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ABSTRACT

This paper studies tests for covariance stationarity under conditions which permit
failure in the existence of fourth order moments. The problem is important because many
econometric diagnostics such as tests for parameter constancy, constant variance and
ARCH and GARCH effects routinely rely on fourth moment conditions. Moreover, such
tests have recently been extensively employed with financial and commodity market data,
where fourth moment conditions may well be quite tenuous and are usually untested. This
paper considers several tests for covariance stationarity including sample split prediction
tests, cusum of squares tests and modified scaled range tests. When fourth moment condi-
tions fail we show how the asymptotic theory for these tests involves functionals of an
asymmetric stable Levy process, in place of conventional standard normal or Brownian
bridge asymptotics. An interesting outcome of the new asymptotics is that the power of
these tests depends critically on the tail thickness in the data. Thus, for data with no
finite second moment, the above mentioned tests are inconsistent. Some new tests for
heterogeneity are suggested that are consistent in the infinite variance case. These are
easily implemented and rely on standard normal asymptotics. A consistent estimator of
the maximal moment exponent of a distribution is also proposed. Again this estimator is
easily implemented, has standard normal asymptotics and leads to a simple test for the
existence of moments up to a given order. An empirical application of these methods to
the monthly stock return data recently studied in Pagan and Schwert (1989a, 1989b) and

to daily returns of the Standard and Poors 500 stock index is presented.

JEL Classification Number: 211

Keywords: asymmetric stable process, characteristic exponent, covariance stationarity,
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1. INTRODUCTION

An interesting feature of stock market data that has recently come to light is the
apparent nonstationarity in the variance of stock returns. Pagan and Schwert (1989a,
1989b) present some strong evidence that stock return data over long periods cannot be
assumed to be covariance stationary. In their (1989a) paper they plot recursive estimates
of the variance of monthly stock returns from 1835—1987 and point to the dramatic

increase in the variance in the decade after 1930. Figure 1 reproduces this plot of

(1) Bo(t) = t7IBb (8, — 9%, §, = t7ste,

where ﬁt is the difference between the actual stock return in period t and an estimate of
its conditional mean (calculated by taking the residuals from a regression on monthly
dummies, as described in §2.2 of Pagan and Schwert (1989a)). The distinctive pattern of
this plot makes it highly unlikely that the data are covariance stationary. In their (1989%)
paper, Pagan and Schwert formally test this hypothesis using a post—sample prediction
test, a cusum test and a modified scaled range test. The results show strong evidence of
departure from the null of covariance stationarity.

The idea of calculating the recursive variance (1) is due to Mandelbrot (1963), who
suggested recursive variance plots as a useful diagnostic for the nonexistence of second
order moments. When population variances do not exist, the behavior of the recursive
sample variance is very different from that of a covariance stationary process. Figures 2
and 3 illustrate these differences by plotting recursive sample variances of sequences of iid
draws from standard symmetric stable and Gaussian distributions, respectively. As is
apparent from these plots the recursive sample variance of a stable process with exponent
a < 2 is subject to jumps and shows no tendency to settle down to a particular value as
the sample size increases. In fact, for random draws from a stable law with exponent

a<2 wehave [(t) -, ¢ ® Such behavior is quite distinct from that of a Gaussian or



other finite variance process where the recursive sample variance converges a.s. to the
population variance as t = w .

In the light of these differences it is natural to ask whether rejections of covariance
stationarity for stock returns in formal statistical tests are simply a byproduct of thick tails
in the generating mechanism. Most asymptotic distribution theory that is used in empir-
ical econometric research relies on moment conditions that carefully control outlier
occurrences. Indeed, it is not unusual, and in many cases quite reasonable, to see condi-
tions of the type "let all required moments exist." However, in financial and commodity
market time series the extent of the outlier activity casts doubt on the suitability of generic
moment existence assumptions and this concern motivated Mandelbrot’s original investiga-
tion. In the present case, it is important to note that since the recursive sample variance
(1) is the object under study, conventional asymptotic distribution theory for this quantity
calls for the existence of at least fourth order moments of the underlying data in the main-
tained hypothesis. This seems like a tall order when the series is common stock returns.
Indeed, as we shall show below, the empirical evidence from the monthly stock return data
used by Pagan and Schwert (1983a, 1989b) does not support this maintained hypothesis.

The present paper seeks to determine the effect on the asymptotic theory for statis-
tics such as the recursive sample variance (1) when there is a relaxation in moment condi-
tions on the underlying data. Our attention will concentrate on tests for covariance
stationarity that involve sample second moments of the data. Principal among these are
sample split prediction tests for constant variance, cusum of squares tests and modified
scaled range tests. These tests were used by Pagan and Schwert {1989b) in their study of
monthly stock returns and we will attempt to reevaluate their empirical findings in the
light of the new asymptotic theory. There are many other applications of our theory that
are relevant to diagnostic testing methods in econometrics, such as LM tests for ARCH and

GARCEH effects which also routinely rely on fourth moment conditions.



The paper is organized as follows. Section 2 presents some preliminary theory con-
cerning the asymptotic distribution of sample second moments when fourth moments may
not be finite. This theory is employed in Section 3 which develops an asymptotic theory
for various tests of covariance stationarity. Conventional theory for these tests involves
standard normal! and Brownian bridge asymptotics. When fourth moment conditions fail
we show that the new limit theory involves asymmetric stable processes and, in particular,
a stable-Levy bridge process in place of the usual Brownian bridge and a quadratic varia-
tion process in place of the usual normalizing constant. It is also shown that conventional
tests for homogenous variances have reduced asymptotic power when fourth moments are
infinite and are actually inconsistent when the variance is infinite. 'We therefore propose a
new test of heterogeneity that is consistent in the infinite variance case. This test involves
the use of consistent estimates of the scale coefficient and characteristic exponent of the
tail of a distribution of the asymptotic Pareto—Levy type. The estimate of the character-
istic exponent may also be used to construct a consistent test about the size of the maximal
moment exponent, for instance whether the fourth moment is finite. Section 4 describes
the simulation methods employed in the computation of the asymmetric stable processes
needed to tabulate and graph the functionals that represent the limit distributions in the
case of infinite fourth moments. Comparisons with the conventional standard normal and
Brownian bridge asymptotics are also displayed. Section 5 reports the empirical applica-
tion to common stock returns. We use both the Pagan and Schwert data cited above,
which is monthly data over the historical period 1834—1987, and daily stock return data
over the recent cycle 1962—1987 from the Standard and Poors 500 series. Section 6 sum-

marizes our main results and discusses some possibilities for future work.



2. PRELIMINARIES
Let (¢,) be aniid sequence whose tail behavior is of the Pareto—Levy form, viz.

Ple>x) = dlx_a(l +a(x)), x>0, d; >0

C
() Ple < —x) = dox” X1 + a9(x)), x>0, dy>0

where a(x)-0 (i=1, 2) as x-+o. When 0< a< 2, (C1) ensures that ¢ lies in the
normal domain of attraction of a stable law with characteristic exponent parameter o and
we shall write ¢ € /P{a) to signify this fact. When a > 2, € isin the normal domain of
attraction of a normal distribution. In the latter case it is important to note that when
9 < a<4 wehave €€ ¥D(a/2) , so that partial sums of ¢ are no longer in the domain
of attraction of a normal distribution. Obviously, such a distinction can play an important
role in the asymptotic behavior of tests that are based on quantities like the recursive
sample variance (1).

We add the following centering condition:

(C2) If a>1 in(C1) then we require E(e) =0. If a=1 we require € =4 —¢

(i.e. € 1s symmetrically distributed about the origin).

Note that, when a < 1 in {(C1), no centering will be required. But this case is unlikely to
be of importance in stock market data for which estimates of a have typically been in the
range 1.2 < a< 2.0. (See Fama (1965) and more recent work by Blattberg and Gonedes
(1974) and Fielitz and Rozelle (1982); see So (1987) on estimates of a for exchange rate
series.) However, when @< 2, no centering will be needed for partial sums of
ef € 7(a/2) and this turns out to have very important implications on the asymptotic
properties of tests based on (1), as we shall see in Section 3.

If the observed series is generated by the linear process

where ¢ satisfies (C1) and (C2), then the series for y, is convergent a.s. provided the



coefficients cj satisfy a suitable summability condition. We shall employ the following

condition
(C3) Z‘fj|cj|p<m for 0<p<a, pgl

because it is useful in the development of our asymptotic theory. Note that the series (2)
converges a.s. provided ETilep <o for 0<p<a, p<l (cf Brockwell and Davis
(1987), p. 480), so that (C3) is stronger than is necessary for (2) to be well defined. Bat
note also that (C3) bholds whenever y, is generated by a stationary ARMA process
because then the coefficients in (2) decline geometrically and thereby trivially satisfy (C3).
Thus, (C3) is sufficiently general to cover most cases of interest.

If ¢ € 4D(a) with 0<a<2 we also have y, € ¥D(e); andif € follows a sym-
metric stable law then so too does y, and we have the following distributional

equivalence:

= %ol

For these and many other aspects of the theory of domains of attraction the reader is

a] 1/ czE
£ -
referred to the books by Brockwell and Davis (1987, Ch. 12.5) and by Ibragimov and
Linnik (1971, Ch. 2). The limit theory for sample means and covariances of time series
generated as in (2) was developed by Davis and Resnick (1985a, 1985b, 1986} and a recent

treatment is given in Phillips and Solo (1989).
As remarked above, under (C3), (2) includes all stationary ARMA processes and in

what follows it will be convenient for us to explicitly work with the AR(p) process
= YP
(3) Vo=t g
where the roots of zP — EIi)=1(pin_i = 0 all lie inside the unit circle.
Under (C1) and (C2) with 0 < @ < 2 we have the normalizing sequence

(4) ay =‘inf{x tP(]e] > x) ¢ n—l} — dnl/a



for some constant d. When we parameterize the scale coefficients in (C1) as d1 = pa®

d, = qa® (with p+q =1) we find that the constant coefficient in (4) is d = a and then

1/a 1/2

. With this normalization sequence (in place of the usual n

a = an for finite var-

jance models) we have the following limit laws for 0 < @ < 2:

(5) aZt80e 4, U (1), g 2Pe 4y U (),
(6) {aglz{m]et, afz{m]ef] 4 (U (1), 15U )P .

Here U t?‘(r) is the Levy a—stable process and f(r)(dU 0)2 =[U a-] . is its quadratic variation
process. The first result of (5) is classical (e.g. Ibragimov and Linnik (1971), Ch. 2}, the
second is its functional version, and (6) is a joint functional limit law for first and second
sample moments that is proved in Resnick (1986, pp. 94-95). Some typical sample trajec-
tories of a symmetric stable Levy process Ua(r) are plotted in Phillips (1990).

When 2 < o< 4 we have both n'_lEIllet 0 and n lEnet Y2 02— E(e t)

However, since ef € A7(a/2) we also have a stable lnmt distribution theory for the sample

second moments. In particular, we have

9 2B 0% 3 Ugynl0) s 2 57U - o) =g Uy
2
®) (a2l - o), a s - ) ) (U 0yl (@01

Since the distribution of ef - ai is asymmetric with a finite left extremity (—az) the
limit law represented by U /2(r) in (7) is an asymmetric stable process. The asymmetry
coefficient in the limit stable law is given by f=1. Moreover, as a\ 2 the asymmetry

of the limit process becomes more heavily accentuated. Ultimately, when o« < 2 we have

af)]{m] : Ua/2( 1)

and in this case Uzlz(r) is a positive stable process on D[0,1}, i.e. the increments of

UZ /2(r) are independent and follow a strictly positive stable law.



Finally, we observe that if y, is generated by the AR(p) (3) the coefficients are

consistently estimated by the OLS regression
=¥ ¢ %
©) fal B L P
irrespective of the value of a (e.g. see Kanter and Steiger (1974) and Hannan and Kanter
(1977)). Correspondingly, the OLS residual &, is consistent for ¢, forall a> 0. When
2 2 -2 —lan.2 2 .
a>2, o,= E(¢;)) <o and we have o, =n E?et “p % - Moreover, the following

limit theory applies to sample variances of the residuals € ¢
LEMMA 2.1. Let (C1), (C2) and (3) hold and €& be the residuals from (9).

2 2,2 4
(a) If a>4 and v =E(¢{ —0,) =K, + 20" then

()22~ o) -4 BO),

e stendard Brownian bridge on C[0,1] .

