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THE GENERALIZED BASIS REDUCTION ALGORITHM

by

Lészl6 Lovdsz and Herbert E. Scarf*

I. Introduction
Let C be a compact convex body in Rn, of positive volume and symmetric

about the origin, and let L be the lattice of integer vectors in R™. The
body can be used to define a distance function F(x) = inf(i 2 0|x/A e GC),
with the properties:

1. F(x) is convex,

2. F{(-x) = F(x),

3. F(tx) = tF(x) for £t > 0.
The dual body ¢ is defined to be {y |y.x £ 1 for all x ¢ C), and the dual

*
distance function is F (y) = maxxscy.x.
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In order to determine a smallest non-zero lattice peoint according to

the distance function F, we introduce the concept of a reduced basis with

respect to F. Let bl,bz,...,bn be a basis for the integer lattice L. For
each i we project C, along the vectors bl,...,bl-l, into the affine space Ei
- <b1,...,bn> obtaining Ci' In other words, x = xibl + ...+ xnbn £ Ci if
and only if there are o,,...,a, ., such that x + o b1 + ...+ a, il ..

1 i-1 1 i-1

. . . . 1 i-1 | i o,

The lattice Li’ obtained by projecting L along b™,...,b into <b™,...,b >,
is the set of integral linear combinations of the vectors bi,...,bn.

b1

FIGURE 1

The distance function Fi(x), associated with the projected body Ci' is

defined for x ¢ Ei by

. 1 i-1
Fi(x) = min F(x + alb + ... + ai-lb Y,

with the minimum taken over S ERRILTIRE The function may, of course, be

defined for all x in R by the same formula; if x = Eijj, then Fi(x) wilil

be independent of Xy oo Xy .



Fix 0 < ¢ < 1/2. The basis is reduced, for this ¢, if the following
two conditions hold for i = 1,...,,n-1;

1. Fi(b1+1+pb1) > Fi(bl+1) for integral u, and

2. Fi(bi+1) > (1-e)Fi(bi).

If C is an ellipsoid - or, alternatively, if € is the unit ball and the
lattice is a general lattice in R" - this definition of a reduced basis is
identical with the definition in A. K. Lenstra, H. W. Lenstra, Jr. and L.
Lov4sz (1982).

In Section II, we discuss the properties of a reduced basis,
demonstrating, in particular, that for such a basis b1 is an approximation
to the shortest non-zero lattice point. In addition, bi is an approximation
to a lattice point realizing the ith successive minimum, according to
Minkowski. We also provide a polynomial algorithm for fixed n which finds
the shortest non-zero lattice point rather than an approximation.

In Section III, the basis reduction algorithm is described and shown to
execute in polynomial time, for fixed n. In Section IV, we examine a
special basis - the Korkine-Zolotarev basis - associated with a distance
function F. Using the Korkine-Zolotarev basis, we provide an alternative
demonstration of a theorem to be found in Kannan and Lovédsz (1988), that a
lattice-free body K, in Rn, has associated with it a non-zero lattice point
h, such that the width of the body in the direction h satisfies

maxch[h.x] - minxeK{h.x) = con(n+1)/2,
with Cyr @ universal constant.
Lenstra's peolynomial algorithm (H. W. Lenstra, Jr.(l1983)) for integer

programming with a fixed number of variables makes use of the spherical

basis reduction algorithm. He begins by a preliminary reduction to the



problem of determining a lattice point in a convex polyhedron K, in Rn,

defined by a system of linear inequalities Ax < c¢. To find such a lattice
point, the polyhedron is approximated by a ellipsoid E, and a hyperplane
with integer normals h is found so that the width of the ellipsoid in the
direction h,

maxxcE{h.x} - minxaE{h'X}
is as small as possible, aside from a factor depending only on the number of
variables, n. If this width is sufficiently large, the polyhedron is sure
to contain a lattice point. In the alternative case, in which the width is
not large, we consider the intersectlons of the polyhedron with the
hyperplanes hx = hO’ with h0 assuming all integral values between min_, _h.x

xekE

and maxxth.x. The n dimensional problem is thereby reduced to the problem
of determining a lattice point in one of a small number of n-1 dimensional
polyhedra. Each of these polyhedra is then approximated by its own
ellipsoid and the algorithm continues.

