O)al g (e 0™t ) + 0 a7

Observe that when 1/(0) =0, which will be the case for symmetric error distributions,

-1/ 2) itself drops out, leaving only the first order asymptotic term. In

the term of Op(n
the general case, we can derive an asymptotic expansion of the density of some linear com-
bination such as r=c¢’q =¢q; of the standardized error vector q_ . The formulae for
the expansion of the density up to O(n'—l/ 2) may then be deduced from those in the lit-
erature (e.g. Sargan (1976) and Phillips (1977, 1982), where the last reference puts them in
a form that is especially simple to interpret). With a little algebra, we obtain the following

explicit expansion to O(n_1 / 2) :
pat(r) = (1/w)ele/w) 1 + 57 2 gay /) + ag(a/)}] + o),
where ¢(x) = (21r)—1/ 2exp(—{l /2)x2) and the parameters are:
o = (12 50 0
a; = (1/2 w)qstfst —3aq,
2, = (1/2 *)(1/2 50)) %, e c, |
£, =-2(1/2 f(o))3f'(o)ciqiirjkﬂksq“ .

5. ESTIMATING THE COVARIANCE MATRIX

In conventional Taylor expansions of the first order conditions, the Hessian is often
used to produce an estimate of the asymptotic covariance matrix of the estimator. The
same idea may be applied here. Taking the dominant member of the "Hessian," 2An , in
the expansion (12) to be 2n_1)31116(ut)xtx£ we simply replace the delta function in this

expression by a delta sequence & (-) for which

(20) lim___ E 6_(x)e{x)ix = ¢{0)
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1/2 —mx>
for all @€ S. For example, the delta sequence & _(x) = (m/x)"/“e satisfies (20)
and corresponds to a density estimate based on a normal kernel. The covariance matrix

estimate arising from this delta sequence takes the form
-1 ,
2n Elllém(ut)xtxt .
The errors, v, , in this expression can be replaced by residuals to produce a feasible covar-
iance matrix estimate. The parameter m is like a bandwidth (for the normal kernel given

1/2 ) and must be chosen so that m - w , nm_llz - o as

above we would have h=1/m
n-o (i.e. h-0, nh-w) for consistency (e.g. Silverman, 1986, p. 71).
Since delta sequences encompass most density estimates (e.g. Walter and Blum,

1979), this approach to the estimation of the covariance matrix is really quite general.

6. MODEL EXTENSIONS

It would appear that the approach suggested here remains valid for a large class of
models with weakly dependent, rather than iid, errors. All that is required is that
¢ = o~/ 22’; sgn(u,)x, satisfy some central limit theorem for weakly dependent errors.

For example, suppose that u, satisfies
(A4) The sequence (w,) s strictly stationary and strong mizing with mizing
coefficients ﬁk that satisfy ETﬂk <w, and u, has zero median and probability

density 1(-) that is positive and analytic at zero.

Then sgn(ut) is also strong mixing with mixing coefficients that satisfy the same sum-
mability condition and we have the central limit theorem
n"1/2)3111 sgn(u, )x, 4 N(0,V),
where
. . -1 ,
V= Bi=_mRkE{sgn(u0)sgn(uk)} , with Ry =lim __n Erllxtxt k-

When X, = 1 we have
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V= E(sgn(uo))2 + 28, _ E(sgn(uy)sgn(uy))
=1+ 25, _,[{P(u; <0, u <0)+ P(ug>0,uy > 0)}
—{P(uy>0,u < 0) + P(uy < 0, uy > 0} .

Using the same expansion (5) as before, we deduce the following limit theory for the LAD
estimator
al/2(3 - @) -4 N, (1/2£0)*Q7IVQTY) .

For inference V, as well as f(0), now needs to be estimated. The situation is entirely
analogous to the estimation of autocorrelation consistent covariance matrix estimation as it
arises in conventional regression contexts (cf. White (1984), Newey and West (1987)).

Models in which the carrier variables x, are random may also be accommodated.
The details are close to those given in Pollard (1989a) so we shall only touch on them
briefly here. Suppose the x, are strictly stationary, ergodic, square integrable and Tt—l
measurable for some increasing sequence of o—fields 7, , suppose u, is independent of
F

t—1
z, = sgn(u,)x, . Then the following two conditions hold:

and satisfies (4;) and let V = E?E(ztzi) = nE(xtxi) =n{l,  where

~1/2 —-1/2, —1/2
maxtgn”vn / zt" = ma'xtSn"Q / (n / zt)" "'p 0,

1/2 1/2 —-1{2, ~1 Ao—1/2
AR A e N AN
and we may use a martingale central limit theorem (e.g. Hall and Heyde (1980), theorem

3.2, p. 58) to establish that

V25 sgn(u,)x; g N(O) .