(b) If 0 < a< 4 then

-2 -2 .2

a, E][.nr](ft ~ o)y Ua/g(r) - rUa/g(l) = Ka/2(r)
o steble—Levy bridge or tied down stable Levy process on D[0,1]. When 2<a<4,
Ua/2(r) 15 a two tailed asymmetric stable process. When 0 < a< 2, Ua/2(r) iS @ post-

tive stable process, i.e. a stable process whose increments are independent and follow a

positive stable law with parameter of2 .

3. ASYMPTOTIC THEORY FOR TESTS
OF COVARIANCE STATIONARITY

There are several ways of testing for homogeneous variances. We shall look first at
the tests suggested in Pagan and Schwert (1989b) and later consider some others that look
promising. Two general approaches are possible. The first is to work with the observed

series Yy itself. For stock return data the series is nearly random but there is some



evidence of moving average effects, which Pagan and Schwert (19892a) suggest may be due
to nonsynchronous data and calendar effects. Thus, a second approach is to work with a
general model like (2) and (3) that accommodates temporal dependence and use the
residuals obtained from a suitable regression. Clearly, AR models offer a convenient éhoice
for this approach and the QLS residuals Et from regressions like (9) consistently estimate
the time series innovations ¢ forall a> 0.

We shall examine both these approaches below.

3.1. Sample Split Prediction Tests for Covariance Stationarity
Here we split the sample into two eras according to n = n, + 1, with n = knn2

and consider the hypothesis that

Cpa(l) - pal2)
Hy: Ejy ’ = Ej
where
(1 1M 2 (2 -1
”g)znlzlyt’“g);%y‘ml

Pagan and Schwert (1980b) set k =1, define 7= ﬁgl)-—ﬁg2) and estimate the

variance of 7 nonparametrically by 2v where
V=7 + 2)3§=1(1 —_]/(£+1))'7j .

Here :Yj is the j'th serial covariance of yf and £ is a suitable lag truncation number
({=8 in their empirical application}. We assume that {-« as n-o insuch a way
that ¢/n-0. Then, when a >4, ¥ is a consistent estimator of v by conventional
theory under quite general conditions (cf. Andrews (1989), Newey and West (1987) and
Phillips (1987)).

We shall consider the general case where k -k with k> 0. Then k/(1+k)
(respectively, 1/(1+k)) is the fraction of the overall sample in the limit that is in the

first (second) era. A t—ratio test statistic for a sample split in the variance between the

e



two eras can then be constructed on the basis of anticipated normal asymptotics for 7.
Indeed, when fourth moments are finite we have from the proof of part (a) of Theorem 3.1

below that
n}/%’ =4 N(0, (1+k)v) .

This leads to the statistic

(10) V() = ol 21+ )92

When k=1, Vi(r}= ni/‘?’r/(m'r)l/2 is the statistic suggested in Pagan and Schwert
(1989b). When k#1, V (r) enables us to look at eras of unequal length.
The asymptotic distribution of Vk('r) depends on the value of the parameter a as

shown in the following:

THEOREM 3.1. Assume (C1)—(C3) hold and k -k as n-o with k>0 fized. Then:
(a) If a> 4, Vi(r) -4 N(0,1).
b)Ifo<a<4,

1 92 _1/2 .
(11) AGER [kjo(dUalz)] [(1+K)U g (k/(14K)) = KU (1)) = V- say.

In (b) Ua/Q(r) is an asymmetric stable process with characteristic ezponent «f2 when

2< a<4 and a positive stable process when 0 < a < 2.

REMARKS

(i) When a> 4, the limit distribution of Vk(r) is standard normal, so that con-
ventional critical values from the N(0,1) distribution can be used in testing H, under
this maintained hypothesis that moments of the data are finite up to at least the fourth
order.

(i) When a <4 the limit distribution of V,(7) is a ratio of correlated stable
variates. The limit distribution simplifies considerably when the length of the eras is the

same in the limit, i.e. kn =1.
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COROLLARY 3.2. Suppose k=1 aend 0 < a<4. Then

~1/2
1 2
(12) V]_(T) 4 [Io(dUz/Q) ] UZ/Q(l) ;
where Ui /2(r) is a symmetric stable process with characteristic ezponent af2 on D[0,1].

The limit distribution given by (12) is, in fact, the same as the limit distribution of
a self normalized sum (or t—ratio) formed from an i.i.d. sequence of variates in the domain
of attraction of a stable law with exponent kparameter af2 . Logan et al. (1973), Resnick
(1986), and Phillips (1990) give various representations of this limit distribution—see
Phillips (1990) equation (46) for the representation given here. It is known to be bimodal
(Logan et al (1973) and Phillips and Hajivassiliou (1987) provide graphical plots), and
nominal critical values from the N(0,1) distribution are known to be conservative at the
conventional levels 1% and 5%, but to lead to reductions in power (cf. Efron (1968)).
Thus, when « < 4 we can expect that tests based on V,(r) and standard normal critical
values will suffer power reductions compared with the case where a > 4. This will be
explored further below when we consider the limit behavior of power functions of this test.

(iii) When a>4, U, /2(I) is standard Brownian motion W{(r) and since

(dW)2 = dr a.s. we have
[é(dUa/z)2 =1 as.
for the denominator of (11). A small calculation shows that
KM 20w (k) (1)) ~ K{W(1) = W(k/(140)]] =4 N(0,1)

50 that the limit result (11) also yields part (a) as a7 4.

(iv) When k#1 and a<4, the limit distribution of V,(7) depends on k.
1/2

This is because the construction of V,(7) is based on the explicit behavior of n™/*7

when @ > 4 —see (10) — and ignores the random limit of the denominator of Vk( 7) when
a < 4. The use of subsample estimates also leads to a dependence on k in the limit. To

see this, let v, and \72 be estimates of v constructed just as v but based on the two

1
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separate data sets {yf t=1, ..., nl} and {yf tt=n; 41, ..., n} . The composite

estimate of v is now
v= vy + knv2 .
When a >4 we have {rl, 62 Y and, hence, ¥ - (1+k)v, the same limit as that of V.

Use of the composite variance estimate ¥ leads to the modified t—ratio statistic
y 1/2.,.1/2
Vk('r) = nll T/v / .

The asymptotic distribution of V,(7) is as follows:

THEOREM 3.3. Under the same conditions and with the same notation as Theorem 3.1 we
have:

(a)if a> 4, Vk(r) =4 N(0,1)

(b)if 0<ax4

! ~1/2

) k/(1+k)
(13) YAGEN UO (dU, /2)2 + kzjk/(1+k)(dU°’ /2)2

€[U 3 oK/ (1K)) = K{U (1) = U g oK/ (1K)

. ~1/2
(14) Vy(r) g [15@0S 7] 0S50

In (14) U;/2(r) is a symmetric stable process with characteristic ezponent of2 as in

Corollary 3.2.

Analogous results to those of Theorem 3.1 and 3.2 apply to split sample tests that

are based on the residuals & from the fitted model (9). We shall work below with the

1
analogue of Vk(f) . Define
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. _1 ! _ .2 .2
Te = 2 o) y":111+1 t = %1 %

2 2
Lo —1gM.2 .2 . -1 2221 . _ ~lenf.2 .2
Y=o 4 (‘t“"le) » V2¢ = T2 2214-1[‘1;“’25] » Ve = 1 Eil[ft“’e] '

and construct the t—statistics

1/2. ,.1/2 1/2. ,.1/2
Vk(Te) = nl/ TE/VE/ , Vk('rf) = n1/ Tf/VE/ :
The asymptotic theory for these statistics is as follows:

THEOREM 3.4. If(3) is the generating mechanism for y, and if (C1)—C2) hold, then
Vk(Te) (respectively, Vk('rc)) is asymptotically equivalent to Vk(r) (Vk('r)) and has the
same limit theory as that given in Theorem 3.1 (3.3).

To examine the consistency of these tests we relax Hy . Let (Et):n be split into
n
1

the two half series of iid variates (¢,)__ and (e )2
-

th +1 that individually follow (C1) but

with different scale coefficients. For the finite variance case (a > 2) we shall employ

L2, 2
Hl"I %Je+
where a%_E( ) for t<n; and az+=E(e%) for t >n; . Under H; we have
2
E(yt)z v (Emc )0 , tEmy
E(y?) = o2 = (552 lc)cr + (22 c)a t=n +s>n
t ys J= ! 1 1

For the infinite variance case (a < 2) we introduce heterogeneity through the scale coeffi-

cient in the tail of the distributions, as prescribed by {(C1). We do so by using the scale

If we assume that ¢, is

coefficients (d,, d,) for (et) “1 and (d+, d+) for (t) {

n +1
symmetrically distributed then we can write d; =d, = (1/2)aa, d'{ = d; = (1/2)a_?_1

The alternative hypothesis is then simply expressed as
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The following result gives the properties of the covariance stationarity tests V() Vk(r)

and Vk('re) under these alternatives, H; and Hj.

THEOREM 3.5. Assume (C1)—C3) hold and k > 0. Two cases apply.
(a) a>2: Under H,, the statistics Vi (r) and Vk(r) diverge as n—w and tests

based on these statistics are consistent. Specifically, the rates of divergence as n-wo are

given by:
(15) Vi), V() = 0. (%), for a> 4
(16) Vi(7), Vk('r) = Op(nl_z/a) , for 2< a<4.

(b) 0<a<2: Under Hi, tests based on the statistics V() and Vk('r) are

inconsistent. Specifically, as n - o :

(17) Vilr), Vi) = 0,(1)
If (C1)<C2) and (3) hold then identical results apply for the tests based on the statistic
Vi(r,) and Vk(rf).

REMARKS

(i) The V,(7) and Vy(r ) tests are consistent provided a>2. But note from
(16) that the rate of divergence of Vi (7) under the alternative slows as a, 2. We can
therefore expect the power properties of the test to be very unsatisfactory when o is close
to 2.

(i) When 0 < a <2 the tests are inconsistent. Thus, all of these tests have no
real discriminatory power in identifying heterogeneity in the sample observations under
conditions of infinite variance. If we seek to determine whether heterogeneity is present in

such cases, other tests are required.
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3.2. The Cusum of Squares Test for Covariance Stationarity
. . . 2 . . -
This test is based on the cumulative sums of Yy — b where fo = 1 1)3’113:3 , lead-

ing to the statistic
— (eey1/2¢[nr), 2
v (1) = o)V 2 G? py.
Alternatively, we can use deviations of the squared residuals, Ef — &2 , leading to the sta-
tistic

¥E(r) = (e )22 5

Both wn(r) and 'gb:l(r) are studentized cusum of squares statistics. In this sense they
differ from the original cusum of squares statistic suggested in Brown, Durbin and Evans
(1975). The original cusum of squares statistic is known to be not robust to departures
from normality and its asymptotic distribution is sensitive to fourth moments. This is
usually overcome by estimating fourth moments and studentizing the statistic, as suggested
in Ploberger and Kramer (1986). The resulting statistic is entirely analogous to ¢;(r) :
The statistic ¢, (r) is similar in form but involves the estimate ¥ of the "long—run"
fourth moment of the data (i.e. the spectrum of yf at the origin) rather than simply the
fourth moment of y, itself. Pagan and Schwert (1989b) employ 'gbn(r) in their empirical
work.

Sample realizations of ¢ (r) and w;(r) lie in the function space D[0,1] and a
limit distribution theory must be worked out by using suitable weak convergence methods
on this space. For models where y% has finite variance (o > 4) this presents no diffi-
culty and the limit process of ¢n(r) and 1!)151(r) is a standard Brownian bridge, whose
sample paths lie almost surely in C[0,1]. When a < 4 the limit process is different, is no

longer confined to C[0,1] and weak convergence in D[0,1] does not always obtain in the

2
t

(1986, 1989a)). For this reason, it is especially convenient to work with the cusum statistic

Jl—Skorohod topology due to possible serial dependence in y; (see Avram and Taqqu

'qb;(r) that is based on the squared residuals ¢2 from the autoregression (9). For, under

t
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(3), Et is consistent to ¢ and is thereby serially independent asymptotically. In this
case, weak convergence of 'z,b:l(r) does apply in D[0,1] and ;b;(r) can form the basis of a
suitable cusum test.

We give the following limit theory.