A non-zero lattice point h, which minimizes the width of the ellipsoid
E, is a shortest non-zero lattice point for the body (E-E)*, itgelf an
ellipsoid. 1If this latter ellipsoid is transformed to a sphere by a linear
transformation, an approximation to the shortest non-zero lattice point can
be found using the spherical basis reduction algorithm for a general
lactice.

The arguments of this note can be used to find a short non-zero lattice

*
point for the body (K - K) directly, thereby avoiding the series of



ellipsoidal approximations. The basis reduction algorithm is applied to C =

“*
(K - K) , where K = {x|Ax < ¢}, with the distance functions

. 1 i-1
Fi(ﬁ) = min F1($ + alb + ... + ai—lb Y,
. 1 i-1
m1na max{ (& + alb + ... 4+ ai-lb ).(x-y)IAx =c, Ay = ¢}
- rninm,t'u c.{t + u), subjeet to t,u 2z 0,
1 i-1
tA = £ + alb + ...+ ai-lb ,
1 i-1
uA = - (£ + alb + ... + ai-lb ), (from the duality

theorem for linear programming.)

= min c.(t + u), subject to t,uz 0,
o, t,u
1 i-1
tA - alb - ... - ai-lb - £,
1 i-1
uA + alb + ...+ ai-lb - -£,

= max £.(x - y), subject to
Ax £ ¢, Ay = c, bl.(x - y) - 0,...,bi-l.(x - y¥) = 0 (using the
duality theorem again.).

The general basis reduction algorithm requires the solution of many
linear programs, and there are tradeoffs between using an ellipsoidal
approximation to K, or working directly with the body, itself, to resolve
the question of whether K contains a lattice point. A number of
computational experiments are currently being attempted on integer
programming problems of moderately large size to evaluate the merits of the

two procedures.

II, Properties of a Reduced Basis

Theorem 1. Let bl,...,bn be a reduced basis. Then

i+l i .
Fi+1(b ) = (1/2-£)Fi(b ) for i =1,...,n-1,



Procf: We have the identirty
. i
min Fi(x+ab ) = Fi+l(x)
with the minimum taken over all real a. Since we can round a to the nearest
integer u, it follows that
. i i
(1) min Fi(x+pb ) =< Fi+l(x) + 1/2 Fi(b Y.
with the minimum taken over integer u. If x is taken to be bl+l then (1),
in conjunction with the definition of a reduced basis, tells us that
(1-6)F, (b) = Fi(bi+1) - min Fi(bi+l+pb1)

i+l i
=< Fi+1(b )+ 1/2 Fi(b ). ®

Theorem 2. let bl,...,bn be a reduced basis, and let
Al = min F(h), for all non-zerc lattice points h.
Then X, = Foly. (1/2-0)7 1,
Proof: Let h = 1.bY + ... + L b", with 1 1, integral and 1
roorf: t - 1 - k2 w 1 ot Tk integral an k

different from zero, be a shortest non-zero lattice point according to the:
distance function F. Then
k 1 k-1
Ay = F(h) = F (h) = Illek(b ) = F(b7).(1/2-¢) ~. @
Theorem 2 states that the first vector, bl, in a reduced basis is an
approximation to the shortest non-zero lattice point. In a similar fashion

the other basis vectors approximate the guccegsive minima of the lattice

with respect to the distance function.

Definition: Al, ce s An are the successive minima of the lattice with
respect to F if there are lattice points h1, ey hn, with Ai - F(hl), such
that for each i = 1,...,,n, h* is the shortest lattice point which is

< . 1 i-1
linearly independent of h™, ..., h .