Moreover,
—lop TG0 —iu, o

t . t ,
nYe XgX¢ E(e x,x;) = cf (-0)Q

and so

-1
nE] 6(u, )% x; -, (02,
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where f(-) is the probability density of U, . These results enable us to0 deduce the limit

law
n1/2(5n — 1) =4 N(o, (1/2 0 )

in the same way as before. This covers the case of strictly exogenous stationary regressors
x, with Q= E(xtxi) . It also covers the case of stable autoregressions with
x; = (y4_1> +vvs Vi) With (u)= iid(0, 02) (the finite variance o ensures that the

elements of x, are square integrable) and Q = (wij) with ;= E(yt_iyt—j) '

7. AUTOREGRESSIONS WITH INFINITE VARIANCE ERRORS

An autoregression with infinite variance errors is quite difficult to analyze by con-
ventional methods and has so far resisted a complete study. An and Chen (1982) and
Pollard (1989a) comsidered the prototypical case of an AR(1) with iid Cauchy errors.
Pollard showed that the LAD estimator ‘Bn lies within Op(n—l) of ﬂo , improving

slightly on the Op(n-l'H)

, €>0, result of An and Chen. Pollard was unable to find
the limit distribution of n(f:’n - ﬂo) and left this as an unsolved problem. Davis, Knight
and Liu (1990) provide a solution to this problem as an optimization functional in a recent
paper that came to the author’s attention after the present work was in its second draft.
The heuristic development that follows provides an alternative solution to the problem.

We shall consider the stable AR(1)

(21) y, = By, +u,, with |f] <1

and iid errors with infinite variance. To develop a limit theory we shall assume that u is
in the domain of attraction of a stable law with characteristic exponent a . Specifically we

say that u € P(a) if
(22) P(u>x)= clx_aL(x)(l + o(x)), x>0, ¢, 20

and
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(23) P(u < —x) = cyx “L(x)(1 + ay(x)), x>0, ¢y 20

with 0 < a< 2, L(x) aslowly varying function at o and ai(x) -0 as |x|-w. If
L(x) =1 in (22) and (23), then u is in the normal domain of attraction of a stable law

with parameter a and we write u € 42(a) . With this terminology in hand, we assume

(13) The sequence (“t) is fid with u, € P(a), where 0 < a< 2, with zero median
and with probability density f(-) that is positive and analytic at zero. If a>1,

E(u,) =0 endif a=1 then u, =4 —u, (i.e. u, is symmetrically distributed).
Define the normalizing sequence
a, = inf{x: P(Ju| >x) <0},

For u€?P(a) we have a = ot/ “L(n) for some slowly varying function L(n). For
u€ #D(a) we have a = cnll @ for some constant ¢ > 0. With this construction we

have the following weak convergence results for 0 < a < 2:

-1 -1
(24) a Erllut 4q U (1), 8 !I{m]ut 43 U0,

-1 -2 2 2
(25) (g 2, a5y 4 (U0, 15(dU )%
Here U (1) is a Lévy a—stable process and / [r}(dU 0)2 =[U], is its quadratic variation
process. The first result of (24) is classical (e.g. Ibragimov and Linnik (1971), Ch. 2); the
second is its functional version; and (25) is a joint functional limit law for first and second
sample moments that is proved in Resnick (1986, pp. 94—95).

To find the limit distribution of the LAD estimator we work from expansion (5),

setting x, =y, ;- Wescale (5) by na;1 , giving

-1 -2 2 ;
(26) a7 '8 sgn(u,)y,_; = 27 B3 6(u,)ys_yle (B, ~ )

k
k k-1 k-1 k+1 >
— 255 _y(-nR /i e e w1 a8, - )

Observe that sgn(ut) and y, , are independent, sgn(ut) is bounded and the product
variate X, =sgn(u)y, ;€ P(a) —see Appendix A of Phillips (1990). Note also that
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U, ¥y and Xt all have the same normalizing sequence a,, 80 that by (24) we have

-1
o sen(u)r,_g 8,0
where § (r) is an a—stable process. The right side of (26) may be treated term by term.

First observe that yf_l = Xf € 7(a/2) and by (25)

2 T4 a @S,
However, our interest is in the factor in square brackets in the first term on the right side
of (26), and this involves the generalized random variable §(u,). Since u, is independent
of yf—l , the effect of 6(ut) in the summation is t0 randomly select elements that will
remain in the summation according to subsequent realizations of the independent draw

u The remaining elements in the sum are weighted according to  E(&u,))

.
= E(8(u)|7,_y} = f(0) and we obtain

-2 2 1 2

ay B 8 )yy_g g (O g(dR )
where R a(r) is a Lévy a—stable process independent of S a(r) . Similarly, for the higher
order terms on the right side of (26) we have E(J(k_l)(ut)) = E(ﬁ(k_l)(ut)p't__l)
= (=1)* 1510 and

s o )kt g M ogar )+

This leads to the following limit theory for the LAD estimator of 60 in (21) under errors
that satisfy (13)

(27) a (B — )y ¢
where the limit variate ¢ is a solution of the equation
5,.(1) = 2H(0)/3(aR )2)¢ + 252 _{(1 /a0y ph(ar ity ek

In the above expression [ g(dR a)s is the s—variation process of R o 522 Observe that

for distributions f(.) for which f(j)(O) =0, Vj>1, we have the simple result that the
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limit variate is
¢ =5 (1)/2A(0)g(dR )% .