THEOREM 3.6. Assume (C1)—C3) hold. Then:
(a) If a> 4

(18) ¥y (1), p(r) -4 B(r)

a standard Brownian bridge on C[0,1] .

b)Ifo<a<4

1/2
(19) 9a(0) “gaq Layo®) = Ko@)/ 100 5]

1/2
(20) UE(0) =g Layal®) = Koo/ [ 1360 4’

where Ka/2(r) = Ua/2(r) — rUa/z(l) is a stable—Levy bridge on D[0,1] .

REMARKS

(i) When @ >4, the limit distribution of both cusums ¢ (r) and wfl(r) is the
standard Brownian bridge. Pagan and Schwert (1989b) use bands that are based on crit-
ical values of the finite dimensional distributions, viz. B(r) =4 N(0, 1(1-1)) for inference
in graphical plots of their cusum statistic 4 (r) . These bands differ from those originally
envisaged by Brown et al (1975) for the cusum of squares statistic and by Durbin (1969)
for the accumulated periodogram. In these papers the bands are designed so that the prob-
ability that the statistic hits the barrier at some point in its trajectory is controlled at the
size of the test. This means that the probability that the trajectory is ever on or beyond
the barrier corresponds to the level of the test. The situation is quite different for the
finite dimensional distributions (fdd) bands that are based on critical values of

B(r) = d N(0, r(1-1)) for fixed r. In this case, the probability that a sample trajectory
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lies outside the fdd bands is greater than the nominal size, leading to a liberal test. This is
because, for example, P[B(r) > ¢] € P[sups B(s) > c] for all r. The fdd bands do tell us
something: if the sample trajectory lies inside the bands then non rejection is certainly the
right decision. But these {dd bands do understate the extremes of sample trajectories and
thereby lead to size distortions in testing stationarity by overrejection under the null.

(ii) When a < 4 the limit theory js quite different. First, for ¢ (r), only the
finite dimensional distributions converge (written as " “qq = in (19)) when the underly-
ing data is serially dependent and we cannot in general assert that the random function
¥,(1) converges in D[0,1]. As shown in Avram and Taqqu (1989b), serial dependence in
the process leads to successive jumps in the trajectories of the process which usually pre-
vent convergence of partial sum processes like ¢ (r) in the J,—Skorohod topology. This
means that mass of the distribution escapes as the partial sums fluctuate too wildly for the
sequence nf probability measures associated with wn(r) to be tight. For this reason, it
seems inappropriate to use 'd;n(r) as a statistic for testing covariance stationarity. How-
ever, the statistic ¢:1(r) that is based on regression residuals does converge in D[0,1]
when 0 < a < 4. The limit process (20) is a ratio of the stable-Levy bridge on Dj[0,1]
represented by K, /2(r) and the correlated, positive stable process represented by the

2 Bands that are based on critical values of the

multiple stochastic integral | é(dU o /2)
finite dimensional distributions of La/2(r) and its extrema sup, inf, La/2(r) can be
used for inference in the cusum plot for 'qb;(r). They are computed and applied in
Sections 4 and 5 below.

(iii) The stable process U /2(r) that appears in (20) is asymmetric for 2 < a <4
and strictly positive when 0< a< 2. Examples of the sample trajectories of such

processes and the associated bridge process Ka/2(r) are illustrated in Figures 4a and 4b.

The distribution of the bridge process K, /2(r) is skew symmetric in the sense that

Ka/2(r) =4 Ka/2(1—r) :
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To prove this we write
K o /(t) = Upyoe) = U (1) = J58U 1 1 fcl,dual2

= 109002~ 118Uq)3 = 110805

= (1-1)/3dv 12— flav, /2

- { 14U 45 = 401330, /2}

=4~ {f 08Uy — (1) édUa/z}

S {Ua ol1-1) = (l—r)Ua(l)}

= —Ka/2(1—r) :
Note that the skew symmetry of Ka/Q(r) implies that of the limit process La/2(r) in
(20) and this is reflected in the confidence contours for this process that we compute in

Section 4 below. Note also that the skew symmetry of K a /2(r) also implies the following

distributional equivalence

V=4V, Jk

for the limit variate of the V,(r) statistic given in Theorem 3.1. This latter property
generalizes the result given earlier in Corollary 3.2 that \_/'k is symmetric when k=1.

(iv) Consistency properties of the cusum of square tests can be studied in the same
way as the sample split prediction tests. Since ¢]§(r) has a functional limit law for all
a> 0 we focus on the power properties of this test below. It is seen that the rates of
divergence are comparable with those of the sample split prediction tests given in Theorem
3.5. In particular, the cusum test has decreasing power as o\ 2 and is inconsistent for

O<ca<?2,.
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THEOREM 3.7. Suppose (C1)—C2) and (3) hold. Then we have:

(a) a>2: Under H; tests based on 1,bfl(r) are consistent with the following rates of

divergence:
(21) 1,{):1(:) = Op(n1/2) , for a> 4
(22) ¢;(r) = Op(nl—zla) , for 2< a<d.

(b) O0<a<?2: Under Hy, {ests based on w;(r) are inconsistent and we have

3.3. The Modified Scaled Range Test
This test is based on the extent of the observed maximum fluctuation in the cusum

of squares statistic. We define
R =sup, 'gbn(r) —inf, wn(r)
R; = sup_ w;(r) —inf, 1,!;;(1') :
These are functionals of wn(r) and w;(r) on D(0,1]. Using Theorem 3.6 and the

continuous mapping theorem (both sup and inf are continuous functionals in the

J,~Skorohod topology) we get
(a) for a> 4
R, RS -4sup B(r) —inf B(r) = Ry, say
(b) for 0 < a< 4
R; =4 SUp, La/Z(I) —inf, La/2(r) =Ry, say.
Critical values for Ry are tabulated e.g. in Haubrich and Lo (1988, table 1a) and critical
values for B’L are tabulated in Table 4 below. Observe that there is no corresponding

limit for R_ in case (b) since the random element ¥, (r) is not weakly convergent in

D[0,1] in the J;—Skorohod topology, as earlier discussed.
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Using Theorem 3.4 we deduce that tests based on R; are consistent when o > 2
but inconsistent when a < 2. Tests based on R]1 are consistent when o > 4 but incon-

sistent when « < 4, due to the failure of R to converge in this case.

3.4. A Consistent Test for Heterogeneity in the Infinite Variance Case

When 0 < a< 2 all of the statistics considered earlier lead to inconsistent tests
under heterogeneity of the data. Since the data has infinite variance when 0 < a <2 it
might be argued that there is little point in testing for heterogeneity using sample vari-
ances. This is certainly borne out by Thecrems 3.5 and 3.7. However, if the focus of
interest is the more general hypothesis of stationarity (rather than constant variance or
covariance stationarity) and it is suspected that this hypothesis breaks down over the
sampling period, then we would expect such a breakdown to become evident in some char-
acteristics of the data, if not the sample variances.

One way to test ﬂl under 0 < a < 2 is to work directly with consistent estimates
of the scale coefficients that appear in (Cl). These may be constructed using order
statistics in the following manner. Let (Et)lll be the residuals from (9) and let

~

Enls En25 e SE be the order statistics corresponding to this sample of residuals.

Next, define
|
P P BN - -
R &s
(24) d, = sn (fn,n—s)

for some integer s. It is assumed that n is large enough and s/n small enough so that

-~

€, pn_g > 0 and thus & and &S are well defined real quantities. These estimators were
originally suggested by Hill (1975) as conditional maximum likelihood estimators of the
characteristic exponent parameter « and the scale coefficient d=d; in (C1). The

asymptotic theory for them in the general case of a distribution whose tails have the
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asymptotic Pareto—Levy form (C1) is due to Hall (1982), who shows that it is optimal, at
least in terms of the asymptotic bias and variance of these estimates, to choose the integer
s =s(n) so that it tends to infinity with =n and is of order 27 (C1+Q)  ypen
ax) = O(x~ ") in C(1).

There is some advantage to choosing s(n) so that 5/327/ (27+a) 0 as n-o.

For, in this case we have from Theorem 2 of Hall (1982)

(25) s1/%(a, — ) 4y N(0, %)
and
(26) s/ (n/s) (@, — ) 44 N(O, ¢%) .

These asymptotics apply at a slightly reduced rate, viz. sl/ 2 and s/ 2[&1 (n/s)]'—1 rather
than the rates n'r/ (27+9)  4ng n7/ (27+0) [ (n)]_1 which apply when
s(n) = O(n27/ (27+ a)) . But they have the advantage that the limit distributions (25) and
(26) involve only scale nuisance parameters which are easily eliminated in statistical tests.

Suppose, for example, we wish to mount a sample split prediction test using (26).
n
We split the sample into two eras, (%t)ll and (Et)g +1 of approximately equal length
1

and let &gl) , ag2) be the corresponding scale coefficient estimators obtained by applying
(24) to each of these subsamples. Next define the deviation
= a1 _4(2)

Ta ™ ds ds

and the t—statistic
2 2.1/2

¥ 1/2 -1 71 +(2

(27) T(ry) = % (ny fs) Ly [dg 44 ] .

The asymptotic theory for V(r ) yields a standard N(0,1) tests. We have:
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THEOREM 3.8. Let (C1), (C2) and (3) hold and suppose k +k=1 a5 n-o. Assume
that oy(x) = O(x" ") for i=1,2 in(Cl) forsome 7> 0. Let 5o and s/n?'ﬂ(zﬂ'a)

0 asn o, Then, forall a> 0,
(28) V(rg) 44 N(0,1).

REMARKS

(i) Tests for heterogeneity in the sample that are based on V(r d) may be applied
easily using critical values from the N(0,1) distribution. In constructing the statistic (27),
however, a choice must be made in selecting s, the number of order statistics that are
employed in formulae (23) and (24). If the tails are strictly Pareto (with y=w) then
s =o(n;) will suffice in Theorem 3.8. If the tails are not strictly Pareto (which seems
more likely) but are well represented by an asymptotic series in x—a, then 4= a and
we require § = o(nfla) . In a situation of ignorance about the form of the tails of the
distribution it seems appropriate to obtain estimates of the tail scale parameter d for a
range of possible values of s. These can be centered on the value s = n§/3/£n(£n ng),
which would be appropriate in the case of a tail with an asymptotic series representation in
power of x *. The sensitivity of the statistic V(rd) and thereby the outcome of the test
to the selection of s can then be examined directly in a given data set.

(ii) Note that the standard N(0,1) asymptotics (28) apply for all values of a> 0.
Thus, the test may be applied irrespective of the value of the tail exponent « in (C1) and
therefore provide an alternative to the sample split prediction tests V(r) and V('rf) .
However, when a > 4 the order statistic test V(r,) will have lower power than V(7)

and V(-rf) . Indeed, rates of divergence under H{ are given in the following result.

THEOREM 3.9. Let the same conditions as those of Theorem 3.8 apply. Then, under H: |
the test based on V(Td) 15 consistent for all a> 0. Specifically, as n-+wo we have the

following rate of divergence under Hi :
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(29) V(ry) = op(sl/ 2/en(n /) -

(ili) Suppose we have s = n%/ 3/£n(£n n,), as suited for tails with an asymptotic

?’

series representation in power of x . This choice leads to a divergence rate under Hj

1
of Op(n1/3/£n(n)(£n &1(11))1/2) . Comparing these results with (16) we see that the order
statistic test V(7 d) will have greater asymptotic power whenever a < 3. Thus, the test
statistic V(r d) would seem to be worth using even in the finite variance case provided the
tails are not too thin.

(iv) Observe that tests based on V(ry) may be applied to both the right and left
tails of the distribution. In the latter case we simply use the order statistics for the
alternate series 7, = —Et .

(v) Subsample tests of heterogeneity may also be constructed for the characteristic
exponent o . In this case we may employ estimates of « based on the use of (23) for the

two eras. Let these estimates be &gl) and Ez£2) , respectively. Again we shall assume

that the eras are of approximately equal length. Define

_ 4D 2

a s

and construct the t—statistic

V('r )= s1/2; /[ (1) + a(2) ]
This leads to a test of the hypothesis

Hg: a(l) = a(g) =«

1/2

that the characteristic exponents a(l) and a(2) in (C1) are the same in the two eras.