An equivalent definition is Ai = min [AIF(x) = X contains i linearly
independent lattice points). The successive minima Ai are uniquely defined
by the distance function F, but there may be more than one set of lattice
points hi which realize these values. We have the following generalization

of Theorem 2.

Theorem 3. Let bl,...,bn be a reduced basis,

Then for i =1, ..., n,
Fi(bi)(l/z-c)“'i S Fi(bi)/(l/z-:)i'l.

Proof: We begin by constructing a basis cl,...,cn for the lattice with

(2) Fi(eh) = F oYy /2.0,

thereby demonstrating the right hand side of the inequality in Theorem 3.
Again we use the inequality

. i i
min Fi(x+pb )y = Fi+1(x) + 1/2 Fi(b ),

with the minimum taken over integer u., If x is taken to be bi+1 then this

inequality implies

i+l i i+l i
Fi(b +pi+1'ib ) = Fi+1(b Yy +1/2 Fi(b )

for some integral Piel i Apply the inequality again with i+41 replaced by i

i+l
and x = b +pi+1'i
i+l
Fi-l(b +p

bi, obtaining

i-1

1
LRSI LI

i+l,1
i+l i i-1
Fi+l(b )y + 1/2 Fi(b Yy + 1/2 Fi-l(b )

for some integral Pivl 1 and Bisl . 1-1° Continuing, we see that

i+l
(3 Fl(b

for some integral Bial 3

i k| i+l i |
+ Ej-lﬂi+l,jb ) = Fi+1(b ) + (1/2)21Fj(b )

] j-lq-'oni’

We use this construction to define

i+l i+l i j
(&) c b + zj=l“i+1,jb .



Estimating EFj(bj) by means of Theorem 1, we see that

i+l

F (™) = Fi+1(bi+1).{l + 172 $1/(1/2-0) 41T,

i+l i
= Fi+1(b Y/ (1/2-¢)7.

To demonstrate the inequalities on the left hand side of Theorem 3, we

write
1 1 2 n
h™ = lllb + 112b + ...+ 11nb
i’ 1 2 n
h™ = 1i1b + li2b + ... + 1inb
W' a1 b+ 1.b%+ ... +1 B
nl n2 nn

with lij integral and with hi linearly independent lattice points which
realize the successive minima, i.e. Fl(hl) - Ai.
For each index i, there must be a pair of indices j and k with j = 1 =

k such that 1 » 0, since otherwise

jk
1 1 i-1
h™ = lllb + ...+ 11'1_1b
i’ 1 i-1
h™ = lilb + ...+ li,i-lb .
and the vectors hl, C s h' would be linearly dependent. For each i,
therefore, let k be the largest index such that 1jk = 0 for some j <= 1 5 k.
But then, since Iljkl =1,
- 3 Iy - k
A = Aj F (b’) = F (h7) Iljkl.Fk(b )

= F (%) (1/2-)F 7

v

F (b1 . (1/2-6)"" L
This demonstrates Theorem 3. ®

According to Minkowski, the successive minima satisfy the inequality

n
Al...An.vol(C) = 2.

We can show that the basis cl,...,cn, defined by (4), approximates this

result in the following sense:



Theorem 4. Let bl,...,bn be a reduced basis with respect to F. Then

the basis cl,...,cn satisfies
F,(eh).F ). F (™) vol (o) s 2%/(1/2 - " PTH/2

Proof: The proof depends on the fact that for any basis

(5) F (b . F (0% F_(67) .vel(0) = 2"
n
To demonstrate (5), let us assume, by induction, that this inequality is
satisfied for the n-1 dimensional body C2 obtained by projecting b1 into the
affine space <b2,...,bn>, so that
2 n n-1
F2(b )"'Fn(b ).vol(Cz) = 2
But then vol(C) = IC 1({x)dx, with 1(x) the length of the intersection of the
2

line x + abl with C. From the symmetry and convexity of €, 1(x) =< 1(0) =
2/}*1(1:1) so that vol(C) = 2v01(02)/F1(b1), thereby demonstrating (5).