For example, if (vy, v,) are independent uniform on [—a, a] for some fixed a > 0, then

u= V1/V2 has density

1/4  |uf <1

f(u) = 9

1/4w? ju|>1

Such a density obviously satisfies (13) and f(j)(O) =0, Vj21.

It is of some interest to compare the LAD estimator an with the OLS estimator
B L Bloomfield and Steiger (1983, p. 105) speculate that fﬁn is asymptotically more effi-
cient than Bn and conjecture that 3]1 converges at a faster rate for the case where
0< a<?2. This can, in fact, be demonstrated by considering the limit distribution of
Bn‘ Let us suppose that u € 4P(a), as it is in the cases studied experimentally by
Bloomfield and Steiger. Then, uwy, ,€ D(e) rather than AP(a) and the norming

sequence for sums of u,y, ; has the form
b = c(nlog n)lla , €= const.

(see Appendix A of Phillips (1990)). Since Bn - ﬂo = Eyt_lut/Eyf_l , it follows that

() (aiog )/ (B, - ) = [s775057 - (10 w7288y, _yu,| 44 P /a0

where Qa is a stable variate of exponent «, independent of the positive stable variate
P, 2= f é(dS 0,)2 . Comparing (28) with (27) we see that the LAD estimator has a factor
of (log n)ll @ in its favor, confirming the conjecture of Bloomfield and Steiger concerning
the higher relative efficiency of LAD. The difference arises because, u,y, ; € P a) and
sample covariances of u, and Y1 form the numerator of ﬁn - ﬂﬂ , whereas
sgn(u,)y, ; € ¥D(a) because sgn(u.) is bounded and the LAD estimator depends on

-

sample covariances of sgn(u,) and y, ,. The difference in rates of convergence of 8,
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and ﬁn to ﬂo is then due to the differences in the tail thickness of the distributions of
WY g and Sgn(“t)yt-l . By bounding the effect of the error through the presence of the
sgn(u,) factor in sgn(ut)yt_1 , the LAD estimator successfully achieves a faster rate of

convergence. This helps to explain the simulation results of Bloomfield and Steiger.

8. AUTOREGRESSIONS WITH INFINITE VARIANCE ERRORS AND A UNIT ROOT
The case @ =1 in (21) has recently been studied by Knight (1989). It may also
be treated by our approach here. When ﬁn =1, theoutput y, of (21) is an integrated

process. In consequence, we have the weak convergence
-1
(29) a‘n Y[n.]qd Sa(.) b
where § (-) is an a—stable process. Further we have
-1/2.[n-
25 sgn(u,) 44, W)
and

(30) n_lfza;”lﬂlll sgn(y, )y, ; = n“1/22?(a;1yt_1)sgn(u ) =4 IOS —dw,

where W(-) is standard Brownian motion and § (r) signifies the left limit of the process

S a(') at r. Next observe that

2
1,-2 —1en[,-1 102
2 a Enyt—l'n En[an yt—l] a4 1654

1
and
2
a3 (4(u,) - f(0))[a v, 1] -0
50 that
(31) 1En6(ut)[a o 1] +q KO)3s2

Combining (30) and (31) we have
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-1/2 -1 lo—
n / a, 2.‘111 sgn(ut)yt__l_} [o5.8W

(32) 0% (B — 1)~ —— ,
n*n 20 lanz}:‘l‘a(ut)yf_l dat(0)75S 2

as given in Theorem 3 of Knight (1989). Since a = nl/ %L(n) we have the remarkable
result, due to Knight, that the LAD estimator converges at a faster rate in the unit root
model for 0 < a < 2 than the OLS estimator. As remarked by Knight, robust estimators
such as LAD retain the advantages of the strong signal from Vi1 {due to integration and
thick tailed errors) but alternate the effects of outliers in the error u, to the extent that

they occur in the sample covariance between sgn(u,) and y, , (inthe LAD case).

9. CONCLUSION

The methods outlined here seem to offer some promise as tools for the analysis of
regression asymptotics in non—tegular cases like that of the LAD estimator. Gur approach
has not always been rigorous and in Sections 7 and 8, in particular, is quite heuristic.
Nevertheless, it is hoped that the results obtained point to the usefulness of the approach.
One would like to hope that the approach can be made entirely rigorous by providing a
tight probabilistic framework for the use of the generalized random variables that appear
here. In the meantime it seems reasonable to conclude that the classical approach warrants
more attention than it has yet received. It may indeed offer some advantages that empir-
ical process methods do mot seem to presently emjoy, viz. the capacity to develop higher

order asymptotics.
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