Again, the test is an asymptotic N(0,1) test and is easy to implement. We have:

THEOREM 3.10. Let the same conditions as those of Theorem 3.8 apply. Then under the

null hypothesis Hg we have

(30) V() +4 N(0,1)
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and under the alternative hypothesis H'f: a(l) # a(2) we have
y _ 1/2
(31) V(rg) =0,

and tests based on V(1 o) 0re consistent.

3.5. Testing Hypotheses about the Maximal Moment Exponent

The maximal moment exponent of a distribution whose tails satisfy {(C1) is given by
the parameter o since « = sup q{E| ¢|9 <} . Of course, a is unknown in applications
and it will often be useful to combine estimation of a with a test of the hypothesis that it

has a particular value, say
HO L= oy
against the one sided alternative that
H1 ra<aog.
Of prominent interest will be the two cases aj =4 and ay=2. For then, the
alternative Hi corresponds to the cases of moment condition failure that we have studied

earlier where different asymptotic theory comes into play. A suitable test is based on the

studentized statistic

V(a) = s/ (&, - ep)/

or its LM version
1/2,.
Vy(a) = s/ %@ — ap)/ e, .
Under H, we have, from (25), the same limit theory for both statistics, viz.
V(a), V(@) <4 N(0,1),

leading to one tailed tests based on the standard normal distribution. These tests are easy
to apply and may form part of the preliminary diagnostic checking of the data character-

istics. We shall illustrate their use in Section 5.
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4. SIMULATIONS, CRITICAL VALUES AND
GRAPBICAL ILLUSTRATIONS

In the previous section, we obtained representations for the asymptotic distributions
of the sample split prediction tes{, the studentized cusum of squares test, and the modified
scaled range test for covariance stationarity. For a < 4, the limit laws of these statistics
depend on functionals of stable processes. Closed form expressions for the probability
density functions of these laws are unknown and we resort to Monte Carlo simulation to
characterize their properties and to obtain appropriate critical values. Of particular inter-
est is the extent to which the new distributions differ from those that apply in the standard
case of finite fourth moments (a > 4). Only cases of a > 2 will be considered here, since
for a < 2 the tests are inconsistent and thus of no interest to empirical research. To
perform the simulations, we generate stable random variates and from these construct
sample trajectories of the éppropriate stable processes. Exact algorithms for generating
stable random numbers have been proposed by Kanter and Steiger (1874) for the sym-
metric case and by Chambers, Mallows and Stuck (1976)! {for the general asymmetric case.
We considered values of a = {2.1, 2.5, 3.0, 3.5, 3.8} , and set n = 1,000 as our "large"
sample size, except for the asymmetric case when a = 2.1, where we set n = 2,500 . We
performed 50,000 iterations of all experiments. To increase efficiency, the symmetry and
skew—symmetry of the distributions was exploited in computing the critical values and
densities presented here. The simulations were carried out in the GAUSS programming
language; copies of these programs are available from the authors on request.

We first study the large sample distribution of the sample split prediction test

statistic V(7). We performed the following simulation experiment: We drew n iid

'We used their formula (2.3). We did not use the algorithm proposed in (4.1}, which is
based on a modified skewness parameter [’ , since we are only interested in generating
maximally skewed stable variates here, and (2.3) is faster to compute than (4.1). Note
that when 1 < o < 2 one must set the skewness parameter f= ~1 in (2.3) to obtain
stable variates with maximal positive skewness.
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symmetric stable random numbers x, of index /2, set y; = o2/ axi (note that by
selfsimilarity y; 54 dUZ /2) and computed the ratio (EIilyi)/ (Elily?)l/ 2 , thus simulating
the distribution of Uz/2(1)/(‘f{1)(dUz/2)2)1/2. Critical values, at the usual levels of
significance, are shown in Table 1 , together with the standard normal critical values
which are applicable when a > 4. As remarked in Section 3.1, the new critical values for
typical test sizes are all lower than the conventional ones. For a two—sided test with size
5% , say, the applicable critical value declines from 1.96 (for a>4) to 1.73 (for
o= 2.1). Thus, use of the conventional critical values in cases where the true o is less
than 4 leads to conservative tests. An estimate of the density of the V,(7) statistic for
the case of a=3, computed from the simulations using a normal kernel, is graphed in
Figure 5 . The density is quite different from the standard normal density: it is
platykurtic, its tails are thinner than those of the normal distribution, and the density is
bimodal, with peaks at —1 and +1 and a fairly flat region at the origin. Further Monte
Carlo-based estimates of densities of t—ratio statistics when «/2 < 2 are given in Phillips
and Hajivassilion (1987). Logan et al. (1973) computed the asymptotic densities of the
t—ratio statistic when @af2 < 2 through numerical integration of the associated
characteristic functions.

We turn to the empirical distribution of the limit law La/2(r) of the cusum of
squares statistics ¢ (r) and w;(r) . Wedrew n iid asymmetric stable variates x; of
index /2, set y. = n 2/ axi , and computed (E?i[m]yi — r-E?yi)/(E?y?)l/ 2 as the large
sample  approximation to (Ua/2(r) - 1'-Ualz(l))/(j’é(dUo[/g)z)l/2 , for
r={0.1,0.2, ..., 0.9} . The resulting critical values for typical test sizes as well as the
median of the finite dimensional distributions (fdd) of L /2(r) are given in Tables
2a—2e; the exact critical values for the fdd of the Brownian Bridge process B(r) are shown
in Table 2f for comparison. Only the upper confidence levels are provided, the lower

confidence contours being obtained from the skew—symmetric relationship L /2(r)

=4 L /2(1—1'). In Figures 6a—6f we graph the upper and lower confidence contours
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corresponding to (two—sided) 95% and 99% confidence levels. These tables and figures
present a complex picture, which we shall discuss in steps. First, whereas the fdd con-
fidence contours of the process B(r) are symmetric (Table 2.f and Figure 6.f), the
contours become increasingly asymmetric as a} 2. For a <4, the upper contours
increase rapidly with r for small r, and return fo O only slowly as r 1. Next, the
medians of the fdd’s of La/2(r) also depend on r: the median is negative for r < 0.5
and positive for r > 0.5. The {dd’s of La/2(r) as a function of a, for
a = {2.1,3.0,4.0}, are further contrasted in Figures 7.a and 7.b, in which we graph the
97.5% and 99.5% (one—sided) upper confidence contours, respectively. Third, for a < 4,
tests based on the (nominal a > 4 ) upper fdd critical values are conservative for r > 0.5,
but become increasingly liberal as r [ 0. For r = 0.5, e.g., the 2—sided 99 % critical
value decreases from 1.29 (the a>4 case) to 1.19 (a=3) and further to 0.96
(a=2.1), so that the conventional critical value leads to a conservative test in the latter
cases. But for r = 0.1, the 99% upper critical value increases from 0.77 (a > 4} to 0.99
(a=3) and 0.98 (a=2.1), whereas the corresponding lower critical value decreases (in
absolute value) from —0.77 (@ > 4) to —0.58 (a=3) and —0.36 (a=2.1). Figure 8
summarizes the dependence of the shape of the upper confidence contours of the fdd’s on
« in a three—dimensional graph, for 226 < a<4.

To complement the information on the {dd critical values given in Tables 2a—2e,
we give the asymptotic critical values for the statistic supr(v,bn(r)), delivered from
simulating supr(La/2(r))’ in Table 3. Note that P(infr(Lalz(r) <c)
= P(SUPI(LC.V/?(I) > —) . As discussed in Section 3.3 above, use of these critical values
does not lead to the size distortions that result from looking only at the critical values of
the fdd of L 0[/2(1:) . The dependence of the critical values of supI(La/z(r)) on ¢« is
easily described: they decrease monotonically with o, so that use of @ >4 based critical
values will again lead to conservative tests. Evaluation of an empirical cusum of squares

statistic is best based on both criteria, with the cusum showing behavior throughout the
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sample as well as points of maximum deviation, and critical values for the latter being
delivered by the sup (L 0/2(r)) and inf (L 0/2(r)) statistics. Further, « is usually not
known in empirical work and must be estimated in advance; if a cannot be estimated
with high precision, the cusum of squares statistic should be evaluated using the critical
values for a range of values of a around the point estimate.

Finally, critical values of the scaled range statistic Ry = sup (9, (r)) —inf (% (r))
are given in Table 4, together with critical values of the conventional statistic Ry . As for
the statistic sup (L /2(r)) above, critical values of R; decrease with «, so that con-
ventional critical values are conservative when the true values of « is less than 4. For a
two—sided test of size 5%, say, the appropriate critical value decreases from 1.86 (a > 4)

to 1.71 (a=3) to 141 (a=2.1).

5. ARE STOCK MARKET RETURNS COVARIANCE STATIONARY?

We start by making some general observations about the relevance of covariance
stationarity to theory and empirical research. Constancy of the unconditional second
moments of stock returns is rarely implied by models of optimizing behavior of economic
agents, and tests for covariance stationarity may therefore appear to be of little importance
to economic and financial theory. Indeed, the efficient market hypothesis is typically form-
ulated in terms of restrictions that are placed on the first moment or expected value of the
data, e.g., due to the intervention of arbitrage traders, "excess" returns cannot be earned,
at least not on the basis of public information alone. In spite of the apparent focus of
theory models on first moment behavior we still expect to have some prior information
about second moments. For instance, we may reasonably expect the unconditional vari-
ance of stock market returns not to be constant over long periods of time. The weights on
the individual stocks that enter the market index change over time; if the individual stocks

have differing intrinsic volatilities, the changing weights will obviously affect the variance
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of the market portfolio. Also, institutional innovations in the stock markets, such as the
rising importance of mutual funds and stock index arbitrage, seem to affect the variance of
returns significantly and irreversibly. Notwithstanding these reasonable empirical expec-
tations, the assumption of covariance stationarity is useful and convenient in applied and
theoretical time series analysis. Indeed, it seems that covariance stationarity is often
assumed more for statistical convenience than for theoretical economic reasons. Further,
formal models of conditional heteroskedasticity such as those in Engle (1982) and
Bollerslev (1986) explicitly rely on constancy of the unconditional second moments. In
addition, existence of fourth moments is usually assumed in ARCH and GARCH models in
order to derive simple estimators of the conditional variance parameters. These models
have recently been extended to allow for drift in the unconditional variance (Engle and
Bollerslev (1986)), leading to a long—run infinite unconditional variance; this extension
raises the question whether stock returns, empirically, possess a unit root in variance.
Hamilton (1988, 1989) formulates economic models with "switching regimes", in which
each economic regime possesses a different (conditional) variance. After integrating the
variance process over all possible regimes, one finds that this class of models also relies on
constant unconditional variance. Given the role of covariance stationarity in all of this
research, it would seem that testing for covariance stationarity and estimating the maximal
moment exponent of stock returns series are both highly relevant to the debate on how to
model the volatility observed in stock market returns data.

In this section, we analyze the behavior of the unconditional variance of two series
of stock market returns: the first is a series of monthly returns on an aggregate stock
portfolio from 1834 to 1987 (n = 1848), which was also analyzed by Pagan and Schwert
(1989a,b); the second is a series of daily returns to the "Standard & Poors 500" stock
market index from 1962 to 1987 (n = 6409), which was obtained from the 1988 CRSP
tape. We are interested in the following questions: (i) what are the point estimates of the

maximal moment exponent o« of the two empirical time series, and is there evidence of
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fourth moment or second moment condition failure in the data, (ii) does the hypothesis of
Pareto-like tails fit the data well, with a tail parameter « which is the same for both tails
of the distribution and which is constant over time, and (iii) can we support the finding of
Pagan and Schwert (19892), who strongly rejected the null hypothesis of covariance sta-
tionarity for their series of monthly returns, when we perform tests that use the modified
critical values which apply when fourth moments are not finite?

We chose to work with two long time series of stock returns since we are interested
in incorporating information about "outlier" activity into our tests for covariance
stationarity; smaller samples would provide us with fewer observations of "outliers", so
that we would be unable to estimate the parameters of the tails of the distributions with
enough precision. We will explicitly test for parameter nonconstancy, the two parameters
of interest being the maximal moment exponent o and the unconditional variance.
(When a < 2, we would consider the scale parameter d rather than the variance.) An
important advantage of studying data from financial markets is that they are reported "as
is," without extreme observations having been smoothed over. Statistical smoothing pro-
cedures are typically applied to the raw data reported to the Commerce Department in
order to generate time series of aggregate flow series such as consumption, investment, and
national income; there is reason {0 believe that such smoothing, while appropriate for
some purposes, may "remove" outliers and thus understate the leptokurtosis of aggregate
flow data.