Theorem 4 follows from the previously established inequality
i-1

®

F (et 5 FLY)/(1/2 - o)

FIGURE 2



If we are given a reduced basis, then a shortest vector hl can be
calculated in polynomial time for fixed n. We do this by establishing
bounds on the coordinates of lattice points satisfying Fl(h) = Fl(bl). Let
h = lebj be such a vector. Then Fl(bl) > Fl(h) = Fn(h) - |1n|.Fn(bn) S0
that |1 | =< Fl(bl)/Fn(bn) < 1/¢1/2-)"" L,

Now let us suppose that the coordinates ln,...,li+1 have been selected.
We find bounds for 1i as follows: Find the real ¢ which minimizes Fi(lnbn +

.+ 11_"1b:i'+1 + abi). If the minimum is greater than Fl(bl) then there is
no h with these final n-i coordinates satisfying Fl(h) =< Fl(bl). If, on the
other hand, the minimum is less than or equal to Fl(bl) then since Fi(lnbn +

i+

.. +1, .b

1 i 1 . .
i+l + lib ) = Fi(h) < Fl(h) = Fl(b ), and Fi is symmetric and

convex, we obtain
|1, -a| .F, (b)) = 2F (b) or
i i 1
|1i-a| < 2/(1/2-:)1'1.
This provides us with a tree of depth n and with a "small" number of
branches at each node in which to search for the coordinates of the shortest
vector. If the tree is used to calculate the shortest non-zero lattice
point in actual numerical examples, the estimate (1/2-.5)1"l should be
replaced by Fi(bi)/Fl(bl), which may be considerably smaller.

If we look for the ith successive minimum by considering those h with
Fl(h) = 17‘1(131)/(1/2-«:)3"'1 we obtain precisely the same set of inequalities
for ln,...,li, but we do not have similar bounds for the first i-1
coordinates of h. This yields a "small" number of hyperplanes of dimension
i-1, one of which contains a lattice point which realizes the ith successive

minimum.

10



JII. The Basis Reduction Algorithm

An algorithm for finding a reduced basis may easily be described. We

begin with an initial basis al,az,...,an for the lattice, and move through a

sequence of bases bl,bz,...,bn according to the following rules: At each

step of the algorithm, we consider the first index i for which one of the
conditions

1. Fi(bi+l+pbi) 2 F,(b"*!) for integral 4, and

2. F, 67 2 (1-eF 6.

is not satisfied.

If the first condition is not satisfied, we replace bi+1 by bi+1+pbl,

1

with g the integer which minimizes Fi(b1+ +pbi). If, after this

replacement, the second condition obtains, we move to level i+l. If the

second condition is not satisfied, we interchange bi and bi+1 and move to

the preceding level i-1, unless i = 1, in which case we remain at level 1.
In order to demonstrate convergence of the algorithm we consider the
vectoer
R TR S T I S TR N O
and remark that the maximum value of the components of the vector does not
increase at any step of the basis reduction algorithm. If we replace bi+1
by bi+l+pbi, none of the terms change; if bi and bi+1 are interchanged,
F, (b") becomes Fi(bi+1) < (1-e)F, (b)) and Fi+1(bi+1) is replaced by
1 i-1 i+l

: i
min F(b™ + alb + ...+ ai-lb + ai+1b )
1

i i-1 i
=< min F(b™ + alb + ...+ ai—lb ) = Fi(b ).
It follows that at any step in the algorithm, max Fi(bi) < max Fi(al) equal

to, say, U,

11



The basis reduction algorithm is known to converge in polynomial time,
including the number of variables, n, for F(x) = |x|, and a general lattice
given by an integer basis. The argument is based on two observations:
first, that an interchange between bi and bi+1 preserves the values of
Fj(bj) for all indices other than i and i+l, and secondly, that for F(x) =
|x|, the product Fi(bi)Fi+l(bi+1) is constant when the vectors bi and bi+1
are exchanged. This permits us to deduce that D(bl,...,bn) - H(Fi(bi))n-i
decreases by a factor of (l-¢) at each'interchange. It is easy to show that
II(li‘J.h(lzvi))".“i z 1, for any basis, from which the polynomial convergence
follows readily.