In estimating the variance of a distribution and testing for its constancy over time,
it is important to obtain a preliminary estimate of the conditional mean of the series. Both
returns series exhibit some evidence of calendar (weekday and month—of—year) effects.
Therefore, the monthly series were regressed on 12 monthly dummies, and the daily series
were regressed on 5 weekday as well as (in a second regression) on 12 monthly dummy vari-
ables; we retrieved the residuals from these regressions. The residual series further dis-

played a small but significant dependence on their own past values. Serial dependence in
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the presence of heavy tails of the marginal distributions prevents the cusum of squares sta-
tistic ¢ (r) from converging weakly in the Skorohod J; metric in D[0,1], as we
observed in Section 3.2. If the serial dependence is generated by a linear process as in (2),
regressing out a (possibly long) AR process from the series yields asymptotically
uncorrelated residuals, so that the statistic 'w;(r] converges weakly to L /2(r) . For our
data sets, regressing out an AR(12) process from the monthly series and an AR(5) from the
daily series proved to be sufficient to create serially uncorrelated residual series. All
empirical findings reported below are for these transformed series. We also tested for and
found evidence of ARCH effects in the data; we did not "remove" them since they do not
affect the unconditional variance, which it is our purpose to analyze here. The data and
the preliminary transformations required to make the data amenable to formal testing in
our framework are described in greater detail in the Data Appendix. Our findings, inci-
dentally, are not affected significantly by these transformations, presumably because of the
quantitatively small magnitude of the calendar and time series effects present in the
original series.

We now study the tail behavior of the two series more closely, and in particular esti-
mate the maximal moment exponent ¢« of the distributions. Figure 9a graphs the right
tail of the empirical cumulative distribution function (cdf) of the monthly series in double-
logarithmic coordinates. (Formally, we graph logmx against P(X > logmx) , for
x > 0 .) In these coordinates, Pareto—like tails of the distributions form straight lines with
slope equal t0 —a . As can be seen from the figure, about 5 to 10% of the observations fall
into the right tail of the distribution. Figure 9b graphs the right tail of the cdf of the daily
returns series in double~logarithmic coordinates; here too about 5 to 10% of the data fall
into the right tail which seems to be very well characterized by a Pareto law. Similar find-
ings obtain for the left tails (not shown here) of the two cdf’s. We formally estimate the
maximal moment exponent using formula (23) above. We computed a for a variety of

choices of §, the number of included order statistics. We chose values of s such that we
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would not use observations that do not belong to the tails of the distributions. In the con-
text of robust estimation of stable law parameters, Dumouchel (1983) has suggested that,
as a rule of thumb, no more than 10% of a sample fall into the right or left tail of the dis-
tribution; this guideline seems to apply to our two data sets as well. This suggests that a
conservative upper bound for a choice of s would be about 100 for the monthly series and
about 250 for the daily series. (Point estimates of a decline rapidly for choices of s
above these thresholds.) We report point estimates of a for several choices of s in
Tables 5a and 5b for the monthly and daily series, respectively. The associated (asymp-
totic) standard errors are delivered from equation (25) above, and were computed under

the assumption that s = o(n27/(27+0‘)) :

for some 7 > 0. (Note that the standard
errors could be sharpened considerably if we assumed that the tails were exactly Pareto,
setting 7= o and thus s =o(n).) The point estimates are all below 4; they range from
about 2.5 to 3.2 for the monthly series and from 3.1 to 3.8 for the daily series. The esti-
mates exhibit some dependence on the choice of s, but it is important to note that they
are almost all (at least for the larger values of s) more than two asymptotic standard
deviations away from 4, so that we can be confident in concluding that the standard fourth
moment condition is not met by either series.

Our point estimates of « are also all above 2, implying that the unconditional
second moments are finite. While the tails of the two empirical distributions are heavier
than those of the normal distribution, they do not seem to be heavy enough to fall into the
domain of attraction of a stable distribution with a < 2. Our direct estimates of the
maximal moment exponent a of the distributions contribute 2 new element to the long-
standing debate on whether to model stock returns in terms of stable laws. Mandelbrot’s
(1963) seminal work studied the behavior of relative price fluctuations of commodities such
as cotton; he considered several pieces of evidence, among them recursive variance plots
and graphs of the tails of the distributions in double—logarithmic coordinates, and argued

that these were all strongly suggestive of the stable law behavior. Subsequent work by
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other researchers has generally concentrated on stock returns and foreign exchange rate
data (e.g., Fama (1965), Blattberg and Gomedes {(1974), Fielitz and Rozelle (1982), and
more recently Akgiray and Booth {1988) and Hall, Brorsen and Irwin (1989)). The general
conclusion to emerge from this literature is that empirical distributions in economics,
especially aggregate series such as stock market returns, do not follow stable laws and are
better modeled by finite variance distributions. Our point estimates of « agree with this
general result. But the observation that variances are finite obviously does not suffice as a
characterization of tail behavior. In particular it does not tell us the order of magnitude of
the tail or how many moments of the distribution can be assumed to be finite. Since our
point estimates of a are significantly below 4, fourth moment condition failure is a persis-
tent feature of the data and affects the way tests for covariance stationarity must be
carried out.

We recognize that empirical distributions have finite support and finite moments of
all orders. It might therefore be argued that moment condition failure is merely an arti-
ficial by—product of the choice of distributional framework, here the model of Paretian
tails. But such an argument would also preclude the use of eny distribution that has infin-
ite support, including the normal distribution, and does not provide a framework to
describe the "outlier" activity present in the data. The "outliers" in our two series, as
evidenced by the form of the cdf’s plotted in Figures 9a and 9b, are rather well described as
being distributed according to a Pareto law. Note that these plots too (by extrapolation)
would assign a negligible probability of observing daily stock market returns of plus or
minus 100% per day, say. Therefore, observing that the support of empirical distributions
is bounded may not say much at all about the type of outlier activity that occurs in the
data. In contrast, a model of Paretian tails not only appears to provide an adequate fit to
observed outlier activity, but gives a predictive framework for the rate at which outliers
appear and finally permits the development of an asymptotic distribution theory for tests

of covariance stationarity when "outlier activity" plays a significant role.
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To assess the robustness of our finding that the tails of stock returns distributions
are Pareto—like, we formally tested the equality of estimates of a across the right and left
tail and across time periods, using the sample split prediction test statistic \7(7 a) Ppro-
posed in section 3.6 above; the results are reported in Tables 6a and 6b. From (30), we
may use standard normal critical values to evaluate the test results. We find that we
cannot reject the null hypothesis that the estimates of o are the same for both tails, for
either empirical distribution, and for all of our choices of s. Similarly, applying the
V(Ta) test to two subsamples of the data equally split over time, we cannot reject the null
that a is constant across time periods as well. These findings are important for our
methodology, since we are interested in testing for a change of dispersion (or variance) over
time, while taking o to be a constant parameter in our maintained hypothesis {C1).

We now formally test for covariance stationarity of the data. To simplify the dis-
cussion, we shall set & = 3 for the monthly series and &= 3.5 for the daily series. (None
of our conclusions are affected by this simplification.) To estimate v, the lag truncation
number { was set, somewhat arbitrarily, equal to 8 for the monthly series and to 12 for
the daily series. As in Pagan and Schwert (1989a), we set k = 1 for the sample split
prediction test V(7), and obtained test statistics of —3.34 for the monthly returns series
(against a 2-sided 99% critical value of —2.34, for a=3), and -2.06 for the daily
returns series (the 2—sided 95% critical value is —~1.91 for a=3.5). We therefore reject
the null of constant unconditional variance for both series, more strongly so for the
monthly series. This result conforms with our conjecture that changes in the unconditional
variance are a natural consequence of institutional change: since the monthly returns series
covers 154 years vs. 254 years for the daily returns series, it would be subject to more
changes in stock market institutions and regulatory arrangements and thus may be
expected to exhibit stronger evidence of failure of covariance stationarity.

The cusum of squares test gb:l(r) leads to the same conclusion with respect to

covariance stationarity. The empirical cusum of squares statistics for the two series are
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graphed in Figures 10a and 10b. The minima of the two cusums are —2.13 and —1.61,
respectively; the applicable critical values are given in Table 3, they are, for a 99%
confidence level, equal to —1.40 (@ =3) and —1.44 (@ = 3.5). We thus strongly reject
the null of covariance stationarity for both series based on the test min (yS(r)). The
range statistic Ry = maxr(dz;(r)) —minrw]i(r) of the cusums are equal to 2.36 and 1.62,
respectively; compare these values to a 99% critical value of 1.80 (a = 3) and a 90%
critical value of 1.51 (@ = 3.5 ). Based on the range statistics, therefore, we again reject
the null of constant unconditional variance for both series, and again more strongly so for
the monthly returns series. These results are all the more notable since the tests for covar-
iance stationarity, as shown in Section 3, have low power against the alternative hypothesis
of changing variance in the presence of fourth moment condition failure. We also note that
both cusum of squares tests lie outside the respective 99% fdd critical value contours for a
large range of choices of r, further strengthening our conclusion regarding covariance
stationarity of the series.

QOur empirical findings are thus twofold. First, both series considered here fail all of
our tests for covariance stationarity. This throws into question the validity and robustness
of the many studies that routinely employ this assumption while analyzing stock market
volatility. Second, heavy tails are prominent features of the data and these tails are well
described as being of the Pareto form with a constant tail exponent «. In the absence of
formal economic models that provide plausible mechanisms for generating such heavy-
tailed series, we do not have a framework to assess the theory content of this empirical
finding. However, the apparent stability of this tail shape parameter over very long
periods of time is an interesting empirical regularity that models of rational economic

behavior should be designed to accommodate and explain.
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6. CONCLUSION

This paper develops a limit theory for tests of covariance stationarity in the
presence of heavy tailed distributions. Sample split prediction tests and studentized cusum
of squares tests are based on estimates of second and fourth moments of the data. When
the usual fourth moment condition holds, standard normal and Brownian bridge asymp-
totics apply. When fourth moments are infinite, the limit laws of these tests are given by
functionals of stable processes. Both these tests for covariance stationarity are comsistent
as long as second moments are finite, but they are conservative when evaluated at conven-
tional critical values, and they have low power against the alternative of unconditional
heteroskedasticity. When second moments are infinite as well, the tests are inconsistent.

The paper suggests a new test for heterogeneity which is robust to moment condi-
tion failure. Instead of relying on estimated moments, the test is based on direct
estimation of the tail parameters of a family of distributions with Pareto-like tails. The
test suggested has a standard normal limiting distribution. The "cost" of its robusiness is
that it has lower power than moments—based tests when moment condition failure is not at
issue. Based on Monte Carlo simulations, we provide revised critical values for the sample
split prediction test and the studentized cusum of squares test. These new critical values
should be used when fourth moments are not finite.

In an empirical application, ‘we test whether monthly and daily stock market
returns are covariance stationary. We find that both series are characterized by heavy tails
and fourth moment condition failure. Neither series passes the tests for covariance station-
arity, an empirical finding that confirms earlier work of Pagan and Schwert (1889a) and
casts doubts on the validity and descriptive accuracy of econometric models that assume
the unconditional variance of stock market returns to be constant. The maximal moment

exponent « of the distributions is found to be constant over time for both series,
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indicating that even when fourth moment conditions and covariance stationarity fail there
are still interesting empirical regularities in the series.