Constancy of Fi(bi)Fi+1(bi+1) is not valid for a general distance
function, and the basis reduction algorithm is not known to execute in
pelynomial time in the number of wvarisbles m. But the algorithm may be
shown to be polynomial in the data of the problem for fixed n. We present
two arguments for this conclusion, both of which depend on establishing
lower bounds for the possible values assumed by Fi(bi) during the course of
the algorithm.

To obtain such a lower bound, assume that ¢ € B(R), the ball of radius

R. Then F(x) = |xl/R. Now let bl,...,bn be any basis for the lattice
. ; i 1 n i+l i+l i j
satisfying Fi(b ) = U, and let ¢7,...,c , with ¢ - b + Zﬁ—lpi+l,jb .

be the basis constructed in the proof of Theorem 3, which satisfies Fi(ci) -
Fi(bi) and F (c') = F (b)) + (1/2)Ei_1Fj (b)) < nU. We have, therefore, |cl]
< nUR.

12



We estimate Fi(bl), from below, as follows:

F,(o1) = min FT + b + ...+ @ b
= min F(bi + alcl + ...+ ai_lci'l)
z min |(bi + alc1 + ...+ ai_lci-l)I/R.
But min |(bi + alcl + ...+ ai_lci-1)| is the distance between the vector b
and the space <cl,...ci-1> and is therefore equal to
{G(cl,.... i-1 b )/G( )]1/2
where the Grammian
G(xl,...,xi) - det[(xJ,xk)l;‘k_l.
Since c:]',...,v::i-1 and bi are integral, G(cl,...,ci-l,bi) > 1. Moreover,
ecel, et D2 <L et = urytt,

It follows that
F, 00 = 1/R@R0) Y 2 1/RRDY - v,
We have already shown that each component of
NS0 BTSN CEo T JUUYC St FRU
is bounded above by U = max Fi(a ) throughout the course of the algorithm.
Moreover, the first term in the sequence to change at any iteration
decreases by a factor of (1 - e). Our first argument for polynomial
convergence is to observe that the maximal number of interchanges is
therefore
[1og(U/V)/log(1/(1-e))]"
(Simply record the times at which the first two basis vectors b1 and b2 are
interchanged. Between any consecutive pair of such times we are faced with
an identical problem with n-1 variables.) Using our particular lower bound

V we see that the number of interchanges of the basis reduction algorithm is

13



bounded above by
(6) [nlog(nUR)/log(l/(1 -e))1".

The second argument for polynomiality, which achleves a different
bound, depends on the observation that for a general distance function F(x),
the product Fi(bi)Fi+1(bi+1) increases by a factor less than or equal to 2
after an interchange of bi and bi+l. The argument makes use of the
following Theorem.

Theorem 5. Let S be a compact convex set in Rk, which is symmetric
about the origin, and let ®x and y be two linearly independent vectors on the
boundary of §. Define

dx = max{al ax + By ¢ S for some B} and
d.y = max{f| ex + By ¢ S for some a}.
Then 1/2 < dx/dy =< 2.

Proof; 1If dxx + By € S, then either 8 = dx-l, or f =< l-dx. For if 0 =
g < dx-l, x is a strict convex combination of 0, -y, dxx + By, and is
therefore interior to S; if l—dx < B =<0, x is a strict convex combination
of 0, v, dxx + By and is again interior to 5. In the first case, c:.l,y -3 dx-l.
In the second case, since S5 is symmetric, the vector -(dxx + By) £ S and
again dy = dx-l. It follows that

dx/dy <=1+ 1/dy < 2,

gince dy = 1. The lower inequality follows from interchanging x and y. @

14
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Theorem 5 may be used to show that the product
Fi(bi)Fi+1(bi+l)
increases by a factor not larger than 2 at any step of the basis reduction
algorithm in which b’ and b'*! are interchanged. Let s - G CE, -
<bi,...,bn>. Assume, without loss of generality, that Fi(bi) = 1, and take
y = bi and x = bi+1/Fi(bi+l), both of which are on the boundary of Ci' But

# i . # - ..
then Fi+1(x) - 1/dx’ and Fi+1(b ) - 1/dy' with F the distance function

i+l
. . . i 142 n
associated with the projection of C into <b™,b s--.,b >. It follows that
1+1, _# i i i+l
(7) F (b™ )F, (BT /Fi(B)F, (BT )

i+l i+l

Now consider
-1

1 . Tl
D(b,...,b") = I(F, (6"

with v = 2 + 1/1log(l/(1-¢}). It is a straightforward computation to show
that our estimate (7) implies that D(bl,...,bn) decreases by a factor of at

least (l-¢) at each interchange required by the basis reduction algorithm.

15



Since V = Fi(bi) < U at each step of the algorithm, we see that the number
of interchanges is bounded above by
[(¢"-1)/(y-1) 110g(U/V)/log(1l/(1-£))
< [(1n—1)/(7-1)]nlog(nUR)/log(l/(l-e)),

an estimate which is much better than our previous estimate (6) in terms of
its dependence on UR. The preceding discussion has established the
following theorem:

Theorem 6. The basis reduction algorithm terminates in a polynomial
number of steps, for fixed n.

Since the number of possible values of the vector

Fl(bl),.. JFy wh,F o L o™

is finite, the basis reduction algorithm executes in finite time even when ¢
= (. Bdrdny has recently demonstrated geometric convergence when £ = 0 for
the case of two variables. Consider two successive steps of the algorithm.
Assume that the initial basis is (bl,bz), with b2 the smallest lattice point
on the line b’ + abl, and that 6 F(b') < F(b%) < F(b'). After the first
interchange the basis is given by (bz,bl). Let p* minimize F(b1+pb2) for
integral g and assume that § F(b2) < F(b1+p*b2) < F(bz) so that another
interchange is required leading to the basis (b +u b2 bz) Finally, let u
be the integer which minimizes F(b +u(b +4 b ».

Theorem 7 (Bdrdny). If 6162 > 1/2 then u = 0 or 1. 1In either case the
basis (b +u b2 b2+p(b +u b )) is reduced.

Proof: We argue, first of all, that ]p*| >1. 1f p* = (0, there is a
contradiction between F(bl4u b%) < F(b%) and F(b2) < F(bl). If s = 1, then
b2 is not the shortest integral vector on the line b2+ub1, and similarly for

* *
g = -1. To be specific, let us now assume that g =< -2,

16



Consider the convex function g(a) = F(b2+a(b1+p*b2)). We have g(0) =
F(bz) and from our assumptions g(0) > 61F(b1) > 8261F(b1). Also g(1) =
FOOM+ (™ +1b?) = Fl4'e?) > 6,F1%) > 6,6, F(b). But g(-1/u") -

(/[ DF®Y) = (1/2)F(bY). It follows, from the convexity of g(a), that
if 8.6, > 1/2, the integral minimum of g(a) is at a = 0 or a = 1, In the