We close by mentioning some possible extensions to our work. On the analytical
side, we may go beyond the class of linear models whose independent innovations have
Paretian tails, and study models of conditional heterogeneity, mixture distributions and
the ways in which these models affect tests for covariance stationarity. To obtain the
small sample properties of our tests, we would need to strengthen the distributional
assumptions made in our paper and assume, say, exactly Pareto—distributed or
t—distributed innovations. On the empirical side, a vast amount of work beckons: how
common is unconditional heteroskedasticity in economic time series, and how common is
moment condition failure? Do individual returns series behave similarly to the aggregate
stock market index series we have considered here? Do Paretian tails characterize
economic and financial time series other than the stock market series? Finally, what
theoretical models of rational economic behavior would plausibly explain and predict the
apparent constancy of the nature of the outlier activity of the data? All of these issues

seem worthy of future research.
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MATHEMATICAL APPENDIX

1. PROOF OF LEMMA 2.1
(2) Set x; = (y,_y» -+-» ¥;_p) and write & =¢; + (¢-p)'x, - Then
2 . 2 (2 - . - -
ff - 3 = ff -0+ (0~ 0%) + 2(p—p) x.€, + (p—p) x x{(0-0p) .
(A2) (v )" /28[2(2 _ 62y = (uv ) 2al 2 - 6B — (el fm)(av )2 - D)
nv. 1 t e € 1 t € € 1Vt €
- —1/2 - -1/2 -
+ 2(p-) [ 2815+ (o0 () ™ B8P x 1(0)
- —1/2 - _
- ([nal/m){2(p=9) (v ) 20, e,] + (0-0) (o) 280k x -0}
and by Donsker’s theorem for partial sums of iid variates (e.g. Billingsley (1968), p. 137) it

follows that
(43) (av,y 25l — o)~ (arl/m)(ay )M 25N - o) 4y Wir) —1W(1) = B(r)

Thus, we deduce

(a9 v - ) )

from (A2) and (A83) provided

(A5) sup, | 2(p—0) (av ) 28 ¢, + (0-0) 1) 28 e xYe-0)1 0.
This follows if

(A6) (-9) max[(nv ) 25ix ] 4 0

(A7) (p=9)max J(av ) 2Bx (o) 4, 0.

El;xt ¢, is a martingale and by the martingale maximal inequality {(e.g. Hall and
Heyde (1980), p. 14)

P[maxk|n—3/4211(xtet| > 6] <§? —3/22na2E(x ‘X ) -pé'_z -1/2, 2ay—00

forall 6 > 0. Thus,
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(v=9)masxy [(ov ) 285x, ) = 0/ 4(p-0) mar 1=/ 25 ) - o,

since nllz(go—tp) Op(l), and (A6) holds. (A7) is immediate since the left side is
dominated by

v 2 p-) L8k x; 10 ()

which tends to zero in probability. Hence (A5) holds and we have (A4) as required.

(b) We consider three cases.
Cese (i). 2< a<4. Here E= E(ef) <o and we have a decomposition that is

analogous to (A2), viz.

(A8) 225l - %) = o2 2lm(éE - o) - (/)

! a_250(é2 — o)

n 1 €
+ 20p-0) b2 €] + (0-9) (2222 xt ()
- (In)/n){2(p-9)" [ 280k, x{] + (=0) [a 2Eyx,x (0-0)}
Now

(49) 25— o) g Ugppl0)

by (6), since ef € ¥2(af2) and e% - af is an iid sequence with zero mean. It follows

from (A8) and (A9) that

(A10) 2l ?) U /o8 =10 o(1)
provided
(A1) sup 1200 (a2 ey + (o) (a5 B Mk o-9)1  0,

since (A11) implies the corresponding Skorohod distance necessarily converges to zero in
probability. Thus, (A10) converges weakly to the limit process U /2(r) in D[0,1] in the
J,—Skorohod topology if (A11) holds. But (A11) follows if

(A12) (0—9) ‘max |a; Ekx &l o 0,

since the contribution from the second term inside the sup is dominated by a quantity
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that tends to zero in probability because - "y 0, viz.
() max, a7 Srx,x{1(¢-p)
<(p-0)'[ag Byxxille=9) =, 0.
However,
[ma.xk|a, 2ka (&1 > 6] < an;‘i))gaiE(qxt)) = pb'_za%ai(n/aﬁ) -0
and (A12) holds, giving (A10) as required.

2

Case (#). @=2. In this case we set o = E[cfl(e% < a121)] . The decomposition (A8)

has the same form as before with afn replacing af . In place of (A9) we have
—2
(e 16— a a /2(r)

and (A10) follows since (Al1) holds as in case (i).
Case (#i1). 0 < a < 2. In this case, no centering is required and the first two terms on the

right side of (A8) are replaced by
—2¢k 2 —2¢n 2
a_28%e? — ([mr)/n)a 2Ehed Uga®) =104 5(1)
Here, the limit process Ua/2(r) is a positive stable process on D[0,1] . As in Case (i),

(A11) holds if (A12) does. But
~1/2 1/2
-2 —2vn_2 -2
max, |2, Ekx NAREN Elillxtet| < [an Z‘Illxt] [ Ene ] = p(1)

ef, xf € ?(a/2) . Finally, by Hannan and Kanter (1977)), nl/é({o—go) 4, ¢ 0 for

any 6> a, 50 that oo 55 0 a8 (A12) holds, giving the required result (A10) with

since

Ua/g(r) being a positive stable process in this case.

2. PROOF OF THEOREM 3.1
(a) From Theorem 3.7 of Phillips and Solo (1989) we have the following CLT for
variances under (C1)—{C3) and a > 4:

(A13) e 72) 4 N(0.¥)
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2 2 2em 2
where oy = E(yy) = aEEECj and
212, o Ago (5o 2
(A14) V= 54[28cj] + 20 E‘“ [ 0cscsﬂ] :
Note that Ky is the fourth cumulant of € and the series that appear in v converge

under (C3) by Lemma 3.5 of Phillips and Solo (1989). Next, observe that
1/2. -1/2 1/2 —1/2
l/% = o725 (57 - o)~ (n,f2) 5 =)

and, by assumption, kn =1 /n2 -k as n-o. The two sums that appear in this expres-
sion are asymptotically independent under (C3) and again by Theorem 3.7 of Phillips and
Solo (1989) we deduce that

al/2r oy N(O, (14K)v) .

Finally, ir—’p v since v is the usual Bartlett estimate of the long run variance of y% and
this estimate is consistent under the stated conditions. The required result, viz.

V(1) 54 N(0,1) , now follows directly.
1/a

(b) Suppose 2 < a <4, so that E(y%) = 03 = (Egc?)a% <w. Set a =an
r = k/(1+k) and note that

n k
1 nr

=== 2o 4,

oo n—[nr] + o(1) = 1-1

n 1 + kn 1 '
Next, observe that

Emc_] t— + EE; Or'c;]-—_] Jitr t—J t—J—I‘
1#0
2

(A15) = fo(Ley + B ofiLege

where (L) = E’Scjc i p - Weuse the following decomposition of the lag polynomial f, (L)

(see equation (23) and Lemma 2.1 of Phillips and Solo (1989)):
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f(L) = B hk v e = Timkaths = Zs=ka 19S5 -
Employ (A16) in (A15) and note that ef € /D(a/2) so that a_zE[m](ef — 02) 4 Ua/Z(I)

by (5); while for s4#0 ¢ € 47(2) and we have a 22 op(l) . Combining

t¢t—s 1 %ft—s

these results we obtain

2_ o2y = a_ %[0y ~ ) +0,(1)

2
E L(y2 y

= a2 - o)) + 0,(1)
(A17) 4 Ua/2(r) ,

with r = k/(1+k) fixed and

2 2
o° =f,(1) = 0 -
In a similar way we deduce
-2 2 2 2
(A18) a_ xgl 115 = 05) =g 91U, /2(1) ~ Uy

It follows from (A17) and (A18) that

-1
1an

_2 2
El (yt ) knan n1+1(yt y)

N {Ua/g(r) - k[Ua/2(1) - Ua/Z(I)]

(A19) = A{(14K)U 1o/ (14+K)) = KU o jp(1)} -

,“r

Turning to the derominator of Vk(T) and using the same arguments as those in Phillips

(1990, Section 2.3} we find
—4. 4,1 2
(A20) na oy JO(dUa/2) ,

so that
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(A21) n,(1+k )a i=k (nat ¥) - ko? jo(dUa/g) .
It follows that
V() = [(1 + x )oY 2(,11/27) = [nl(l + kn)a;‘*e]_ll 2(11 a_2%)

1 9171/2
“d [k 136U o) ] (1)U g (k[ (14K) = KU o (1)

as required.

2

2., 2 2 . .
When a =2 we may center on Oon = E[ytl(yt <a)], giving

~2. _ 251 -2 2
ny8 “7=a "I; (yt —a o) kA En +1(yt yn)
2
240 {Ua/g(f) - k[Ua/2(1) - Ua/g(f)]}
as in (A19). (A21) continues to hold when a =2, and this covers the case a =2,

When 0 < o <2 wenote that a/2 <1 and so no centering is needed in the num-

erator of the statistic. In this case we have

2. 12 -2
na. T=a_ 21 ka Enl+1yt

2 +
g WU o) ~K{UF (1) - UL o)
where UZ /2(r) is a positive stable process with exponent «/2 i.e. increments in
U'; /2(1') are independent and are distributed as a positive stable variate with character-

istic exponent a2 . (A21) holds as before and this establishes part (b). o

3. PROOF OF COROLLARY 3.2
We need to show that the limit variate given by (11) is equivalent in distribution to
(12). First observe that the variates Ua/2(r) 'Ua/2(rl2) and Ua/2(I/2) are stable,

independent and equivalent in distribution, i.e.

U /a5 = Uy e/2) =4 Uy oe/2)

Hence
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Ua/2(1‘/2) - {Ua/g(r) - UQ/Q(I/Z)} =4 _[Ua/z(rlz) - {Ualg(r) - Ua/z(rﬁ)}]

and
US 1(5) = U g 5/2) = {0 4 o8 = Uy o(e/2)}
is a symmetric stable process on D[0,1] . It follows that
Ua/2(1/2) - Ua/2(1) = Ua/2(1/2) - {Ualg(r) - Ua/2(r/2)} = UZ/Q(I)
as required for the numerator of (12).
Now let Va/2(r/2) = Ua/2(r) - Ua/2(r/2) and write
vl 12 =1, j2(t/2) =V 4 o(t/2)

as the difference of the two independent stable processes U a/2 and V af2" Increments in

these processes are also independent and we have

AUS (5) = AU o(5/2) = AV o 5/2) = (/2% %v =1 /2% %av o(8).
Next observe that
dUa/z(r), dva/2(r) € ¥D(a/2)
and hence
(U 5 a(0))%, (8V o (e))* € 42(af4) .

However, in view of the independence of U /2(r) and V_ /2(r) products of increments in

these processes are in P(a/2) and hence

dUa/z(r)dVa/2(r) =0 as.
Thus

(aU,o(e) =4 (/2% U o) + (17204 %@V o))
=4 10/2) + (/21 %(av , )
= (4U o).

It follows that
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—~1/2 2
(3@ ] 20,y 0/2) = U 0 =g [1@0% 0] 08 1

thereby establishing (12) as required.

4. PROOF OF THEOREM 3.3
(a) When a >4, wehave ¥, 24pv and ¥, +k V2"' (14k)v . Further,
1/ 724 N0, (14k)v) as before and part (a) follows directly.
(b) When 0 < a < 4 the numerator of
Y 1/2.,.1/2 -2- —4..1/2
Vi(r) = n1/ ki /2 - (n,2,°7)/(nja "F) /
has the same limit behavior as before, viz.

-2 2
(A22) nja “Toq 0 [Ua/2(r) - k{Ua/2(1) - Ua/2(r)}]
where 1 = k/(14+k). The denominator behaves as follows:

Ao A 2 4 .
njag ¥ =mpa e+ k(e ngdy)

2 2,1 2
(A23) ny {jg(dUaﬁ) +1%lau ) }
Combining (A22) and (A23) we get the first expression given in part (b). The distribu-
tional equivalence of {13) and (14) when k =1 follows just as in Corollary 3.2.

5. PROOF OF THEOREM 3.4

In all cases (i.e. 0 < a<4 and a>4) we have {o—*ptp. Next, when a > 2 we

-2 .2 2
have 0] ¢ 025_'p o,

2 n 2
; 10,2 2% G2 2
Y1e= ™ El[t—ale] =15 [‘t""e] +0,(1)

; and when a > 4 we have:

_ 4
-op V= Ky + 205

and, similarly, Vo, “p Ve Thus, when o > 4, we have ¥ 5 (1+k)v€ and



45

1/2. -1/2.01,.2 . 1/2 -1/2 52
n1/"5'"“‘1/’31(‘% 16— k/ /En+1( ¢)
24 N(6, (1+k)v ) .
It follows that when a > 4 we have
Vk(re) 4 N(0,1)

as required.