152
*
first case, the basis (bi+s b2,b%) is reduced since F(bl4u*b%) < F(b2): in

. 1, % 2
the second case, the basis (b™+u b

Y+ +1)b%) is reduced because
Fbl+™b?) < FOl+(u™+1)b?) @

Theorem 7 implies that in 2p steps of the basis reduction algorithm,
F(bl) will decrease by a factor of at least (1/2)p. Since F(h) = 1/R for
any lattice point h, we have geometric convergence of the algorithm for
n=2and ¢ =0, No argument is currently available for higher dimensions,
and ¢ = 0, unless we revise the order in which the steps of the algorithm
are executed. For example, following a suggestion made by Bdrdny, let us
assume that we always select the largest index i for which one of the
conditions of a reduced basis is not satisfied. It follows that if we ever
return to level 1, the basis bz,...,bn is reduced with ¢ = 0 for the n-1
dimensional problem defined by C2. If an interchange of bl and b2 is then
required, two possible cases arise:

1. F (%) 2 (1-6)F (b)) for some fixed 1/2 < § < 1. But then the
basis bl,...,bn will be é-reduced for the original problem. Our previous
analysis shows that there are a finite number, N(n,§) of lattice points h,
such that Fl(h) < Fl(bl), and, therefore, the algorithm requires an exchange

1

of b~ and b2 not more than N{(n,§) times.

2. At each return to level 1, we have Fl(bz) < (1-8)Fl(b1), and

17



therefore the number of returns to level 1 is bounded above by
log(U/V)/log(1l/(1-48)).
We then use an inductive argument on n to achieve polynomial bounds on

the running time of the algorithm for ¢ = 0 and fixed n.

IV. The Korkine-Zolotarev Basis

A special basis for a lattice, the Korkine-Zolotarev basis, has been
used very successfully by Lagarias, Lenstra and Schnorr (1%90) to improve
some classical estimates in the Geometry of Numbers relating the successive
minima of a body C and its dual body C* - !yl y.x =1 for all x £ C}. In
their analysis they approximate a general boedy by an ellipsoid, transform
the ellipsoid to a sphere by a linear transformation and use specific
properties of the spherical morm. We shall illustrate, by means of a few
examples, that thelr arguments can be applied, virtually unchanged, to a

general body without the prior step of an ellipscidal approximation.

Let bl,bz,...,bn be defined recursively as follows: given bl,...bi'l,
b minimizes Fi(h) over all non-zero lattice points in <bi,...,bn>. The
vectors bl,bz,...,bn clearly form a basis, since otherwise there is an

integer vector which can be written as a linear combination of the bi with
some fractional coefficients. But then by adding and subtracting suitable
integral multiples of {bj}, we obtain an integral vector

h = albl + ... + aibi,

with a; a proper fraction; aibl is in the lattice projected into

<b",...,b™ and gives a smaller value of F,(h) than does bt.
Using this particular basis, the Korkine-Zolotarev basis is defined by
i+l i+l i 3
c b + zj—lpi+l,jb )
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as in {(4). The basis satisfies the inequalities

(5) Fl(ci) < Fi(bi) + (1/2)Ei'1Fj(bj).
The Korkine-Zolotarev basis may not be unigque; there may be several non-zero
integral vectors in <bi,...,bn> which minimize Fi(h)’ and the integers “i,j
need not be uniquely defined.

Theorem 8. Let cl,...,cn be a Korkine-Zolotarev basis. Then

F (b /(1) /2) = 2, s (D /DF b,

Proof: Llet hl,...,hn realize the successive minima. For each i, at
least one of the vectors hl,...,hi must project to a non-zero lattice point
in <bi,...,bn>, since otherwise the vectors would all lie in <b1,...,bi-1>

and be linearly dependent. It follows that maxj<iFi(hJ) > Fi(bi) and

therefore Ai - Fl(hi) = max (hJ) b Fi(bi). But then (5) implies that

=11
Fl(cl) = Ai+(1/2)(ll+...+li-1) = ((i+l)/2)Ai. This demonstrates the left

hand inequality of Theorem 8.
To obtain the right hand side, notice that for k < i, Fk(bk) =< Fk(cl) <
i i , . k o