When 2 < o < 4 weemploy Lemma 2.1, set r = k/(1+k) and find that

—2A —2 -2 2
(A24) nja T El (e -a) -k a Eﬁ 1(6 ~ o)

_ —2v[n1],.2 2 22 2
=ay L) (et - Je) _knan [nr]+1(5t - ae) + Op(l)

(A25) -y U, 12(8) = (U 4 o(1) = U o)1}
and

nla;li'r = 111::1;4‘\?1(E + kz(a:lnfrzf)
(A26) 4 0I5 4 0)* + K1 1(aU o))

as in (A19) and (A23). When a =2 we center on ain

= E(e?l(ef <a_)) in the sums in
(A24) and, when 0 < a < 2, no centering of the sums in (A24) is required. In both cases

(A25) holds, as does (A26). Writing

1/2
a2 4.
('r () =Dqag [nla11 v ]

and using (A25), (A26) and joint weak convergence we obtain the required asymptotic
equivalence of Vk('rf) and Vk('r) . Similar derivations yield the asymptotic equivalence

of Vi (r,) and Vi (7). o
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6. PROOF OF THEOREM 3.5
(a) Under H,; we have

R e P S T 2 2 __-1J"2 2
(A27) T=1,% (Yt - Uy) — 1, Es=1(yn1+s - ays) + 9% My zs:lays ’
so that
1 9. 1 2 1 2 -1 2 1 2, 1 2 .
Now k -k as n-o and
_.1/2 “1/2o"
2 1(0 s)"'11 Bs 1’3j—-0 3(0 e+)
2 -1/2
=(ae—0€+) /2_] 0(11 —_])C
2 1/2
= (ae 6+) / J 0(1 _]/112)C

= o(al/?.

Hence, ni/ % = Op(nll 2). The denominators of V,(7) and Vk(’r) depend on v and ¥

and
R . -1 o 2 2 2
v o v = llmn_m{n E[ 1(3]t - E(yt))] } )
2
.. 3 . 1,01, 2 2
V=v,+k v, “p hmn—m o, E[El (yt - E(Yt))]
2
X -1 2 2
+klim__ n, E[Bﬁl_ﬂ(yt = E(Yt))]

These limits exist under (C3) since fourth moments of ¢, are finite and bounded. It

t
follows that Vi (r), Vk(-r) = Op( nd/ 2) as required and these tests are consistent under
H,. In an entirely analogous way we find that Vk('r E) . Vk(Te) = Op(nI/ 2) . This
establishes the rates of divergence under Hj givenin (15) for a> 4.

Expression (A27) continues to hold when 2 < a < 4 and we have
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2. -2 2 -2 2 21 2 9
nya "7 =ag El (yt ay) k a Es 1(yll +s ays)"'knan Z (ay—ays).

Now we find
202, 2 2. ,2 2 N N2
a2y (ay - ays) = (o}, ~ cre+)(nza11 )Ej=0(1 —_]/n2)cj
_ 0(n1—2/a) .
But

]-1/2 -2.]

(A28) Vi (1) = [nl(l +k )t g

and the denominator n,(1+ kn)a:l\? = Op(l) as in the null case. Thus, V(1)

= Op(n1_2/a) as asserted in (16). The same rate of divergence under H, applies to
V(1) Vi(7,) and Vi(r,), thereby establishing part (a).

(b} Observe that both cf and y‘t‘2 liein #P(a/2). When 0 < a< 2, neither ef
nor y% has finite mean and no centering is required for the limit theory. Further, for
r = k/(1+k) fixed, we have

-2- -2 -2
nja T=a; El yt k a En1+1yt
(A29) 4 oAUt o -kt ) - vt oo
af? a/2 af2

where o° = EEC? , as before, and f=a, fa. To verify (A29) we employ (A15) as in the

N
proof of Theorem 3.1, giving

2, —2en 2 20+
a El yt = o"(ay Exllet) + op(l)-rd o Ua/2(r)
and
-2 2_ 2 2, —2 2 22004 +
%n E;ll-klyt = (a+,n/a’n) (a+,n221+lft) + Op(l) gt {Ua/2(l) - Ua/2(r)}
as required, where a yp=8 +n1/ @ s the normalizing constant for the upper half sequence

(67 L1
n1+1

For the denominator of V,(r) in (A28) we find
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4], —4:"1 2 4. —4 2
= oan 2y 6+ (o /3) 60T 1 €D) + o)

{Io[dUa /2] + #j:(dualz)z} .

Hence
ny(1+k )a_ ¥+ ko {jo[dUa /2] + Pl /2)2} :

We deduce that under Hi
-1/2

2
AGE Hfo[dualz] + 1 [dUa/2] H [UF /5@ = KUY (1) = U (o)

and, hence, Vk('r) = Op(l) , leading to an inconsistent test. Similar derivations show
that Vk(*r), Vi (r,) and Vk(re) are Op(l) as n-o and these tests are also

inconsistent under H; , thereby establishing part (b). o

7. PROOF OF THEOREM 3.6
(a) Write

9(0) = @ey 250l - o2 + o - i)

= @) 725"y — 2) + farl(d) M2 (02 — )
= ()2 @ 28l - o) - (i) 28] - o)
= W(r) —rW(1)

by Theorem 3.7 of Phillips and Solo (1989) since ¥/v "pl‘ The limit process
B(r) = W(r) —rW(1) is a Brownian bridge on C[0,1] .

Similarly, we have
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¥ = (9 )28 PE - ) = (v £ ) Pl 28 - B

since ;’e'*p v, and (nv ) 1/22[nr]( )-a B(r) by Lemma 2.1(a).

(b) When 0 < a <4 we have, as in the proof of part (b) of Theorem 3.1, the weak

convergence for fized r
9 2 . -2 2 2 -2en, 2 2
a2l - i) = 758 (M N5 - o) — () /m)ag?svE - o)
2 2
q° [Ua/2(r) —rUalz(l)] =0 Ka/2(r) :
Similarly, for fixed I and Ty, We have the joint weak convergence

_o.[nrq] -
;251 2_ﬁ2) 22

n 2 (% vl g2

(v - ﬁg)} 24 0K gyol51), 0K g jofn,)]
and the same applies to the higher finite dimensional distributions. Thus
(430) &M ) agyq oKy le).
Combining (A30) and (A20) we have:
te) = 222y [aacke) ™ atafl? - gy

1/2
g4 [U /o =10 o/ [13@0 7]

as required for (19).

To prove (20) we first write

(A31) ¥e(r) = [na_4fr ] 1/2[a;2z{nrl(ef ~ %)
By Lemma 2.1(b) we have
(A32) aZZelvrle? 5%, K g /o) -

The denominator of (A31) is handled by treating the following three cases.
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Cuse(1). 2< a<4.

2 p 2
. ~1lenf[.2 .2 ~lanf.2 2 1.2 2., 2 .2 9 .
(A33) v,=n EIll[et -0 ] =n Erll[e - Ue] + 2n EIll(et—ae)(at-—aE) + [Ue - aﬂ

Then

2 2
4. —4nl.2 .2 —4en,.2 .2y, 2 .2 -2 ~2
na v, =aj Elll[et - ae] + 22 }3111(5t - af)(ae- o) + [an (cr%— ae):l
1 2
(A34) < J(4U4)9)
since ef € P(af2) and &E 5 a% Using (A32) and (A34) in (A31) we obtain the

required result {20).

Case (i1) a=2. In this case we recenter on ain = E[e%l(ef < ai)] in place of 03 in

(A33). Observe that

-2, 2 "2 -2 —1lgn, .2 2 -1
a) (Ucn— ae) =—a “n E]il(et - am) = Op(n )

2
—4enf.2 2 _ .4 2 2 1 2
e R R G AN RENO R ECLIS
and then
—4. 1 2
B3, Ve™d IO(dUa/Z)
leading again to (20) in conjunction with (A31) and (A32).

Case (#i1) 0 < a < 2. Here, no centering is required and we have

which again leads to the required result. o
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8. PROOF OF THEOREM 3.7

This is similar to Theorem 3.5. We write
vEm) = (v /5 )2 s - o) - (lmal e - )
(A35) = (v M 25032 o) — () [57H20, ( - )
+n_1/22§1+1(2t—06)]+n2 2, ai)}.

. - 2, 2 . s
Now suppose that a > 4. Since VEIVE = Op(l) and o # Tt under H, it is easy to

see that all the finite dimensional distributions of ¢I€1(r) diverge under H
r<r =k/(1+k) we have from (A35) that 9[(z) =

1 For

Op(nzn_ll 2y = op(nlf 2) as no.
A similar decomposition for 1b;(r) applies when r > T leading to the same rate of
divergence over the interval (r;, 1] and we have (21) as required.

When 2 < @ < 4 we have in place of (A35) the decomposition

a2l - %) = ol - ) 4 e 2(EE - D)

-2 2 2 2[<1,.2 2 M2 .2 2 2 2
=a_ E}nr](et - ¢¢) = ([n1]/n)a, [21 (8 —0o)+ 2 ¢, —0,) tny(o,, — O'e)] :

Then, taking r <1, we have
~1/2.-2 2 2
yé(r) = (najte )M % 2slmr e _ o)

= 0 (n2.%) = 0 (%

as required for {22). Again the same rate of divergence applies when r > 1y .

Finally, when a < 2 we write

o P 1 o (P3N P

- ;%{“f]ef-([m]/n){ 2512 4 22“1 A

=0,1),
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and na:lw}f = Op(l) as in the proof of Theorem 3.5. Thus, we find

¥E) = (naj‘ee)_l/ 2a;2z{nf](ef -5} = 0,(1)

and the test is inconsistent in this case.
9. PROOF OF THEOREM 3.8
Using (26) we have
1/2 -1 1/2 -1,5(1 ~1/2 —1,4(2
2 m(a, f5))Lrg = M fta(o, o)1) - @) - 572Gy 0P - g)

2
-4 N(0, 24%)

and  V(ry) = s/ Q[m(nlls)]_lrd/[agl)z— a£2)2]1/ . 4 N(0,1)

as required. Note that we may proceed as if ¢ is replaced by €, in (23) and (24)

n,j
since & (and hence €/ J-) is consistent for ¢, (respectively ¢ j ) under both the null
i )

and alternative hypotheses.

10. PROOF OF THEOREM 3.9

Under H1 we have
M2 ta(ny ) g = 8 Pltaay fo) AN - ) = Pty ) @) - o)y
+ 8! fentay 7 (@) - o)
= o (M ta(ay )™

The same divergence rate applies to V(Td) a8 mn-o since Elgl) '*p d(l) and
32, 4(2)
d¢ pd :
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11. PROOF OF THEOREM 3.10
Using (25) we have under Hg

s /2(a{1) - a2y = M2 (a{M) — ) - sM%(a{2) - 0) -y N(o, 26

and (30) follows directly. Similarly under H‘f we have

51/2(a£1)_&£2)) _ 51/2(&£1)-a(1)) _51/2(&22)_0(2)) n s1/2(01(1)_0‘,(2)) _ Op(sllz)

as required for (31).
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DATA APPENDIX

In this section we describe the transformations that were applied to the data prior
to testing for covariance stationarity under moment condition failure. The purpose of these
preliminary transformations is not estimation of structural parameters of the DGP’s, but
merely calculation of the unconditional variances while taking into account regularities in
the means of the series. We also need to eliminate serial dependence in the mean in order
to apply the asymptotic distribution theory developed for the cusum of squares test when
fourth moments are infinite. For simplicity, we do not explicitly consider long memory
processes, and in eliminating time series effects the maintained hypothesis will be that the
data are covariance stationary. This hypothesis is tested at length, of course, in section 5
of our paper.

The first series we study are monthly returns to an aggregate stock market portfolio
which covers the period from January 1834 to December 1987 (n = 1,848). Schwert
(1989) discusses the details of the construction of this series. The data were very gener-
ously provided to us by Adrian Pagan and Bill Schwert, and were furnished as the residuals
from a regression of the returns series on 12 monthly dummies. This transformation
demeans the data and removes seasonal effects at monthly frequencies. An analysis of the
serial dependence in this series led to specification and estimation of the following AR(12)

process:
.12  1ger. .
y, =L 2 by, (t=18351, ..., 1987:12) .

The estimated coefficients and their standard errors are:
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b, §.