Fl(c ), since ¢~ projects into a non-zero lattice point in <b™,...,b>. But

J
Ai = maxjsiFl(c h]

IA

j k
maxjfi[Fj(b )+(1/2)Ek5j_1Fk(b )}
Fl(c )maxjsi{1+(1/2)2ksd-ll}

((+1)/DF (D) ®

A

We remark that Theorem 8, in conjunction with Minkowski's inequality,
implies that a Korkine-Zolotarev basis satisfies
Fl(c1>.rl(c2)...Fl(c“).volcc) < (n+l)!,
an improvement over the estimate of Theorem 4.

*

Let Al be the length of the shortest non-zero lattice point with

%
respect to the dual body ¢ = {y| y.x = 1 for all x £ C}. Minkowski’'s first
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* *
theorem implies that Al =< 2/(V01(C))1/n and Al < 2/(vol(C ))1/n, so that an

lA; may be obtained from a lower bound for the product of
*

the volumes vol{(C).v0l(C ). A well-known ellipsoidal approximation to C is

3/2

upper bound for X
sufficient to produce the inequality AlA; <=n A more sophisticated
lower bound, quoted by Kannan and Lovdsz (1988), implies that there exists a
universal constant o such that AlAI =< cgh- This result is used to
demonstrate the following property of a Korkine-Zolotarev basis.

Theorem 9. There is a universal constant <y such that for a Korkine-
Zolotarev basis, Fi(bi)xz < cy(n-1+1).

Proof: We assume, without loss of generality, that the Korkine-
Zolotarev basis consists of the n unit vectors el,...,en, and let Ci be the
prejection of C into ei,...,en. with assoclated distance function Fi' The
projection of the original lattice is the set of all (xi,...,xn) with

integral coordinates. For this lattice and distance function, A, = Fi(bi).

1
From the previous discussion, there is a non-zero lattice point
h' = (h;,...,h ) such that F,(b).max(h'.x |x € C,) < ¢ (n-i+1). But this
linear function hi.x may be extended to a linear function h.x in R" by
adding i-1 zero coordinates to hi, so that
F, (b)) < F (b)) .max(h.x |x ¢ C) s cy(n-1+1). ®
Theorem 9 has an important application to the study of lattice free
bodies K which are not symmetric about the origin. As we shall see, any
such body has associated with it a non-zero lattice point h such that
maxxaK{h.x} - minch[h.x) = con(n+1)/2.

The argument is based on Theorem 9, and a subsequent result in the paper by

Kannan and LovAsz which may be described as follows.
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Theorem 10. Let € = (X - K), with K a convex body, and let F be the
distance function associated with C. For any basis bl,...,bn, define p =
EFi(bi). Then the lattice translates of pK cover rR™.

Proof: We show, by induction on n, that for any x ¢ Rn, there is a
lattice point h with x+h & pK. Notice that the hypotheses and conclusion of
the Theorem are unchanged if we replace K by any translate of itself; we may
therefore assume that K has been translated s¢ that both 0 and b1 are
contained in Fl(bl)K. Let K’ be the projection of K along the wvector b1
into <b2,...,bn> and x' the corresponding projection of x.

By the induction assumption, there is a lattice point h’ in
<b2,...,bn> such that x'+h' ¢ E?Fi(bi)K’ and therefore x+abi+h' £ EgFi(bi)K
for some a. It follows that x+[a]bish’ ¢ ZoF (BIK + ([a]-a)b’ ¢ ZF, BHX.

If the body K is free of lattice points, then its lattice translates do
not cover the origin, and therefore p = EFi(bi) > 1. We see from Theorem 92,
that for such a body, AI < coz(n-i+1) - con(n+1)/2. It should be remarked

that the inductive argument provides an algorithm for calculating a lattice

point in K, if p = 1.
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