-

1 1
1 0.1630 .00104
2 -0.0219 .0234
3 —0.0687 .0238
4 0.0305 .0238
5 0.0655 0239
6 -0.0317 .0240
1 0.0142 .0240
8 0.0427 .0239
9 0.0413 .0239
10 0.0183 .0239
11 0.0099 .0239
12 0.0037 .0236

RZ = 0.0414, R2=0.0351, F 4= 6.56.

12,182

The largest estimated coefficient is that of the first order AR component,
61 = 0.163 , but far more than just one component had to be included in an AR model in
order to remove serial dependence from the data. The Q—Statistic at lag length 20 is equal
to 31.7 and serves to test whether the first 20 autocorrelation coefficients of the residuals
from the AR(12) model are jointly zero; the statistic is distributed asymptotically as a x2
variate with 20 degrees of freedom under the null of no serial correlation. Since the test
statistic is below the corresponding 95% critical value, no further transformations were
applied to the data, aﬁd this residual series is the series of transformed monthly stock
returns which we use in section 5 for the analysis of covariance stationarity of monthly
stock returns. The correlation coefficient between the residual series and the original series
is 0.979. Since large fluctuations tend to be serially correlated empirically, a consequence
of regressing out an AR(12) process from the data is to reduce the largest fluctuations
slightly in magnitude. For instance, the largest positive observation was reduced from
36.8% (the unit of measurement is percentage change per month) to 33.8%, and the largest
negative deviation was reduced from —28.6% to —26.6%. The largest fluctuations all

occurred during the Great Depression.
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The second series is the sequence of daily returns to the Standard and Poors 500
stock market index. The series is measured in percentage changes per day and covers the
time span from 7/2/1962 to 12/31/1987 (n = 6,409) . The data were obtained from the
1988 CRSP tape. A regression of the returns series on 5 weekday dummies gave the follow-

ing estimates:

i bi 8

1 —0.00135 00025
2 0.00034 .00024
3 ¢.00110 .00024
4 0.00040 .00024
5 0.00030 .00025

=2

2 _ — -
R”=0.00911, R"=10.00849, Fy 404 = 14.7.

The mean of the dependent variable is equal to 0.00027, thus all coefficient esti-
mates are of the same order of magnitude as the mean of the series itself. Mondays (or,
rather, holding the stock index over weekends, from Friday evening to Monday evening)
appear to generate negative returns, while the other weekdays show positive expected
returns. Overall, though, the day—of—week effects contribute little to explaining (statistic-
ally) the fluctuations of the daily data (cf. the low value of the R? statistic). Next, in
order to remove additional calendar effects from the data, we regressed the residuals from
the first regression on 12 monthly dummy variables. The estimates from the second regres-
sion are not reported here; all estimated coefficients were insignificant according to
conventional i—tests and the regression F~test and were much smaller in magnitude than
the coefficients of the weekday dummies shown above. Finally, we analyzed the time series
properties of the residuals from the two consecutive calendar effect regressions. We
specified an AR(5) process for the residuals, the coefficient estimates and corresponding

standard errors for this choice of model are:



i bi 5

1 0.1602 0125

2 —0.0502 0127

3 0.0118 0127

4 —0.0264 0127

5 0.0267 0125
R? = 0.0265, R%=0.0259, F

5,6404 - 43-6 .
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As is the case for the monthly data, the first order autoregressive coefficient is the largest.

Including 5 lags in the AR model proved to be sufficient to eliminate significant time series
effects from the data; the Q—statistic for zero serial correlation up to 20 lags is equal to

26.8 for the residuals from this AR(5) model. The null hypothesis of zero serial correlation

could thus not be rejected, and this residual series is used in section 5 to test for covariance

stationarity of the daily stock returns. The correlation coefficient between the original

Standard and Poors 500 series and the residuals series is equal to 0.969. The elimination of

the time series effects again led to a slight smoothing of the large fluctuations; e.g., the

largest negative return (which was observed on October 19, 1987) was reduced from

—20.5% to —19.5%.
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Table 1. Critical Values of Sample Split Prediction Test Statistic V,(7)

P(X < ¢) a N(0,1)
2.1 2.5 3.0 3.5 3.8 [a>4]
90% 1.26 1.28 1.28 1.29 1.28 1.282
95% 1.51 1.55 1.59 1.63 1.62 1.645
97.5% 1.73 1.79 1.85 1.91 1.93 1.960
99% 1.99 2.07 2.15 2.24 2.28 2.326
99.5% 2.17 2.26 2.34 2.48 2.51 2.576

For « < 4, critical values are based on 50,000 simulations of the test statistic, with a
sample size of n = 1,000 . For o > 4, standard normal critical values apply. Note: In
Tables 1—4, all critical values are for one—sided tests of the corresponding null hypotheses.



Table 2. Critical Values of Finite Dimensional Distributions (fdd)
of the Cusum of Squares Test Statistics ¢ (r) and 1,b:l(r)

(2.2) a=21
P(X < ¢) r
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50% -0.10 -0.13 -0.11 -0.06 0.00 0.06 0.11 0.13 0.10
90% 0.39 0.61 0.66 0.63 0.59 0.53 0.46 0.36 0.23
95% 0.66 0.78 0.75 0.74 0.70 0.63 0.54 0.43 0.27
97.5%  0.84 0.85 0.86 0.84 0.78 0.71 0.61 0.48 0.30
99% 0.91 0.98 0.98 0.95 0.89 0.80 0.69 0.54 0.34
99.5%  0.98 1.07 1.07 102 096 087 074 058 0.36
(2b) a=25
P(X <¢) T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50% —0.09 -0.11 —-0.09 -—0.05 0.00 0.05 0.09 0.11 0.09
90% 0.43 0.62 0.68 0.66 0.64 0.59 0.52 0.42 0.28
95% 0.67 0.79 0.81 0.80 0.77 0.72 0.63 0.51 0.34
97.5% 0.83 0.90 0.94 0.93 0.89 0.83 0.73 0.59 0.40
99% 0.93 1.05 1.08 1.07 1.03 0.96 0.84 0.69 0.46
99.5% 1.02 1.14 1.19 1.18 1.13 1.05 0.93 0.75 0.51
(2.c) a=3.0
P(X <¢) T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50% —0.06 —0.07 -0.06 —0.03 0.00 0.03 0.06 0.07 0.06
80% 0.41 0.58 0.65 0.65 0.64 0.61 0.54 0.45 0.32
95% 0.61 0.76 080 081 0.7 0.75 0.67 0.55 0.39
97.5%  0.78 0.88 0.94 0.95 0.93 0.88 0.78 0.65 0.45
99% 0.90 1.02 1.10 1.11 1.08 1.03 0.91 0.76 0.53
99.5% 0.99 1.12 1.21 1.22 1.19 1.12 1.00 0.83 0.58




(Table 2, continued)
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(2.d) a=3.5
P(X < ¢) r
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50% —0.04 -—0.04 -0.03 -—0.02 0.00 0.02 0.03 0.04 0.04
90% 0.40 0.55 0.62 0.64 0.64 0.61 0.57 0.48 0.35
95% 0.55 0.72 0.79 0.81 0.81 0.77 0.71 0.61 0.44
97.5% 0.69 0.85 0.93 0.95 0.95 0.91 0.84 0.71 0.52
09% 0.85 1.00 1.10 1.13 1.12 1.07 0.99 0.84 0.61
99.5% 0.93 1.10 1.20 1.25 1.23 1.18 1.09 0.92 0.67
(2.e) a=38
P(X < ¢) T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50% —0.01 -0.01 -0.01 -—0.01 0.00 0.01 0.01 0.01 0.01
90% 0.38 0.52 0.60 0.64 0.64 0.63 0.58 0.50 0.37
95% 0.52 0.68 0.77 0.81 0.82 0.80 0.74 0.64 0.47
97.5% 0.63 0.81 0.91 0.96 0.97 0.95 0.88 0.76 0.56
99% 0.77 0.96 1.08 1.13 1.15 1.12 1.03 0.89 0.66
99.5% 0.86 1.06 1.20 1.24 1.27 1.24 1.15 0.99 0.73
(2f) a> 4.0 (exact critical values)
P(X <) I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50% 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
90% 0.38 0.51 0.59 0.63 0.64 0.63 0.59 0.51 0.38
95% 0.49 0.66 0.75 0.81 0.82 0.81 0.75 0.66 0.49
97.5%  0.59 0.78 0.90 0.96 0.98 0.96 0.90 0.78 0.59
99% 0.70 0.93 1.07 1.14 1.16 1.14 1.07 0.93 0.70
99.5% 0.77 1.03 1.18 1.26 1.28 1.26 1.18 1.03 0.77

The critical values in Tables 2.a—2.e are based on 50,000 simulations of the test statistics,
with a sample size of n = 1,000 (except Table 2.a: n = 2,500 ). The critical values in
Table 2.f are the exact critical values of the Brownian bridge statistic, calculated from

B(r) =4 N(0,1(1-1)).



Table 3. Critical Values of the sup (¢ (r) Statistic
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P(X < c) a N(0,1)
2.1 2.5 3.0 3.5 3.8 [a>4]
80% 0.76 0.83 0.85 0.86 0.87 0.897
90% 0.89 0.97 1.00 1.02 1.04 1.073
95% 0.98 1.09 1.13 1.17 1.19 1.224
97.5% 1.10 1.24 1.29 1.33 1.36 1.358
99% 1.18 1.34 1.40 1.44 1.48 1.517

The critical values are based on 50,000 simulations of the test statistics for a < 4, with a
sample size of 1,000 (except for & = 2.1: n = 2,500). For a > 4, the exact critical values

¢ solve the equation P(supr(B(r))>c) = exp(—2c2) , ¢ >0 (Billingsley (1968), equation

(11.40), p. 85).

Table 4. Critical Values of the RL Statistic

P(X < c) a N(0,1)
2.1 2.5 3.0 3.5 3.8 [a>4]
80% 1.13 1.27 1.32 1.37 1.41 1.473
90% 1.23 1.39 1.45 1.51 1.55 1.620
95% 1.31 1.50 1.57 1.63 1.68 1.747
97.5% 1.41 1.63 1.71 1.77 1.83 1.862
99% 1.48 1.72 1.80 1.87 1.93 1.961

The critical values are based on 50,000 simulations of the test statistics for a« < 4, with a
sample size of n = 1000 (except in thecaseof a=2.1: n=2500). For o> 4, exact
critical values can be computed; the figures reproduced here are from Haubrich and Lo

(1989, Table 1a).
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Table 5. Point estimates and standard errors of the maximal moment exponent a
of the empirical distributions

(5.2) Monthly stock returns

s left tail right tail
(n = 922) (n = 914)
o (s.e.) a (s.e.)
20 3.55 0.79 2.95 0.66
40 3.12 0.49 2.46 0.39
60 3.22 0.42 245 0.32
80 3.00 0.34 2.61 0.29
100 2.95 0.29 2.66 0.27

(5.b) Daily stock returns

s left tail right tail
(n = 3,197) (n = 3,207)

& (s.e.) & (s.e.)
50 3.80 0.54 3.37 0.48
100 3.79 0.38 3.86 0.39
150 3.59 0.29 3.44 0.28
200 3.68 0.26 3.17 0.22
250 3.44 0.22 3.08 0.19

Remark: See text for the formulas to compute point estimates and standard errors of o .
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Table 6. Tests of constancy of tail parameter o across tails
and over time ( V(-ra) test)

(6.a) Monthly stock returns

5 Constancy of a Constancy of «
across tails over time

40 1.045 0.865

60 1.467 0.886

80 0.882 1.348

(6.b) Daily stock returns

5 Constancy of « Constancy of «
across tails over time

100 —0.124 0.055

150 0.369 —0.477

180 1.385 ~{.398

Remark: Use standard normal critical values for this test statistic. The sample split
prediction tests reported in the second column were performed on the absolute values of the
teturns, in order to work with approximately the same number of observations as in the
first column, where the split was between positive and negative values.
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Figure Ba

Cusum? test: fdd bounds, o = 2.1
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Figure 6¢

Cusum? test: fdd bounds, o = 3.0
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Figure bte
Cusum? test: fdd bounds, o = 3.8
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Figure 7a

90 7 conf. contours, cusum? test
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Figure O
Cusum? test: 997 fdd bounds
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Figure 10a

. Cusum? test, monthly stock returns series
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Figure 10D

Cusum? test, daily stock returns series
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